1
|
Li Q, Zou Y, Mao D, Tian H, Hang X, Bi Y. Thiacalixarene-supported M 20V 8 (M = Fe, Co, Ni) square pyramid nanocages for visible light photothermal catalysis. Chem Commun (Camb) 2025. [PMID: 40432536 DOI: 10.1039/d5cc02007g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
We rationally designed and synthesized a series of square pyramid nanocages (M20V8, M = Fe, Co, Ni) based on M4-TC4A (H4TC4A = p-tert-butylthiacalix[4]arene) polynuclear secondary building units (PSBUs) and vanadate anion units in {5+8} condensation modes. Among them, the Fe20V8 cage exhibited significant photothermal conversion efficiency (up to 80%) and photothermal catalytic performance for the oxidation desulfurization of thioether.
Collapse
Affiliation(s)
- Qiqi Li
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, P. R. China.
| | - Yuhan Zou
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, P. R. China.
| | - Dongao Mao
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, P. R. China.
| | - Hongrui Tian
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, P. R. China.
| | - Xinxin Hang
- Institute for Innovative Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China.
| | - Yanfeng Bi
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, P. R. China.
| |
Collapse
|
2
|
Wilson LRB, Nichol GS, Dalgarno SJ, Brechin EK. A [CuII24] truncated octahedron and its [CuII8] building block. Chem Commun (Camb) 2025; 61:4722-4725. [PMID: 40026000 DOI: 10.1039/d5cc00532a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Reaction of CuCl2·2H2O with p-tert-butylthiacalix[4]arene (H4TC[4]A) affords a [CuII24] cage whose metallic skeleton conforms to a truncated octahedron in which the metal ions are strongly antiferromagnetically coupled. A structurally related [CuII8] cluster can be made using CuBr2 in an otherwise identical reaction.
Collapse
Affiliation(s)
- Lucinda R B Wilson
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, Scotland, UK.
| | - Gary S Nichol
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, Scotland, UK.
| | - Scott J Dalgarno
- Institute of Chemical Sciences, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS, UK.
| | - Euan K Brechin
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, Scotland, UK.
| |
Collapse
|
3
|
Khariushin IV, Ovsyannikov AS, Baudron SA, Ward JS, Kiesilä A, Rissanen K, Kalenius E, Chessé M, Nowicka B, Solovieva SE, Antipin IS, Bulach V, Ferlay S. Face-controlled chirality induction in octahedral thiacalixarene-based porous coordination cages. NANOSCALE 2025; 17:1980-1989. [PMID: 39651803 DOI: 10.1039/d4nr03622k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Nanosized chiral octahedral M32 coordination cages were prepared via self-assembly of sulfonylcalix[4]arene tetranuclear M(II) clusters (M = Co or Ni) with enantiomerically enriched linkers based on tris(dipyrrinato)cobalt(III) complexes, appended with peripheral carboxylic groups. Two pairs of enantiomers of cages were obtained and unambiguously characterized from a structural point of view, using single crystal X-ray diffraction. Chiral-HPLC was used to evidence the enantiomers. In the solid state, the compounds present intrinsic and extrinsic porosity: the intrinsic porosity is linked with the size of the cages, which present an inner diameter of ca. 19 Å. The obtained solid-state supramolecular architectures demonstrated good performances as adsorbents for water and 2-butanol guest molecules.
Collapse
Affiliation(s)
- Ivan V Khariushin
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France.
| | - Alexander S Ovsyannikov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan 420088, Russian Federation
| | - Stéphane A Baudron
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France.
| | - Jas S Ward
- University of Jyvaskyla, Department of Chemistry, 40014 Jyväskylä, Finland
| | - Anniina Kiesilä
- University of Jyvaskyla, Department of Chemistry, 40014 Jyväskylä, Finland
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, 40014 Jyväskylä, Finland
| | - Elina Kalenius
- University of Jyvaskyla, Department of Chemistry, 40014 Jyväskylä, Finland
| | - Matthieu Chessé
- LIMA UMR 7042, Université de Strasbourg et CNRS et UHA, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France
| | - Beata Nowicka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | | | - Igor S Antipin
- Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russian Federation
| | - Véronique Bulach
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France.
| | - Sylvie Ferlay
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France.
| |
Collapse
|
4
|
Strelnikova IV, Ovsyannikov AS, Gubaidullin AT, Agarkov AS, Kleshnina SR, Iova AA, Furer VL, Vandyukov AE, Solovieva SE, Antipin IS. Interplay between conformational flexibility, intermolecular H-bonding and 3d-metal cation extraction ability in a series of thiacalix[4]arene lower rim disubstituted Schiff base derivatives. Phys Chem Chem Phys 2024; 27:206-217. [PMID: 39629713 DOI: 10.1039/d4cp03393k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The rational design of organic ligands with the aim to control their binding abilities towards different metal ions can be considered as one of the key concepts in supramolecular coordination chemistry. Regarding the macrocyclic compounds of thiacalix[4]arene family, this can be achieved via the targeted modulation of macrocyclic platform rigidity as well as the proper choice of appended binding sites. Four macrocyclic salen-type ligands based on lower rim disubstituted thiacalix[4]arene derivatives, adopted in a cone conformation, bearing highly coordinating iminophenolic or catecholic groups and two -CH2- moieties as spacers but presenting different abilities to form H-bonds, were chosen to elucidate the interplay between the conformational flexibility of the macrocyclic ligands, propensity to participate in the intermolecular H-bonding and the extraction ability of 3d-metal cations. X-ray diffraction analysis, theoretical DFT calculations, IR and Raman spectroscopies, and dynamic light scattering (DLS) studies performed in combination with liquid-liquid metal extraction study revealed that compounds 4, and 6, based on a thiacalix[4]arene macrocyclic platform, display a higher extraction ability towards all studied 3d-metal ions, caused by enhanced conformational flexibility. This is in good accordance with the ability of 6 to form H-bonded supramolecular assemblies in solution and crystalline phases due to recognition between the catecholic moieties.
Collapse
Affiliation(s)
- Iuliia V Strelnikova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8 str, Kazan 420088, Russian Federation.
- Kazan Federal University, Kremlevskaya 18 str, Kazan 420008, Russian Federation
| | - Alexander S Ovsyannikov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8 str, Kazan 420088, Russian Federation.
| | - Aidar T Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8 str, Kazan 420088, Russian Federation.
| | - Artem S Agarkov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8 str, Kazan 420088, Russian Federation.
| | - Sophiya R Kleshnina
- Kazan Federal University, Kremlevskaya 18 str, Kazan 420008, Russian Federation
| | - A A Iova
- Kazan Federal University, Kremlevskaya 18 str, Kazan 420008, Russian Federation
| | - Victor L Furer
- Kazan State Architect and Civil Engineering University, 1 Zelenaya Str., 420043 Kazan, Russian Federation
| | - Alexander E Vandyukov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8 str, Kazan 420088, Russian Federation.
| | - Svetlana E Solovieva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8 str, Kazan 420088, Russian Federation.
| | - Igor S Antipin
- Kazan Federal University, Kremlevskaya 18 str, Kazan 420008, Russian Federation
| |
Collapse
|
5
|
Gupta RK, Wang Z, Mohan B, Tung CH, Sun D. Advancements in Atomically Precise Nanocluster Protected by Thiacalix[4]arene. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410054. [PMID: 39226533 DOI: 10.1002/adma.202410054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/20/2024] [Indexed: 09/05/2024]
Abstract
Coinage metal nanoclusters (NCs), comprising a few to several hundred atoms, are prized for their size-dependent properties crucial in catalysis, sensing, and biomedicine. However, their practical application is often hindered by stability and reactivity challenges. Thiacalixarene, a macrocyclic ligand, shows promise in stabilizing silver, copper, and bimetallic NCs, enhancing their structural integrity and chemical stability. This investigation delves into the unique properties of thiacalix[4]arene and their role in bolstering NC stability, catalytic efficiency, and sensing capabilities. The current challenges and future prospects are critically evaluated, underscoring the transformative impact of thiacalix[4]arene in nanoscience. This review aims to broaden the utilization of atomically precise coinage metal NCs, unlocking new avenues across scientific and industrial applications.
Collapse
Affiliation(s)
- Rakesh Kumar Gupta
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Zhi Wang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Brij Mohan
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, 1049-001, Portugal
| | - Chen-Ho Tung
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Di Sun
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| |
Collapse
|
6
|
Dey A, Dworzak MR, Korathotage KDP, Ghosh M, Hoq J, Montone CM, Yap GPA, Bloch ED. Increasing the stability of calixarene-capped porous cages through coordination sphere tuning. Dalton Trans 2024; 53:4005-4009. [PMID: 38314611 DOI: 10.1039/d3dt03365a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Chemically and thermally stable permanently porous coordination cages are appealing candidates for separations, catalysis, and as the porous component of new porous liquids. However, many of these applications have not turned to microporous cages as a result of their poor solubility and thermal or hydrolytic stability. Here we describe the design and modular synthesis of iron and cobalt cages where the carboxylate groups of the bridging ligands of well-known calixarene capped coordination cages have been replaced with more basic triazole units. The resultingly higher M-L bond strengths afford highly stable cages that are amenable to modular synthetic approaches and potential functionalization or modification. Owing to the robust nature of these cages, they are highly processable and are isolable in various physical states with tunable porosity depending on the solvation methods used. As the structural integrity of the cages is maintained upon high activation temperatures, apparent losses in porosity can be mediated by resolvation and crystallization or precipitation.
Collapse
Affiliation(s)
- Avishek Dey
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Michael R Dworzak
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | | - Munmun Ghosh
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Jahidul Hoq
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | - Christine M Montone
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | - Glenn P A Yap
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | - Eric D Bloch
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, USA
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| |
Collapse
|
7
|
Wang Z, Zhu YJ, Ahlstedt O, Konstantinou K, Akola J, Tung CH, Alkan F, Sun D. Three in One: Three Different Molybdates Trapped in a Thiacalix[4]arene Protected Ag 72 Nanocluster for Structural Transformation and Photothermal Conversion. Angew Chem Int Ed Engl 2024; 63:e202314515. [PMID: 38015420 DOI: 10.1002/anie.202314515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 11/29/2023]
Abstract
Polyoxometalates (POMs) represent crucial intermediates in the formation of insoluble metal oxides from soluble metal ions, however, the rapid hydrolysis-condensation kinetics of MoVI or WVI makes the direct characterization of coexisted molecular species in a given medium extremely difficult. Silver nanoclusters have shown versatile capacity to encapsulate diverse POMs, which provides an alternative scene to appreciate landscape of POMs in atomic precision. Here, we report a thiacalix[4]arene protected silver nanocluster (Ag72b) that simultaneously encapsulates three kinds of molybdates (MoO4 2- , Mo6 O22 8- and Mo7 O25 8- ) in situ transformed from classic Lindqvist Mo6 O19 2- , providing more deep understanding on the structural diversity and condensation growth route of POMs in solution. Ag72b is the first silver nanocluster trapping so many kinds of molybdates, which in turn exert collective template effect to aggregate silver atoms into a nanocluster. The post-reaction of Ag72b with AgOAc or PhCOOAg produces a discrete Ag24 nanocluster (Ag24a) or an Ag28 nanocluster based 1D chain structure (Ag28a), respectively. Moreover, the post-synthesized Ag28a can be utilized as potential ignition material for further application. This work not only provides an important model for unlocking dynamic features of POMs at atom-precise level but also pioneers a promising approach to synthesize silver nanoclusters from known to unknown.
Collapse
Affiliation(s)
- Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| | - Yan-Jie Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| | - Olli Ahlstedt
- Computational Physics Laboratory, Tampere University, 33014, Tampere, Finland
| | | | - Jaakko Akola
- Computational Physics Laboratory, Tampere University, 33014, Tampere, Finland
- Department of Physics, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| | - Fahri Alkan
- Department of Chemistry, Bilkent University, Ankara, 06800, Turkey
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| |
Collapse
|
8
|
Han EM, Meng RX, Tian YQ, Yan J, Liu KY, Liu C. Al12Co4: a pioneering heterometallic aluminum oxo cluster with surface-exposed Co sites for the oxygen evolution reaction. Chem Commun (Camb) 2023; 59:11097-11100. [PMID: 37642513 DOI: 10.1039/d3cc03672c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
We report an unprecedented heterometallic aluminum oxo cluster (AlOC) containing four surface-exposed CoII sites, designated as Al12Co4, protected by four t-butylcalix[4]arene (TBC[4]) molecules. The Al12Co4 nanocluster represents a significant advancement on multiple innovative fronts. First, it stands as an pioneering example of an AlIII-based metallocalixarene nanocluster. It is also the first instance of heterometallic AlOCs shielded by macrocyclic ligands. Notably, this cluster also holds the distinction of being the highest nuclearity Al-Co bimetallic nanocluster known to date. Additionally, by depositing Al12Co4 on carbon nanotubes (CNTs) as a supported catalyst, we investigated its electrocatalytic performance for the oxygen evolution reaction in alkaline media. To reach a 10 mA cm-2 current density in alkaline solution, the Al12Co4@CNT electrode needs overpotential as low as 320 mV.
Collapse
Affiliation(s)
- Er-Meng Han
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Ru-Xin Meng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Yi-Qi Tian
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Jun Yan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Kai-Yu Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Chao Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| |
Collapse
|
9
|
Xia ZJ, Zhong YM, Hu SJ, Cai LX, Sun QF. Dynamic Interconversion and Induced-Fit Guest Binding with Two Macrocycle-Based Coordination Cages. Inorg Chem 2023; 62:8293-8299. [PMID: 37184566 DOI: 10.1021/acs.inorgchem.3c00762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We report the syntheses and host-guest chemistry of two interconvertible coordination cages, Pd2L2 and Pd1L1, from a dynamic macrocycle ligand (L) and a cis-blocking (tmen)Pd(NO3)2 (tmen = tetramethylethylenediamine) unit (Pd). The water-soluble macrocyclic L, which can bind various polycyclic aromatic hydrocarbon (PAH) guests in its cis-conformation, was constructed via four pyridinium bonds between two 2,4,6-tri(4-pyridyl)-1,3,5-triazine [TPT] panels and two p-xylene bridges. We selectively formed each cage either by changing the reaction concentration/solvent/temperature or through induced-fit guest encapsulation, while direct assembly of L and Pd resulted in a mixture of Pd2L2 and Pd1L1 in equilibrium. X-ray structures of the free ligand and the host-guest complexes confirmed the induce-fit adaptive changes in the ligand's conformation and the cage's cavity. This work demonstrates a useful strategy for designing multistimuli-responsive supramolecular hosts by coordination self-assembly with macrocyclic ligands featuring rich conformational freedom.
Collapse
Affiliation(s)
- Zi-Jun Xia
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Ying-Mei Zhong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Li-Xuan Cai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
10
|
Mu WL, Wu L, Yu WD, Yi XY, Yan J, Liu C. Atomically accurate structural tailoring of thiacalix[4]arene-protected copper(II)-based metallamacrocycles. Dalton Trans 2023; 52:5438-5442. [PMID: 37083046 DOI: 10.1039/d3dt00455d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Accurate manipulation of ligands at specific sites in robust clusters is attractive but difficult, especially for those ligands that coordinate in intricate binding patterns. By linking the shuttlecock-like {Cu4(μ4-Cl)TC4A} motif and the phenylphosphate (PhPO32-) ligand, we elaborately design and synthesize two Cu(II)-thiacalix[4]arene metallamacrocycles (MMCs), namely Cu12L3 and Cu16L4, which have regular triangular and quadrilateral topologies, respectively. While keeping the core intact, the Cl- and PhPO32- in those two MMCs, which coordinated in a μ4-bridging fashion, can be accurately substituted with salicylate ligands. Theoretical calculations have been carried out to reveal the effect of ligand tailoring on the electronic structure of clusters. Structural regulation can affect the catalytic activity of these clusters, which has been verified by using the clusters as catalysts for selective sulfide oxidation.
Collapse
Affiliation(s)
- Wen-Lei Mu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Linlin Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Wei-Dong Yu
- China College of Science, Hunan University of Technology and Business, Changsha 410000, P. R. China
| | - Xiao-Yi Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Jun Yan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Chao Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| |
Collapse
|
11
|
Desai V, Sharma VS, Rathod SL, Sharma AS, Mali HA, Shah RR, Shrivastav PS. Thiacalixarene Appended Azo-based Supramolecular Systems: Self-assembly and Photo Tuning Reversible Liquid Crystalline Properties. Chemphyschem 2023; 24:e202200803. [PMID: 36642695 DOI: 10.1002/cphc.202200803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/17/2023]
Abstract
Four new azo-based supramolecular materials containing thiacalixarene core substituted by variable alkoxy groups (TFA1 -TFA4 ) have been designed and synthesized for the mesomorphic and photoswitching properties. The liquid crystalline behavior were accomplished by using DSC, POM, and XRD studies. All azo-based thiacalixarene based materials with short and higher chain length display columnar hexagonal mesophase with broad temperature range. The thermal behavior of all the materials was investigated by DSC and TGA study. The structural and conformational study of the lower rim functionalized materials was confirmed by using different techniques. These thiacalixarene moulded liquid crystalline compounds shows columnar self-assembly type behavior and higher thermal stability. The introduction of bi-substituted azo-ester network towards the lower rim of thiacalixarene core has impact on the electron delocalization and liquid crystalline properties. The photoswitching properties suggested cis and trans azo-isomerization under radiation of UV light and higher thermal back relaxation time. The mesogenic behaviour of compound TFA2 and TFA4 were demolished by the influence of cis and trans isomerization. The structure-property correlation is studied to understand the variation in mesogenic properties with the substitution of variable alkoxy side chain.
Collapse
Affiliation(s)
- Vipul Desai
- Department of Chemistry, K.K.Shah Jarodwala Maninagar Science College, Gujarat University, Ahmedabad, Gujarat, 380008, India
| | - Vinay S Sharma
- Department of Chemistry, School of Science, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Suryajit L Rathod
- Department of Chemistry, School of Science, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Anuj S Sharma
- Department of Chemistry, School of Science, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Hitendra A Mali
- Department of Chemistry, School of Science, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Rutesh R Shah
- Department of Chemistry, K.K.Shah Jarodwala Maninagar Science College, Gujarat University, Ahmedabad, Gujarat, 380008, India
| | - Pranav S Shrivastav
- Department of Chemistry, School of Science, Gujarat University, Ahmedabad, Gujarat, 380009, India
| |
Collapse
|
12
|
Luo XM, Li YK, Dong XY, Zang SQ. Platonic and Archimedean solids in discrete metal-containing clusters. Chem Soc Rev 2023; 52:383-444. [PMID: 36533405 DOI: 10.1039/d2cs00582d] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metal-containing clusters have attracted increasing attention over the past 2-3 decades. This intense interest can be attributed to the fact that these discrete metal aggregates, whose atomically precise structures are resolved by single-crystal X-ray diffraction (SCXRD), often possess intriguing geometrical features (high symmetry, aesthetically pleasing shapes and architectures) and fascinating physical properties, providing invaluable opportunities for the intersection of different disciplines including chemistry, physics, mathematical geometry and materials science. In this review, we attempt to reinterpret and connect these fascinating clusters from the perspective of Platonic and Archimedean solid characteristics, focusing on highly symmetrical and complex metal-containing (metal = Al, Ti, V, Mo, W, U, Mn, Fe, Co, Ni, Pd, Pt, Cu, Ag, Au, lanthanoids (Ln), and actinoids) high-nuclearity clusters, including metal-oxo/hydroxide/chalcogenide clusters and metal clusters (with metal-metal binding) protected by surface organic ligands, such as thiolate, phosphine, alkynyl, carbonyl and nitrogen/oxygen donor ligands. Furthermore, we present the symmetrical beauty of metal cluster structures and the geometrical similarity of different types of clusters and provide a large number of examples to show how to accurately describe the metal clusters from the perspective of highly symmetrical polyhedra. Finally, knowledge and further insights into the design and synthesis of unknown metal clusters are put forward by summarizing these "star" molecules.
Collapse
Affiliation(s)
- Xi-Ming Luo
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Ya-Ke Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China. .,College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
13
|
Li Z, Wang D, Zhou Z, Zhao G, Li Q, Bi Y, Zheng Z. Thiacalix[4]arene-Sandwiched Sandglass-like Ln 9 Clusters (Ln = Tb and Eu): Insights into the Selective Luminescence Quenching Properties by p-Nitrobenzene Derivatives. Inorg Chem 2022; 61:20814-20823. [PMID: 36516337 DOI: 10.1021/acs.inorgchem.2c03107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nonanuclear lanthanide clusters Ln9 (Ln = Tb and Eu) based on p-tert-butylthiacalix[4]arene (H4TC4A) have been synthesized by the solvothermal reaction and were structurally determined by single-crystal X-ray diffraction. The framework of Ln9 can be termed as a sandglass-like structure whose two Ln4-TC4A polynuclear secondary building units are bridged by one octa-coordinate {Ln(μ3-O)8} unit. Efficient TC4A-to-Ln energy transfer was observed for Tb9 but not for Eu9. The luminescence quantum yield (QY) of Tb9 in the solid state at room temperature was determined to be 17.6%, while its highest QY in a methanolic solution (2 × 10-5 mol/L) is 59.2% upon excitation at 318 nm. The luminescence of Tb9 was quenched selectively by derivatives of p-nitrobenzene, as demonstrated by the results of photoluminescence and UV-vis titration experiments and supported by density functional theory calculations. We believe that the interactions between the analyte molecules and the pocket of Tb9 are primarily responsible for the observed quenching. As such, this work represents one of the few examples of utilizing structurally interesting lanthanide cluster complexes as a sensory platform for the recognition of meaningful analytes and portends the further development of lanthanide-calixarene-complex-based functional materials.
Collapse
Affiliation(s)
- Ziping Li
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Dan Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Zuohu Zhou
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Guiyan Zhao
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Qiang Li
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Yanfeng Bi
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Zhiping Zheng
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518000, P. R. China
| |
Collapse
|
14
|
Ding J, Yang H, Zhang S, Liu Q, Cao H, Luo J, Liu X. Advances in the Electrocatalytic Hydrogen Evolution Reaction by Metal Nanoclusters-based Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204524. [PMID: 36287086 DOI: 10.1002/smll.202204524] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/27/2022] [Indexed: 05/27/2023]
Abstract
With the development of renewable energy systems, clean hydrogen is burgeoning as an optimal alternative to fossil fuels, in which its application is promising to retarding the global energy and environmental crisis. The hydrogen evolution reaction (HER), capable of producing high-purity hydrogen rapidly in electrocatalytic water splitting, has received much attention. Abundant research about HER has been done, focusing on advanced electrocatalyst design with high efficiency and robust stability. As potential HER catalysts, metal nanoclusters (MNCs) have been studied extensively. They are composed of several to a hundred metal atoms, with sizes being comparable to the Fermi wavelength of electrons, that is, < 2.0 nm. Different from metal atoms/nanoparticles, they exhibit unique catalytic properties due to their quantum size effect and low-coordination environment. In this review, the activity-enhancing approaches of MNCs applied in HER electrocatalysis are mainly summarized. Furthermore, recent progress in MNCs classified with different stabilization strategies, that is, the freestanding MNCs, MNCs with organic, metal and carbon supports, are introduced. Finally, the current challenges and deficiencies of these MNCs for HER are prospected.
Collapse
Affiliation(s)
- Junyang Ding
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials, Tianjin University of Technology, Tianjin, 300384, China
| | - Hui Yang
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Huanqi Cao
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jun Luo
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials, Tianjin University of Technology, Tianjin, 300384, China
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Guangxi University, Nanning, 530004, China
| |
Collapse
|
15
|
Yan D, Cai L, Hu S, Zhou Y, Zhou L, Sun Q. An Organo‐Palladium Host Built from a Dynamic Macrocyclic Ligand: Adaptive Self‐Assembly, Induced‐Fit Guest Binding, and Catalysis. Angew Chem Int Ed Engl 2022; 61:e202209879. [DOI: 10.1002/anie.202209879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Dan‐Ni Yan
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Li‐Xuan Cai
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Shao‐Jun Hu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan‐Fang Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Li‐Peng Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Qing‐Fu Sun
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
16
|
Yan DN, Cai LX, Hu SJ, Zhou YF, Zhou LP, Sun QF. An Organo‐Palladium Host Built from a Dynamic Macrocyclic Ligand: Adaptive Self‐Assembly, Induce‐Fit Guest Binding, and Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dan-Ni Yan
- University of the Chinese Academy of Sciences Fujian College CHINA
| | - Li-Xuan Cai
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Shao-Jun Hu
- University of the Chinese Academy of Sciences Fujian College 350002 Fuzhou CHINA
| | - Yan-Fang Zhou
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Li-Peng Zhou
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Qing-Fu Sun
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 155 Yangqiao Road West 350002 Fuzhou CHINA
| |
Collapse
|
17
|
Diphosphine modified copper(I)-thiacalixarene supramolecular structure for effective photocurrent response and photodegradation of methylene blue. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Tian YQ, Cui YS, Zhu JH, Xu CQ, Yi XY, Li J, Liu C. Ancillary ligand-regulated Ti(IV)-based metallocalixarene coordination cages for photocatalytic H 2 evolution. Chem Commun (Camb) 2022; 58:9034-9037. [PMID: 35876039 DOI: 10.1039/d2cc03131k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-valence Ti(IV)-based metallocalixarene coordination cages that are linked by oriented ancillary ligands are unknown so far. Herein, the first family of tunable calixarene-based coordination cages of Ti(IV) with a framework formula [Ti12(OiPr)12(TBC[4])6L6] have been assembled from six {Ti2(OiPr)2(TBC[4])}2+ nodes and six pyridinedicarboxylic ligands. Furthermore, the {Ti12L6} cage showed strong photocatalytic H2 evolution activity, and DFT studies were performed to explore its electronic structure.
Collapse
Affiliation(s)
- Yi-Qi Tian
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Yun-Shu Cui
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Jia-Hui Zhu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Cong-Qiao Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xiao-Yi Yi
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Jun Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China. .,Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, 100084 Beijing, China
| | - Chao Liu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| |
Collapse
|
19
|
Tian YQ, Cui YS, Yu WD, Xu CQ, Yi XY, Yan J, Li J, Liu C. An ultrastable Ti-based metallocalixarene nanocage cluster with photocatalytic amine oxidation activity. Chem Commun (Camb) 2022; 58:6028-6031. [PMID: 35502757 DOI: 10.1039/d2cc01740g] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Polyhedral metallocalixarene nanocage clusters based on pure Ti(IV) ions are to our knowledge unknown hitherto. Herein we report the first Ti(IV)-based metallocalixarene nanocage cluster by assembling a [Ti13O14] cage with six t-butylcalix[4]arene molecules. Notably, the cluster exhibits extraordinary stability in high-concentration acid/alkali solutions and can act as a stable photocatalyst to catalyze the oxidation of ammonia to imines.
Collapse
Affiliation(s)
- Yi-Qi Tian
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Yun-Shu Cui
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China.
| | - Wei-Dong Yu
- College of Science, Hunan University of Technology and Business, Changsha 410000, P. R. China
| | - Cong-Qiao Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China.
| | - Xiao-Yi Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Jun Yan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Jun Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China.
| | - Chao Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| |
Collapse
|
20
|
Acid/base regulated syntheses of different 1D coordination chains for selective mercury removal from aqueous solution. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Wang Z, Su HF, Zhang LP, Dou JM, Tung CH, Sun D, Zheng L. Stepwise Assembly of Ag 42 Nanocalices Based on a Mo VI-Anchored Thiacalix[4]arene Metalloligand. ACS NANO 2022; 16:4500-4507. [PMID: 35230817 DOI: 10.1021/acsnano.1c10905] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metalloligand strategy has been well recognized in the syntheses of heterometallic coordination polymers; however, such a strategy used in the assembly of silver nanoclusters is not broadly available. Herein, we report the stepwise syntheses of a family of halogen-templated Ag42 nanoclusters (Ag42c-Ag42f) based on MoVI-anchored p-tert-butylthiacalix[4]arene (H4TC4A) as a metalloligand (hereafter named MoO3-TC4A). X-ray crystallography demonstrates that they are similar C3-symmetric silver-organic nanocalices capped by six MoO3-TC4A metalloligands, which are evenly distributed up and down the base of 42 silver atoms. These nanoclusters can be disassembled to six bowl-shaped [Ag11(MoO3-TC4A)(RS)3] secondary building units (SBUs, R = Et or nPr), which are fused together in a face-sharing fashion surrounding Cl- or Br- as a central anion template. The electrospray mass spectrometry (ESI-MS) indicates their high stabilities in solution and verifies the formation of the MoO3-TC4A metalloligand, thereby rationalizing the overall stepwise assembly process for them. Moreover, Ag42c shows lower cytotoxicity and better activity against the HepG-2 cell line than MCF-7 and BGC-823. These results not only exemplify the effectiveness of a thiacalix[4]arene-based metalloligand in the assembly of silver nanoclusters but also give us profound insight about the step-by-step assembly process in silver nanoclusters.
Collapse
Affiliation(s)
- Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Hai-Feng Su
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Li-Ping Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P. R. China
| | - Jian-Min Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, People's Republic of China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Lansun Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
22
|
Wang M, Guo Y, Zhao G, Chen B, Bi Y. Ni4-thiacalix[4]arene sandwiched Mo8 polyoxometalate bimetallic nanoclusters for electrocatalytic glucose oxidation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Hang X, Wang S, Pang H, Xu Q. A coordination cage hosting ultrafine and highly catalytically active gold nanoparticles. Chem Sci 2022; 13:461-468. [PMID: 35126978 PMCID: PMC8729796 DOI: 10.1039/d1sc05407d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/05/2021] [Indexed: 12/19/2022] Open
Abstract
Ultrafine metal nanoparticles (MNPs) with size <2 nm are of great interest due to their superior catalytic capabilities. Herein, we report the size-controlled synthesis of gold nanoparticles (Au NPs) by using a thiacalixarene-based coordination cage CIAC-108 as a confined host or stabilizer. The Au NPs encapsulated within the cavity of CIAC-108 (Au@CIAC-108) show smaller size (∼1.3 nm) than the ones (∼4.7 nm) anchored on the surface of CIAC-108 (Au/CIAC-108). The cage-embedded Au NPs can be used as a homogeneous catalyst in a mixture of methanol and dichloromethane while as a heterogeneous catalyst in methanol. The homogeneous catalyst Au@CIAC-108-homo exhibits significantly enhanced catalytic activities toward nitroarene reduction and organic dye decomposition, as compared with its larger counterpart Au/CIAC-108-homo and its heterogeneous counterpart Au@CIAC-108-hetero. More importantly, the as-prepared Au@CIAC-108-homo possesses remarkable stability and durability. The size-controlled synthesis of Au NPs was achieved by using a coordination cage CIAC-108 as a support. The Au NPs encapsulated within the cavity of CIAC-108 show smaller size (∼1.3 nm) than the ones (∼4.7 nm) anchored on the surface of CIAC-108.![]()
Collapse
Affiliation(s)
- Xinxin Hang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University Yangzhou 225002 P. R. China
| | - Shentang Wang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University Chongqing 400715 P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University Yangzhou 225002 P. R. China
| | - Qiang Xu
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University Yangzhou 225002 P. R. China .,Department of Materials Science and Engineering, SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech) Shenzhen 518055 P. R. China.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
24
|
Kniazeva MV, Ovsyannikov AS, Nowicka B, Kyritsakas N, Samigullina AI, Gubaidullin AT, Islamov DR, Dorovatovskii PV, Popova EV, Kleshnina SR, Solovieva SE, Antipin IS, Ferlay S. Porous nickel and cobalt hexanuclear ring-like clusters built from two different kind of calixarene ligands – new molecular traps for small volatile molecules. CrystEngComm 2022. [DOI: 10.1039/d1ce01361k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation and structural analysis of porous hexanuclear ring-like cluster complexes built from two different kind of calixarene ligands is presented, together with their stability and vapor solvent sorption properties.
Collapse
Affiliation(s)
- Mariia V. Kniazeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan, 420088, Russian Federation
| | - Alexander S. Ovsyannikov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan, 420088, Russian Federation
| | - Beata Nowicka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | | | - Aida I. Samigullina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan, 420088, Russian Federation
| | - Aidar T. Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan, 420088, Russian Federation
| | - Daut R. Islamov
- Laboratory for Structural Analysis of Biomacromolecules, Kazan Scientific Center of Russian Academy of Sciences, Lobachevskogo 2 str, Kazan 420008, Russian Federation
| | - Pavel V. Dorovatovskii
- National Research Centre “Kurchatov Institute”, Acad. Kurchatov 1 Sq., 123182 Moscow, Russian Federation
| | - Elena V. Popova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan, 420088, Russian Federation
| | - Sofiya R. Kleshnina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan, 420088, Russian Federation
| | | | - Igor S. Antipin
- Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russian Federation
| | - Sylvie Ferlay
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France
| |
Collapse
|
25
|
Kniazeva MV, Ovsyannikov AS, Samigullina AI, Islamov DR, Gubaidullin AT, Dorovatovskii PV, Lazarenko VA, Solovieva SE, Antipin IS, Ferlay S. Impact of flexible succinate connectors on the formation of tetrasulfonylcalix[4]arene based nano-sized polynuclear cages: structural diversity and induced chirality study. CrystEngComm 2022. [DOI: 10.1039/d1ce01482j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The formation of three types of supramolecular coordination cages is described. Tetrasulfonylcalixarene, combined with metallic salts (Ni, Co and Zn) and the flexible succinate ligand, led to cages. H bonded induced chirality was observed for both isomorphous cages.
Collapse
Affiliation(s)
- Mariia V. Kniazeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan, 420088, Russian Federation
| | - Alexander S. Ovsyannikov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan, 420088, Russian Federation
| | - Aida I. Samigullina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan, 420088, Russian Federation
| | - Daut R. Islamov
- Laboratory for structural analysis of biomacromolecules, Kazan Scientific Center of Russian Academy of Sciences, Lobachevskogo 2 str, Kazan 420008, Russian Federation
| | - Aidar T. Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan, 420088, Russian Federation
| | - Pavel V. Dorovatovskii
- National Research Centre “Kurchatov Institute”, Acad. Kurchatov 1 Sq., 123182 Moscow, Russian Federation
| | - Vladimir A. Lazarenko
- National Research Centre “Kurchatov Institute”, Acad. Kurchatov 1 Sq., 123182 Moscow, Russian Federation
| | | | - Igor S. Antipin
- Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russian Federation
| | - Sylvie Ferlay
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France
| |
Collapse
|
26
|
Zhang G, Han H, Li K, Zhang H, Liao W. Assembly of cobalt-p-sulfonatothiacalix[4]arene frameworks with phosphate, phosphite and phenylphosphonate ligands. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2021. [DOI: 10.1515/znb-2021-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Three cobalt-calixarene coordination frameworks, namely, {[Co4Cl(H4TC4AS)]4(HPO3)8}4− (CIAC-253), {[Co4Cl(H4TC4AS)]4(PO4)8}12− (CIAC-254) and {[Co4Cl(H4TC4AS)]3(Ph-PO3)6}3− (CIAC-255) were obtained by solvothermal reaction of a cobalt salt, sodium p-sulfonatothiacalix[4]arene (Na4H4TC4AS) and phosphate, phosphite and phosphonate ligands. In CIAC-253 and CIAC-254, the shuttlecock-like Co4Cl-(TC4AS) secondary building units (SBUs) are bridged by HPO3
2− or PO4
3− anions into two quadrilateral frameworks while in CIAC-255, the Co4Cl-(TC4AS) SBUs are linked into a triangular framework by phenylphosphonate anions. The supramolecular interactions between the phenyl groups of phosphonate and TC4AS play a crucial role in the formation of the triangle. Magnetic measurements revealed that all the cobalt(II) centers exhibit antiferromagnetic interactions.
Collapse
Affiliation(s)
- Guoshuai Zhang
- Key Lab of Polyoxometalate Science of Ministry of Education , Faculty of Chemistry, Northeast Normal University , Changchun 130024 , P. R. China
- State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Haitao Han
- State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Kaiyue Li
- State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Hong Zhang
- Key Lab of Polyoxometalate Science of Ministry of Education , Faculty of Chemistry, Northeast Normal University , Changchun 130024 , P. R. China
| | - Wuping Liao
- State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P. R. China
| |
Collapse
|
27
|
Bala S, Akhtar S, Liu JL, Huang GZ, Wu SG, De A, Das KS, Saha S, Tong ML, Mondal R. Fascinating interlocked triacontanuclear giant nanocages. Chem Commun (Camb) 2021; 57:11177-11180. [PMID: 34617535 DOI: 10.1039/d1cc02990h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report herein three air, thermal and solvent stable interlocked triacontanuclear giant nanocages, generated using a node and spacer concept. Interestingly, the crystal structures of the cages are not only nano-dimensional but also exist in the nano-dimension range, which was corroborated with microscopic images. The combination of microscopic and crystallographic data, in effect, led us to a unique advantageous situation of generating nanomaterials with hard-to-come-by structural information at the molecular level.
Collapse
Affiliation(s)
- Sukhen Bala
- School of Chemical Science Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Kolkata-700032, West Bengal, India. .,Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Sohel Akhtar
- School of Chemical Science Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Kolkata-700032, West Bengal, India.
| | - Jun-Liang Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Guo-Zhang Huang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Si-Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Avik De
- School of Chemical Science Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Kolkata-700032, West Bengal, India.
| | - Krishna Sundar Das
- School of Chemical Science Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Kolkata-700032, West Bengal, India.
| | - Sayan Saha
- School of Chemical Science Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Kolkata-700032, West Bengal, India.
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Raju Mondal
- School of Chemical Science Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Kolkata-700032, West Bengal, India.
| |
Collapse
|
28
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021; 90:895-1107. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The interest in functional supramolecular systems for the design of innovative materials and technologies, able to fundamentally change the world, is growing at a high pace. The huge array of publications that appeared in recent years in the global literature calls for systematization of the structural trends inherent in the formation of these systems revealed at different molecular platforms and practically useful properties they exhibit. The attention is concentrated on the topics related to functional supramolecular systems that are actively explored in institutes and universities of Russia in the last 10–15 years, such as the chemistry of host–guest complexes, crystal engineering, self-assembly and self-organization in solutions and at interfaces, biomimetics and molecular machines and devices.The bibliography includes 1714 references.
Collapse
|
29
|
Takemura H. Synthesis of Azacalixarenes and Development of Their Properties. Molecules 2021; 26:4885. [PMID: 34443473 PMCID: PMC8398485 DOI: 10.3390/molecules26164885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022] Open
Abstract
This review focuses on the synthesis, structure, and interactions of metal ions, the detection of some weak interactions using the structure, and the construction of supramolecules of azacalixarenes that have been reported to date. Azacalixarenes are characterized by the presence of shallow or deep cavities, the simultaneous presence of a basic nitrogen atom and an acidic phenolic hydroxyl group, and the ability to introduce various side chains into the cyclic skeleton. These molecules can be given many functions by substituting groups on the benzene ring, modifying phenolic hydroxyl groups, and converting side chains. The author discusses the evidence of azacalixarene utilizing these characteristics.
Collapse
Affiliation(s)
- Hiroyuki Takemura
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Mejirodai 2-8-1, Bunkyo-ku, Tokyo 112-8681, Japan
| |
Collapse
|
30
|
He C, Chen X, Sun CZ, Zhang LY, Xu W, Zhang S, Wang Z, Dai FR. Decahexanuclear Zinc(II) Coordination Container Featuring a Flexible Tetracarboxylate Ligand: A Self-Assembly Supermolecule for Highly Efficient Drug Delivery of Anti-Inflammatory Agents. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33812-33820. [PMID: 34270211 DOI: 10.1021/acsami.1c06311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The application of a coordination container in biomedicine is hindered by single binding domains and unsatisfactory biostability and biocompatibility. Herein, we designed a sulfonylcalix[4]arene-based decahexanuclear zinc(II) coordination container employing a flexible tetracarboxylate ligand as a linker and utilized it as a novel drug delivery system. The coordination container consisting of one endo and four exo cavities provides multiple binding domains for efficient encapsulation of drug molecules as clearly revealed by systematic host-guest studies using NMR techniques of 1H NMR titration experiments and 2D NOESY and diffusion-ordered NMR spectroscopy studies. Incorporation of a flexible p-phenylene-bis(methanamino) spacer into the container via the carboxylate linker allowed a stepwise drug loading process through sequential binding at endo and exo cavities, as well as enabling pH-responsive stepwise drug release. The drug-loaded coordination container not only exhibits excellent biostability and biocompatibility but also provides encouraging therapeutic efficiency toward inflammatory macrophages as revealed by in vitro studies. The novel strategy for engineering the endo cavity of a coordination container provides a new approach to achieving controlled drug delivery and opens up new opportunities for designing novel functional supramolecular materials.
Collapse
Affiliation(s)
- Can He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Xuzhuo Chen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center of Stomatology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Cheng-Zhe Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Li-Yi Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Weifeng Xu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center of Stomatology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Shanyong Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center of Stomatology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Zhenqiang Wang
- Department of Chemistry & Center for Fluorinated Functional Materials, University of South Dakota, Vermillion, South Dakota 57069-2390, United States
| | - Feng-Rong Dai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
31
|
Yang S, Ai F, Li Z, Zhao G, Bi Y. N-Doped Carbon Nanofibers Encapsulating CoO@Co9S8 Nanoparticles: Preparation from S-Rich Co32 Coordination Cluster Precursors by Electrospinning and Application for Superior Li-ion Storage. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Wang Z, Wang M, He K, Hang X, Bi Y. Co 9 S 8 @CN Composites Obtained from Thiacalix[4]arene-Based Coordination Polymers for Supercapacitor Applications. Chem Asian J 2021; 16:1486-1492. [PMID: 33871167 DOI: 10.1002/asia.202100228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/29/2021] [Indexed: 11/11/2022]
Abstract
Metal sulfides have been recognized as promising electrodes for electrochemical energy storage owing to their remarkable electrochemical properties. Here, we demonstrate the preparation of Co9 S8 nanoparticles anchored on a carbon matrix (denoted as Co9 S8 -X@CN (X=1, 2)) from precursor sources, two 1D infinite coordination polymers 1 and 2. The two polymers were assembled by linking Co4 -TC4A secondary building blocks (SBUs) with ligands L1 and L2 , respectively (H4 TC4A=p-tert-butylthiacalix[4]arene, L1 =1,4-bis(2H-tetrazol-5-yl)benzene, L2 =1,3-bis(2H-tetrazol-5-yl)benzene). The composites obtained from 1D polymers showed different morphologies, that is, the Co9 S8 nanoparticles of Co9 S8 -1@CN are octahedral with a size of ca. 140 nm, while the lamellar Co9 S8 nanoparticles in Co9 S8 -2@CN possess different sizes (50-150 nm). The Co9 S8 -2@CN immobilized on nickel foam (Co9 S8 -2@CN/NF) show better supercapacitive performance than that of Co9 S8 -1@CN. Co9 S8 -2@CN showed exceptionally high activities, combining higher specific capacitances (445.2 F g-1 at 2 A g-1 and 393.9 F g-1 and 5 A g-1 ), rate capacity (94.5% retention at 2 A g-1 ), and long-term stability (79.2% retention at 5 A g-1 over 1000 cycles). The smaller size and larger BET surface area of Co9 S8 -2@CN nanoparticles can improve the electrical conductivity and provide facile pathways for charge transport, thus leading to conspicuous electrochemical performance of Co9 S8 -2@CN compared with its Co9 S8 -1@CN counterpart.
Collapse
Affiliation(s)
- Zhao Wang
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, Liaoning, 113001, P. R. China
| | - Meilin Wang
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, Liaoning, 113001, P. R. China
| | - Kai He
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, Liaoning, 113001, P. R. China
| | - Xinxin Hang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Yanfeng Bi
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, Liaoning, 113001, P. R. China
| |
Collapse
|
33
|
Zhang K, Du SW. A novel series of giant cobalt-calixarene macrocycles: ring-expansion and modulation of pore apertures through recrystallization. Dalton Trans 2021; 50:6181-6187. [PMID: 33871004 DOI: 10.1039/d1dt00556a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design and synthesis of metallomacrocycles can be quite challenging because the assemblies of such molecular cycles are difficult to control and the products are usually unpredictable. In this work, a novel series of metallomacrocycles, denoted as {Co30-A}, {Co30-B} and {Co32-A} have been synthesized via self-assembly of p-tert-butylthiacalix[4]arene (H4TC4A) and 3,5-pyrazoledicarboxylic acid (H3pdc) with Co2+ ions under solvothermal conditions. Recrystallization of {Co32-A} under different conditions was found to form {Co32-B} and {Co32-C} that have a similar ring structure to that of {Co32-A} but have different molecular packing modes in the lattices, as well as a 40-membered ring {Co40}. These complexes represent the highest-nuclearity metallocalixarene coordination wheels reported to date. Crystallographic studies indicate that all these metallomacrocycles feature wheel-like structures with apertures varing from 11.4 to 20.3 Å. It is noteworthy that {Co32-A} exhibited good efficiency in removing RhB even at low initial concentration (10 ppm) and also excellent adsorption selectivity towards RhB over Na2Fl (RhB = Rhodamine B, Na2Fl = disodium fluorescein). This work not only makes a breakthrough in the synthesis of metallocalixarene macrocycles with high nuclearity and large apertures, but also provides a simple recrystallization approach to realize the ring-expansion and regulation of molecular packing modes of the metallomacrocycles.
Collapse
Affiliation(s)
- Kai Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China and University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shao-Wu Du
- Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
34
|
Wang C, Wang SJ, Kong FG. Calixarene-Protected Titanium-Oxo Clusters and Their Photocurrent Responses and Photocatalytic Performances. Inorg Chem 2021; 60:5034-5041. [PMID: 33677968 DOI: 10.1021/acs.inorgchem.1c00063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three photosensitive tert-butylcalix[n]arene (TBC[n], n = 4, 6, 8)-protected titanium-oxo clusters (TOCs), formulated as [Ti4(μ3-O)2(TBC[4])2(OiPr)4(DEF)2]·DEF (1, TBC[4]-Ti4, DEF = N,N-diethylformamide), [Ti4(μ4-O)TBC[6](OCH3)9]·H2O (2, TBC[6]-Ti4), and [Ti4(μ3-O)2(OiPr)4TBC[8](DEF)2]·DEF (3, TBC[8]-Ti4), were successfully synthesized and characterized. Because of the generation of charge transfer from TBC[n] to the TiO core, the three TBC[n]-decorated TOCs show a broadened visible-light absorption and narrowed optical band gap based on the UV-visible spectra and density functional theory calculations. The corresponding photosensitive electrodes prepared using these three TOCs exhibit stable photocurrent responses. Furthermore, their photocatalytic performances for hydrogen evolution and methylene blue degradation were evaluated, and all of the materials display excellent photocatalytic activity and stability. The calixarene-Ti coordination is therefore an effective strategy to enlarge the visible-light absorption band of Ti-O materials and improve their photoelectric/photocatalytic performances.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road, Jinan, 250353, China
| | - Shou-Juan Wang
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road, Jinan, 250353, China
| | - Fan-Gong Kong
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road, Jinan, 250353, China
| |
Collapse
|
35
|
Hang X, Bi Y. Thiacalix[4]arene-supported molecular clusters for catalytic applications. Dalton Trans 2021; 50:3749-3758. [PMID: 33651066 DOI: 10.1039/d0dt04233a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Thiacalixarenes are intriguing ligands that have attracted sustained interest because of their changeable conformations and excellent coordination ability. Thiacalix[4]arene analogues, which can bind metal ions to form modular second building units, are capable of constructing molecular-based functional materials with defined structures and various applications via directional coordination assembly. Due to rich metal-sulfur bonds, thiacalix[4]arene-based molecular clusters also exhibit diverse properties compared to other clusters. In particular, the combination of thiacalixarenes with currently popular molecular architectures, such as high-nuclearity clusters and coordination cages, has shown special catalytic performances. In this perspective, the latest advances in catalytic applications of thiacalix[4]arene-based molecular clusters, including molecular clusters themselves as catalysts and coordination cages serving as reaction vessels encapsulating metal nano-components for catalysis, are highlighted.
Collapse
Affiliation(s)
- Xinxin Hang
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, P. R. China.
| | | |
Collapse
|
36
|
|
37
|
Yu Y, Wang Z, Li Z, Hang X, Bi Y. Assembly of {Co 14} nanoclusters from adenine-modified Co 4-thiacalix[4]arene units. CrystEngComm 2021. [DOI: 10.1039/d1ce00440a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An adenine-modified Co4-thiacalix[4]arene unit can serve as a second building unit for fabrication of three Co14 clusters with different structures.
Collapse
Affiliation(s)
- Yanan Yu
- School of Petrochemical Engineering
- Liaoning Petrochemical University
- Fushun 113001
- P. R. China
| | - Zhao Wang
- School of Petrochemical Engineering
- Liaoning Petrochemical University
- Fushun 113001
- P. R. China
| | - Ziping Li
- School of Petrochemical Engineering
- Liaoning Petrochemical University
- Fushun 113001
- P. R. China
| | - Xinxin Hang
- School of Petrochemical Engineering
- Liaoning Petrochemical University
- Fushun 113001
- P. R. China
- School of Chemistry and Chemical Engineering
| | - Yanfeng Bi
- School of Petrochemical Engineering
- Liaoning Petrochemical University
- Fushun 113001
- P. R. China
| |
Collapse
|
38
|
Zhu ZZ, Tian CB, Sun QF. Coordination-Assembled Molecular Cages with Metal Cluster Nodes. CHEM REC 2020; 21:498-522. [PMID: 33270374 DOI: 10.1002/tcr.202000130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 01/15/2023]
Abstract
Molecular cages have attracted great attention because of their fascinating topological structures and well-defined functional cavities. These discrete cages were usually fabricated by coordination assembly approach, a process employing directional metal-ligand coordination bonds due to the nature of the divinable coordination geometry and the required lability to encode dynamic equilibrium/error-correction. Compared to these coordination molecular cages with mononulcear metal-nodes, an increasing number of molecular cages featuring dinuclear and then polynuclear metal-cluster nodes have been synthesized. These metal-cluster-based coordination cages (MCCCs) combine the merits of both metal clusters and the cage structure, and exhibit excellent performances in catalysis, separation, host-guest chemistry and so on. In this review, we highlight the syntheses of MCCCs and their potential functions that is donated by the metal-cluster nodes.
Collapse
Affiliation(s)
- Zheng-Zhong Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Chong-Bin Tian
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| |
Collapse
|
39
|
Yang XX, Yu WD, Yi XY, Li LJ, Liu C. Monocarboxylate-driven structural growth in Calix[n]arene-polyoxotitanate hybrid systems: utility in hydrogen production from water. Chem Commun (Camb) 2020; 56:14035-14038. [PMID: 33103687 DOI: 10.1039/d0cc05336h] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A carboxylate-driven assembly strategy has been developed for the first time to build calix[n]arene-based polyoxotitanate clusters with tuneable nuclearity and structures. Photocatalytic studies revealed that these clusters exhibit structural-dependent H2 evolution ability with a maximum rate up to 415.11 μmol h-1 g-1, which is almost the highest recorded in polyoxotitanate clusters.
Collapse
Affiliation(s)
- Xin-Xue Yang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.
| | | | | | | | | |
Collapse
|
40
|
Two Novel Titanium(IV)-Based Compounds Supported by Thiacalix[4]arene: Syntheses, Structures and Photocatalytic Properties. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01875-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Affiliation(s)
- Aeri J. Gosselin
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Casey A. Rowland
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Eric D. Bloch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
42
|
Cooperative Binding and Stepwise Encapsulation of Drug Molecules by Sulfonylcalixarene-Based Metal-Organic Supercontainers. Molecules 2020; 25:molecules25112656. [PMID: 32521606 PMCID: PMC7321066 DOI: 10.3390/molecules25112656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 12/28/2022] Open
Abstract
The cooperative binding behavior of a face-directed octahedral metal-organic supercontainer featuring one endo cavity and six exo cavities was thoroughly examined in chloroform solution through ultraviolet-visible (UV-Vis) titration technique using two representative drug molecules as the guests. The titration curves and their nonlinear fit to Hill equation strongly suggest the efficient encapsulation of the guest molecules by the synthetic host, which exhibit interesting cooperative and stepwise binding behavior. Based on the control experiments using tetranuclear complex as a reference, it is clear that two equivalents of the guest molecules are initially encapsulated inside the endo cavity, followed by the trapping of six additional equivalents of the drug molecules through six exo cavities (1 eq. per exo cavity), and the remaining guests are entrapped by the external pockets. The results provide an in-depth understanding of the cooperative binding behavior of metal-organic supercontainers, which opens up new opportunities for designing synthetic receptors for truly biomimetic functional applications.
Collapse
|
43
|
Wang X, Yu Y, Wang Z, Zheng J, Bi Y, Zheng Z. Thiacalix[4]arene-Protected Titanium–Oxo Clusters: Influence of Ligand Conformation and Ti–S Coordination on the Visible-Light Photocatalytic Hydrogen Production. Inorg Chem 2020; 59:7150-7157. [DOI: 10.1021/acs.inorgchem.0c00615] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xin Wang
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, People’s Republic of China
| | - Yanan Yu
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, People’s Republic of China
| | - Zhao Wang
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, People’s Republic of China
| | - Jian Zheng
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, People’s Republic of China
| | - Yanfeng Bi
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, People’s Republic of China
| | - Zhiping Zheng
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518000, People’s Republic of China
| |
Collapse
|
44
|
Formation of Unsymmetrical Trinuclear Metallamacrocycles Based on Two Different Cone Calix[4]arene Macrocyclic Rings. CRYSTALS 2020. [DOI: 10.3390/cryst10050364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A combination of tetrasulfonylcalix[4]arene (3-4H) together with a calix[4]arene dicarboxylate derivative 2-4H led, in the presence of MII(NO3)2 (M = Co, Ni, Zn), to the formation of three novel isostructural metallomacrocycles of formula [M3(DMF)2(μ3-H2O)-(2-2H)-3]. The structure of the prepared coordination compounds was studied in the solid state using single crystal/powder X-ray diffraction studies. The X-ray diffraction on single crystal revealed that the structure of the obtained supramolecular complexes is composed of a trinuclear metallic cluster [M3]+6 held between one di-deprotonated molecule of (2-2H)2− offering two carboxylate groups for binding metal cations and one tetra-deprotonated compound 34−, where four oxygen atoms, belonging to four deprotonated phenolic moieties and three oxygen atoms coming from three SO2 groups, are coordinated with the cluster core. Thus, an example of an easily reproducible molecular recognition pattern involving two different types of calix[4]arene based ligands, displaying different coordination moieties, and trinuclear metallic clusters, is reported here. In addition, it has been shown that the cone moieties of the calixarene also encapsulate solvent molecules.
Collapse
|
45
|
Zhou S, Li C, Fu H, Cao J, Zhang J, Zhang L. Lead‐Doped Titanium‐Oxo Clusters as Molecular Models of Perovskite‐Type PbTiO
3
and Electron‐Transport Material in Solar Cells. Chemistry 2020; 26:6894-6898. [DOI: 10.1002/chem.202000911] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Indexed: 02/02/2023]
Affiliation(s)
- Shuyu Zhou
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences 350002 Fuzhou P.R. China
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai Advanced Research Institute, Chinese Academy of SciencesUniversity of the Chinese Academy of, Sciences 201210 Shanghai P.R. China
| | - Congping Li
- College of Chemistry and Chemical EngineeringLanzhou University 730000 Lanzhou P.R. China
| | - Hao Fu
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences 350002 Fuzhou P.R. China
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai Advanced Research Institute, Chinese Academy of SciencesUniversity of the Chinese Academy of, Sciences 201210 Shanghai P.R. China
| | - Jing Cao
- College of Chemistry and Chemical EngineeringLanzhou University 730000 Lanzhou P.R. China
| | - Jian Zhang
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences 350002 Fuzhou P.R. China
| | - Lei Zhang
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences 350002 Fuzhou P.R. China
| |
Collapse
|
46
|
Mercaptothiacalixarenes Steer 24 Copper(I) Centers to form a Hollow‐Sphere Structure Featuring Cu
2
S
2
Motifs with Exceptionally Short Cu⋅⋅⋅Cu Distances. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Abstract
p-tBu-calix[4]arene (H4TBC[4]) has proven to be an incredibly versatile ligand for the synthesis of 3d- and 3d/4f- clusters, in particular those containing mixed-valent Mn ions. These are of interest to the magnetochemist for the diversity of magnetic behaviours that can be shown, along with a huge variety of nuclearities and topologies accessible, which allow one to outline magneto-structural correlations and a quantitative understanding of their properties. This contribution reports the synthesis, analysis and magnetic properties of a Brucite-like Mn-oxo/hydroxo octanuclear fragment encapsulated within/capped by four [MnIII-TBC[4]]− moieties. A diol coligand in the reaction mixture plays a seemingly important role in determining the outcome, though it is not incorporated in the final structure.
Collapse
|
48
|
Ovsyannikov AS, Khariushin IV, Solovieva SE, Antipin IS, Komiya H, Marets N, Tanaka H, Ohmagari H, Hasegawa M, Zakrzewski JJ, Chorazy S, Kyritsakas N, Hosseini MW, Ferlay S. Mixed Tb/Dy coordination ladders based on tetra(carboxymethyl)thiacalix[4]arene: a new avenue towards luminescent molecular nanomagnets. RSC Adv 2020; 10:11755-11765. [PMID: 35496632 PMCID: PMC9050570 DOI: 10.1039/d0ra01263g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/02/2020] [Indexed: 01/08/2023] Open
Abstract
The macrocyclic ligand calix[4]arene (L1) and its sulphur-containing analogue thia[4]calixarene (L2) are promising precursors for functional molecular materials as they offer rational functionalization with various organic groups. Here, we present the first example of lanthanide-based coordination polymers built from the macrocyclic thiacalix[4]arene backbone bearing four carboxylic moieties, namely, ligand H4L3. The combination of H4L3 with the Tb3+ and Dy3+ cations led to the formation of 1D ladder-type coordination polymers with the formula [LnIIIHL3DMF3]·(DMF) (where DMF = dimethylformamide and Ln = Tb or Dy, denoted as HL3–Tb and HL3–Dy), which resulted from the coordination of the lanthanide cations with the partially deprotonated ligand HL33− that behaved as a T-shape connector. The coordination sphere around the metal was completed by the coordinated DMF solvent molecules. By combining both Tb3+ and Dy3+ cations, isostructural heterobimetallic solid solutions HL3–Tb1−xDyx were also prepared. HL3–Tb and HL3–Dy showed visible light photoluminescence originating from the f–f electronic transitions of pale green emissive Tb3+ and pale yellow emissive Dy3+ with efficient sensitization by the functionalized thia[4]calixarene ligand HL3. In the HL3–Tb1−xDyx solid solutions, the Tb/Dy ratio governed both the emission colour as well as the emission quantum yield, which reached even 28% at room temperature for HL3–Tb. Moreover, HL3–Dy exhibited a slow magnetic relaxation effect related to the magnetic anisotropy of the dodecahedral Dy3+ complexes, which were well isolated in the crystal lattice by expanded organic spacers. The single crystals of the two isostructural Tb3+- and Dy3+-based coordination polymers (HL3–Tb and HL3–Dy) were structurally characterized, and their photophysical properties were investigated, together with their corresponding solid solutions.![]()
Collapse
Affiliation(s)
- A S Ovsyannikov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences Arbuzov str. 8 Kazan 420088 Russian Federation
| | - I V Khariushin
- Kazan Federal University Kremlevskaya str. 18 Kazan 420008 Russian Federation
| | - S E Solovieva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences Arbuzov str. 8 Kazan 420088 Russian Federation
| | - I S Antipin
- Kazan Federal University Kremlevskaya str. 18 Kazan 420008 Russian Federation
| | - H Komiya
- College of Science and Engineering, Aoyama Gakuin University 5-10-1 Fuchinobe, Chuo-ku Sagamihara Kanagawa 252-5258 Japan
| | - N Marets
- College of Science and Engineering, Aoyama Gakuin University 5-10-1 Fuchinobe, Chuo-ku Sagamihara Kanagawa 252-5258 Japan
| | - H Tanaka
- College of Science and Engineering, Aoyama Gakuin University 5-10-1 Fuchinobe, Chuo-ku Sagamihara Kanagawa 252-5258 Japan
| | - H Ohmagari
- College of Science and Engineering, Aoyama Gakuin University 5-10-1 Fuchinobe, Chuo-ku Sagamihara Kanagawa 252-5258 Japan
| | - M Hasegawa
- College of Science and Engineering, Aoyama Gakuin University 5-10-1 Fuchinobe, Chuo-ku Sagamihara Kanagawa 252-5258 Japan
| | - J J Zakrzewski
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Krakow Poland
| | - S Chorazy
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Krakow Poland
| | - N Kyritsakas
- Université de Strasbourg, CNRS, CMC UMR 7140 F-67000 Strasbourg France
| | - M W Hosseini
- Université de Strasbourg, CNRS, CMC UMR 7140 F-67000 Strasbourg France
| | - S Ferlay
- Université de Strasbourg, CNRS, CMC UMR 7140 F-67000 Strasbourg France
| |
Collapse
|
49
|
Frank N, Dallmann A, Braun-Cula B, Herwig C, Limberg C. Mercaptothiacalixarenes Steer 24 Copper(I) Centers to form a Hollow-Sphere Structure Featuring Cu 2 S 2 Motifs with Exceptionally Short Cu⋅⋅⋅Cu Distances. Angew Chem Int Ed Engl 2020; 59:6735-6739. [PMID: 32009289 PMCID: PMC7187159 DOI: 10.1002/anie.201915882] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/30/2020] [Indexed: 12/18/2022]
Abstract
Tetramercaptotetrathiacalix[4]arene (LH4) can be used as a coordination platform to bind four CuI ions at the thiolate and thioether S atoms. Donor ligands such as phosphanes can stabilize the resulting [LCu4] units, which then remain monomeric ([(Ph3PCu)4L]). In the absence of donor ligands, they aggregate, providing a hexamer ([LCu4]6) in high yields, with a hollow‐sphere structure formed by an unprecedented Cu24S48 cage that is surrounded by the organic framework of the calixarene chalices. Preliminary NMR experiments with regard to the host‐guest chemistry in solution showed that the compound represents a polytopic host for acetonitrile and methane.
Collapse
Affiliation(s)
- Nicolas Frank
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - André Dallmann
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Beatrice Braun-Cula
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Christian Herwig
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Christian Limberg
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| |
Collapse
|
50
|
Zhu X, Han H, Li X, Wang S, Liao W. A calixarene-capped round-cake like {Fe24} coordination cage involving the shuttlecock-like Fe4-TC4A SBUs. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|