1
|
DeWitt CH, Heidbreder AD, Hancock GW, Bhattacherjee A. Investigation of Vibrational Cooling in a Photoexcited Dichloro-Ruthenium Charge Transfer Complex Using Transient Electronic Absorption Spectroscopy. J Phys Chem A 2025; 129:2265-2274. [PMID: 39993167 DOI: 10.1021/acs.jpca.5c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Vibrational cooling of molecules in excited electronic states is ubiquitous in photochemical reactions in solution but challenging to infer in time-resolved electronic absorption experiments. We report the ultrafast photophysics of cis-dichlorobis(2,2'-bipyridine)ruthenium(II), Ru(bpy)2Cl2, a precursor molecule commonly utilized in synthetic modifications of a vast array of ruthenium complexes. Femtosecond time-resolved electronic absorption spectroscopy is used to track an ultrafast spectral narrowing of the excited-state absorptions at 475 nm (21,050 cm-1) and 505 nm (19,800 cm-1) due to the reduced ligand in the photoexcited molecular complex. These sharp features, which overlap with a broader ground-state bleach spanning 450 nm (22,220 cm-1) to 600 nm (16,670 cm-1), evolve rapidly with time constants of 16 ± 5, 15 ± 3, and 18 ± 2 ps, respectively, for ligand-centered (π → π*, 266 nm) and charge-transfer (t2 → π*, 400 and 550 nm) excitations and constitute a direct signature of picosecond vibrational cooling.
Collapse
Affiliation(s)
- Caleb H DeWitt
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Austin D Heidbreder
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Griffin W Hancock
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Aditi Bhattacherjee
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
2
|
Semwal M, Vashistha N, Rau S, Dietzek-Ivanšić B. An Increase in the Rigidity of the Environment Favors MLCT over the MC State in [Ru(bpy) 2(Nicotine) 2](Cl) 2: A Case Study of Photolabile Ligands. J Phys Chem A 2025; 129:439-446. [PMID: 39496280 PMCID: PMC11744796 DOI: 10.1021/acs.jpca.4c04914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024]
Abstract
Ru(II)-complexes with photolabile ligands find a wide range of applications, e.g., in drug release and in the design of light-responsive interfaces. While light-driven ligand loss has been studied mechanistically in detail for complexes in solution, comparably few studies are present that investigate the process in a material context, i.e., in a rigid environment and in the absence of solvent. This paper adds to this underrepresented perspective by studying the excited-state dynamics of [Ru(bpy)2(nicotine)2] (Cl)2 (Ru-nico) as a model system in poly(methyl methacrylate) (PMMA) and polyacrylonitrile (PAN) matrices. Femtosecond transient absorption spectroscopy and time-resolved emission spectroscopy are employed to monitor the photodissociation of labile nicotine ligands in polymer environments. Photoexcitation within the metal-to-ligand charge transfer (MLCT) band leads to transient dissociation of the nicotine ligand when the complex is dissolved in water. However, optical excitation of the 1MLCT transition of the complexes embedded in polymer matrices does not result in photodissociation, likely due to the rigidity of the environment, which cannot solvate the undercoordinated complex after ligand dissociation and the dissociated ligand. These insights shed light on the role of the local environment when considering the photophysics of ligand loss from Ru(II)-polypyridyl complexes and, hence, their use in the light-activation of reactive molecular components in materials.
Collapse
Affiliation(s)
- Mohini Semwal
- Institute
of Physical Chemistry,Friedrich Schiller
University Jena, Helmholtzweg 4, Jena 07743, Germany
- Research
Department Functional Interfaces, Leibniz
Institute of Photonic Technology, Albert-Einstein-Str. 9, Jena 07745, Germany
| | - Nikita Vashistha
- Institute
of Physical Chemistry,Friedrich Schiller
University Jena, Helmholtzweg 4, Jena 07743, Germany
- Research
Department Functional Interfaces, Leibniz
Institute of Photonic Technology, Albert-Einstein-Str. 9, Jena 07745, Germany
| | - Sven Rau
- Institute
for Inorganic Chemistry I, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Benjamin Dietzek-Ivanšić
- Institute
of Physical Chemistry,Friedrich Schiller
University Jena, Helmholtzweg 4, Jena 07743, Germany
- Research
Department Functional Interfaces, Leibniz
Institute of Photonic Technology, Albert-Einstein-Str. 9, Jena 07745, Germany
| |
Collapse
|
3
|
Oliveira GFS, Gouveia FS, Andrade AL, de Vasconcelos MA, Teixeira EH, Palmeira-Mello MV, Batista AA, Lopes LGD, de Carvalho IMM, Sousa EHS. Minimal Functionalization of Ruthenium Compounds with Enhanced Photoreactivity against Hard-to-Treat Cancer Cells and Resistant Bacteria. Inorg Chem 2024; 63:14673-14690. [PMID: 39042379 PMCID: PMC11304396 DOI: 10.1021/acs.inorgchem.4c02235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024]
Abstract
Metallocompounds have emerged as promising new anticancer agents, which can also exhibit properties to be used in photodynamic therapy. Here, we prepared two ruthenium-based compounds with a 2,2'-bipyridine ligand conjugated to an anthracenyl moiety. These compounds coded GRBA and GRPA contain 2,2'-bipyridine or 1,10-phenathroline as auxiliary ligands, respectively, which provide quite a distinct behavior. Notably, compound GRPA exhibited remarkably high photoproduction of singlet oxygen even in water (ϕΔ = 0.96), almost twice that of GRBA (ϕΔ = 0.52). On the other hand, this latter produced twice more superoxide and hydroxyl radical species than GRPA, which may be due to the modulation of their excited state. Interestingly, GRPA exhibited a modest binding to DNA (Kb = 4.51 × 104), while GRBA did not show a measurable interaction only noticed by circular dichroism measurements. Studies with bacteria showed a great antimicrobial effect, including a synergistic effect in combination with commercial antibiotics. Besides that, GRBA showed very low or no cytotoxicity against four mammalian cells, including a hard-to-treat MDA-MB-231, triple-negative human breast cancer. Potent activities were measured for GRBA upon blue light irradiation, where IC50 of 43 and 13 nmol L-1 were seen against hard-to-treat triple-negative human breast cancer (MDA-MB-231) and ovarian cancer cells (A2780), respectively. These promising results are an interesting case of a simple modification with expressive enhancement of biological activity that deserves further biological studies.
Collapse
Affiliation(s)
- Geângela
de Fátima Sousa Oliveira
- Laboratório
de Bioinorgânica, Departmento de Química Orgânica
e Inorgânica, Universidade Federal
do Ceará, Fortaleza 60440-900, Brazil
| | - Florencio Sousa Gouveia
- Laboratório
de Bioinorgânica, Departmento de Química Orgânica
e Inorgânica, Universidade Federal
do Ceará, Fortaleza 60440-900, Brazil
| | - Alexandre Lopes Andrade
- Laboratório
Integrado de Biomoléculas, Departamento de Patologia e Medicina
Legal, Universidade Federal do Ceará, Fortaleza, Ceará 60441-750, Brazil
| | | | - Edson Holanda Teixeira
- Laboratório
Integrado de Biomoléculas, Departamento de Patologia e Medicina
Legal, Universidade Federal do Ceará, Fortaleza, Ceará 60441-750, Brazil
| | - Marcos V. Palmeira-Mello
- Departamento
de Química, Universidade Federal
de São Carlos, PO Box 676, São Carlos, São Paulo 13565-905, Brazil
| | - Alzir A. Batista
- Departamento
de Química, Universidade Federal
de São Carlos, PO Box 676, São Carlos, São Paulo 13565-905, Brazil
| | - Luiz Gonzaga de
França Lopes
- Laboratório
de Bioinorgânica, Departmento de Química Orgânica
e Inorgânica, Universidade Federal
do Ceará, Fortaleza 60440-900, Brazil
| | - Idalina Maria Moreira de Carvalho
- Laboratório
de Bioinorgânica, Departmento de Química Orgânica
e Inorgânica, Universidade Federal
do Ceará, Fortaleza 60440-900, Brazil
| | - Eduardo Henrique Silva Sousa
- Laboratório
de Bioinorgânica, Departmento de Química Orgânica
e Inorgânica, Universidade Federal
do Ceará, Fortaleza 60440-900, Brazil
| |
Collapse
|
4
|
Faller J, Chase KJ, Parr J, Mercado B. Studies of κ 2- and κ 3-tripyridylamine complexes of ruthenium and π-stacking by pyridyls. Acta Crystallogr C Struct Chem 2023; 79:491-496. [PMID: 37929325 DOI: 10.1107/s2053229623009415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
The reaction of tris(pyridin-2-yl)amine with [CyRuCl2]2 (Cy = p-isopropyltoluene or cymene) in refluxing diglyme led to the formation of cis-[RuCl2{κ2-(2-py)3N}2]·CHCl3 (1a) after recrystallization from chloroform/pentane, or cis-dichloridobis[tris(pyridin-2-yl)amine-κ2N,N']ruthenium(II) dichloromethane disolvate, [RuCl2(C15H12N4)2]·2CH2Cl2 or cis-[RuCl2{κ2-(2-py)3N}2]·2CH2Cl2 (1b). Treatment of 1a with one equivalent of silver(I) hexafluoridoantimonate in dichloromethane gave [RuCl{κ2-(2-py)3N}{κ3-(2-py)3N}][SbF6]·CH2Cl2 (2a). Crystallization of 2a from chloroform provided chlorido[tris(pyridin-2-yl)amine-κ2N,N'][tris(pyridin-2-yl)amine-κ3N,N',N'']ruthenium(II) hexafluoridoantimonate chloroform monosolvate, [RuCl(C15H12N4)2][SbF6]·CHCl3 or [RuCl{κ2-(2-py)3N}{κ3-(2-py)3N}][SbF6]·CHCl3 (2b). Complex 2a reacted with a further equivalent of silver(I) hexafluoridoantimonate to give [Ru{κ3-(2-py)3N}2][SbF6]2 (3). The reaction of (2-py)3N with [CyRuCl2]2 in dichloromethane followed by treatment with excess sodium hexafluoridoantimonate gave the known complex [CyRuCl{κ2-(2-py)3N}][SbF6] (4). Complex 2 is a rare example of a complex containing both κ2- and κ3-(2-py)3N. Intramolecular π-stacking interactions determine the orientation of the free pyridyl in the κ2 complexes. An interesting encapsulation of methylene chloride hydrogen-bonded tetramers was noted in one case.
Collapse
Affiliation(s)
- Jack Faller
- Department of Chemistry, Yale University, PO Box 208107, New Haven, Connecticut 06520-8107, USA
| | - Kevin J Chase
- Department of Chemistry, Yale University, PO Box 208107, New Haven, Connecticut 06520-8107, USA
| | - Jonathan Parr
- Department of Chemistry, Yale University, PO Box 208107, New Haven, Connecticut 06520-8107, USA
| | - Brandon Mercado
- Department of Chemistry, Yale University, PO Box 208107, New Haven, Connecticut 06520-8107, USA
| |
Collapse
|
5
|
Li C, Pang Y, Xu Y, Lu M, Tu L, Li Q, Sharma A, Guo Z, Li X, Sun Y. Near-infrared metal agents assisting precision medicine: from strategic design to bioimaging and therapeutic applications. Chem Soc Rev 2023. [PMID: 37334831 DOI: 10.1039/d3cs00227f] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Metal agents have made incredible strides in preclinical research and clinical applications in recent years, but their short emission/absorption wavelengths continue to be a barrier to their distribution, therapeutic action, visual tracking, and efficacy evaluation. Nowadays, the near-infrared window (NIR, 650-1700 nm) provides a more accurate imaging and treatment option. Thus, there has been ongoing research focusing on developing multifunctional NIR metal agents for imaging and therapy that have deeper tissue penetration. The design, characteristics, bioimaging, and therapy of NIR metal agents are covered in this overview of papers and reports published to date. To start with, we focus on describing the structure, design strategies, and photophysical properties of metal agents from the NIR-I (650-1000 nm) to NIR-II (1000-1700 nm) region, in order of molecular metal complexes (MMCs), metal-organic complexes (MOCs), and metal-organic frameworks (MOFs). Next, the biomedical applications brought by these superior photophysical and chemical properties for more accurate imaging and therapy are discussed. Finally, we explore the challenges and prospects of each type of NIR metal agent for future biomedical research and clinical translation.
Collapse
Affiliation(s)
- Chonglu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Yida Pang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Yuling Xu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Mengjiao Lu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Le Tu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Qian Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Amit Sharma
- CSIR-Central Scientific Instruments Organisation, Sector-30C, Chandigarh 160030, India
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Yao Sun
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
6
|
Hakkennes MLA, Meijer MS, Menzel JP, Goetz AC, Van Duijn R, Siegler MA, Buda F, Bonnet S. Ligand Rigidity Steers the Selectivity and Efficiency of the Photosubstitution Reaction of Strained Ruthenium Polypyridyl Complexes. J Am Chem Soc 2023. [PMID: 37294954 DOI: 10.1021/jacs.3c03543] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
While photosubstitution reactions in metal complexes are usually thought of as dissociative processes poorly dependent on the environment, they are, in fact, very sensitive to solvent effects. Therefore, it is crucial to explicitly consider solvent molecules in theoretical models of these reactions. Here, we experimentally and computationally investigated the selectivity of the photosubstitution of diimine chelates in a series of sterically strained ruthenium(II) polypyridyl complexes in water and acetonitrile. The complexes differ essentially by the rigidity of the chelates, which strongly influenced the observed selectivity of the photosubstitution. As the ratio between the different photoproducts was also influenced by the solvent, we developed a full density functional theory modeling of the reaction mechanism that included explicit solvent molecules. Three reaction pathways leading to photodissociation were identified on the triplet hypersurface, each characterized by either one or two energy barriers. Photodissociation in water was promoted by a proton transfer in the triplet state, which was facilitated by the dissociated pyridine ring acting as a pendent base. We show that the temperature variation of the photosubstitution quantum yield is an excellent tool to compare theory with experiments. An unusual phenomenon was observed for one of the compounds in acetonitrile, for which an increase in temperature led to a surprising decrease in the photosubstitution reaction rate. We interpret this experimental observation based on complete mapping of the triplet hypersurface of this complex, revealing thermal deactivation to the singlet ground state through intersystem crossing.
Collapse
Affiliation(s)
- Matthijs L A Hakkennes
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands
| | - Michael S Meijer
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands
| | - Jan Paul Menzel
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands
| | - Anne-Charlotte Goetz
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands
| | - Roy Van Duijn
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, 3400 N Charles Street, Baltimore, Maryland 21218, United States
| | - Francesco Buda
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands
| |
Collapse
|
7
|
Steinke SJ, Piechota EJ, Loftus LM, Turro C. Acetonitrile Ligand Photosubstitution in Ru(II) Complexes Directly from the 3MLCT State. J Am Chem Soc 2022; 144:20177-20182. [DOI: 10.1021/jacs.2c07209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sean J. Steinke
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| | - Eric J. Piechota
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| | - Lauren M. Loftus
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| |
Collapse
|
8
|
Kumar A, Seok Chae P. A bis(fluorenyl-triazole)-conjugated naphthoquinoline-dione probe for a cascade detection of Cu2+ and F− and its logic circuit with a memory unit. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Hirahara M, Umemura Y. A Synthetic Route to a Ruthenium Complex via Successive Photosubstitution Reactions. Inorg Chem 2021; 60:13193-13199. [PMID: 34492768 DOI: 10.1021/acs.inorgchem.1c01578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photosubstitution reactions of cis-[Ru(bpy)2(MeCN)2]2+ with a pyrazole ligand (pzH) were studied under various conditions toward the development of a photochemical synthetic route to polypyridyl ruthenium complexes (bpy = 2,2'-bipyridine). In the absence of a base, light irradiation of an acetonitrile solution of pyrazole and cis-[Ru(bpy)2(MeCN)2]2+ gave a mixture of the reactant and cis-[Ru(bpy)2(pzH)(MeCN)]2+. In the presence of a mild base such as N,N-dimethylaminopyridine, a second photosubstitution from cis-[Ru(bpy)2(pzH)(MeCN)]2+ to cis-[Ru(bpy)2(pz)(pzH)]+ (1b) was greatly enhanced, as confirmed by UV-vis and 1H nuclear magnetic resonance spectroscopy. The yields of 1b were increased in solvents with moderate coordinating properties, such as acetone. The successive photosubstitution reaction was observed using a stoichiometric amount of pyrazole.
Collapse
Affiliation(s)
- Masanari Hirahara
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yasushi Umemura
- Department of Applied Chemistry, School of Applied Science, National Defense Academy of Japan, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan
| |
Collapse
|
10
|
Dixon IM, Bonnet S, Alary F, Cuny J. Photoinduced Ligand Exchange Dynamics of a Polypyridyl Ruthenium Complex in Aqueous Solution. J Phys Chem Lett 2021; 12:7278-7284. [PMID: 34323082 DOI: 10.1021/acs.jpclett.1c01424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The understanding of photoinduced ligand exchange mechanisms in polypyridyl ruthenium(II) complexes operating in aqueous solution is of crucial importance to rationalize their photoreactivity. Herein, we demonstrate that a synergetic use of ab initio molecular dynamics simulations and static calculations, both conducted at the DFT level, can provide a full understanding of photosubstitution mechanisms of a monodentate ligand by a solvent water molecule in archetypal ruthenium complexes in explicit water. The simulations show that the photoinduced loss of a monodentate ligand generates an unreactive 16-electron species in a hitherto undescribed pentacoordinated triplet excited state that converts, via an easily accessible crossing point, to a reactive 16-electron singlet ground state, which combines with a solvent water molecule to yield the experimentally observed aqua complex in less than 10 ps. This work paves the way for the rational design of novel photoactive metal complexes relevant for biological applications.
Collapse
Affiliation(s)
- Isabelle M Dixon
- Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier, Laboratoire de Chimie et Physique Quantiques, 31062 Toulouse Cedex 9, France
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Fabienne Alary
- Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier, Laboratoire de Chimie et Physique Quantiques, 31062 Toulouse Cedex 9, France
| | - Jérôme Cuny
- Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier, Laboratoire de Chimie et Physique Quantiques, 31062 Toulouse Cedex 9, France
| |
Collapse
|
11
|
Yu S, Kupryakov A, Lewis JEM, Martí-Centelles V, Goldup SM, Pozzo JL, Jonusauskas G, McClenaghan ND. Damming an electronic energy reservoir: ion-regulated electronic energy shuttling in a [2]rotaxane. Chem Sci 2021; 12:9196-9200. [PMID: 34276950 PMCID: PMC8261707 DOI: 10.1039/d1sc02225c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
We demonstrate the first example of bidirectional reversible electronic energy transfer (REET) between the mechanically bonded components of a rotaxane. Our prototypical system was designed such that photoexcitation of a chromophore in the axle results in temporary storage of electronic energy in a quasi-isoenergetic “reservoir” chromophore in the macrocycle. Over time, the emissive state of the axle is repopulated from this reservoir, resulting in long-lived, delayed luminescence. Importantly, we show that cation binding in the cavity formed by the mechanical bond perturbs the axle chromophore energy levels, modulating the REET process, and ultimately providing a luminescence read-out of cation binding. Modulation of REET processes represents an unexplored mechanism in luminescent molecular sensor development. Delayed emission due to reversible electronic energy transfer (REET) between chromophores in the axle and macrocycle components of a rotaxane is demonstrated. The REET process can be modulated by metal ion binding in the cavity of the rotaxane.![]()
Collapse
Affiliation(s)
- Shilin Yu
- Institut des Sciences Moléculaires, University of Bordeaux/CNRS Talence France .,Department of Chemistry, University of Jyvaskyla 40014 Jyväskylä Finland
| | - Arkady Kupryakov
- Laboratoire Ondes et Matière d'Aquitaine, University of Bordeaux/CNRS Talence France
| | - James E M Lewis
- School of Chemistry, University of Southampton Highfield Southampton SO17 1BJ UK .,Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| | | | - Stephen M Goldup
- School of Chemistry, University of Southampton Highfield Southampton SO17 1BJ UK
| | - Jean-Luc Pozzo
- Institut des Sciences Moléculaires, University of Bordeaux/CNRS Talence France
| | - Gediminas Jonusauskas
- Laboratoire Ondes et Matière d'Aquitaine, University of Bordeaux/CNRS Talence France
| | | |
Collapse
|
12
|
Balzani V, Ceroni P, Credi A, Venturi M. Ruthenium tris(bipyridine) complexes: Interchange between photons and electrons in molecular-scale devices and machines. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213758] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Srivastava P, Verma M, Kumar A, Srivastava P, Mishra R, Sivakumar S, Patra AK. Luminescent naphthalimide-tagged ruthenium(ii)–arene complexes: cellular imaging, photocytotoxicity and transferrin binding. Dalton Trans 2021; 50:3629-3640. [DOI: 10.1039/d0dt02967j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Two luminescent ruthenium(ii)–arene complexes containing a naphthalimide tagged morpholine moiety were studied for their biomaging, transferrin-binding and phototherapeutic activity.
Collapse
Affiliation(s)
- Payal Srivastava
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Madhu Verma
- Department of Chemical Engineering and Centre for Environmental Science and Engineering
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Anmol Kumar
- School of Pharmacy
- Computer-Aided Drug Design Center
- University of Maryland
- Baltimore
- USA
| | - Priyanka Srivastava
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Ramranjan Mishra
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Sri Sivakumar
- Department of Chemical Engineering and Centre for Environmental Science and Engineering
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Ashis K. Patra
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| |
Collapse
|
14
|
Soupart A, Alary F, Heully JL, Elliott PIP, Dixon IM. Theoretical Study of the Full Photosolvolysis Mechanism of [Ru(bpy)3]2+: Providing a General Mechanistic Roadmap for the Photochemistry of [Ru(N^N)3]2+-Type Complexes toward Both Cis and Trans Photoproducts. Inorg Chem 2020; 59:14679-14695. [DOI: 10.1021/acs.inorgchem.0c01843] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Adrien Soupart
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, 118 route de Narbonne, 31062 Toulouse, France
| | - Fabienne Alary
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, 118 route de Narbonne, 31062 Toulouse, France
| | - Jean-Louis Heully
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, 118 route de Narbonne, 31062 Toulouse, France
| | - Paul I. P. Elliott
- Department of Chemistry and Centre for Functional Materials, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Isabelle M. Dixon
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, 118 route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
15
|
Hirahara M, Nakano H, Uchida K, Yamamoto R, Umemura Y. Intramolecular Hydrogen Bonding: A Key Factor Controlling the Photosubstitution of Ruthenium Complexes. Inorg Chem 2020; 59:11273-11286. [PMID: 32799483 DOI: 10.1021/acs.inorgchem.0c00738] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Photosubstitution reactions of ruthenium complexes with pyrazole ligands, cis-[Ru(bpy)2(pzH)2]2+ (1a), cis-[Ru(bpy)2(pz)(pzH)]+ (1b), and cis-[Ru(bpy)2(pz)2]0 (1c) (pzH = pyrazole, bpy = 2,2'-bipyridine), were investigated. Dicationic complex 1a was deprotonated to 1b using moderate base (pKa = 15.2, MeCN), while the second deprotonation to give 1c required more severe conditions (pKa = 26.9). Monocationic complex 1b possessed an N-H···N-type intramolecular hydrogen bond between the pyrazole and pyrazolate ligands, as corroborated by the solid-state crystal structure. The photosubstitution quantum yield of 1a (Φ = 0.26) was comparable to that of cis-[Ru(bpy)2(pyridine)2]2+ (Φ = 0.24) in acetonitrile solution. In contrast, the photodissociation of a pzH ligand was strongly suppressed by the deprotonation of a pyrazole ligand N-H group. In the presence of 10 000 equiv of 4,4'-dimethylaminopyridine, the quantum yield dropped to ∼2 × 10-6 in acetonitrile. The photosubstitution quantum yield of 1b was even smaller than that of neutral complex 1c, although 1c had a smaller HOMO-LUMO energy gap than monocationic complex 1b. The small quantum yield of 1b was attributed to intramolecular hydrogen bonding between pyrazole and pyrazolate ligands. The apparent rate constants for the photosubstitution of 1b were highly solvent-dependent. The photosubstitution of 1b was suppressed in aprotic solvents, while the reaction was accelerated by 2 orders of magnitude in protic solvents with strong proton donor abilities.
Collapse
Affiliation(s)
- Masanari Hirahara
- Department of Applied Chemistry, School of Applied Science, National Defense Academy of Japan, Hashirimizu 1-10-20, Yokosuka, Kanagawa 239-8686, Japan
| | - Hiroyuki Nakano
- Department of Applied Chemistry, School of Applied Science, National Defense Academy of Japan, Hashirimizu 1-10-20, Yokosuka, Kanagawa 239-8686, Japan
| | - Kyohei Uchida
- Department of Applied Chemistry, School of Applied Science, National Defense Academy of Japan, Hashirimizu 1-10-20, Yokosuka, Kanagawa 239-8686, Japan
| | - Rei Yamamoto
- Department of Applied Chemistry, School of Applied Science, National Defense Academy of Japan, Hashirimizu 1-10-20, Yokosuka, Kanagawa 239-8686, Japan
| | - Yasushi Umemura
- Department of Applied Chemistry, School of Applied Science, National Defense Academy of Japan, Hashirimizu 1-10-20, Yokosuka, Kanagawa 239-8686, Japan
| |
Collapse
|
16
|
Elmes RBP, Ryan GJ, Erby ML, Frimannsson DO, Kitchen JA, Lawler M, Williams DC, Quinn SJ, Gunnlaugsson T. Synthesis, Characterization, and Biological Profiling of Ruthenium(II)-Based 4-Nitro- and 4-Amino-1,8-naphthalimide Conjugates. Inorg Chem 2020; 59:10874-10893. [DOI: 10.1021/acs.inorgchem.0c01395] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Robert B. P. Elmes
- Department of Chemistry, Maynooth University, National University of Ireland, Maynooth W23 F2K8, County Kildare, Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Limerick, County Limerick, Ireland
| | - Gary J. Ryan
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), The University of Dublin, Dublin 2, Ireland
| | - Maria Luisa Erby
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Daniel O. Frimannsson
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), The University of Dublin, Dublin 2, Ireland
- School of Medicine, Institute of Molecular Medicine, St. James’s Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Jonathan A. Kitchen
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), The University of Dublin, Dublin 2, Ireland
- Chemistry, School of Natural and Computational Sciences, Massey University, Auckland 0745, New Zealand
| | - Mark Lawler
- Institute for Health Sciences, Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University of Belfast, Belfast BT9 7BL, Northern Ireland
| | - D. Clive Williams
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Susan J. Quinn
- School of Chemistry, University College Dublin, Dublin 4, Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Limerick, County Limerick, Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), The University of Dublin, Dublin 2, Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Limerick, County Limerick, Ireland
| |
Collapse
|
17
|
Ertem MZ, Concepcion JJ. Oxygen Atom Transfer as an Alternative Pathway for Oxygen–Oxygen Bond Formation. Inorg Chem 2020; 59:5966-5974. [DOI: 10.1021/acs.inorgchem.9b03751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mehmed Z. Ertem
- Chemistry Division, Energy & Photon Sciences Directorate, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Javier J. Concepcion
- Chemistry Division, Energy & Photon Sciences Directorate, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| |
Collapse
|
18
|
Soupart A, Alary F, Heully JL, Elliott PI, Dixon IM. Recent progress in ligand photorelease reaction mechanisms: Theoretical insights focusing on Ru(II) 3MC states. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213184] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Trovato E, Di Pietro ML, Giannetto A, Dupeyre G, Lainé PP, Nastasi F, Puntoriero F, Campagna S. Designing expanded bipyridinium as redox and optical probes for DNA. Photochem Photobiol Sci 2020; 19:105-113. [PMID: 31930262 DOI: 10.1039/c9pp00418a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on the light-switch behaviour of two head-to-tail expanded bipyridinium species as a function of their interaction with calf thymus DNA and polynucleotides. In particular, both DNA and polynucleotides containing exclusively adenine or guanine moieties quench the luminescence of the fused expanded bipyridinium species. This behaviour has been rationalized demonstrating that a reductive photoinduced electron transfer process takes place involving both adenine or guanine moieties. The charge separated state so produced recombines in the tens of picoseconds. These results could help in designing new organic substrates for application in DNA probing technology and lab on chip-based sensing systems.
Collapse
Affiliation(s)
- Emanuela Trovato
- Chromaleont S.r.l., Università degli Studi di Messina, Polo Annunziata, Viale Annunziata, Messina, 98168, Italy
| | - Maria Letizia Di Pietro
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali - ChiBioFarAm - Università di Messina, Viale F. Stagno d'Alcontres 31, Messina, 98166, Italy
| | - Antonino Giannetto
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali - ChiBioFarAm - Università di Messina, Viale F. Stagno d'Alcontres 31, Messina, 98166, Italy
| | - Gregory Dupeyre
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, Paris, F-75013, France
| | - Philippe P Lainé
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, Paris, F-75013, France
| | - Francesco Nastasi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali - ChiBioFarAm - Università di Messina, Viale F. Stagno d'Alcontres 31, Messina, 98166, Italy
| | - Fausto Puntoriero
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali - ChiBioFarAm - Università di Messina, Viale F. Stagno d'Alcontres 31, Messina, 98166, Italy.
| | - Sebastiano Campagna
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali - ChiBioFarAm - Università di Messina, Viale F. Stagno d'Alcontres 31, Messina, 98166, Italy
| |
Collapse
|
20
|
Mielcarek A, Bieńko A, Saramak P, Jezierska J, Dołęga A. A Cu/Zn heterometallic complex with solvent-binding cavity, catalytic activity for the oxidation of 1-phenylethanol and unusual magnetic properties. Dalton Trans 2019; 48:17780-17791. [PMID: 31746872 DOI: 10.1039/c9dt03304a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mononuclear and polymeric complexes of zinc(ii) and copper(ii) have been synthesized using two isomers of the hemi-salen ligand with a different mutual orientation of donor atoms. The heterometallic Cu/Zn metallocycle features a catalytic niche filled with the molecule of water and molecules of methanol. This unusual compound exhibits both pronounced catalytic activity in the reaction of oxidation of a secondary alcohol to ketone and field induced slow magnetic relaxation, which is a very rare phenomenon among Cu(ii) complexes.
Collapse
Affiliation(s)
- Agnieszka Mielcarek
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicz, 80-233 Gdańsk, Poland.
| | - Alina Bieńko
- Faculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie, 50-383 Wroclaw, Poland.
| | - Paulina Saramak
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicz, 80-233 Gdańsk, Poland.
| | - Julia Jezierska
- Faculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie, 50-383 Wroclaw, Poland.
| | - Anna Dołęga
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicz, 80-233 Gdańsk, Poland.
| |
Collapse
|
21
|
Kumpulainen T, Panman MR, Bakker BH, Hilbers M, Woutersen S, Brouwer AM. Accelerating the Shuttling in Hydrogen-Bonded Rotaxanes: Active Role of the Axle and the End Station. J Am Chem Soc 2019; 141:19118-19129. [PMID: 31697078 PMCID: PMC6923795 DOI: 10.1021/jacs.9b10005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
The relation between the chemical structure and the mechanical
behavior of molecular machines is of paramount importance for a rational
design of superior nanomachines. Here, we report on a mechanistic
study of a nanometer scale translational movement in two bistable
rotaxanes. Both rotaxanes consist of a tetra-amide macrocycle interlocked
onto a polyether axle. The macrocycle can shuttle between an initial
succinamide station and a 3,6-dihydroxy- or 3,6-di-tert-butyl-1,8-naphthalimide end stations. Translocation of the macrocycle
is controlled by a hydrogen-bonding equilibrium between the stations.
The equilibrium can be perturbed photochemically by either intermolecular
proton or electron transfer depending on the system. To the best of
our knowledge, utilization of proton transfer from a conventional
photoacid for the operation of a molecular machine is demonstrated
for the first time. The shuttling dynamics are monitored by means
of UV–vis and IR transient absorption spectroscopies. The polyether
axle accelerates the shuttling by ∼70% compared to a structurally
similar rotaxane with an all-alkane thread of the same length. The
acceleration is attributed to a decrease in activation energy due
to an early transition state where the macrocycle partially hydrogen
bonds to the ether group of the axle. The dihydroxyrotaxane exhibits
the fastest shuttling speed over a nanometer distance (τshuttling ≈ 30 ns) reported to date. The shuttling in
this case is proposed to take place via a so-called harpooning mechanism
where the transition state involves a folded conformation due to the
hydrogen-bonding interactions with the hydroxyl groups of the end
station.
Collapse
Affiliation(s)
- Tatu Kumpulainen
- Van't Hoff Institute for Molecular Sciences, Faculty of Science , University of Amsterdam , P.O. Box 94157, 1090 GD Amsterdam , The Netherlands
| | - Matthijs R Panman
- Van't Hoff Institute for Molecular Sciences, Faculty of Science , University of Amsterdam , P.O. Box 94157, 1090 GD Amsterdam , The Netherlands
| | - Bert H Bakker
- Van't Hoff Institute for Molecular Sciences, Faculty of Science , University of Amsterdam , P.O. Box 94157, 1090 GD Amsterdam , The Netherlands
| | - Michiel Hilbers
- Van't Hoff Institute for Molecular Sciences, Faculty of Science , University of Amsterdam , P.O. Box 94157, 1090 GD Amsterdam , The Netherlands
| | - Sander Woutersen
- Van't Hoff Institute for Molecular Sciences, Faculty of Science , University of Amsterdam , P.O. Box 94157, 1090 GD Amsterdam , The Netherlands
| | - Albert M Brouwer
- Van't Hoff Institute for Molecular Sciences, Faculty of Science , University of Amsterdam , P.O. Box 94157, 1090 GD Amsterdam , The Netherlands
| |
Collapse
|
22
|
Romanova J, Sadik Y, Prabhath MRR, Carey JD, Jarowski PD. Molecular Design of pH-Sensitive Ru(II)-Polypyridyl Luminophores. J Phys Chem A 2019; 123:4921-4928. [PMID: 31117595 DOI: 10.1021/acs.jpca.9b03019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three new [Ru(bpy)2X]+ complex ions, where bpy represents bipyridyl ligand and X denotes pyridyl diazolate or pyrazinyl diazolate coordination site, have been computationally designed and synthesized as pH-sensitive molecules. The choice of pyridyl and pyrazinyl moieties allows for the nitrogen content to vary, whereas the influence of the protonation site is quantified by using 1,2-diazolate and 1,3-diazolate derivatives. The absorption and emission properties of the deprotonated and protonated complex ions were characterized by UV-vis and photoluminescence spectroscopy as well as by time-dependent density functional theory. Protonation causes (1) a strong blue shift in the lowest energy 3MLCT → S0 emission wavelengths, (2) a substantial increase in the emission intensity, and (3) a change in the character of the corresponding 3MLCT emitting states. The blue shift in the emission wavelength becomes less pronounced when the nitrogen content in the X-ligand increases and when going from 1,2- to 1,3-diazolate derivatives. The contrast in the emission intensity of the protonated/deprotonated forms is the highest for the complex ion, containing a 2-pyridyl derivative of the 1,2-diazolate. The complex ions are suggested as potential pH-responsive materials based on change in the color and intensity of the emitted radiation. The broad impact of the research demonstrates that the modification of the nitrogen content and position within the protonable ligands is an effective approach for modulation of the pH-optosensing properties of Ru-polypyridyl complexes.
Collapse
Affiliation(s)
- Julia Romanova
- Faculty of Chemistry and Pharmacy, Department of Inorganic Chemistry , University of Sofia "St. Kliment Ohridski" , 1 James Bourchier Blvd. , Sofia 1164 , Bulgaria
| | | | | | | | - Peter D Jarowski
- ChemAlive SA , 10 Avenue de la Gare , Lausanne 1003 , Vaud , Switzerland
| |
Collapse
|
23
|
Photophysical properties of bichromophoric Fe(II) complexes bearing an aromatic electron acceptor. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2471-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Wang D, Wang J, Huang H, Zhao Z, Gunatillake PA, Hao X. Brush-shaped RAFT polymer micelles as nanocarriers for a ruthenium (II) complex photodynamic anticancer drug. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.01.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
25
|
Matheu R, Ertem MZ, Gimbert-Suriñach C, Sala X, Llobet A. Seven Coordinated Molecular Ruthenium–Water Oxidation Catalysts: A Coordination Chemistry Journey. Chem Rev 2019; 119:3453-3471. [DOI: 10.1021/acs.chemrev.8b00537] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Roc Matheu
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Mehmed Z. Ertem
- Chemistry Division, Energy & Photon Sciences Directorate, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Carolina Gimbert-Suriñach
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Xavier Sala
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
26
|
Alexandru MG, Marino N, Visinescu D, De Munno G, Andruh M, Bentama A, Lloret F, Julve M. A novel octacyanido dicobalt(iii) building block for the construction of heterometallic compounds. NEW J CHEM 2019. [DOI: 10.1039/c9nj00420c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The first bimetallic 3d cyanido-bearing complex with 2,5-dpp as a bridge, (Ph4P)2[Co2III(μ-2,5-dpp)(CN)8]·2H2O, is obtained and used as a metalloligand with the [Mn(MAC)(H2O)2]2+ cation to build a {CoIIIMnII} heterobimetallic chain.
Collapse
Affiliation(s)
- Maria-Gabriela Alexandru
- Department of Inorganic Chemistry
- Physical Chemistry and Electrochemistry
- Faculty of Applied Chemistry and Materials Science
- University Politehnica of Bucharest
- 011061 Bucharest
| | - Nadia Marino
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- 87036 Rende
- Italy
| | - Diana Visinescu
- Coordination and Supramolecular Chemistry Laboratory
- “Ilie Murglescu” Institute of Physical Chemistry
- Romanian Academy
- Bucharest 060021
- Romania
| | - Giovanni De Munno
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- 87036 Rende
- Italy
| | - Marius Andruh
- Inorganic Chemistry Laboratory
- Faculty of Chemistry
- University of Bucharest
- Bucharest
- Romania
| | - Abdeslem Bentama
- Laboratoire de Chimie Organique Appliquée
- Faculté des Sciences Techniques de Fès
- Université Sidi Mohammed Ben Abdellah
- Fès
- Morocco
| | - Francesc Lloret
- Departament de Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Universitat de València
- 46990 Paterna
- Spain
| | - Miguel Julve
- Departament de Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Universitat de València
- 46990 Paterna
- Spain
| |
Collapse
|
27
|
Darari M, Domenichini E, Francés-Monerris A, Cebrián C, Magra K, Beley M, Pastore M, Monari A, Assfeld X, Haacke S, Gros PC. Iron(ii) complexes with diazinyl-NHC ligands: impact of π-deficiency of the azine core on photophysical properties. Dalton Trans 2019; 48:10915-10926. [DOI: 10.1039/c9dt01731c] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Boosting iron(ii) complex excited-state lifetime by combining pyrazine and benzimidazolylidene NHC ligands.
Collapse
Affiliation(s)
| | | | | | | | - Kevin Magra
- Université de Lorraine
- CNRS
- L2CM
- F-57000 Metz
- France
| | - Marc Beley
- Université de Lorraine
- CNRS
- L2CM
- F-54000 Nancy
- France
| | | | | | | | - Stefan Haacke
- Université de Strasbourg
- CNRS
- IPCMS
- F-67000 Strasbourg
- France
| | | |
Collapse
|
28
|
Awada A, Moreno-Betancourt A, Philouze C, Moreau Y, Jouvenot D, Loiseau F. New Acridine-Based Tridentate Ligand for Ruthenium(II): Coordination with a Twist. Inorg Chem 2018; 57:15430-15437. [PMID: 30475599 DOI: 10.1021/acs.inorgchem.8b02735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new tridentate ligand based on acridine has been synthetized. The central acridine heterocycle bears two pyridine coordinating units at positions 4 and 5. The terdentate 2,7-di- tert-butyl-4,5-di(pyridin-2-yl)acridine (dtdpa) was then coordinated to a ruthenium(II) cation. The corresponding homoleptic complex could only be obtained where both ligands coordinate to the ruthenium in a fac fashion. Thus, a heteroleptic compound (2) was constructed in combination with a terpyridine ligand in order to constrain the ligand to adopt a mer geometry. Such a coordination imposes a dramatic twist on the acridine heterocycle, resulting in an unexpected photophysical behavior. The electrochemical and photophysical properties of both complexes were studied, and the molecular structure of 2 was determined by X-ray diffraction. The two compounds absorb at low energy wavelengths, and a very weak luminescence is detected only for complex 2 in the near-infrared region.
Collapse
Affiliation(s)
- Ali Awada
- Univ. Grenoble Alpes, CNRS, DCM , F-38000 Grenoble , France
| | | | | | - Yohann Moreau
- Univ. Grenoble Alpes, CEA, CNRS, BIG-LCBM, UMR 5249 , F-38000 Grenoble , France
| | | | | |
Collapse
|
29
|
Baroncini M, Canton M, Casimiro L, Corra S, Groppi J, La Rosa M, Silvi S, Credi A. Photoactive Molecular-Based Devices, Machines and Materials: Recent Advances. Eur J Inorg Chem 2018; 2018:4589-4603. [PMID: 31007574 PMCID: PMC6472663 DOI: 10.1002/ejic.201800923] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Indexed: 11/07/2022]
Abstract
Molecular and supramolecular-based systems and materials that can perform predetermined functions in response to light stimulation have been extensively studied in the past three decades. Their investigation continues to be a highly stimulating topic of chemical research, not only because of the inherent scientific value related to a bottom-up approach to functional nanostructures, but also for the prospective applications in diverse fields of technology and medicine. Light is an important tool in this context, as it can be conveniently used both for supplying energy to the system and for probing its states and transformations. In this microreview we recall some basic aspects of light-induced processes in (supra)molecular assemblies, and discuss their exploitation to implement novel functionalities with nanostructured devices, machines and materials. To this aim we illustrate a few examples from our own recent work, which are meant to illustrate the trends of current research in the field.
Collapse
Affiliation(s)
- Massimo Baroncini
- Istituto per la Sintesi Organica e la FotoreattivitàConsiglio Nazionale delle RicercheCLAN‐Center for Light Activated NanostructuresVia Gobetti 10140129BolognaItaly
- Dipartimento di Scienze e Tecnologie Agro‐alimentariUniversità di BolognaViale Fanin 5040127BolognaItaly
| | - Martina Canton
- Istituto per la Sintesi Organica e la FotoreattivitàConsiglio Nazionale delle RicercheCLAN‐Center for Light Activated NanostructuresVia Gobetti 10140129BolognaItaly
- Dipartimento di Chimica “G. Ciamician”Università di BolognaVia Selmi 240126BolognaItaly
| | - Lorenzo Casimiro
- Istituto per la Sintesi Organica e la FotoreattivitàConsiglio Nazionale delle RicercheCLAN‐Center for Light Activated NanostructuresVia Gobetti 10140129BolognaItaly
- Dipartimento di Chimica “G. Ciamician”Università di BolognaVia Selmi 240126BolognaItaly
| | - Stefano Corra
- Istituto per la Sintesi Organica e la FotoreattivitàConsiglio Nazionale delle RicercheCLAN‐Center for Light Activated NanostructuresVia Gobetti 10140129BolognaItaly
- Dipartimento di Scienze e Tecnologie Agro‐alimentariUniversità di BolognaViale Fanin 5040127BolognaItaly
| | - Jessica Groppi
- Istituto per la Sintesi Organica e la FotoreattivitàConsiglio Nazionale delle RicercheCLAN‐Center for Light Activated NanostructuresVia Gobetti 10140129BolognaItaly
- Dipartimento di Scienze e Tecnologie Agro‐alimentariUniversità di BolognaViale Fanin 5040127BolognaItaly
| | - Marcello La Rosa
- Istituto per la Sintesi Organica e la FotoreattivitàConsiglio Nazionale delle RicercheCLAN‐Center for Light Activated NanostructuresVia Gobetti 10140129BolognaItaly
- Dipartimento di Scienze e Tecnologie Agro‐alimentariUniversità di BolognaViale Fanin 5040127BolognaItaly
| | - Serena Silvi
- Istituto per la Sintesi Organica e la FotoreattivitàConsiglio Nazionale delle RicercheCLAN‐Center for Light Activated NanostructuresVia Gobetti 10140129BolognaItaly
- Dipartimento di Chimica “G. Ciamician”Università di BolognaVia Selmi 240126BolognaItaly
| | - Alberto Credi
- Istituto per la Sintesi Organica e la FotoreattivitàConsiglio Nazionale delle RicercheCLAN‐Center for Light Activated NanostructuresVia Gobetti 10140129BolognaItaly
- Dipartimento di Scienze e Tecnologie Agro‐alimentariUniversità di BolognaViale Fanin 5040127BolognaItaly
| |
Collapse
|
30
|
Francés-Monerris A, Hognon C, Miranda MA, Lhiaubet-Vallet V, Monari A. Triplet photosensitization mechanism of thymine by an oxidized nucleobase: from a dimeric model to DNA environment. Phys Chem Chem Phys 2018; 20:25666-25675. [PMID: 30298156 DOI: 10.1039/c8cp04866e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nucleic acids are constantly exposed to external agents that can induce chemical and photochemical damage. In spite of the great advances achieved in the last years, some molecular mechanisms of DNA damage are not completely understood yet. A recent experimental report (I. Aparici-Espert et al., ACS Chem. Biol. 2018, 13, 542) proved the ability of 5-formyluracil (ForU), a common oxidatively generated product of thymine, to act as an intrinsic sensitizer of nucleic acids, causing single strand breaks and cyclobutane pyrimidine dimers in plasmid DNA. In the present contribution, we use theoretical methodologies to study the triplet photosensitization mechanism of thymine exerted by ForU in a model dimer and in DNA environment. The photochemical pathways in the former system are described combining the CASPT2 and TD-DFT methods, whereas molecular dynamics simulations and QM/MM calculations are employed for the DNA duplex. It is unambiguously shown that the 1n,π* state localised in ForU mediates the population of the triplet manifold, most likely the 3π,π* state centred in ForU, whereas the 3π,π* state localized in thymine can be populated via triplet-triplet energy transfer given the small energy barrier of <0.23 eV determined for this pathway.
Collapse
|
31
|
Findlay JA, Barnsley JE, Gordon KC, Crowley JD. Synthesis and Light-Induced Actuation of Photo-Labile 2-Pyridyl-1,2,3-Triazole Ru(bis-bipyridyl) Appended Ferrocene Rotors. Molecules 2018; 23:E2037. [PMID: 30110981 PMCID: PMC6222349 DOI: 10.3390/molecules23082037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 11/16/2022] Open
Abstract
To realise useful control over molecular motion in the future an extensive toolbox of both actionable molecules and stimuli-responsive units must be developed. Previously, our laboratory has reported 1,1'-disubstituted ferrocene (Fc) rotor units which assume a contracted/π-stacked conformation until complexation of cationic metal ions causes rotation about the Ferrocene (Fc) molecular 'ball-bearing'. Herein, we explore the potential of using the photochemical ejection of [Ru(2,2'-bipyridyl)₂]2+ units as a stimulus for the rotational contraction of new ferrocene rotor units. Fc rotors with both 'regular' and 'inverse' 2-pyridyl-1,2,3-triazole binding pockets and their corresponding [Ru(2,2'-bipyridyl)₂]2+ complexes were synthesised. The rotors and complexes were characterised using nuclear magnetic resonance (NMR) and ultraviolet (UV)-visible spectroscopies, Electro-Spray Ionisation Mass Spectrometry (ESI⁻MS), and electrochemistry. The 1,1'-disubstituted Fc ligands were shown to π-stack both in solution and solid state. Density Functional Theory (DFT) calculations (CAM-B3LYP/6-31G(d)) support the notion that complexation to [Ru(2,2'-bipyridyl)₂]2+ caused a rotation from the syn- to the anti-conformation. Upon photo-irradiation with UV light (254 nm), photo-ejection of the [Ru(2,2'-bipyridyl)₂(CH₃CN)₂]2+ units in acetonitrile was observed. The re-complexation of the [Ru(2,2'-bipyridyl)₂]2+ units could be achieved using acetone as the reaction solvent. However, the process was exceedingly slowly. Additionally, the Fc ligands slowly decomposed when exposed to UV irradiation meaning that only one extension and contraction cycle could be completed.
Collapse
Affiliation(s)
- James A Findlay
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, Otago, New Zealand.
| | - Jonathan E Barnsley
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, Otago, New Zealand.
| | - Keith C Gordon
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, Otago, New Zealand.
| | - James D Crowley
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, Otago, New Zealand.
| |
Collapse
|
32
|
Francés-Monerris A, Magra K, Darari M, Cebrián C, Beley M, Domenichini E, Haacke S, Pastore M, Assfeld X, Gros PC, Monari A. Synthesis and Computational Study of a Pyridylcarbene Fe(II) Complex: Unexpected Effects of fac/ mer Isomerism in Metal-to-Ligand Triplet Potential Energy Surfaces. Inorg Chem 2018; 57:10431-10441. [PMID: 30063338 DOI: 10.1021/acs.inorgchem.8b01695] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The synthesis and the steady-state absorption spectrum of a new pyridine-imidazolylidene Fe(II) complex (Fe-NHC) are presented. A detailed mechanism of the triplet metal-to-ligand charge-transfer states decay is provided on the basis of minimum energy path (MEP) calculations used to connect the lowest-lying singlet, triplet, and quintet state minima. The competition between the different decay pathways involved in the photoresponse is assessed by analyzing the shapes of the obtained potential energy surfaces. A qualitative difference between facial ( fac) and meridional ( mer) isomers' potential energy surface (PES) topologies is evidenced for the first time in iron-based complexes. Indeed, the mer complex shows a steeper triplet path toward the corresponding 3MC minimum, which lies at a lower energy as compared to the fac isomer, thus pointing to a faster triplet decay of the former. Furthermore, while a major role of the metal-centered quintet state population from the triplet 3MC region is excluded, we identify the enlargement of iron-nitrogen bonds as the main normal modes driving the excited-state decay.
Collapse
Affiliation(s)
| | - Kevin Magra
- Université de Lorraine , CNRS, L2CM , F57000 Metz , France
| | - Mohamed Darari
- Université de Lorraine , CNRS, L2CM , F54000 Nancy , France
| | | | - Marc Beley
- Université de Lorraine , CNRS, L2CM , F57000 Metz , France
| | | | - Stefan Haacke
- Université de Strasbourg-CNRS , UMR 7504 IPCMS , 67034 Strasbourg , France
| | | | - Xavier Assfeld
- Université de Lorraine , CNRS, LPCT , F54000 Nancy , France
| | | | - Antonio Monari
- Université de Lorraine , CNRS, LPCT , F54000 Nancy , France
| |
Collapse
|
33
|
|
34
|
Zanoni KPS, Amaral RC, Murakami Iha NY, Abreu FD, de Carvalho IMM. Versatile ruthenium(II) dye towards blue-light emitter and dye-sensitizer for solar cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 198:331-337. [PMID: 29573706 DOI: 10.1016/j.saa.2018.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 02/19/2018] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
A versatile Ru(II) complex bearing an anthracene moiety was synthesized in our search for suitable compounds towards efficient molecular devices. The new engineered dye, cis‑[Ru(dcbH2)(NCS)2(mbpy‑anth)] (dcbH2=2,2'‑bipyridyl‑4,4'‑dicarboxylic acid, mbpy‑anth=4‑[N‑(2‑anthryl)carbamoyl]‑4'‑methyl‑2,2'‑bipyridine), exhibits a blueish emission in a vibronically structured spectrum ascribed to the fluorescence of a 1LCAnth (ligand centered) excited state in the anthracene and has a potential to be exploited in the fields of smart lighting and displays. This complex was also employed in dye-sensitized solar cells with fairly efficient solar energy conversion with the use of self-assembled TiO2 compact layers beneath the TiO2 mesoporous film to prevent meso‑TiO2/dye back reactions. Further photoelectrochemical investigations through incident photon-to-current efficiency and electrochemical impedance spectra showed that the all-nano-TiO2 compact layer acts as contact layers that increase the electron harvesting in the external circuit, enhancing efficiencies up to 50%.
Collapse
Affiliation(s)
- Kassio P S Zanoni
- Laboratório de Fotoquímica e Conversão de energia, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil
| | - Ronaldo C Amaral
- Laboratório de Fotoquímica e Conversão de energia, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil
| | - Neyde Y Murakami Iha
- Laboratório de Fotoquímica e Conversão de energia, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil.
| | - Felipe D Abreu
- Laboratório de Bioinorgânica, Universidade Federal do Ceará, Caixa Postal 12200, 60455-760 Fortaleza, Ceará, Brazil
| | - Idalina M M de Carvalho
- Laboratório de Bioinorgânica, Universidade Federal do Ceará, Caixa Postal 12200, 60455-760 Fortaleza, Ceará, Brazil.
| |
Collapse
|
35
|
Danis AS, Potts KP, Perry SC, Mauzeroll J. Combined Spectroelectrochemical and Simulated Insights into the Electrogenerated Chemiluminescence Coreactant Mechanism. Anal Chem 2018; 90:7377-7382. [PMID: 29756773 DOI: 10.1021/acs.analchem.8b00773] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Andrew S. Danis
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal H3A 0B8, Quebec Canada
| | - Karlie P. Potts
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal H3A 0B8, Quebec Canada
| | - Samuel C. Perry
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal H3A 0B8, Quebec Canada
| | - Janine Mauzeroll
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal H3A 0B8, Quebec Canada
| |
Collapse
|
36
|
Mondal PC, Singh V, Manna AK, Zharnikov M. Covalently Assembled Monolayers of Homo- and Heteroleptic Fe II -Terpyridyl Complexes on SiO x and ITO-Coated Glass Substrates: An Experimental and Theoretical Study. Chemphyschem 2017; 18:3407-3415. [PMID: 28905521 DOI: 10.1002/cphc.201700918] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/09/2017] [Indexed: 11/07/2022]
Abstract
Well-defined FeII -terpyridyl monolayers were fabricated on SiOx and conductive ITO-coated glass substrates through covalent-bond formation between the metallo-organic complexes and a preassembled coupling layer. Three different homo- and heteroleptic complexes with terminal pyridyl, amine, and phenyl groups were tested. All the films were found to be densely packed and homogeneous, and consist of molecules standing upright. They exhibited high thermal (up to ≈220 °C) and temporal (up to 5 h at 100 °C) stability. The UV/Vis spectra of the monolayers showed pronounced metal-to-ligand charge-transfer bands with a significant redshift compared with the solution spectra of the metallo-ligands with a pendant pyridyl group quaternized with the coupling layer, whereas the shift was significantly smaller when the coupling layer was bonded to the primary amine (-NH2 ) group of the complex. Cyclic voltammograms of the monolayers showed reversible, one-electron redox behavior and suggested strong electronic coupling between the confined molecules and the underlying substrate. Analysis of the electrochemistry data allowed us to estimate the charge-transfer rate constant between the metal center and the substrate. Additionally, detailed quantum-chemical calculations were performed to support and rationalize the experimentally observed photophysical properties of the FeII -terpyridyl complexes both in the solution state and when bound to a SiOx -based substrate.
Collapse
Affiliation(s)
- Prakash Chandra Mondal
- Department of Chemistry, University of Delhi, Delhi-, 110007, India.,Present address: National Institute of Nanotechnology, University of Alberta, Edmonton-, T6G 2M9, AB, Canada
| | - Vikram Singh
- Centre for Nanoscience and Nanotechnology, Panjab University, Chandigarh-, 160015, India
| | - Arun K Manna
- Department of Chemistry, Indian Institute of Technology, Tirupati, Tirupati-, 517506, AP, India
| | - Michael Zharnikov
- Applied Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| |
Collapse
|
37
|
Matheu R, Benet-Buchholz J, Sala X, Llobet A. Synthesis, Structure, and Redox Properties of a trans-Diaqua Ru Complex That Reaches Seven-Coordination at High Oxidation States. Inorg Chem 2017; 57:1757-1765. [PMID: 29091417 DOI: 10.1021/acs.inorgchem.7b02375] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work we have prepared and characterized two Ru complexes that contain the pentadenatate tda2- ligand (tda2- = [2,2':6',2″-terpyridine]-6,6″-dicarboxylate) that occupies the equatorial positions and two monodentate ligands aqua and/or dmso that occupy the axial positons: [trans-RuIII(tda-κ-N3O)(OH2ax)2]+, 3III(OH2)2+, and [RuII(tda-κ-N3O)(dmso)(OH2ax)], 4II. The latter is a useful synthetic intermediate for the preparation of Ru-tda complexes with different axial ligands. The two complexes have been characterized in the solid state by single-crystal XRD and by elemental analysis. In solution, complex 4II has been characterized by NMR spectroscopy as well as the one-electron reduction of complex 3III(OH2)2+. The electrochemical properties of 3III(OH2)2+ and 4II have been assessed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Complex 3III(OH2)2+ shows the presence of four redox waves that are assigned to the VI/V, V/IV, IV/III, and III/II redox couples. The variation of the redox potentials is analyzed as a function of pH and is graphically presented as a Pourbaix diagram. Finally, the redox potentials displayed by both 3III(OH2)2+ and 4II are compared to related complexes previously reported in the literature and rationalized on the basis of the electron donating or withdrawing capacity of the auxiliary ligands as well as with regard to their ability to undergo seven-coordination at high oxidation states.
Collapse
Affiliation(s)
- Roc Matheu
- Institute of Chemical Research of Catalonia (ICIQ) , Avinguda Països Catalans 16, 43007 Tarragona, Spain.,Departament de Química Física i Inorgànica, Universitat Rovira i Virgili , Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ) , Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Xavier Sala
- Departament de Química, Universitat Autònoma de Barcelona , Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ) , Avinguda Països Catalans 16, 43007 Tarragona, Spain.,Departament de Química, Universitat Autònoma de Barcelona , Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
38
|
Zeng L, Gupta P, Chen Y, Wang E, Ji L, Chao H, Chen ZS. The development of anticancer ruthenium(ii) complexes: from single molecule compounds to nanomaterials. Chem Soc Rev 2017; 46:5771-5804. [PMID: 28654103 PMCID: PMC5624840 DOI: 10.1039/c7cs00195a] [Citation(s) in RCA: 749] [Impact Index Per Article: 93.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer is rapidly becoming the top killer in the world. Most of the FDA approved anticancer drugs are organic molecules, while metallodrugs are very scarce. The advent of the first metal based therapeutic agent, cisplatin, launched a new era in the application of transition metal complexes for therapeutic design. Due to their unique and versatile biochemical properties, ruthenium-based compounds have emerged as promising anti-cancer agents that serve as alternatives to cisplatin and its derivertives. Ruthenium(iii) complexes have successfully been used in clinical research and their mechanisms of anticancer action have been reported in large volumes over the past few decades. Ruthenium(ii) complexes have also attracted significant attention as anticancer candidates; however, only a few of them have been reported comprehensively. In this review, we discuss the development of ruthenium(ii) complexes as anticancer candidates and biocatalysts, including arene ruthenium complexes, polypyridyl ruthenium complexes, and ruthenium nanomaterial complexes. This review focuses on the likely mechanisms of action of ruthenium(ii)-based anticancer drugs and the relationship between their chemical structures and biological properties. This review also highlights the catalytic activity and the photoinduced activation of ruthenium(ii) complexes, their targeted delivery, and their activity in nanomaterial systems.
Collapse
Affiliation(s)
- Leli Zeng
- College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Sengul O, Boydas EB, Pastore M, Sharmouk W, Gros PC, Catak S, Monari A. Probing optical properties of thiophene derivatives for two-photon absorption. Theor Chem Acc 2017. [DOI: 10.1007/s00214-017-2094-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Troian-Gautier L, Mugeniwabagara E, Fusaro L, Moucheron C, Kirsch-De Mesmaeker A, Luhmer M. pH Dependence of Photoinduced Electron Transfer with [Ru(TAP)3]2+. Inorg Chem 2016; 56:1794-1803. [DOI: 10.1021/acs.inorgchem.6b01780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ludovic Troian-Gautier
- Laboratoire
de Chimie Organique et Photochimie and §Laboratoire de Résonance Magnétique
Nucléaire Haute Résolution, Université libre de Bruxelles, 50 av. F. D. Roosevelt, CP160/08, B-1050 Bruxelles, Belgium
| | - Epiphanie Mugeniwabagara
- Laboratoire
de Chimie Organique et Photochimie and §Laboratoire de Résonance Magnétique
Nucléaire Haute Résolution, Université libre de Bruxelles, 50 av. F. D. Roosevelt, CP160/08, B-1050 Bruxelles, Belgium
| | - Luca Fusaro
- Laboratoire
de Chimie Organique et Photochimie and §Laboratoire de Résonance Magnétique
Nucléaire Haute Résolution, Université libre de Bruxelles, 50 av. F. D. Roosevelt, CP160/08, B-1050 Bruxelles, Belgium
| | - Cécile Moucheron
- Laboratoire
de Chimie Organique et Photochimie and §Laboratoire de Résonance Magnétique
Nucléaire Haute Résolution, Université libre de Bruxelles, 50 av. F. D. Roosevelt, CP160/08, B-1050 Bruxelles, Belgium
| | - Andrée Kirsch-De Mesmaeker
- Laboratoire
de Chimie Organique et Photochimie and §Laboratoire de Résonance Magnétique
Nucléaire Haute Résolution, Université libre de Bruxelles, 50 av. F. D. Roosevelt, CP160/08, B-1050 Bruxelles, Belgium
| | - Michel Luhmer
- Laboratoire
de Chimie Organique et Photochimie and §Laboratoire de Résonance Magnétique
Nucléaire Haute Résolution, Université libre de Bruxelles, 50 av. F. D. Roosevelt, CP160/08, B-1050 Bruxelles, Belgium
| |
Collapse
|