1
|
Ali T, Rahman T, Perveen S, Wang L, Khan A. Asymmetric Amination of 1,2-Diol through Borrowing Hydrogen: Synthesis of Vicinal Amino α-Tertiary Alcohol. Chemistry 2025; 31:e202404152. [PMID: 40011211 DOI: 10.1002/chem.202404152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/16/2025] [Accepted: 02/24/2025] [Indexed: 02/28/2025]
Abstract
Methods to prepare vicinal amino alcohols are important because of their presence in biologically active compounds. Despite the development of various methods for vicinal amino alcohol synthesis, C(sp3)-rich oxygen-containing β-amine compounds continue to pose great challenge. While ring-opening reaction of epoxides with amine nucleophile is the prime method for vicinal amino alcohol preparation, epoxides are highly reactive and sometimes difficult to make, resulting in drawbacks regarding selectivity of this approach. Here, we report a catalytic enantio-convergent amination of α-tertiary 1,2-diols for the efficient access to vicinal amino α-tertiary alcohols. The racemic α-tertiary 1,2-diol substrates of different alkyl/aryl or alkyl/alkyl backbone, can be converted to chiral vicinal amino α-tertiary alcohols through diphenyl phosphate-mediated RuCl3 catalysed asymmetric borrowing hydrogen (ABH) pathway. This simple ABH reaction can be scaled up to the synthesis of chiral ligands, synthetic intermediates, and other medicinally-relevant compounds. Overall, this catalytic redox-neutral procedure broadens the scope of Ru-catalysed amination of alcohols and discloses an underexplored step- and atom-economical synthetic strategy for the synthesis of vicinal amino α-tertiary alcohols and provides a practicable alternative to the present benchmark procedures.
Collapse
Affiliation(s)
- Tariq Ali
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Tahir Rahman
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Shahida Perveen
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Lingyun Wang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Ajmal Khan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| |
Collapse
|
2
|
Perveen S, Ali T, Rahman T, Huda FNU, Wang L, Zhang J, Khan A. Catalytic Asymmetric Synthesis of β-Amino α-Tertiary Alcohol through Borrowing Hydrogen Amination. Org Lett 2025; 27:2622-2627. [PMID: 40048559 DOI: 10.1021/acs.orglett.5c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The first enantioconvergent transition-metal-catalyzed amination of racemic α-tertiary 1,2-diols providing access to vicinal β-amino α-tertiary alcohols is disclosed. The iridium-catalyzed amination reaction proceeds through a chiral phosphoric acid-mediated borrowing hydrogen pathway with excellent yields and enantioselectivities for a range of amine nucleophiles and α-tertiary 1,2-diols. An array of β-amino α-tertiary alcohols were obtained with high yields and enantioselectivities (50 examples with up to 91% yield and up to 99% ee). These important chiral amino alcohol products can be easily converted into chiral ligands and bioactive skeletons. Mechanistic investigations proposed a dynamic kinetic resolution pathway involving imine formation and then imine reduction as the enantiodetermining step.
Collapse
Affiliation(s)
- Shahida Perveen
- Department of Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Tariq Ali
- Department of Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Tahir Rahman
- Department of Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Fatima Noor Ul Huda
- Department of Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Lingyun Wang
- Department of Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Junjie Zhang
- Department of Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Ajmal Khan
- Department of Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| |
Collapse
|
3
|
Bisarya A, Kathuria L, Das K, Yasmin E, Jasra RV, Dhole S, Kumar A. State-of-the-art advances in homogeneous molecular catalysis for the Guerbet upgrading of bio-ethanol to fuel-grade bio-butanol. Chem Commun (Camb) 2025; 61:2906-2925. [PMID: 39835652 DOI: 10.1039/d4cc05931j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The upgrading of ethanol to n-butanol marks a major breakthrough in the field of biofuel technology, offering the advantages of compatibility with existing infrastructure while simultaneously offering potential benefits in terms of transport efficiency and energy density. With its lower vapour pressure and reduced corrosiveness compared to ethanol, n-butanol is easier not only to manage but also to transport, eliminating the need for costly infrastructure changes. This leads to improved fuel efficiency and reduced fuel consumption. These features position n-butanol as a promising alternative to ethanol in the future of biodiesel. This review article delves into the cutting-edge advancements in upgrading ethanol to butanol, highlighting the critical importance of this transformation in enhancing the value and practical application of biofuels. While traditional methods for making butanol rely heavily on fossil fuels, those that employ ethanol as a starting material are dominated by heterogeneous catalysis, which is limited by the requirement of high temperatures and a lack of selectivity. Homogeneous catalysts have been pivotal in enhancing the efficiency and selectivity of this conversion, owing to their unique mode of operation at the molecular level. A comprehensive review of the various homogeneous catalytic processes employed in the transformation of feedstock-agnostic bio-ethanol to fuel-grade bio-n-butanol is provided here, with a major focus on the key advancements in catalyst design, reaction conditions and mechanisms that have significantly improved the efficiency and selectivity of these Guerbet reactions.
Collapse
Affiliation(s)
- Akshara Bisarya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Lakshay Kathuria
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Kanu Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Eileen Yasmin
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Raksh Vir Jasra
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
- Reliance Industries Limited, R&D Centre, Vadodara Manufacturing Division, Vadodara - 391346, Gujarat, India
| | - Sunil Dhole
- ChemDist Group of Companies, Plot No. 144 A, Sector 7, PCNTDA Bhosari, Pune - 411026, Maharashtra, India
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| |
Collapse
|
4
|
Liu C, Liang J, Liang Y, Ouyang L, Li Y. Adaptive alcohols-alcohols cross-coupling via TFA catalysis: access of unsymmetrical ethers. BMC Chem 2025; 19:13. [PMID: 39799377 PMCID: PMC11725215 DOI: 10.1186/s13065-025-01379-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025] Open
Abstract
Ethers are high value organic compounds widely applied in chemical industry, natural products, material, pharmaceuticals, argochemicals, as well as modern organic synthesis. Herein, we report an adaptive TFA-catalyzed cross-coupling of alcohols with various oxygen nucleophiles (nitro-, halogen-, sulfur-, nitrogen-, aryl-, and alkynyl-substituted aliphatic alcohols), delivering diverse unsymmetrical ethers under mild conditions and simple operation. This protocol features a broad range of substrate scope and high catalytic efficiency (54 examples, up to 99% yield). The decagram scale performance and one-step synthesis of drug molecules evidenced the potential industrial production and practicability of this protocol.
Collapse
Affiliation(s)
- Chengxiu Liu
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Jiaxin Liang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Yuqiu Liang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Lu Ouyang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
| | - Youchun Li
- The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou, 341000, Jiangxi, People's Republic of China.
| |
Collapse
|
5
|
Jalwal S, Das S, Chakraborty S. Terpenylation of Ketones and a Secondary Alcohol under Hydrogen-Borrowing Manganese Catalysis. J Org Chem 2025; 90:309-316. [PMID: 39680627 DOI: 10.1021/acs.joc.4c02260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
An Earth-abundant Mn-PNP pincer complex-catalyzed terpenylation of cyclic and acyclic ketones and secondary alcohol 1-phenylethanol using isoprenoid derivatives prenol, nerol, phytol, solanesol, and E-farnesol as allyl surrogates is reported. The C-C coupling reactions are green and atom-economic, proceeding via dehydrogenation of alcohols following a hydrogen autotransfer methodology aided by metal-ligand cooperation.
Collapse
Affiliation(s)
- Sachin Jalwal
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, Rajasthan 342037, India
| | - Sourajit Das
- School of Chemical Science, National Institute of Science Education and Research, Jatni, Khurda, Bhubaneswar, Odisha 752050, India
| | - Subrata Chakraborty
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, Rajasthan 342037, India
| |
Collapse
|
6
|
M V, Joshi H, A S A, Dey R. Supported Nickel Nanoparticles as Catalyst in Direct sp 3 C-H Alkylation of 9H-Fluorene Using Alcohols as Alkylating Agent. Chem Asian J 2025; 20:e202400989. [PMID: 39400506 DOI: 10.1002/asia.202400989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/29/2024] [Accepted: 10/12/2024] [Indexed: 10/15/2024]
Abstract
Herein, we report an inexpensive first-row transition metal Ni heterogeneous catalytic system for the Csp 3-mono alkylation of fluorene using alcohols as alkylating agents via borrowing hydrogen strategy. The catalytic protocol displayed versatility with high yields of the desired products using various types of primary alcohols, including aryl/hetero aryl methanols, and aliphatic alcohols as alkylating agents. The catalyst Ni NPs@N-C was synthesized via high-temperature pyrolysis strategy, using ZIF-8 as the sacrificial template. The Ni NPs@N-C catalyst was characterized by XPS, HR-TEM, HAADF-STEM, XRD and ICP-MS. The catalyst is stable even in the air at room temperature, displayed excellent activity and could be recycled 5 times without appreciable loss of its activity.
Collapse
Affiliation(s)
- Vageesh M
- Department of Chemistry, National Institute of Technology Calicut, 673601, Kozhikode, Kerala, India
| | - Harsh Joshi
- Department of Chemistry, National Institute of Technology Calicut, 673601, Kozhikode, Kerala, India
| | - Anupriya A S
- Department of Chemistry, National Institute of Technology Calicut, 673601, Kozhikode, Kerala, India
| | - Raju Dey
- Department of Chemistry, National Institute of Technology Calicut, 673601, Kozhikode, Kerala, India
| |
Collapse
|
7
|
Pal S, Guin AK, Khanra S, Paul ND. Zn(II)-Stabilized Azo-Anion Radical-Catalyzed Dehydrogenative Synthesis of Olefins. J Org Chem 2024. [PMID: 39680640 DOI: 10.1021/acs.joc.4c02158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Herein, we describe a Zn-catalyzed atom-economical, inexpensive, and sustainable method for preparing a broad spectrum of substituted olefins utilizing alcohols as the main precursor. Using a Zn(II) complex [ZnLCl2] (1) of the redox-noninnocent ligand 2-((4-chlorophenyl)diazenyl)-1,10-phenanthroline (L), various (E)-olefins were prepared in good yields by coupling alcohols with sulfones and aryl cyanides under an inert atmosphere. Under an aerial atmosphere, vinyl nitriles were isolated in up to 82% yield reacting alcohols with benzyl cyanides in the presence of 1. Control experiments and mechanistic investigation indicate the active involvement of the aryl-azo ligand as an electron and hydrogen reservoir, permitting 1 to perform as a promising catalyst.
Collapse
Affiliation(s)
- Subhasree Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhankar Khanra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
8
|
Saha R, Maharana SK, Jana NC, Bagh B. Copper-catalyzed C(sp 3)-H alkylation of fluorene with primary and secondary alcohols using a borrowing hydrogen method. Chem Commun (Camb) 2024; 60:10144-10147. [PMID: 39189332 DOI: 10.1039/d4cc03310h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Despite the limited success of copper-catalyzed alkylations, (NNS)CuCl proved to be an effective catalyst for the sp3 C-H alkylation of fluorene with alcohols. Various primary alcohols and challenging secondary alcohols were successfully used. The practical applicability of the method was effectively tested with several post-functionalization reactions. This copper-catalyzed alkylation of fluorene involved a borrowing hydrogen mechanism.
Collapse
Affiliation(s)
- Ratnakar Saha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, 752050, India.
| | - Suraj Kumar Maharana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, 752050, India.
| | - Narayan Ch Jana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, 752050, India.
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, 752050, India.
| |
Collapse
|
9
|
Song P, Rong H, Meng T, Cui Z, Mao M, Yang C. Quinoline-derived NNP-manganese complex catalyzed α-alkylation of ketones with primary alcohols. Org Biomol Chem 2024; 22:5112-5116. [PMID: 38864433 DOI: 10.1039/d4ob00827h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
An air-stable quinoline-derived NNP ligand chelated Mn catalyst was developed for the efficient α-alkylation of ketones with primary alcohols via a hydrogen auto-transfer methodology. The sole by-product formed is water, rendering the protocol atom efficient. A wide range of ketone and alcohol substrates were employed, providing the α-alkylated ketones with isolated yields up to 94%. This system was also efficient for the green synthesis of quinoline derivatives while using (2-aminophenyl)methanol as an alkylating reagent.
Collapse
Affiliation(s)
- Peidong Song
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China.
| | - Haojie Rong
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China.
| | - Tingting Meng
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China.
| | - Zhe Cui
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China.
| | - Mingzhen Mao
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China.
| | - Cuifeng Yang
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China.
| |
Collapse
|
10
|
Chandra A, Basu P, Raha S, Dhibar P, Bhattacharya S. Development of ruthenium complexes with S-donor ligands for application in synthesis, catalytic acceptorless alcohol dehydrogenation and crossed-aldol condensation. Dalton Trans 2024; 53:10675-10685. [PMID: 38860941 DOI: 10.1039/d4dt00985a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The reaction of [Ru(dmso)4Cl2] with a potassium salt of four xanthate (RO-C(S)S-; R = Me, Et, iPr and tBu) ligands (depicted as Ln; n = 1-4) in hot methanol afforded a group of mixed-ligand complexes of type [Ru(Ln)2(dmso)2]. The crystal structures of all the four complexes have been determined, which show that the xanthate ligands are bound to the metal center forming four-membered chelates and dmso is coordinated through sulfur and they are mutually cis. The relative thermodynamic stability of this cis and the other possible trans-isomers of these complexes has been assessed with the help of DFT calculations, which have revealed that the cis-isomer is the more stable isomer. The coordinated dmso in the [Ru(Ln)2(dmso)2] complexes could be easily displaced by chelating bidentate ligands (depicted as L') to furnish complexes of type [Ru(Ln)2(L')], as demonstrated through isolation of two such complexes, viz. [Ru(L3)2(bpy)] and [Ru(L2)2(phen)] (bpy = 2,2'-bipyridine and phen = 1,10-phenanthroline). The crystal structure of [Ru(L3)2(bpy)] has been determined and the structure of [Ru(L2)2(phen)] has been optimized by the DFT method. The electronic spectra of the four [Ru(Ln)2(dmso)2] complexes and the two derivatives ([Ru(Ln)2(L')]; n = 3, L' = bpy; n = 2, L' = phen), recorded in dichloromethane solutions, show intense absorptions spanning the visible and ultraviolet regions, which have been analyzed by the TDDFT method. The [Ru(Ln)2(dmso)2] complexes are found to serve as efficient catalyst precursors for the acceptorless dehydrogenation of 2-propanol followed by crossed-aldol condensation with substituted benzaldehydes (and related aldehydes), using tert-butoxide as the co-catalyst, producing dibenzylideneacetone derivatives in good yields.
Collapse
Affiliation(s)
- Anushri Chandra
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata - 700032, India.
| | - Pousali Basu
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata - 700032, India.
| | - Shreya Raha
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata - 700032, India.
| | - Papu Dhibar
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata - 700032, India.
- Department of Chemistry, Brainware University, Kolkata 700 125, India
| | - Samaresh Bhattacharya
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata - 700032, India.
| |
Collapse
|
11
|
François J, Jacolot M, Popowycz F. Borrowing hydrogen C-alkylation with secondary saturated heterocyclic alcohols. Org Biomol Chem 2024; 22:4502-4507. [PMID: 38747070 DOI: 10.1039/d4ob00543k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The borrowing hydrogen methodology (BH) has emerged as a powerful tool for the rapid construction of C-C bonds, offering a greener alternative to traditional multi-step syntheses. This methodology involves the activation of inactivated alcohols followed by condensation or aldolization, ultimately leading to the regeneration of the saturated product. Herein, we report the C-alkylation of a hindered ketone with challenging secondary saturated heterocyclic alcohols. Our study encompasses the optimization of reaction conditions using either an iridium or a ruthenium catalyst and exploration of substrate scope. We demonstrate the efficient synthesis of substituted pyrrolidines and piperidines directly from a triol precursor, showcasing the versatility of this methodology. Moreover, we illustrate the post-functionalization of BH products, significantly broadening their chemical utility.
Collapse
Affiliation(s)
- Jordan François
- INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 1 rue Victor Grignard, 69621, Villeurbanne Cedex, France.
| | - Maïwenn Jacolot
- INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 1 rue Victor Grignard, 69621, Villeurbanne Cedex, France.
| | - Florence Popowycz
- INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 1 rue Victor Grignard, 69621, Villeurbanne Cedex, France.
| |
Collapse
|
12
|
Duan YT, Yang B, Wang ZX. Pincer Nickel-Catalyzed Olefination of Alcohols with Benzylphosphine Oxides. Chem Asian J 2024:e202400255. [PMID: 38600033 DOI: 10.1002/asia.202400255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
N,N,P-Pincer nickel complexes effectively catalyze reaction of alcohols with benzylphosphine oxides to form alkenes in good yields. The protocol suits for a wide scope of substrates and generates only E-configurated alkenes. The method also shows good compatibility of functional groups. Methoxy, methylthio, trifluoromethyl, ketal, fluoro, chloro, bromo, thienyl, and furyl groups are tolerated. The mechanism studies support that the reaction proceeds through catalytic dehydrogenation of alcohols to aldehydes or ketones followed by condensation with benzyldiphenylphosphine oxides in the presence of KOtBu.
Collapse
Affiliation(s)
- Yu-Tong Duan
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026
| | - Bo Yang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026
- Frontiers Science Center for Transformative Molecules (FSCTM), Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Zhong-Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026
| |
Collapse
|
13
|
Joly N, Colella A, Mendy ME, Mbaye MD, Gaillard S, Poater A, Renaud JL. Blue-Light Induced Iron-Catalyzed Synthesis of γ,δ-Unsaturated Ketones. CHEMSUSCHEM 2024; 17:e202301472. [PMID: 38010264 DOI: 10.1002/cssc.202301472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
A visible-light-induced iron-catalyzed α-alkylation of ketones with allylic and propargylic alcohols as pro-electrophiles is reported. The diaminocyclopentadienone iron tricarbonyl complex plays a dual role by harvesting light and facilitating dehydrogenation and reduction steps without the help of any exogenous photosensitizer. γ,δ-Unsaturated ketones can now be accessed through this borrowing hydrogen methodology at room temperature. Mechanistic investigations revealed that the steric hindrance on the δ-position of either the dienone or ene-ynone intermediate is the key feature to prevent or decrease the competitive 1,6-reduction (and consequently the formation of the saturated ketone) and to favor the synthesis of a set of non-conjugated enones and ynones.
Collapse
Affiliation(s)
- Nicolas Joly
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000, Caen, France
- Departament de Química, Institut de Química Computacional i Catàlisi (IQCC), University of Girona, c/ Mª Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Alessandro Colella
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000, Caen, France
| | - Monique-Edwige Mendy
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000, Caen, France
- Université Assane Seck de Ziguinchor BP 523, Ziguinchor, Sénégal
| | | | - Sylvain Gaillard
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000, Caen, France
| | - Albert Poater
- Departament de Química, Institut de Química Computacional i Catàlisi (IQCC), University of Girona, c/ Mª Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Jean-Luc Renaud
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000, Caen, France
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 75005, Paris, France
| |
Collapse
|
14
|
Jalwal S, Regina A, Atreya V, Paranjothy M, Chakraborty S. NNN manganese complex-catalyzed α-alkylation of methyl ketones using alcohols: an experimental and computational study. Dalton Trans 2024. [PMID: 38251673 DOI: 10.1039/d3dt04321e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
We present here a phosphine-free, quinoline-based pincer Mn catalyst for α-alkylation of methyl ketones using primary alcohols as alkyl surrogates. The C-C bond formation reaction proceeds via a hydrogen auto-transfer methodology. The sole by-product formed is water, rendering the protocol atom efficient. Electronic structure theory studies corroborated the proposed mechanism.
Collapse
Affiliation(s)
- Sachin Jalwal
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342030, Rajasthan, India.
| | - Anitta Regina
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342030, Rajasthan, India.
| | - Vaishnavi Atreya
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342030, Rajasthan, India.
| | - Manikandan Paranjothy
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342030, Rajasthan, India.
| | - Subrata Chakraborty
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342030, Rajasthan, India.
| |
Collapse
|
15
|
Kumar N, Sankar RV, Gunanathan C. Ruthenium-Catalyzed Self-Coupling of Secondary Alcohols. J Org Chem 2023. [PMID: 38039390 DOI: 10.1021/acs.joc.3c02029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
A simple catalytic method for self-coupling of secondary alcohols leading to the synthesis of β-branched ketones under mild conditions is reported. Well-defined ruthenium pincer complex catalyzed the reactions. Optimization studies revealed that sodium tert-butoxide is an appropriate base for this transformation. Functionalized aryl methanols, heteroaryl methanols, and linear and branched aliphatic secondary alcohols underwent facile catalytic self-coupling reactions. Mechanistic studies revealed that both catalyst and base are crucial to achieve dehydrogenation of secondary alcohols to ketones, their subsequent controlled aldol condensation, and further hydrogenation of α,β-unsaturated intermediates, leading to the selective formation of β-branched ketone products. Notably, the noninnocent PNP ligand which displays amine-amide metal-ligand cooperation operative in a catalyst played a key role in facilitating this catalytic self-coupling of secondary alcohols. Liberated molecular hydrogen and water are the only byproducts.
Collapse
Affiliation(s)
- Nitin Kumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar 752050, India
| | - Raman Vijaya Sankar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar 752050, India
| | - Chidambaram Gunanathan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar 752050, India
| |
Collapse
|
16
|
Gautam D, Gahlaut PS, Pathak S, Jana B. K 2S 2O 8 promoted metal-free direct C-alkylation of acetophenones with alcohols. Org Biomol Chem 2023. [PMID: 37997393 DOI: 10.1039/d3ob01526b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Herein, we report a metal-free synthetic methodology for the C-alkylation of acetophenones following a hydrogen borrowing-like pathway using the commercially available inorganic oxidant K2S2O8 in conjunction with KOtBu. This study articulates the potential of K2S2O8 in fast initiation of the oxidation of benzyl alcohols to develop an atom-economical, easy, and more efficient methodology for the C-alkylation of various acetophenones and synthesis of a variety of substituted quinolines. Experimental data from control experiments, literature and characterization of intermediates through spectroscopic techniques support the proposed plausible mechanism.
Collapse
Affiliation(s)
- Deepak Gautam
- Organometallics and Supramolecular Chemistry Laboratory (OMSCL), Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan-302017, India.
| | - Puneet Singh Gahlaut
- Organometallics and Supramolecular Chemistry Laboratory (OMSCL), Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan-302017, India.
| | - Shristi Pathak
- Organometallics and Supramolecular Chemistry Laboratory (OMSCL), Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan-302017, India.
| | - Barun Jana
- Organometallics and Supramolecular Chemistry Laboratory (OMSCL), Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan-302017, India.
| |
Collapse
|
17
|
Zhang X, Zhang Y, Ding J, Wang L, Chen W, Li X, Cui B, Zhao M, Shao Z. Synthesis of Thiophene-Substituted Ketones via Manganese-Catalyzed Dehydrogenative Coupling Reaction. Chem Asian J 2023; 18:e202300725. [PMID: 37789733 DOI: 10.1002/asia.202300725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
This study reports an efficient and green one-step method for synthesizing thiophene-substituted ketones from 2-thiophenemethanol and ketones via dehydrogenative coupling using manganese complexes as catalysts. The manganese complex demonstrated a broad applicability under mild conditions and extended the range of usable substrates. Utilizing this strategy, we carried out an efficient and diverse reaction of ketones with 2-thiophenemethanol, and successfully synthesized a series of thiophene-substituted saturated ketones and α, β-unsaturated ketones in good isolated yields.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Yujie Zhang
- Technology Center of China Tobacco Hebei Industrial Co., LTD, Shijiazhuang, 050051, P. R. China
| | - Jiaqiao Ding
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Liusheng Wang
- Technology Center of China Tobacco Hebei Industrial Co., LTD, Shijiazhuang, 050051, P. R. China
| | - Weihua Chen
- Technology Center of China Tobacco Hebei Industrial Co., LTD, Shijiazhuang, 050051, P. R. China
| | - Xinyan Li
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Bing Cui
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Mingqin Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Zhihui Shao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| |
Collapse
|
18
|
Mukherjee A, Datta S, Richmond MG, Bhattacharya S. Ruthenium complexes of 1,4-diazabutadiene ligands with a cis-RuCl 2 moiety for catalytic acceptorless dehydrogenation of alcohols: DFT evidence of chemically non-innocent ligand participation. RSC Adv 2023; 13:25660-25672. [PMID: 37649575 PMCID: PMC10463240 DOI: 10.1039/d3ra04750d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023] Open
Abstract
The acceptorless dehydrogenative coupling (ADC) of primary alcohols to esters by diazabutadiene-coordinated ruthenium compounds is reported. Treatment of cis-Ru(dmso)4Cl2 in acetone at 56 °C with different 1,4-diazabutadienes [p-XC6H4N[double bond, length as m-dash]C(H)(H)C[double bond, length as m-dash]NC6H4X-p; X = H, CH3, OCH3, and Cl; abbreviated as DAB-X], gives trans-Ru[κ2-N,N-DAB-X]2Cl2 as the kinetic product of substitution. Heating these products in o-xylene at 144 °C gives the thermodynamically favored cis-Ru[κ2-N,N-DAB-X]2Cl2 isomers. Electronic structure calculations confirm the greater stability of the cis diastereomer. The molecular structures for each pair of geometric isomers have been determined by X-ray diffraction analyses. Cyclic voltammetry experiments on the complexes show an oxidative response and a reductive response within 0.50 to 0.93 V and -0.76 to -1.24 V vs. SCE respectively. The cis-Ru[κ2-N,N-DAB-X]2Cl2 complexes function as catalyst precursors for the acceptorless dehydrogenative coupling of primary alcohols to H2 and homo- and cross-coupled esters. When 1,4-butanediol and 1,5-pentanediol are employed as substrates, lactones and hydroxyaldehydes are produced as the major dehydrogenation products, while secondary alcohols afforded ketones in excellent yields. The mechanism for the dehydrogenation of benzyl alcohol to benzyl benzoate and H2 using cis-Ru[κ2-N,N-DAB-H]2Cl2 (cis-1) as a catalyst precursor was investigated by DFT calculations. The data support a catalytic cycle that involves the four-coordinate species Ru[κ2-N,N-DAB-H][κ1-N-DAB-H](κ1-OCH2Ph) whose protonated κ1-diazabutadiene moiety functions as a chemically non-innocent ligand that facilitates a β-hydrogen elimination from the κ1-O-benzoxide ligand to give the corresponding hydride HRu[κ2-N,N-DAB-H][κ1-N-DAB-H](κ2-O,C-benzaldehyde). H2 production follows a Noyori-type elimination to give (H2)Ru[κ2-N,N-DAB-H][κ1-N-DAB-H](κ1-O-benzaldehyde) as an intermediate in the catalytic cycle.
Collapse
Affiliation(s)
- Aparajita Mukherjee
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University Kolkata 700 032 India
| | - Sayanti Datta
- Department of Chemistry, Brainware University Kolkata 700 125 India
| | | | - Samaresh Bhattacharya
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University Kolkata 700 032 India
| |
Collapse
|
19
|
Banik A, Datta P, Mandal SK. C-Alkylation by Phenalenyl-Based Molecule via a Borrowing Hydrogen Pathway. Org Lett 2023. [PMID: 36800435 DOI: 10.1021/acs.orglett.3c00223] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The present study demonstrates the first transition-metal-free catalytic C-alkylation via a borrowing hydrogen pathway for the α-alkylation of ketone, synthesis of substituted quinoline, and 9-monoalkylation of fluorene. With applications on diversification of biologically active molecules and gram-scale synthesis, a preliminary investigation of the reaction mechanism has been carried out, suggesting a radical-mediated borrowing hydrogen pathway.
Collapse
Affiliation(s)
- Ananya Banik
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur 741246, India
| | - Paramita Datta
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur 741246, India
| | - Swadhin K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur 741246, India
| |
Collapse
|
20
|
Ru(II)-p-cymene complexes containing hydrazone ligands catalyzed α-alkylation of ketones and one-pot synthesis of bioactive quinolines and 3-(quinolin-2-yl)-2H-chromen-2-one. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
21
|
Gayathri S, Viswanathamurthi P, Bertani R, Sgarbossa P. Ruthenium Complexes Bearing α-Diimine Ligands and Their Catalytic Applications in N-Alkylation of Amines, α-Alkylation of Ketones, and β-Alkylation of Secondary Alcohols. ACS OMEGA 2022; 7:33107-33122. [PMID: 36157732 PMCID: PMC9494662 DOI: 10.1021/acsomega.2c03200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
New Ru(II) complexes encompassing α-diimine ligands were synthesized by reacting ruthenium precursors with α-diimine hydrazones. The new ligands and Ru(II) complexes were analyzed by analytical and various spectroscopic methods. The molecular structures of L1 and complexes 1, 3, and 4 were determined by single-crystal XRD studies. The results reveal a distorted octahedral geometry around the Ru(II) ion for all complexes. Moreover, the new ruthenium complexes show efficient catalytic activity toward the C-N and C-C coupling reaction involving alcohols. Particularly, complex 3 demonstrates effective conversion in N-alkylation of aromatic amines, α-alkylation of ketones, and β-alkylation of alcohols.
Collapse
Affiliation(s)
- Sekar Gayathri
- Department
of Chemistry, Periyar University, Salem 636 011, Tamil Nadu, India
| | | | - Roberta Bertani
- Department
of Industrial Engineering, University of
Padova, via F. Marzoloa, Padova 35131, Italy
| | - Paolo Sgarbossa
- Department
of Industrial Engineering, University of
Padova, via F. Marzoloa, Padova 35131, Italy
| |
Collapse
|
22
|
Wu X, Ma W, Tang W, Xue D, Xiao J, Wang C. Fe‐Catalyzed Amidation of Allylic Alcohols by Borrowing Hydrogen Catalysis. Chemistry 2022; 28:e202201829. [DOI: 10.1002/chem.202201829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoyun Wu
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University 710062 Xi'an P. R. China
| | - Wei Ma
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University 710062 Xi'an P. R. China
- School of Basic Medical Science Ningxia Medical University 750004 Yinchuan P. R. China
| | - Weijun Tang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University 710062 Xi'an P. R. China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University 710062 Xi'an P. R. China
| | - Jianliang Xiao
- Department of Chemistry University of Liverpool L69 7ZD Liverpool UK
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University 710062 Xi'an P. R. China
| |
Collapse
|
23
|
Ranjan R, Chakraborty A, Kyarikwal R, Ganguly R, Mukhopadhyay S. A binuclear Cu(II) complex as an efficient photocatalyst for N-alkylation of aromatic amines. Dalton Trans 2022; 51:13288-13300. [PMID: 35983724 DOI: 10.1039/d2dt01771g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visible-light driven photoreactions using transition metal complexes as catalysts are currently a research hotspot in developing environmentally friendly sustainable processes. To develop a potential copper-based photocatalyst, a binuclear Cu(II) complex has been synthesized using a Mannich base ligand viz. 2,4-dichloro-6-((4-(2-hydroxyethyl)piperazin-1-yl)methyl)phenol (H2L). The photocatalyst has been characterized using ESI-MS and single crystal X-ray diffraction. Under the irradiation of visible light, the catalyst can catalyze hydrogen auto-transfer in N-alkylated amine formation and benzyl alcohol oxidation reactions with excellent conversion. A plausible mechanistic pathway for catalytic reactions has been explored through ESI-MS spectrometric, UV-Vis spectroscopic and computational studies.
Collapse
Affiliation(s)
- Rishi Ranjan
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Simrol, Indore 453552, India.
| | - Argha Chakraborty
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Simrol, Indore 453552, India.
| | - Reena Kyarikwal
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Simrol, Indore 453552, India.
| | | | - Suman Mukhopadhyay
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Simrol, Indore 453552, India.
| |
Collapse
|
24
|
Li X, Shao X, Zhang X, Zhao Q, Lai H, Cui B, Shao Z, Zhao M. Synthesizing carbonyl furan derivatives by a dehydrogenative coupling reaction. Org Biomol Chem 2022; 20:6542-6546. [PMID: 35912951 DOI: 10.1039/d2ob01130a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the development of an efficient green procedure for synthesizing carbonyl furan derivatives by dehydrogenative coupling of furfuryl alcohol with carbonyl compounds. The reaction is performed under mild reaction conditions in the presence of iPrPNP-Mn as the catalyst and a weak base (Cs2CO3). A range of ketones and aldehydes were efficiently diversified with furfuryl alcohol to afford furyl-substituted saturated ketones, and α,β-unsaturated ketones and aldehydes in good isolated yields.
Collapse
Affiliation(s)
- Xinyan Li
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Xiulan Shao
- Xi'an Urban Drainage Monitoring Station, Xi'an 710016, China
| | - Xiaoyu Zhang
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Qiaoyue Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Hongtao Lai
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Bing Cui
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zhihui Shao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Mingqin Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
25
|
Hafeez J, Bilal M, Rasool N, Hafeez U, Adnan Ali Shah S, Imran S, Amiruddin Zakaria Z. Synthesis of Ruthenium complexes and their catalytic applications: A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
26
|
Abdallah MS, Joly N, Gaillard S, Poater A, Renaud JL. Blue-Light-Induced Iron-Catalyzed α-Alkylation of Ketones. Org Lett 2022; 24:5584-5589. [PMID: 35895992 DOI: 10.1021/acs.orglett.2c02233] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We report a visible-light-induced iron-catalyzed α-alkylation of ketones. The photocatalytic system is based on the single diaminocyclopentadienone iron tricarbonyl complex. Two catalytic intermediates of this complex are able to harvest light, allowing the synthesis of substituted aromatic and aliphatic ketones at room temperature using the borrowing hydrogen strategy in the presence of various substituted primary alcohols as alkylating reagents. Preliminary mechanistic studies unveil the role of light for both the dehydrogenation and reduction step.
Collapse
Affiliation(s)
- Marie-Samira Abdallah
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000 Caen, France
| | - Nicolas Joly
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000 Caen, France.,Departament de Química, Institut de Química Computacional i Catàlisi (IQCC), University of Girona, c/Ma Aurèlia Capmany 69, 17003 Girona, Catalonia Spain
| | - Sylvain Gaillard
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000 Caen, France
| | - Albert Poater
- Departament de Química, Institut de Química Computacional i Catàlisi (IQCC), University of Girona, c/Ma Aurèlia Capmany 69, 17003 Girona, Catalonia Spain
| | - Jean-Luc Renaud
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000 Caen, France
| |
Collapse
|
27
|
Ahmed J, Mandal SK. Phenalenyl Radical: Smallest Polycyclic Odd Alternant Hydrocarbon Present in the Graphene Sheet. Chem Rev 2022; 122:11369-11431. [PMID: 35561295 DOI: 10.1021/acs.chemrev.1c00963] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Phenalenyl, a zigzag-edged odd alternant hydrocarbon unit can be found in the graphene nanosheet. Hückel molecular orbital calculations indicate the presence of a nonbonding molecular orbital (NBMO), which originates from the linear combination of atomic orbitals (LCAO) arising from 13 carbon atoms of the phenalenyl molecule. Three redox states (cationic, neutral radical, and anionic) of the phenalenyl-based molecules were attributed to the presence of this NBMO. The cationic state can undergo two consecutive reductions to result in neutral radical and anionic states, stepwise, respectively. The phenalenyl-based radicals were found as crucial building blocks and attracted the attention of various research fields such as organic synthesis, material science, computation, and device physics. From 2012 onward, a strategy was devised using the cationic state of phenalenyl-based molecules and in situ generated phenalenyl radicals, which created a new domain of catalysis. The in situ generated phenalenyl radicals were utilized for the single electron transfer (SET) process resulting in redox catalysis. This emerging range of applications rejuvenates the more than six decades-old phenalenyl chemistry. This review captures such developments ranging from fundamental understanding to multidirectional applications of phenalenyl-based radicals.
Collapse
Affiliation(s)
- Jasimuddin Ahmed
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur 741246, India
| | - Swadhin K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur 741246, India
| |
Collapse
|
28
|
Namdeo PK, Sheokand S, Kote BS, Radhakrishna L, Kunchur HS, Saini P, Ramakrishnan S, Balakrishna MS. Ru II complexes of 1,2,3-triazole appended tertiary phosphines, [P(Ph){( o-C 6H 4)(1,2,3-N 3C(Ph)CH} 2] and [P(Ph){ o-C 6H 4(CCH)-(1,2,3-N 3-Ph)} 2]: highly active catalysts for transfer hydrogenation of carbonyl/nitro compounds and for α-alkylation of ketones. Dalton Trans 2022; 51:6795-6808. [PMID: 35420618 DOI: 10.1039/d2dt00361a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The synthesis of two new 1,2,3-triazole appended monophosphines [P(Ph){(o-C6H4)(1,2,3-N3C(Ph)CH}2] (1) and [P(Ph){o-C6H4(CCH)(1,2,3-N3-Ph)}2] (2) and their RuII complexes is described. The reactions of 1 and 2 with [Ru(PPh3)3Cl2] in a 1 : 1 molar ratio produced cationic complexes 3 and 4, respectively. Both the complexes showed very high catalytic activity towards transfer hydrogenation, nitro reduction, and α-alkylation reactions and afforded the corresponding products in good to excellent yields. The free energy of β-hydride elimination from the respective Ru-alkoxide intermediates, a key mechanistic step common to all the three catalytic pathways, was calculated to be close to ergoneutral by density functional theory-based calculations, which is posited to rationalize the catalytic activity of 3. The reduction of aromatic nitro compounds was found to be highly chemoselective and produced the corresponding amines as major products even in the presence of a carbonyl group. The triazolyl-N2 coordinated RuII-NPN complex 3 showed better catalytic activity compared to the triazolyl-N3 coordinated complex 4.
Collapse
Affiliation(s)
- Pavan K Namdeo
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Sonu Sheokand
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Basvaraj S Kote
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Latchupatula Radhakrishna
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Harish S Kunchur
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Prateek Saini
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Srinivasan Ramakrishnan
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Maravanji S Balakrishna
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
29
|
Pawar G, Ghouse SM, Kar S, Chelli SM, Dannarm SR, Gour J, Sonti R, Nanduri S. SmI2-mediated C-alkylation of Ketones with Alcohols in Microwave conditions: A Novel Route to Alkylated Ketones. Chem Asian J 2022; 17:e202200041. [PMID: 35191612 DOI: 10.1002/asia.202200041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/15/2022] [Indexed: 11/08/2022]
Abstract
A novel protocol is developed towards the preparation of alkylated ketones from alcohols in presence of catalytic amount of SmI 2 and base with the elimination of water as a single by-product under microwave irradiation conditions. Furthermore, applicability of this methodology to the synthesis of Donepezil and late-stage functionalization in Pregnenolone is also reported. Successful application of this methodology in Friedländer quinolone synthesis using 2-aminobenzyl alcohol and various acetophenones expand the synthetic utility of this protocol.
Collapse
Affiliation(s)
- Gaurav Pawar
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad, Chemical Sciences, INDIA
| | - Shaik Mahammad Ghouse
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad, Chemical Sciences, INDIA
| | - Swayamsiddha Kar
- Sri Satya Sai Institute of Higher Learning: Sri Sathya Sai University, Department of chemistry, INDIA
| | - Sai Manohar Chelli
- Sri Satya Sai Institute of Higher Learning: Sri Sathya Sai University, Department of chemistry, INDIA
| | - Srinivas Reddy Dannarm
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad, Pharmaceutical analysis, INDIA
| | - Jitendra Gour
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad, Chemical Sciences, INDIA
| | - Rajesh Sonti
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad, Pharmaceutical analysis, INDIA
| | - Srinivas Nanduri
- National Institute of Pharmaceutical Education & Research, Process Chemistry, Balanagar, 500037, Hyderabad, INDIA
| |
Collapse
|
30
|
Das S, Sinha S, Roymahapatra G, De GC, Giri S. Ligand effect on the stability, reactivity, and acidity of imidazolium systems. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Subhra Das
- School of Applied Science and Humanities Haldia Institute of Technology, ICARE Complex Haldia West Bengal India
- Department of Chemistry Cooch Behar Panchanan Barma University Cooch Behar West Bengal India
| | - Swapan Sinha
- School of Applied Science and Humanities Haldia Institute of Technology, ICARE Complex Haldia West Bengal India
| | - Gourisankar Roymahapatra
- School of Applied Science and Humanities Haldia Institute of Technology, ICARE Complex Haldia West Bengal India
| | - Gobinda Chandra De
- Department of Chemistry Cooch Behar Panchanan Barma University Cooch Behar West Bengal India
| | - Santanab Giri
- School of Applied Science and Humanities Haldia Institute of Technology, ICARE Complex Haldia West Bengal India
| |
Collapse
|
31
|
Chang S, Liu H, Shi G, Xia XF, Wang D, Duan ZC. Copper–cobalt coordination polymers and catalytic applications on borrowing hydrogen reactions. NEW J CHEM 2022. [DOI: 10.1039/d2nj01763f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A porous copper–cobalt polymer was synthesized and achieved applications for the N-alkylation of sulfonamides with alcohols, and carboxamides with alcohols.
Collapse
Affiliation(s)
- Shaoze Chang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Hongqiang Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- China Synchem Technology Co., Ltd., Bengbu, Anhui, 233000, China
| | - Gang Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiao-Feng Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Dawei Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Zheng-Chao Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi 445000, China
| |
Collapse
|
32
|
Prakasham AP, Ta S, Dey S, Ghosh P. One pot tandem dual CC and CO bond reductions in the β-alkylation of secondary alcohols with primary alcohols by ruthenium complexes of amido and picolyl functionalized N-heterocyclic carbenes. Dalton Trans 2021; 50:15640-15654. [PMID: 34673856 DOI: 10.1039/d1dt02849a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two different classes of ruthenium complexes, namely, [1-mesityl-3-(2,6-Me2-phenylacetamido)-imidazol-2-ylidene]Ru(p-cymene)Cl (1c) and {[1-(pyridin-2-ylmethyl)-3-(2,6-Me2-phenyl)-imidazol-2-ylidene]Ru(p-cymene)Cl}Cl (2c), successfully catalyzed the one-pot tandem alcohol-alcohol coupling reactions of a variety of secondary and primary alcohols, in moderate to good yields of ca. 63-89%. The mechanistic investigation performed on two representative catalytic substrates, 1-phenylethanol and benzyl alcohol using the neutral ruthenium (1c) complex showed that the catalysis proceeded via a partially reduced CC hydrogenated carbonyl species, [PhCOCH2CH2Ph] (3'), to the fully reduced CO and CC hydrogenated secondary alcohol, [PhCH(OH)CH2CH2Ph] (3). Furthermore, the time dependent study showed that the major product of the catalysis modulated between (3') and (3) during the catalysis run performed over an extended period of 120 hours. Finally, the practical utility of the alcohol-alcohol coupling reaction was demonstrated by preparing five different flavan derivatives (13-17) related to various bioactive flavonoid natural products, in a one-pot tandem fashion.
Collapse
Affiliation(s)
- A P Prakasham
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| | - Sabyasachi Ta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| | - Shreyata Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| | - Prasenjit Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| |
Collapse
|
33
|
Kirinde Arachchige PT, Handunneththige S, Talipov MR, Kalutharage N, Yi CS. Scope and Mechanism of the Redox-Active 1,2-Benzoquinone Enabled Ruthenium-Catalyzed Deaminative α-Alkylation of Ketones with Amines. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Suhashini Handunneththige
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003, United States
| | - Marat R. Talipov
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003, United States
| | - Nishantha Kalutharage
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Chae S. Yi
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| |
Collapse
|
34
|
Bains AK, Biswas A, Adhikari D. Nickel‐Catalyzed Selective Synthesis of α‐Alkylated Ketones via Dehydrogenative Cross‐Coupling of Primary and Secondary Alcohols. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Amreen K Bains
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER)-Mohali, SAS Nagar Punjab 140306 India
| | - Ayanangshu Biswas
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER)-Mohali, SAS Nagar Punjab 140306 India
| | - Debashis Adhikari
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER)-Mohali, SAS Nagar Punjab 140306 India
| |
Collapse
|
35
|
Switching between borrowing hydrogen and acceptorless dehydrogenative coupling by base transition-metal catalysts. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Ungur L, Pallitsch K, AlOthman ZA, Al-Kahtani AAS, Arion VB, Chibotaru LF. Towards understanding the magnetism of Os(IV) complexes: an ab initio insight. Dalton Trans 2021; 50:12537-12546. [PMID: 34545873 DOI: 10.1039/d1dt01558c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The magnetism of a recently synthesized trans-[OsIVCl4(κN1-Hind)2] complex (5d4-system), where Hind = 2H-indazole, was studied experimentally and theoretically. Relativistic CASSCF/CASPT2 calculations for this and model [OsIVCl6]2- complexes were employed to understand the nature of the low-lying multiplets. It is found that despite strong metal-ligand covalency they are basically characterized by the total angular pseudo-momentum J̃ originating from the spin-orbit coupling of the ground-state spin S = 1 with the orbital pseudo-momentum L̃ = 1 of the OsIV ion. The strong spin-orbit interaction also preserves the dominant J̃ = 0 character of the non-magnetic ground state in the trans-[OsIVCl4(κN1-Hind)2] complex despite significant deviation of the ligand environment of OsIV from octahedral symmetry. At the same time the spin-orbit admixture of all multiplets arising from the t2g4 strong-field electronic configuration is indispensable for the correct description of magnetic properties of OsIV complexes. Moreover, based on ab initio calculations, we argue that the charge-transfer states play an important role in the magnetism of the present and probably other 5d complexes, a situation never encountered for 3d and 4f compounds.
Collapse
Affiliation(s)
- Liviu Ungur
- Department of Chemistry, National University of Singapore, Block S8 Level 3, 3 Science Drive 3, 117543, Singapore.
| | - Katharina Pallitsch
- University of Vienna, Institute of Organic Chemistry, Währinger Strasse 38, A-1090 Vienna, Austria
| | - Zeid A AlOthman
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah A S Al-Kahtani
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Vladimir B Arion
- University of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria.
| | - Liviu F Chibotaru
- Theory of Nanomaterials Group, Katholieke Universiteit Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium. .,Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
37
|
Subaramanian M, Sivakumar G, Balaraman E. First-Row Transition-Metal Catalyzed Acceptorless Dehydrogenation and Related Reactions: A Personal Account. CHEM REC 2021; 21:3839-3871. [PMID: 34415674 DOI: 10.1002/tcr.202100165] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/17/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022]
Abstract
The development of sustainable catalytic protocols that circumvent the use of expensive and precious metal catalysts and avoid toxic reagents plays a crucial role in organic synthesis. Indeed, the direct employment of simple and abundantly available feedstock chemicals as the starting materials broadens their synthetic application in contemporary research. In particular, the transition metal-catalyzed diversification of alcohols with various nucleophilic partners to construct a wide range of building blocks is a powerful and highly desirable methodology. Moreover, the replacement of precious metal catalysts by non-precious and less toxic metals for selective transformations is one of the main goals and has been paid significant attention to in modern chemistry. In view of this, the first-row transition metal catalysts find extensive applications in various synthetic transformations such as catalytic hydrogenation, dehydrogenation, and related reactions. Herein, we have disclosed our recent developments on the base-metal catalysis such as Mn, Fe, Co, and Ni for the acceptorless dehydrogenation reactions and its application in the C-C and C-N bond formation via hydrogen auto-transfer (HA) and acceptorless dehydrogenation coupling (ADC) reactions. These HA/ADC protocols employ alcohol as alkylating agents and eliminate water and/or hydrogen gas as by-products, representing highly atom-efficient and environmentally benign reactions. Furthermore, diverse simple to complex organic molecules synthesis by C-C and C-N bond formation using feedstock alcohols are also overviewed. Overall, this account deals with the contribution and development of efficient and novel homogeneous as well as heterogeneous base-metal catalysts for sustainable chemical synthesis.
Collapse
Affiliation(s)
- Murugan Subaramanian
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, India
| | - Ganesan Sivakumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, India
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, India
| |
Collapse
|
38
|
Zhu G, Zhao J, Duan T, Wang L, Wang D. Unsymmetrical Pyrazoly‐Pyridinyl‐Triazole Promoted High Active Copper Composites on Mesoporous Materials and Catalytic Applications. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Guanxin Zhu
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 P. R. China
| | - Jiaxin Zhao
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 P. R. China
- The Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials College of Materials and Chemical Engineering China Three Gorges University Yichang 443002 P. R. China
| | - Tianbo Duan
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 P. R. China
| | - Long Wang
- The Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials College of Materials and Chemical Engineering China Three Gorges University Yichang 443002 P. R. China
| | - Dawei Wang
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 P. R. China
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
39
|
Abstract
Although the application of arene-osmium(II) complexes in homogeneous catalysis has been much less studied than that of their ruthenium analogues, different works have shown that, in some instances, a comparable or even superior effectiveness can be achieved with this particular class of compounds. This review article focuses on the catalytic applications of arene-osmium(II) complexes. Among others, transfer hydrogenation, hydrogenation, oxidation, and nitrile hydration reactions, as well as different C-C bond forming processes, are comprehensively discussed.
Collapse
|
40
|
Bettoni L, Joly N, Lohier J, Gaillard S, Poater A, Renaud J. Ruthenium‐Catalyzed Three‐Component Alkylation: A Tandem Approach to the Synthesis of Nonsymmetric
N,N‐
Dialkyl Acyl Hydrazides with Alcohols. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Léo Bettoni
- Normandie Univ. LCMT, ENSICAEN, UNICAEN, CNRS 6 boulevard du Maréchal Juin 14000 Caen France
| | - Nicolas Joly
- Normandie Univ. LCMT, ENSICAEN, UNICAEN, CNRS 6 boulevard du Maréchal Juin 14000 Caen France
- Departament de Química, Institut de Química Computacional i Catàlisi (IQCC) University of Girona c/ Mª Aurèlia Capmany 69 17003 Girona Catalonia Spain
| | - Jean‐François Lohier
- Normandie Univ. LCMT, ENSICAEN, UNICAEN, CNRS 6 boulevard du Maréchal Juin 14000 Caen France
| | - Sylvain Gaillard
- Normandie Univ. LCMT, ENSICAEN, UNICAEN, CNRS 6 boulevard du Maréchal Juin 14000 Caen France
| | - Albert Poater
- Departament de Química, Institut de Química Computacional i Catàlisi (IQCC) University of Girona c/ Mª Aurèlia Capmany 69 17003 Girona Catalonia Spain
| | - Jean‐Luc Renaud
- Normandie Univ. LCMT, ENSICAEN, UNICAEN, CNRS 6 boulevard du Maréchal Juin 14000 Caen France
| |
Collapse
|
41
|
Nad P, Mukherjee A. Acceptorless Dehydrogenative Coupling Reactions by Manganese Pincer Complexes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100249] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pinaki Nad
- Department of Chemistry Indian Institute of Technology Bhilai GEC Campus Sejbahar Raipur, Chhattisgarh 492015 India
| | - Arup Mukherjee
- Department of Chemistry Indian Institute of Technology Bhilai GEC Campus Sejbahar Raipur, Chhattisgarh 492015 India
| |
Collapse
|
42
|
Midya SP, Subaramanian M, Babu R, Yadav V, Balaraman E. Tandem Acceptorless Dehydrogenative Coupling-Decyanation under Nickel Catalysis. J Org Chem 2021; 86:7552-7562. [PMID: 34032425 DOI: 10.1021/acs.joc.1c00592] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The development of new catalytic processes based on abundantly available starting materials by cheap metals is always a fascinating task and marks an important transition in the chemical industry. Herein, a nickel-catalyzed acceptorless dehydrogenative coupling of alcohols with nitriles followed by decyanation of nitriles to access diversely substituted olefins is reported. This unprecedented C═C bond-forming methodology takes place in a tandem manner with the formation of formamide as a sole byproduct. The significant advantages of this strategy are the low-cost nickel catalyst, good functional group compatibility (ether, thioether, halo, cyano, ester, amino, N/O/S heterocycles; 43 examples), synthetic convenience, and high reaction selectivity and efficiency.
Collapse
Affiliation(s)
- Siba P Midya
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Tirupati, Tirupati 517507, India
| | - Murugan Subaramanian
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Tirupati, Tirupati 517507, India
| | - Reshma Babu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Tirupati, Tirupati 517507, India
| | - Vinita Yadav
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Tirupati, Tirupati 517507, India
| |
Collapse
|
43
|
|
44
|
Huang M, Liu J, Li Y, Lan XB, Su P, Zhao C, Ke Z. Recent advances on N-heterocyclic carbene transition metal complexes for dehydrogenative catalysis using alcohols. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.10.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
45
|
Pandey B, Xu S, Ding K. Switchable β-alkylation of Secondary Alcohols with Primary Alcohols by a Well-Defined Cobalt Catalyst. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bedraj Pandey
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Shi Xu
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Keying Ding
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
- Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| |
Collapse
|
46
|
Joly N, Bettoni L, Gaillard S, Poater A, Renaud JL. Phosphine-Free Ruthenium Complex-Catalyzed Synthesis of Mono- or Dialkylated Acyl Hydrazides via the Borrowing Hydrogen Strategy. J Org Chem 2021; 86:6813-6825. [PMID: 33878271 DOI: 10.1021/acs.joc.1c00654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we report a diaminocyclopentadienone ruthenium tricarbonyl complex-catalyzed synthesis of mono- or dialkylated acyl hydrazide compounds using the borrowing hydrogen strategy in the presence of various substituted primary and secondary alcohols as alkylating reagents. Deuterium labeling experiments confirm that the alcohols were the hydride source in this cascade process. Density functional theory (DFT) calculations unveil the origin and the threshold between the mono- and dialkylation.
Collapse
Affiliation(s)
- Nicolas Joly
- LCMT, ENSICAEN, UNICAEN, CNRS, Normandie Université, 6 boulevard du Maréchal Juin, 14000 Caen, France.,Departament de Química, Institut de Química Computacional i Catàlisi (IQCC), University of Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Léo Bettoni
- LCMT, ENSICAEN, UNICAEN, CNRS, Normandie Université, 6 boulevard du Maréchal Juin, 14000 Caen, France
| | - Sylvain Gaillard
- LCMT, ENSICAEN, UNICAEN, CNRS, Normandie Université, 6 boulevard du Maréchal Juin, 14000 Caen, France
| | - Albert Poater
- Departament de Química, Institut de Química Computacional i Catàlisi (IQCC), University of Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Jean-Luc Renaud
- LCMT, ENSICAEN, UNICAEN, CNRS, Normandie Université, 6 boulevard du Maréchal Juin, 14000 Caen, France
| |
Collapse
|
47
|
Banik A, Ahmed J, Sil S, Mandal SK. Mimicking transition metals in borrowing hydrogen from alcohols. Chem Sci 2021; 12:8353-8361. [PMID: 34221316 PMCID: PMC8221061 DOI: 10.1039/d1sc01681d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/07/2021] [Indexed: 12/21/2022] Open
Abstract
Borrowing hydrogen from alcohols, storing it on a catalyst and subsequent transfer of the hydrogen from the catalyst to an in situ generated imine is the hallmark of a transition metal mediated catalytic N-alkylation of amines. However, such a borrowing hydrogen mechanism with a transition metal free catalytic system which stores hydrogen molecules in the catalyst backbone is yet to be established. Herein, we demonstrate that a phenalenyl ligand can imitate the role of transition metals in storing and transferring hydrogen molecules leading to borrowing hydrogen mediated alkylation of anilines by alcohols including a wide range of substrate scope. A close inspection of the mechanistic pathway by characterizing several intermediates through various spectroscopic techniques, deuterium labelling experiments, and DFT study concluded that the phenalenyl radical based backbone sequentially adds H+, H˙ and an electron through a dearomatization process which are subsequently used as reducing equivalents to the C-N double bond in a catalytic fashion.
Collapse
Affiliation(s)
- Ananya Banik
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata Mohanpur 741246 India
| | - Jasimuddin Ahmed
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata Mohanpur 741246 India
| | - Swagata Sil
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata Mohanpur 741246 India
| | - Swadhin K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata Mohanpur 741246 India
| |
Collapse
|
48
|
Zhu G, Duan ZC, Zhu H, Qi M, Wang D. Iridium and copper supported on silicon dioxide as chemoselective catalysts for dehydrogenation and borrowing hydrogen reactions. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111516] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Li WZ, Wang ZX. Nickel-catalyzed coupling of R 2P(O)Me (R = aryl or alkoxy) with (hetero)arylmethyl alcohols. Org Biomol Chem 2021; 19:2233-2242. [PMID: 33616130 DOI: 10.1039/d1ob00086a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
α-Alkylation of methyldiarylphosphine oxides with (hetero)arylmethyl alcohols was performed under nickel catalysis. Various arylmethyl and heteroarylmethyl alcohols can be used in this transformation. A series of methyldiarylphosphine oxides were alkylated with 30-90% yields. Functional groups on the aromatic rings of methyldiarylphosphine oxides or arylmethyl alcohols including OMe, NMe2, SMe, CF3, Cl, and F groups can be tolerated. The conditions are also suitable for the α-alkylation reaction of dialkyl methylphosphonates.
Collapse
Affiliation(s)
- Wei-Ze Li
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Zhong-Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China. and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| |
Collapse
|
50
|
Rana J, Nagarasu P, Subaramanian M, Mondal A, Madhu V, Balaraman E. Manganese-Catalyzed C(α)-Alkylation of Oxindoles with Secondary Alcohols via Borrowing Hydrogen. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jagannath Rana
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Palaniyappan Nagarasu
- Department of Applied Chemistry, Karunya Institute of Technology and Science (Deemed to be University), Coimbatore 641114, Tamil Nadu, India
| | - Murugan Subaramanian
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Akash Mondal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Vedichi Madhu
- Department of Applied Chemistry, Karunya Institute of Technology and Science (Deemed to be University), Coimbatore 641114, Tamil Nadu, India
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| |
Collapse
|