1
|
Kim MJ, Wang DJ, Targos K, Garcia UA, Harris AF, Guzei IA, Wickens ZK. Diastereoselective Synthesis of Cyclopropanes from Carbon Pronucleophiles and Alkenes. Angew Chem Int Ed Engl 2023; 62:e202303032. [PMID: 36929023 PMCID: PMC10189787 DOI: 10.1002/anie.202303032] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023]
Abstract
Cyclopropanes are desirable structural motifs with valuable applications in drug discovery and beyond. Established alkene cyclopropanation methods give rise to cyclopropanes with a limited array of substituents, are difficult to scale, or both. Herein, we disclose a new cyclopropane synthesis through the formal coupling of abundant carbon pronucleophiles and unactivated alkenes. This strategy exploits dicationic adducts derived from electrolysis of thianthrene in the presence of alkene substrates. We find that these dielectrophiles undergo cyclopropanation with methylene pronucleophiles via alkenyl thianthrenium intermediates. This protocol is scalable, proceeds with high diastereoselectivity, and tolerates diverse functional groups on both the alkene and pronucleophile coupling partners. To validate the utility of this new procedure, we prepared an array of substituted analogs of an established cyclopropane that is en route to multiple pharmaceuticals.
Collapse
Affiliation(s)
- Min Ji Kim
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Diana J. Wang
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Karina Targos
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Uriel A. Garcia
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Alison F. Harris
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Ilia A. Guzei
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Zachary K. Wickens
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| |
Collapse
|
2
|
Bhunia M, Sandoval‐Pauker C, Jafari MG, Grant LN, Gau MR, Pinter B, Mindiola DJ. Terminal and Super‐Basic Parent Imides of Hafnium. Angew Chem Int Ed Engl 2022; 61:e202209122. [DOI: 10.1002/anie.202209122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Mrinal Bhunia
- Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| | | | | | - Lauren N. Grant
- Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| | - Michael R. Gau
- Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| | - Balazs Pinter
- Department of Chemistry and Biochemistry University of Texas at El Paso El Paso TX 79968 USA
| | - Daniel J. Mindiola
- Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| |
Collapse
|
3
|
Bhunia M, Sandoval-Pauker C, Jafari MG, Grant LN, Gau MR, Pinter B, Mindiola DJ. Terminal and Super‐Basic Parent Imides of Hafnium. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mrinal Bhunia
- University of Pennsylvania Department of Chemistry Chemistry UNITED STATES
| | | | | | - Lauren N. Grant
- University of Pennsylvania Department of Chemistry Chemistry UNITED STATES
| | - Michael R. Gau
- University of Pennsylvania Department of Chemistry Chemistry UNITED STATES
| | - Balazs Pinter
- The University of Texas at El Paso Chemistry UNITED STATES
| | - Daniel J. Mindiola
- University of Pennsylvania Department of Chemistry Chemistry 231 S. 34 Street 19104 Philadelphia UNITED STATES
| |
Collapse
|
4
|
Kim M, Kim H, Kim S, Hong S, Lee E. Syntheses and Applications of Indol-2-ylidene-Ligated Ruthenium-Based Olefin Metathesis Catalysts. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Minseop Kim
- Department of Chemistry, Pohang University of Science and Technology. Pohang 37673, Republic of Korea
| | - Hyunho Kim
- Department of Chemistry, Pohang University of Science and Technology. Pohang 37673, Republic of Korea
| | - Seyong Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Sukwon Hong
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology. Pohang 37673, Republic of Korea
| |
Collapse
|
5
|
Ali R, Ahmed W, Jayant V, alvi S, Ahmed N, Ahmed A. Metathesis reactions in total‐ and natural product fragments syntheses. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rashid Ali
- Jamia Millia Islamia New Delhi India 110025 Department of Chemistry Jamia Nagar,New Delhi india110025 110025 New Delhi INDIA
| | - Waqar Ahmed
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| | - Vikrant Jayant
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| | - shakeel alvi
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| | - Nadeem Ahmed
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| | - Azeem Ahmed
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| |
Collapse
|
6
|
Li Y, Gong Y. Nitrile formation via dichlorocarbene insertion into the Si–N bond of Ln( iii) bis(trimethylsilyl)amide complexes. Chem Commun (Camb) 2022; 58:12552-12555. [DOI: 10.1039/d2cc04538a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reactions of bis(trimethylsilyl)amino lanthanides and chloroform unprecedently generate the Me3SiCN complexes where the nitrile ligand is formed via insertion of dichlorocarbene into the Si–N bond of the lanthanide precursor.
Collapse
Affiliation(s)
- Yangjuan Li
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yu Gong
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| |
Collapse
|
7
|
Byun S, Park DA, Kim S, Kim S, Ryu JY, Lee J, Hong S. Highly selective ethenolysis with acyclic-aminooxycarbene ruthenium catalysts. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01132d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acyclic carbene–ruthenium catalysts were developed for the ethenolysis. Remarkable catalytic efficiency (turnover numbers of 100 000) and excellent α-olefin selectivity (up to 98%) were exhibited.
Collapse
Affiliation(s)
- Seunghwan Byun
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
- Grubbs Center for Polymers and Catalysis, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Da-Ae Park
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Seyong Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Sunghyun Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Ji Yeon Ryu
- Department of Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Junseong Lee
- Department of Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Sukwon Hong
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
- Grubbs Center for Polymers and Catalysis, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
8
|
Zhao R, Sheng L, Gao K. Theoretical prediction of an NXeH4+ ion with N-Xe triple bond. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Tang L, Yang F, Cheng H, Tan C, Jin C, Chen H, Huang Y, Zhang S, Song W, Tan J. Copper-Catalyzed Oxidative Fragmentation of Alkynes with NFSI Provides Aryl Ketones. Org Lett 2020; 22:8618-8623. [DOI: 10.1021/acs.orglett.0c03201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lin Tang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Fang Yang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Hao Cheng
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Chen Tan
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Chaochao Jin
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Hanfei Chen
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Yifan Huang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Shuaifei Zhang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Weihan Song
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Jiajing Tan
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| |
Collapse
|
10
|
Chen S, Liu L, Gao X, Hua Y, Peng L, Zhang Y, Yang L, Tan Y, He F, Xia H. Addition of alkynes and osmium carbynes towards functionalized d π-p π conjugated systems. Nat Commun 2020; 11:4651. [PMID: 32938934 PMCID: PMC7495419 DOI: 10.1038/s41467-020-18498-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
The metal-carbon triple bonds and carbon-carbon triple bonds are both highly unsaturated bonds. As a result, their reactions tend to afford cycloaddition intermediates or products. Herein, we report a reaction of M≡C and C≡C bonds that affords acyclic addition products. These newly discovered reactions are highly efficient, regio- and stereospecific, with good functional group tolerance, and are robust under air at room temperature. The isotope labeling NMR experiments and theoretical calculations reveal the reaction mechanism. Employing these reactions, functionalized dπ-pπ conjugated systems can be easily constructed and modified. The resulting dπ-pπ conjugated systems were found to be good electron transport layer materials in organic solar cells, with power conversion efficiency up to 16.28% based on the PM6: Y6 non-fullerene system. This work provides a facile, efficient methodology for the preparation of dπ-pπ conjugated systems for use in functional materials.
Collapse
Affiliation(s)
- Shiyan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Longzhu Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Xiang Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Yuhui Hua
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Lixia Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Ying Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Liulin Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Yuanzhi Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China.
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China.
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China.
| |
Collapse
|
11
|
Byun S, Park S, Choi Y, Ryu JY, Lee J, Choi JH, Hong S. Highly Efficient Ethenolysis and Propenolysis of Methyl Oleate Catalyzed by Abnormal N-Heterocyclic Carbene Ruthenium Complexes in Combination with a Phosphine–Copper Cocatalyst. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Seunghwan Byun
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
- Grubbs Center for Polymers and Catalysis, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Seungwook Park
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
- Grubbs Center for Polymers and Catalysis, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Youngseo Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Ji Yeon Ryu
- Department of Chemistry, Chonnam National University, 77 Yongbong-ro,
Buk-gu, Gwangju 61186, Republic of Korea
| | - Junseong Lee
- Department of Chemistry, Chonnam National University, 77 Yongbong-ro,
Buk-gu, Gwangju 61186, Republic of Korea
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Sukwon Hong
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
- Grubbs Center for Polymers and Catalysis, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
12
|
Kamiloglu AA, Karaca H, Celik G, Acar I, Kantekin H. New chalcone-substituted metallophthalocyanines: Synthesis, characterization, and investigation of their properties. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820902684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The synthesis of novel metallophthalocyanines (M = Zn, Mg, and Co) derived from ( E)-3-(3-bromophenyl)-1-(3-hydroxyphenyl)prop-2-en-1-one and ( E)-3-(3-fluorophenyl)-1-(3-hydroxyphenyl)prop-2-en-1-one is achieved. These complexes and the synthesized novel phthalonitrile derivatives are characterized by FTIR, 1H NMR, 13C NMR, UV-Vis, mass spectrometry, and elemental analysis. The aggregation properties of the metallophthalocyanines ZnPc, MgPc, and CoPc are investigated in different solvents and at different concentrations in dimethyl formamide. The electrochemical behavior is also investigated. The cyclic voltammograms give one oxidation reaction for all the bromo-derived metallophthalocyanines and one reduction reaction for all the fluoro-derived metallophthalocyanines. Fe3+, Cd2+, Hg2+, Cu2+, Ni2+, and Co2+ ions are titrated fluorometrically with the phthalocyanines. The bromo- and fluoro-substituted phthalocyanine compounds show different effects on the metal ion titrations.
Collapse
Affiliation(s)
| | - Hüseyin Karaca
- Department of Chemistry, Sakarya University, Sakarya, Turkey
| | - Gonca Celik
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - Irfan Acar
- Department of Energy Systems Engineering, Faculty of Technology, Karadeniz Technical University, Trabzon, Turkey
| | - Halit Kantekin
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
13
|
The Dötz Benzannulation Reaction: A Booming Methodology for Natural Product Synthesis. ChemistrySelect 2020. [DOI: 10.1002/slct.202000514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Reza Ghiasi, Rahimi M, Jamaat PR. Quantum Chemical Study of the Effect of Solvent on Structure, Electronic Properties, and Electronic Spectrum of the Carbyne Complex trans-[ClRu(PH3)4(≡C–CH=CMe2)]2+. RUSS J INORG CHEM+ 2020. [DOI: 10.1134/s0036023620010088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2018. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Federmann P, Richter T, Wadepohl H, Ballmann J. Synthesis and Reactivity of [PCCP]-Coordinated Group 5 Alkyl and Alkylidene Complexes Featuring a Metallacyclopropene Backbone. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00577] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Patrick Federmann
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, D-69120 Heidelberg, Germany
| | - Tim Richter
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, D-69120 Heidelberg, Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, D-69120 Heidelberg, Germany
| | - Joachim Ballmann
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, D-69120 Heidelberg, Germany
| |
Collapse
|
17
|
Natoli SN, Zeller M, Ren T. A Family of Cross-Conjugated Polyenynes Capped by CoIII(cyclam): Syntheses, Molecular and Electronic Structures. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sean N. Natoli
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Matthias Zeller
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tong Ren
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
18
|
Marín-Luna M, Nieto Faza O, Silva López C. Gold-Catalyzed Homogeneous (Cyclo)Isomerization Reactions. Front Chem 2019; 7:296. [PMID: 31139614 PMCID: PMC6527766 DOI: 10.3389/fchem.2019.00296] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/11/2019] [Indexed: 01/09/2023] Open
Abstract
Gold is currently one of the most used metals in organometallic catalysis. The ability of gold to activate unsaturated groups in different modes, together with its tolerance to a wide range of functional groups and reaction conditions, turns gold-based complexes into efficient and highly sought after catalysts. Natural products and relevant compounds with biological and pharmaceutical activity are often characterized by complex molecular structures. (Cyclo)isomerization reactions are often a useful strategy for the generation of this molecular complexity from synthetically accessible reactants. In this review, we collect the most recent contributions in which gold(I)- and/or gold(III)-catalysts mediate intramolecular (cyclo)isomerization transformations of unsaturated species, which commonly feature allene or alkyne motifs, and organize them depending on the substrate and the reaction type.
Collapse
Affiliation(s)
- Marta Marín-Luna
- Departamento de Química Orgánica, Universidade de Vigo, Vigo, Spain
| | | | | |
Collapse
|
19
|
Dimerization and cyclotrimerization of terminal arylalkynes initiated by a phosphine-free ruthenium alkylidene complex. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.02.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Johns AM, Fiamengo BA, Herron JR, Bourg JB, Doppiu A, Karch R, Pederson RL. cis-Dichloro Sulfoxide Ligated Ruthenium Metathesis Precatalysts. Organometallics 2019. [DOI: 10.1021/acs.organomet.8b00895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Adam M. Johns
- Materia, Inc., Pasadena, California 91107, United States
| | | | | | - Jean-Baptiste Bourg
- Materia, Inc., Pasadena, California 91107, United States
- Umicore AG & Co. KG, Rodenbacher Chaussee 4, D-63457 Hanau-Wolfgang, Germany
| | - Angelino Doppiu
- Umicore AG & Co. KG, Rodenbacher Chaussee 4, D-63457 Hanau-Wolfgang, Germany
| | - Ralf Karch
- Umicore AG & Co. KG, Rodenbacher Chaussee 4, D-63457 Hanau-Wolfgang, Germany
| | | |
Collapse
|