1
|
Han M, Duan W, Huo Y, Huang X, Yu W, Li Y, Pu L. A bifunctional coumarin-based CD probe for chiral analysis of amino acids in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125654. [PMID: 39740587 DOI: 10.1016/j.saa.2024.125654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/03/2024] [Accepted: 12/21/2024] [Indexed: 01/02/2025]
Abstract
Amino acids play important roles in human pathology and physiology and the qualitative and quantitative determination of chiral amino acids in humans and mammals also has important impacts on the life sciences. Therefore, the introduction of artificial probes to assess the concentrations and enantiomeric compositions [ee = ([D] - [L])/([D] + [L])] of amino acids in aqueous solution is necessary in understanding certain biological processes and diagnosing and treating diseases. Herein, a bifunctional achiral coumarin probe (Br-Coumarin) is reported to determine the absolute configuration, ee value, and concentration of 16 amino acids in THF/H2O = 1/4 solution at micromolar concentrations. The effectiveness and practicability of the sensing methods are illustrated through the evaluation of various ee values and concentrations of Cys, Pro, and Phe samples with good accuracy. Besides, the reactions of the probe with various amino acids exhibit different colors under daylight or UV light (365 nm). Particularly, Br-Coumarin can be used to visually detect Cys, Lys, Arg, and Pro with high selectivity under both daylight and UV light (365 nm) and exhibits excellent selectivity and sensitivity for the fluorescent recognition of Cys.
Collapse
Affiliation(s)
- Miao Han
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
| | - Wenzeng Duan
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China.
| | - Yanmin Huo
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
| | - Xianqiang Huang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China.
| | - Wenxue Yu
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
| | - Yu Li
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
| | - Lin Pu
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States.
| |
Collapse
|
2
|
Wang X, Lu X, Hu R, Qin W. Chiral Blue TADF Materials Enhance the Spin Transitions to Improve Emission Quantum Yield. NANO LETTERS 2025; 25:3344-3350. [PMID: 39936886 DOI: 10.1021/acs.nanolett.4c06632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Circularly polarized thermally activated delayed fluorescence materials not only possess high exciton utilization efficiency but also have the capability to emit circularly polarized light for potential information storage and sensing. In this work, chiral blue TADF enantiomers are prepared. The energy difference between singlet and triplet, ΔEST, increases with the strength of chirality. The chiral orbit-induced spin degeneracy elimination could enhance spin relaxation, where spin could flip easily to lead to an effective transition from triplet to singlet states. This induces a pronounced enhancement in fluorescence quantum yield. Furthermore, circularly polarized emission of chiral TADF materials under different external magnetic fields are studied. Magnetic field control of glum presents a mirror symmetry effect for chiral TADF enantiomers, which provides evidence for the transition between the photon spin and electron spin.
Collapse
Affiliation(s)
- Xi Wang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Xiangqian Lu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Renjie Hu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Wei Qin
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
3
|
Parikh P, Parikh A, Mishra SK, Madduluri VK, Sah AK. Exploration of ESIPT in 4,6-O-Ethylidene-N-(2-hydroxybenzylidene)-β-D-glucopyranosylamine and Its Application in Selective Turn-on Response Toward Lu(III) ion. Chem Asian J 2025:e202401432. [PMID: 40008583 DOI: 10.1002/asia.202401432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 02/27/2025]
Abstract
4,6-O-Ethylidene-N-(2-hydroxybenzylidene)-β-D-glucopyranosylamine (PL1) exhibits excited state intramolecular proton transfer (ESIPT) mechanism, which has been established by experimental and theoretical calculations. Further, PL1 selectively interacts with Lu3+ ion yielding a turn-on response in methanol, where the emission intensity of the former enhances (~15 fold) after metal ion interaction. The complexation has been investigated using various analytical tools like UV-visible absorption/emission, nuclear magnetic resonance spectroscopy and lifetime studies. The relative quantum yield of PL1 (0.0043) enhances to 0.1025 upon interaction with the Lu3+ ion. The studies on stoichiometry by Job's plot, ESI mass spectrometry and density functional theory calculations revealed the ligand-to-metal interaction in 2 : 1 ratio.
Collapse
Affiliation(s)
- Parmeshthi Parikh
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Anuvasita Parikh
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Santosh Kumar Mishra
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Vimal Kumar Madduluri
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Ajay K Sah
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, Rajasthan, 333031, India
| |
Collapse
|
4
|
Jankowska D, Lakomska I, Muziol TM, Skowronski L, Rerek T, Popielarski P, Barwiolek M. The optical properties of 3 + 3 macrocyclic Schiff base thin material obtained by the Molecular Beam Epitaxy method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125229. [PMID: 39366314 DOI: 10.1016/j.saa.2024.125229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
3 + 3 optically active macrocyclic Schiff bases were synthesized in the reaction between 4-tert-butyl-2,6-diformylphenol with (1R,2R)-(+)-1,2-diphenylethylenediamine (S1) or (1S,2S)-(-)-1,2-diphenylethylenediamine (S1a). The new compounds were spectroscopically characterised by NMR, IR, X-ray (S1a), UV-Vis and fluorescence spectroscopy. The S1a molecule creates channels with distances between oxygen atoms ranging from 5.8-6.3 Å and sufficiently large to host acetonitrile molecule. Both compounds exhibit green-yellow emission in solution and solid state. Thin layers of the S1 compound obtained via Molecular Beam Epitaxy (MBE) were characterised by scanning electron microscopy with energy-dispersive X-ray spectroscopy SEM/EDS and atomic force microscopy (AFM). The optical properties of the S1/Si thin material were analysed using spectroscopic ellipsometry (SE), fluorescence spectroscopy and synchrotron radiation (SR). The time constant for the decay investigated under SR, denoted by τ1, was determined to be approximately 1.02 ns, suggesting a fast deactivation process of the excited electronic state in the S1/Si material. The ellipsometric analysis of the S1/Si layer showed semiconducting behaviour with pronounced absorption features in the UV range, attributed to π → π* and n → π* transitions, characteristic of Schiff bases. The band-gap energy, determined using the Tauc method, is 3.46 ± 0.01 eV. These analyses highlight the material's potential in applications requiring precise control of optical properties. In the emission spectrum of S1a, a significant emission peak of approximately 561 nm indicates the presence of a prominent emissive process within this wavelength. The S1a compound is emissive in the yellow-green region of the spectrum and has a longer decay time, which suggests that it can be used in sensing optical technologies.
Collapse
Affiliation(s)
- Dominika Jankowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland.
| | - Iwona Lakomska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland.
| | - Tadeusz M Muziol
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland.
| | - Lukasz Skowronski
- Division of Surface Science, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz, Poland.
| | - Tomasz Rerek
- Division of Surface Science, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz, Poland.
| | - Pawel Popielarski
- Institute of Physics, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland.
| | - Magdalena Barwiolek
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland.
| |
Collapse
|
5
|
Domagała A, Buda S, Baranska M, Zając G. Glutathione and its structural modifications recognized by Raman Optical Activity and Circularly Polarized Luminescence. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124995. [PMID: 39208544 DOI: 10.1016/j.saa.2024.124995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Raman Optical Activity combined with Circularly Polarized Luminescence (ROA-CPL) was used in the spectral recognition of glutathione peptide (GSH) and its model post-translational modifications (PTMs). We demonstrate the potential of ROA spectroscopy and CPL probes (EuCl3, Na3[Eu(DPA)3], NaEuEDTA) in the study of unmodified peptide, i.e. GSH, and its derivatives, i.e. glutathione oxidized (GSSG), S-acetylglutathione (GSAc) and S-nitrosoglutathione (GSNO). ROA spectral features of GSH, GSSG, and GSAc were determined along with thier changes upon the different pH conditions. Apart from the ROA, induced CPL signals of Eu(III) probes also proved to be sensitive to the structural modifications of GSH-based model PTMs, enabling their spectral recognition, especially by the NaEuEDTA probe.
Collapse
Affiliation(s)
- Agnieszka Domagała
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348 Krakow, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Prof. St. Łojasiewicza 11, 30-348 Krakow, Poland
| | - Szymon Buda
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland
| | - Malgorzata Baranska
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348 Krakow, Poland; Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland
| | - Grzegorz Zając
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348 Krakow, Poland.
| |
Collapse
|
6
|
Suzuki S, Kaneta A, Santria A, Oyama T, Nishikawa H, Imai Y, Akao KI, Ishikawa N. Highly Efficient Spectral Measurement Methods Using Newly Developed High-Throughput Magnetic Circularly Polarized Luminescence System. Chirality 2024; 36:e70001. [PMID: 39663982 DOI: 10.1002/chir.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 12/13/2024]
Abstract
Magnetic circularly polarized luminescence (MCPL) spectroscopy is widely used to evaluate the luminescence dissymmetry factor (gMCPL) for compounds. However, even for the same instrument and operating conditions, the measured gMCPL is affected by errors associated with sources such as baseline drift and spectral noise, and so the range of variation of gMCPL must be considered when comparing values, which requires multiple measurements for the same sample. Also, because many samples undergo photodegradation under excitation light, it is difficult to accumulate and average spectra for samples with weak MCPL signals to improve the signal-to-noise ratio. Single measurements must therefore be performed on multiple samples and the results averaged. Furthermore, for samples with a small Stokes shift, spectral correction is required to compensate for the intensity reduction due to the inner-filter effect (IFE). Such measurements are generally performed manually and are therefore time consuming and prone to human error. Here, we demonstrate the use of a newly developed high-throughput MCPL system to automatically measure MCPL and fluorescence spectra of multiple samples of phthalocyanine complexes with high efficiency and reduced human errors. This system allows the incorporation of effective countermeasures to the issues of gMCPL variation, sample photodegradation, extremely weak MCPL signals, and the IFE.
Collapse
Affiliation(s)
- Satoko Suzuki
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
- Applicative Solution Lab Division, JASCO Corporation, Hachioji, Tokyo, Japan
| | - Akio Kaneta
- CD&Polarimeter System Group, JASCO Corporation, Hachioji, Tokyo, Japan
| | - Anas Santria
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
- Research Center for Chemistry, National Research and Innovation Agency, Kawasan PUSPITEK, Tangerang Selatan, Banten, Indonesia
| | - Taiji Oyama
- Sales Division, JASCO Corporation, Hachioji, Tokyo, Japan
| | - Hiroyuki Nishikawa
- Graduate School of Science and Engineering, Ibaraki University, Mito, Ibaraki, Japan
| | - Yoshitane Imai
- Faculty of Science and Engineering, Kindai University, Higashiosaka, Osaka, Japan
| | - Ken-Ichi Akao
- Applicative Solution Lab Division, JASCO Corporation, Hachioji, Tokyo, Japan
| | - Naoto Ishikawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
7
|
Chen P, Fan H, Du S, Wen X, Zhang L, Liu M. Supramolecular chiroptical sensing of chiral species based on circularly polarized luminescence. SOFT MATTER 2024; 20:8937-8946. [PMID: 39508495 DOI: 10.1039/d4sm00960f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Circularly polarized luminescence (CPL) refers to the differentiation of the left-handed and right-handed emissions of chiral systems in the excited state. Serving as an alternative characterization method to circular dichroism (CD), CPL can detect changes in fluorescence in a chiral system, which could be more efficient in recognizing chiral species. Although CPL can be generated by attaching luminophores to a chiral unit through a covalent bond, the non-covalent bonding of fluorescent chromophores with chiral species or helical nanostructures can also induce CPL and their changes. Thus, CPL can be used as an alternative detection technique for sensing chiral species. In this review, we summarize typical recent advances in chirality sensing based on CPL. The determination of the absolute configuration of chiral compounds and encrypted sensing is also discussed. We hope to provide useful and powerful insights into the construction of chemical sensors based on CPL.
Collapse
Affiliation(s)
- Panyang Chen
- Zhengzhou University, Zhengzhou 450000, P. R. China.
| | - Huahua Fan
- School of Materials Science and Engineering, and Key Lab for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004, P. R. China
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.
| | - Sifan Du
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.
| | - Xin Wen
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.
| | - Li Zhang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.
| | - Minghua Liu
- Zhengzhou University, Zhengzhou 450000, P. R. China.
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.
| |
Collapse
|
8
|
Poncet M, Besnard C, Guénée L, Jiménez JR, Piguet C. Tuning the circularly polarized luminescence in homoleptic and heteroleptic chiral Cr III complexes. Front Chem 2024; 12:1472943. [PMID: 39444633 PMCID: PMC11496276 DOI: 10.3389/fchem.2024.1472943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
A series of highly emissive inert and chiral CrIII complexes displaying positive and negative circularly polarized luminescence (CPL) within the near-infrared (NIR) region at room temperature have been prepared and characterized to decipher the effect of ligand substitution on the photophysical properties, more specifically on the chiroptical properties. The helical homoleptic [Cr(dqp-R)2]3+ (dqp = 2,6-di(quinolin-8-yl)pyridine; R = Ph, ≡-Ph, DMA, ≡-DMA (DMA = N,N-dimethylaniline)) and heteroleptic [Cr(dqp)(L)]3+ (L = 4-methoxy-2,6-di(quinolin-8-yl)pyridine (dqp-OMe) or L = N 2,N 6-dimethyl-N 2,N 6-di(pyridin-2-yl)pyridine-2,6-diamine (ddpd)) molecular rubies were synthesized as racemic mixtures and then resolved and isolated into their respective pure PP and MM enantiomeric forms by chiral stationary phase HPLC. The corresponding enantiomers show two opposite polarized emission bands within the 700-780 nm range corresponding to the characteristic metal-centered Cr(2E'→4A2) and Cr(2T1 '→4A2) transitions with large g lum ranging from 0.14 to 0.20 for the former transition. In summary, this study reports the rational use of different ligands on CrIII and their effect on the chiroptical properties of the complexes.
Collapse
Affiliation(s)
- Maxime Poncet
- Department of Inorganic and Analytical Chemistry, University of Geneva, Geneva, Switzerland
| | - Céline Besnard
- Laboratory of Crystallography, University of Geneva, Geneva, Switzerland
| | - Laure Guénée
- Laboratory of Crystallography, University of Geneva, Geneva, Switzerland
| | - Juan-Ramón Jiménez
- Department of Inorganic Chemistry, University of Granada, Unidad de Excelencia de Química (UEQ), Granada, Spain
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
Fu HR, Zhang RY, Li T, Wei CY, Liu S, Xu JY, Zhu X, Wei J, Ding QR, Ma LF. Color-tunable and white circularly polarized luminescence through confining guests into chiral MOFs. Chem Commun (Camb) 2024; 60:10212-10215. [PMID: 39206734 DOI: 10.1039/d4cc03164d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Herein, chiral metal-organic frameworks (MOFs), DCF-20 and LCF-20, were utilized as matrices for both chirality transfer and energy transfer. HBT1@MOFs and HBT2@MOFs emit excitation-dependent circularly polarized luminescence (CPL) due to excited-state intramolecular proton transfer (ESIPT). HBT1/C152/NIR@MOFs exhibit full-color and white CPL. The luminescence dissymmetry factors (glum) were significantly increased, benefiting from the efficient chirality space transfer and high luminescence efficiency.
Collapse
Affiliation(s)
- Hong-Ru Fu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Ruo-Yu Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China.
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ting Li
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China.
| | - Chen-Ying Wei
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China.
| | - Shuang Liu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China.
| | - Jia-Yi Xu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China.
| | - Xueli Zhu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China.
| | - Jiaojiao Wei
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China.
| | - Qing-Rong Ding
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China.
| |
Collapse
|
10
|
Zohaib HM, Saqlain M, Khan MA, Masood S, Gul I, Irfan M, Li H. Exploring enantioselective recognition of dTMP-Co-bpe coordination polymer for natural amino acids using molecular simulations and circular dichroism. Dalton Trans 2024; 53:13076-13086. [PMID: 39034765 DOI: 10.1039/d4dt01245c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The 1D homochiral coordination polymer (CP-1) {[Co(dTMP)(bpe)2(H2O)3]·9H2O}n was constructed by using 2'-deoxy thymidine 5'-monophosphate disodium salt (dTMP·2Na), and auxiliary ligand bpe (1,2-bis(4-pyridyl)ethene) and characterized by single-crystal XRD, PXRD, IR, UV-visible, CD and TGA analyses. Molecular simulations revealed the selective chiral behaviour of CP-1 towards phenylalanine and histidine, as indicated by their higher binding free energies compared to other amino acids. Theoretical parameters were also compared with experimental UV-visible verdicts. Notably, the D-enantiomers of phenylalanine and histidine demonstrated strong bonding abilities and optimal configurations for probing and distinguishing them from their L-counterparts. These findings led to propositions suggesting that the dissimilarities between these D and L amino acid forms and their binding orientations with CP-1 may contribute to alterations in the CD signal. CP-1 exhibited a robust inherent circular dichroism (CD) signal in aqueous solutions, modulated by the presence of specific amino acids, namely D/L phenylalanine and D/L histidine. Leveraging the measurement of CD signal intensity, a sensor capable of detecting unmodified amino acids has been developed. Unlike previously reported approaches that relied on complex chemical reactions between initially CD-silent molecules and probed amino acids, this new method offers a more straightforward means of amplifying the CD signal. Consequently, this change facilitates a more accurate differentiation between the enantiomers of these specific amino acids compared to others.
Collapse
Affiliation(s)
- Hafiz Muhammad Zohaib
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Madiha Saqlain
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Maroof Ahmad Khan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228 Haikou, P. R. China
| | - Sara Masood
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ijaz Gul
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, China
| | - Muhammad Irfan
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Hui Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| |
Collapse
|
11
|
Redhu S, Singh D, Nehra K, Kumar S, Malik RS, Kumar P, Sindhu J. Computational and optoelectronic investigations of red-emissive europium (III) β-diketonate with n-donor ligands for display applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124307. [PMID: 38653075 DOI: 10.1016/j.saa.2024.124307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Europium complexes exhibiting red luminescence were prepared by employing β-diketone as main ligand and 1,10-phenanthroline as an additional ligand. Various methods, including 1H NMR, IR spectroscopy and analysis of optical band gap were employed to examine these complexes. The luminescent photophysical properties were investigated using PL spectroscopy and theoretical calculations were conducted to explore radiative transitions probabilities and Judd-Ofelt (J-O) parameters for transitions of type 5D0 → 7F2, 4. J-O parameters were determined using the JOES computer program and results were in good agreement with the outcomes obtained experimentally. The luminescence analysis results have verified the vibrant, single-color red emission of the prepared complexes. The band gap of ternary europium complexes, determined optically, electronically, and theoretically, falls within the range of 3-4 eV. This similarity indicates that these complexes are potentially suitable as semiconductor materials. The results from absorption, electrochemical and photophysical analyses indicate the potential use of synthesized complexes in lighting and display applications.
Collapse
Affiliation(s)
- Sonia Redhu
- Department of Chemistry, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Devender Singh
- Department of Chemistry, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| | - Kapeesha Nehra
- Department of Chemistry, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Sumit Kumar
- Department of Chemistry, DCR University of Science and Technology, Murthal 131039, Haryana, India
| | - Rajender Singh Malik
- Department of Chemistry, DCR University of Science and Technology, Murthal 131039, Haryana, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Jayant Sindhu
- Department of Chemistry, COBSandH, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| |
Collapse
|
12
|
Zhang Z, Wang D, Yan X, Yan Y, Lin L, Ren Y, Chen Y, Feng L. Efficient chiral hydrogel template based on supramolecular self-assembly driven by chiral carbon dots for circularly polarized luminescence. J Colloid Interface Sci 2024; 674:576-586. [PMID: 38945025 DOI: 10.1016/j.jcis.2024.06.208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Since the chiral emission of excited states is observed on carbon dots (CDs), exploration towards the design and synthesis of chiral CDs nanomaterials with circularly polarized luminescence (CPL) properties has been at a brisk pace. In this regard, the "host and guest" co-assembly strategy based on the combination of CDs and chiral templates has been of unique interest recently for its convenient operation, multicolor tunable CPL, and wide application of prepared CDs-composited materials in optoelectronic devices and information encryption. However, the existing chiral templates that match perfectly with chiral CDs exhibiting optical activity both in ground and excited states are rather scarce. In this work, we synthesize the chiral CDs that could induce the spontaneous supramolecular self-assembly of N-(9-fluorenylmethox-ycarbonyl) (Fmoc)-protected glutamic acid to form chiral hydrogels with helical nanostructure. The co-assembled hydrogels show powerful chiral template function, which not only enable chiral CDs with a luminescence dissymmetry factor (glum) up to 10-2, but also have universal chiral transfer to inserted dye molecules, realizing full-color CPL and Förster resonance energy transfer (FRET) CPL as well as the distinction between left and right circularly polarized light. This CPL-active template based on chiral CDs enriches the design scenario of chiral functionalized nanomaterials.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Materials Genome Institute, Shanghai Engineering Research Center of Organ Repair, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai University, Shanghai 200444, China
| | - Dong Wang
- Materials Genome Institute, Shanghai Engineering Research Center of Organ Repair, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai University, Shanghai 200444, China
| | - Xuetao Yan
- Materials Genome Institute, Shanghai Engineering Research Center of Organ Repair, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai University, Shanghai 200444, China
| | - Yifang Yan
- Materials Genome Institute, Shanghai Engineering Research Center of Organ Repair, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai University, Shanghai 200444, China
| | - Lixing Lin
- Materials Genome Institute, Shanghai Engineering Research Center of Organ Repair, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai University, Shanghai 200444, China
| | - Yuze Ren
- Materials Genome Institute, Shanghai Engineering Research Center of Organ Repair, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai University, Shanghai 200444, China
| | - Yingying Chen
- Materials Genome Institute, Shanghai Engineering Research Center of Organ Repair, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai University, Shanghai 200444, China
| | - Lingyan Feng
- Materials Genome Institute, Shanghai Engineering Research Center of Organ Repair, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai University, Shanghai 200444, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
13
|
Fu HR, Ren DD, Zhang K, Wang S, Yang XJ, Ding QR, Wu YP. Hierarchical chiral MOFs with the induced chirality of AIE ligands exhibiting non-reciprocal CPL. Chem Commun (Camb) 2024; 60:6182-6185. [PMID: 38804974 DOI: 10.1039/d4cc00925h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Two pairs of chiral MOFs with hierarchical chiral structures were constructed through assembly of achiral AIE-type multidentate linkers and chiral camphoric acid. Non-reciprocal circularly polarized luminescence (CPL) can be observed on the macroscopic due to the coexistence of optical anisotropic and chiroptical nature. This study provides a new perspective to recognize and construct chiral crystalline materials.
Collapse
Affiliation(s)
- Hong-Ru Fu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.
| | - Dan-Dan Ren
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
- State College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China.
| | - Kun Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
- State College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China.
| | - Shuang Wang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Xu-Jing Yang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Qing-Rong Ding
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.
| | - Ya-Pan Wu
- State College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
14
|
Sickinger A, Grasser M, Baguenard B, Bensalah-Ledoux A, Guy L, Bui AT, Guyot Y, Dorcet V, Pointillart F, Cador O, Guy S, Maury O, Le Guennic B, Riobé F. Temperature-dependent NIR-CPL spectra of chiral Yb(III) complexes. Phys Chem Chem Phys 2024; 26:15776-15783. [PMID: 38771627 DOI: 10.1039/d4cp01286k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Chiral, enantiopure Yb(III) complexes exhibit circularly polarized luminescence (CPL) in the near infrared (NIR) wavelength region. This CPL is quantified by the dissymmetry factor (glum). The excited state 2F5/2 consists of six mJ' states degenerated in three Stark levels, due to the crystal-field splitting (CFS), which are populated in accordance with the Boltzmann distribution. Consequently, room temperature CPL spectra are the sum of various - either positive or negative - contributions, that are practically impossible to quantify. To address this issue, an advanced setup enabling CPL measurements over a broad temperature range (300 to 4 K) has been developed. The interrelation of CFS, glum and temperature was explored using a pair of enantiopure Yb(III) complexes, highlighting the individual contribution of each crystal-field sublevel to the overall CPL spectrum, as anticipated by simulations performed in the framework of multireference wave-functions. Hence, the CPL spectra of chiral lanthanide complexes were found to be indeed strongly temperature-dependent, as is the glum dissymmetry factor, as a consequence of the variation in thermal sublevel population.
Collapse
Affiliation(s)
- Annika Sickinger
- Univ. Lyon, ENS de Lyon, CNRS, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France.
| | - Maxime Grasser
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226, F-35000 Rennes, France
| | - Bruno Baguenard
- Univ. Lyon, CNRS, Institut Lumière Matière UMR 5306, F-69622 Villeurbanne, France
| | | | - Laure Guy
- Univ. Lyon, ENS de Lyon, CNRS, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France.
| | - Anh Thy Bui
- Univ. Lyon, ENS de Lyon, CNRS, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France.
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Yannick Guyot
- Univ. Lyon, CNRS, Institut Lumière Matière UMR 5306, F-69622 Villeurbanne, France
| | - Vincent Dorcet
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226, F-35000 Rennes, France
| | - Fabrice Pointillart
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226, F-35000 Rennes, France
| | - Olivier Cador
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226, F-35000 Rennes, France
| | - Stéphan Guy
- Univ. Lyon, CNRS, Institut Lumière Matière UMR 5306, F-69622 Villeurbanne, France
| | - Olivier Maury
- Univ. Lyon, ENS de Lyon, CNRS, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France.
| | - Boris Le Guennic
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226, F-35000 Rennes, France
| | - François Riobé
- Univ. Lyon, ENS de Lyon, CNRS, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France.
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB UMR 5026, F-33600 Pessac, France
| |
Collapse
|
15
|
Li YL, Wang HL, Zhu ZH, Wang YF, Liang FP, Zou HH. Aggregation induced emission dynamic chiral europium(III) complexes with excellent circularly polarized luminescence and smart sensors. Nat Commun 2024; 15:2896. [PMID: 38575592 PMCID: PMC10994944 DOI: 10.1038/s41467-024-47246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
The synthesis of dynamic chiral lanthanide complex emitters has always been difficult. Herein, we report three pairs of dynamic chiral EuIII complex emitters (R/S-Eu-R-1, R = Et/Me; R/S-Eu-Et-2) with aggregation-induced emission. In the molecular state, these EuIII complexes have almost no obvious emission, while in the aggregate state, they greatly enhance the EuIII emission through restriction of intramolecular rotation and restriction of intramolecular vibration. The asymmetry factor and the circularly polarized luminescence brightness are as high as 0.64 (5D0 → 7F1) and 2429 M-1cm-1 of R-Eu-Et-1, achieving a rare double improvement. R-Eu-Et-1/2 exhibit excellent sensing properties for low concentrations of CuII ions, and their detection limits are as low as 2.55 and 4.44 nM, respectively. Dynamic EuIII complexes are constructed by using chiral ligands with rotor structures or vibration units, an approach that opens a door for the construction of dynamic chiral luminescent materials.
Collapse
Affiliation(s)
- Yun-Lan Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Hai-Ling Wang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Zhong-Hong Zhu
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Yu-Feng Wang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Fu-Pei Liang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Hua-Hong Zou
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China.
| |
Collapse
|
16
|
Dai Y, Zhang Z, Wang D, Li T, Ren Y, Chen J, Feng L. Machine-Learning-Driven G-Quartet-Based Circularly Polarized Luminescence Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310455. [PMID: 37983564 DOI: 10.1002/adma.202310455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/12/2023] [Indexed: 11/22/2023]
Abstract
Circularly polarized luminescence (CPL) materials have garnered significant interest due to their potential applications in chiral functional devices. Synthesizing CPL materials with a high dissymmetry factor (glum ) remains a significant challenge. Inspired by efficient machine learning (ML) applications in scientific research, this work demonstrates ML-based techniques for the first time to guide the synthesis of G-quartet-based CPL gels with high glum values and multiple chiral regulation strategies. Employing an "experiment-prediction-verification" approach, this work devises a ML classification and regression model for the solvothermal synthesis of G-quartet gels in deep eutectic solvents. This process illustrates the relationship between various synthesis parameters and the glum value. The decision tree algorithm demonstrates superior performance across six ML models, with model accuracy and determination coefficients amounting to 0.97 and 0.96, respectively. The screened CPL gels exhibiting a glum value up to 0.15 are obtained through combined ML guidance and experimental verification, among the highest ones reported till now for biomolecule-based CPL systems. These findings indicate that ML can streamline the rational design of chiral nanomaterials, thereby expediting their further development.
Collapse
Affiliation(s)
- Yankai Dai
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Zhiwei Zhang
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Dong Wang
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Tianliang Li
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Yuze Ren
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Jingqi Chen
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Lingyan Feng
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
- Shanghai Engineering Research Center of Organ Repair, ShanghaiUniversity, Shanghai, 200444, China
- QianWeichang College, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
17
|
Rodríguez R, Naranjo C, Kumar A, Dhbaibi K, Matozzo P, Camerel F, Vanthuyne N, Gómez R, Naaman R, Sánchez L, Crassous J. Weakly Self-Assembled [6]Helicenes: Circularly Polarized Light and Spin Filtering Properties. Chemistry 2023; 29:e202302254. [PMID: 37635073 DOI: 10.1002/chem.202302254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 08/29/2023]
Abstract
Self-assembling features, chiroptical activity, and spin filtering properties are reported for 2,15- and 4,13-disubstituted [6]helicenes decorated in their periphery with 3,4,5-tris(dodecyloxy)-N-(4-ethynylphenyl)benzamide moieties. The weak non-covalent interaction between these units conditions the corresponding circularly polarized luminescence and spin polarization. The self-assembly is overall weak for these [6]helicene derivatives that, despite the formation of H-bonding interactions between the amide groups present in the peripheral moieties, shows very similar chiroptical properties both in the monomeric or aggregated states. This effect could be explained by considering the steric effect that these groups could generate in the growing of the corresponding aggregate formed. Importantly, the self-assembling features also condition chiral induced spin selectivity (CISS effect), with experimental spin polarization (SP) values found between 35-40 % for both systems, as measured by magnetic-conducting atomic force microscopy (AFM) technique.
Collapse
Affiliation(s)
- Rafael Rodríguez
- Institut des Sciences Chimiques de Rennes, University of Rennes, CNRS, ISCR, UMR 6226, F-35000, Rennes, France
| | - Cristina Naranjo
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Anil Kumar
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Kais Dhbaibi
- Institut des Sciences Chimiques de Rennes, University of Rennes, CNRS, ISCR, UMR 6226, F-35000, Rennes, France
| | - Paola Matozzo
- Institut des Sciences Chimiques de Rennes, University of Rennes, CNRS, ISCR, UMR 6226, F-35000, Rennes, France
| | - Franck Camerel
- Institut des Sciences Chimiques de Rennes, University of Rennes, CNRS, ISCR, UMR 6226, F-35000, Rennes, France
| | - Nicolas Vanthuyne
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, Marseille, 13397, France
| | - Rafael Gómez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Ron Naaman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Luis Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Jeanne Crassous
- Institut des Sciences Chimiques de Rennes, University of Rennes, CNRS, ISCR, UMR 6226, F-35000, Rennes, France
| |
Collapse
|
18
|
Kim DS, Kim M, Seo S, Kim JH. Nature-Inspired Chiral Structures: Fabrication Methods and Multifaceted Applications. Biomimetics (Basel) 2023; 8:527. [PMID: 37999168 PMCID: PMC10669407 DOI: 10.3390/biomimetics8070527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Diverse chiral structures observed in nature find applications across various domains, including engineering, chemistry, and medicine. Particularly notable is the optical activity inherent in chiral structures, which has emerged prominently in the field of optics. This phenomenon has led to a wide range of applications, encompassing optical components, catalysts, sensors, and therapeutic interventions. This review summarizes the imitations and applications of naturally occurring chiral structures. Methods for replicating chiral architectures found in nature have evolved with specific research goals. This review primarily focuses on a top-down approach and provides a summary of recent research advancements. In the latter part of this review, we will engage in discussions regarding the diverse array of applications resulting from imitating chiral structures, from the optical activity in photonic crystals to applications spanning light-emitting devices. Furthermore, we will delve into the applications of biorecognition and therapeutic methodologies, comprehensively examining and deliberating upon the multifaceted utility of chiral structures.
Collapse
Affiliation(s)
- Da-Seul Kim
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea (M.K.)
- Department of Chemical Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Myounggun Kim
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea (M.K.)
- Department of Chemical Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Soonmin Seo
- Department of Bionano Technology, Gachon University, Seongnam 13120, Republic of Korea
| | - Ju-Hyung Kim
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea (M.K.)
- Department of Chemical Engineering, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
19
|
Raju MS, Dhbaibi K, Grasser M, Dorcet V, Breslavetz I, Paillot K, Vanthuyne N, Cador O, Rikken GLJA, Le Guennic B, Crassous J, Pointillart F, Train C, Atzori M. Magneto-Chiral Dichroism in a One-Dimensional Assembly of Helical Dysprosium(III) Single-Molecule Magnets. Inorg Chem 2023; 62:17583-17587. [PMID: 37856861 DOI: 10.1021/acs.inorgchem.3c03204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Here we report magneto-chiral dichroism (MChD) detected through visible and near-infrared light absorption of a chiral dysprosium(III) coordination polymer. The two enantiomers of [DyIII(H6(py)2)(hfac)3]n [H6(py)2 = 2,15-bis(4-pyridyl)ethynylcarbo[6]helicene; hfac- = 1,1,1,5,5,5-hexafluoroacetylacetonate], where the chirality is provided by a functionalized helicene ligand, were structurally, spectroscopically, and magnetically investigated. Magnetic measurements reveal a slow relaxation of the magnetization, with differences between enantiopure and racemic systems rationalized on the basis of theoretical calculations. When the enantiopure complexes are irradiated with unpolarized light in a magnetic field, they exhibit multiple MChD signals associated with the f-f electronic transitions of DyIII, thus providing the coexistence of MChD-active absorptions and single-molecule-magnet (SMM) behavior. These findings clearly show the potential that rationally designed chiral SMMs have in enabling the optical readout of magnetic memory through MChD.
Collapse
Affiliation(s)
- Maria Sara Raju
- Laboratoire National des Champs Magnétiques Intenses, Université Grenoble Alpes, INSA Toulouse, Université Toulouse Paul Sabatier, EMFL, CNRS, F-38042 Grenoble, France
| | - Kais Dhbaibi
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France
| | - Maxime Grasser
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France
| | - Vincent Dorcet
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France
| | - Ivan Breslavetz
- Laboratoire National des Champs Magnétiques Intenses, Université Grenoble Alpes, INSA Toulouse, Université Toulouse Paul Sabatier, EMFL, CNRS, F-38042 Grenoble, France
| | - Kévin Paillot
- Laboratoire National des Champs Magnétiques Intenses, Université Grenoble Alpes, INSA Toulouse, Université Toulouse Paul Sabatier, EMFL, CNRS, F-38042 Grenoble, France
| | - Nicolas Vanthuyne
- Aix Marseille Univ, CNRS, iSm2, Centrale Marseille, F-13397 Marseille, France
| | - Olivier Cador
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France
| | - Geert L J A Rikken
- Laboratoire National des Champs Magnétiques Intenses, Université Grenoble Alpes, INSA Toulouse, Université Toulouse Paul Sabatier, EMFL, CNRS, F-38042 Grenoble, France
| | - Boris Le Guennic
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France
| | - Jeanne Crassous
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France
| | - Fabrice Pointillart
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France
| | - Cyrille Train
- Laboratoire National des Champs Magnétiques Intenses, Université Grenoble Alpes, INSA Toulouse, Université Toulouse Paul Sabatier, EMFL, CNRS, F-38042 Grenoble, France
| | - Matteo Atzori
- Laboratoire National des Champs Magnétiques Intenses, Université Grenoble Alpes, INSA Toulouse, Université Toulouse Paul Sabatier, EMFL, CNRS, F-38042 Grenoble, France
| |
Collapse
|
20
|
Wydra K, Kinzhybalo V, Lisowski J. Solid state structures and solution behaviour of tetranuclear lanthanide(III) carbonate-bridged coordination compounds of chiral 3 + 3 amine macrocycle. Dalton Trans 2023; 52:11992-12001. [PMID: 37580960 DOI: 10.1039/d3dt01948a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The linking of two dinuclear macrocyclic units of large triphenolic hexaazamine by two carbonate anions results in the formation of dimeric tetranuclear Sm(III), Eu(III) and Gd(III) complexes. These complexes were initially obtained serendipitously by fixation of atmospheric carbon dioxide and subsequently obtained in a rational way by the application of carbonate salts. The X-ray crystal structures of these isomorphic complexes show highly folded conformation of the macrocycle. This type of conformation is also confirmed by 2D NMR spectra of the Sm(III) complex. The ESI-MS and NMR spectra reveal also that these carbonate complexes exist in solution in two different forms that are in a concentration-dependent dynamic equilibrium.
Collapse
Affiliation(s)
- Karol Wydra
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland.
| | - Vasyl Kinzhybalo
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland
| | - Jerzy Lisowski
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland.
| |
Collapse
|
21
|
Zhou WL, Dai XY, Lin W, Chen Y, Liu Y. A pillar[5]arene noncovalent assembly boosts a full-color lanthanide supramolecular light switch. Chem Sci 2023; 14:6457-6466. [PMID: 37325139 PMCID: PMC10266474 DOI: 10.1039/d3sc01425h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/14/2023] [Indexed: 06/17/2023] Open
Abstract
A photo-responsive full-color lanthanide supramolecular switch was constructed from a synthetic 2,6-pyridine dicarboxylic acid (DPA)-modified pillar[5]arene (H) complexing with lanthanide ion (Ln3+ = Tb3+ and Eu3+) and dicationic diarylethene derivative (G1) through a noncovalent supramolecular assembly. Benefiting from the strong complexation between DPA and Ln3+ with a 3 : 1 stoichiometric ratio, the supramolecular complex H/Ln3+ presented an emerging lanthanide emission in the aqueous and organic phase. Subsequently, a network supramolecular polymer was formed by H/Ln3+ further encapsulating dicationic G1via the hydrophobic cavity of pillar[5]arene, which greatly contributed to the increased emission intensity and lifetime, and also resulted in the formation of a lanthanide supramolecular light switch. Moreover, full-color luminescence, especially white light emission, was achieved in aqueous (CIE: 0.31, 0.32) and dichloromethane (CIE: 0.31, 0.33) solutions by the adjustment of different ratios of Tb3+ and Eu3+. Notably, the photo-reversible luminescence properties of the assembly were tuned via alternant UV/vis light irradiation due to the conformation-dependent photochromic energy transfer between the lanthanide and the open/closed-ring of diarylethene. Ultimately, the prepared lanthanide supramolecular switch was successfully applied to anti-counterfeiting through the use of intelligent multicolored writing inks, and presents new opportunities for the design of advanced stimuli-responsive on-demand color tuning with lanthanide luminescent materials.
Collapse
Affiliation(s)
- Wei-Lei Zhou
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University China
- College of Chemistry and Material Science, Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University Tongliao 028000 P. R. China
| | - Xian-Yin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University China
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University, Shandong Academy of Medical Sciences Taian 271016 China
| | - Wenjing Lin
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University China
| |
Collapse
|
22
|
Nie F, Wang KZ, Yan D. Supramolecular glasses with color-tunable circularly polarized afterglow through evaporation-induced self-assembly of chiral metal-organic complexes. Nat Commun 2023; 14:1654. [PMID: 36964159 PMCID: PMC10039082 DOI: 10.1038/s41467-023-37331-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/11/2023] [Indexed: 03/26/2023] Open
Abstract
The fabrication of chiral molecules into macroscopic systems has many valuable applications, especially in the fields of optical displays, data encryption, information storage, and so on. Here, we design and prepare a serious of supramolecular glasses (SGs) based on Zn-L-Histidine complexes, via an evaporation-induced self-assembly (EISA) strategy. Metal-ligand interactions between the zinc(II) ion and chiral L-Histidine endow the SGs with interesting circularly polarized afterglow (CPA). Multicolored CPA emissions from blue to red with dissymmetry factor as high as 9.5 × 10-3 and excited-state lifetime up to 356.7 ms are achieved under ambient conditions. Therefore, this work not only communicates the bulk SGs with wide-tunable afterglow and large circular polarization, but also provides an EISA method for the macroscopic self-assembly of chiral metal-organic hybrids toward photonic applications.
Collapse
Affiliation(s)
- Fei Nie
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Ke-Zhi Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China.
| |
Collapse
|
23
|
Katkova MA, Zabrodina GS, Rumyantcev RV, Zhigulin GY, Muravyeva MS, Shavyrin AS, Sheven DG, Ketkov SY. Praseodymium Metallacrown-Based NMR Probe for Enantioselective Discrimination of Mandelate Anions in Water. Inorg Chem 2023; 62:3827-3835. [PMID: 36802536 DOI: 10.1021/acs.inorgchem.2c04091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Recently, the enhanced interest in water-soluble aminohydroximate Ln(III)-Cu(II) metallacrowns (MC) is largely due to their fascinating structural chemistry, diverse properties and ease of synthesis. We examined the water-soluble praseodymium(III) alaninehydroximate complex Pr(H2O)4[15-MCCu(II)Alaha-5]·3Cl (1) as a highly effective chiral lanthanide shift reagent for NMR analysis of the biologically relevant (R/S)-mandelate (MA) anions in aqueous media. The R-MA and S-MA enantiomers can be easily discriminated in the presence of small (1.2-6.2 mol %) amounts of MC 1 by the 1H NMR signals of multiple protons exhibiting an enantiomeric shift difference (ΔΔδ) of 0.06 ppm up to 0.31 ppm. Additionally, a possibility of coordination of MA to the metallacrown was investigated by the ESI-MS technique and a Density Functional Theory modeling of the molecular electrostatic potential and noncovalent interactions.
Collapse
Affiliation(s)
- Marina A Katkova
- G. A. Razuvaev Institute of Organometallic Chemistry RAS, Nizhny Novgorod 603950, Russia
| | - Galina S Zabrodina
- G. A. Razuvaev Institute of Organometallic Chemistry RAS, Nizhny Novgorod 603950, Russia
| | - Roman V Rumyantcev
- G. A. Razuvaev Institute of Organometallic Chemistry RAS, Nizhny Novgorod 603950, Russia
| | - Grigory Yu Zhigulin
- G. A. Razuvaev Institute of Organometallic Chemistry RAS, Nizhny Novgorod 603950, Russia
| | - Maria S Muravyeva
- G. A. Razuvaev Institute of Organometallic Chemistry RAS, Nizhny Novgorod 603950, Russia
| | - Andrey S Shavyrin
- G. A. Razuvaev Institute of Organometallic Chemistry RAS, Nizhny Novgorod 603950, Russia
| | - Dmitriy G Sheven
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Sergey Yu Ketkov
- G. A. Razuvaev Institute of Organometallic Chemistry RAS, Nizhny Novgorod 603950, Russia
| |
Collapse
|
24
|
Heptacoordinated lanthanide(III) complexes based on 2,6-bis(1H-benzo[d]imidazol-2-yl)pyridine ligands (bbp, bmbp and bdmbp): Computational calculations, luminescent properties and cytotoxic evaluation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
25
|
Baguenard B, Bensalah-Ledoux A, Guy L, Riobé F, Maury O, Guy S. Theoretical and experimental analysis of circularly polarized luminescence spectrophotometers for artifact-free measurements using a single CCD camera. Nat Commun 2023; 14:1065. [PMID: 36828836 PMCID: PMC9958114 DOI: 10.1038/s41467-023-36782-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/08/2023] [Indexed: 02/26/2023] Open
Abstract
Circularly polarized luminescence (CPL) is a fast growing research field as a complementary chiroptical spectroscopy alternative to the conventional circular dichroism or in the quest of devices producing circularly polarized light for different applications. Because chiroptical signals are generally lower than 0.1%, conventional chiral spectroscopies rely on polarization time modulation requiring step-by-step wavelength scanning and a long acquisition time. High throughput controls motivated the development of CPL spectrophotometers using cameras as detectors and space polarization splitting. However, CPL measurements imposes careful precautions to minimize the numerous artifacts arising from experimental imperfections. Some previous work used complex calibration procedure to this end. Here we present a rigorous Mueller analysis of an instrument based on polarizations space splitting. We show that by using one camera and combining spatial and temporal separation through two switchable circular polarization encoding arms we can record accurate CPL spectra without the need of any calibration. The measurements robustness and their fast acquisition times are exemplified on different chiral emitters.
Collapse
Affiliation(s)
- Bruno Baguenard
- grid.7849.20000 0001 2150 7757Institut Lumière Matière, Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Amina Bensalah-Ledoux
- grid.7849.20000 0001 2150 7757Institut Lumière Matière, Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Laure Guy
- grid.15140.310000 0001 2175 9188Laboratoire de Chimie, ENS de Lyon, Univ Lyon, CNRS UMR 5182, F-69342 Lyon, France
| | - François Riobé
- grid.15140.310000 0001 2175 9188Laboratoire de Chimie, ENS de Lyon, Univ Lyon, CNRS UMR 5182, F-69342 Lyon, France
| | - Olivier Maury
- grid.15140.310000 0001 2175 9188Laboratoire de Chimie, ENS de Lyon, Univ Lyon, CNRS UMR 5182, F-69342 Lyon, France
| | - Stéphan Guy
- Institut Lumière Matière, Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, F-69622, Villeurbanne, France.
| |
Collapse
|
26
|
Cheng Y, He J, Zou W, Chang X, Yang Q, Lu W. Circularly polarized near-infrared phosphorescence of chiral chromium(III) complexes. Chem Commun (Camb) 2023; 59:1781-1784. [PMID: 36723000 DOI: 10.1039/d2cc06548g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Homoleptic Cr(III) complexes containing anionic tridentate 1,8-(bisoxazolyl)carbazolide ligands are phosphorescent in deaerated solutions with peak maxima in the range of 813-845 nm. The ligand carbon-centred chirality has been transferred to the helical chirality of the complexes and hence induced circularly polarized NIR-emissions with dissymmetry factor in the scale of 2.0 × 10-3.
Collapse
Affiliation(s)
- Yang Cheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China.
| | - Jiang He
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China.
| | - Wenjie Zou
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China.
| | - Xiaoyong Chang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China.
| | - Qingqing Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China.
| | - Wei Lu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China.
| |
Collapse
|
27
|
Zhuo C, Zhao S, Huang X, Jiang Y, Li J, Fu DY. Environment-friendly luminescent inks and films based on lanthanides toward advanced anti-counterfeiting. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
28
|
Takaishi K, Maeda C, Ema T. Circularly polarized luminescence in molecular recognition systems: Recent achievements. Chirality 2023; 35:92-103. [PMID: 36477924 DOI: 10.1002/chir.23522] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
Circularly polarized luminescence (CPL) dyes are recognized to be new generation materials and have been actively developed. Molecular recognition systems provide nice approaches to novel CPL materials, such as stimuli-responsive switches and chemical sensing materials. CPL may be induced simply by mixing chiral or achiral, luminescent or nonluminescent host and guest; there are several combinations. Molecular recognition can potentially save time and effort to construct well-ordered chiral structures with noncovalent attractive interactions as compared with the multi-step synthesis of covalently bonded dyes. It is a challenging subject to engage molecular recognition events with CPL, and it is important and interesting to see how it is achieved. In fact, simple molecular recognition systems can even enable the fine adjustment of CPL performance and detailed conformational/configurational analysis of the excited state. Here we overview the recent achievements of simple host-guest complexes capable of exhibiting CPL, summarizing concisely the host/guest structures, CPL intensities, and characteristics.
Collapse
Affiliation(s)
- Kazuto Takaishi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Chihiro Maeda
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Tadashi Ema
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
29
|
Dhbaibi K, Grasser M, Douib H, Dorcet V, Cador O, Vanthuyne N, Riobé F, Maury O, Guy S, Bensalah‐Ledoux A, Baguenard B, Rikken GLJA, Train C, Le Guennic B, Atzori M, Pointillart F, Crassous J. Multifunctional Helicene-Based Ytterbium Coordination Polymer Displaying Circularly Polarized Luminescence, Slow Magnetic Relaxation and Room Temperature Magneto-Chiral Dichroism. Angew Chem Int Ed Engl 2023; 62:e202215558. [PMID: 36449410 PMCID: PMC10107653 DOI: 10.1002/anie.202215558] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
The combination of physical properties sensitive to molecular chirality in a single system allows the observation of fascinating phenomena such as magneto-chiral dichroism (MChD) and circularly polarized luminescence (CPL) having potential applications for optical data readout and display technology. Homochiral monodimensional coordination polymers of YbIII were designed from a 2,15-bis-ethynyl-hexahelicenic scaffold decorated with two terminal 4-pyridyl units. Thanks to the coordination of the chiral organic chromophore to Yb(hfac)3 units (hfac- =1,1,1,5,5,5-hexafluoroacetylaconate), efficient NIR-CPL activity is observed. Moreover, the specific crystal field around the YbIII induces a strong magnetic anisotropy which leads to a single-molecule magnet (SMM) behaviour and a remarkable room temperature MChD. The MChD-structural correlation is supported by computational investigations.
Collapse
Affiliation(s)
- Kais Dhbaibi
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) – UMR 622635000RennesFrance
| | - Maxime Grasser
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) – UMR 622635000RennesFrance
| | - Haiet Douib
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) – UMR 622635000RennesFrance
- Laboratoire des Matériaux Organiques et Hétérochimie (LMOH)Département des sciences de la matièreUniversité Larbi Tébessi de TébessaRoute de Constantine12002TébessaAlgérie
| | - Vincent Dorcet
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) – UMR 622635000RennesFrance
| | - Olivier Cador
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) – UMR 622635000RennesFrance
| | | | - François Riobé
- ENSLCNRSLaboratoire de Chimie UMR 518246 allée d'Italie69364LyonFrance
| | - Olivier Maury
- ENSLCNRSLaboratoire de Chimie UMR 518246 allée d'Italie69364LyonFrance
| | - Stéphan Guy
- Univ LyonUniversité Claude Bernard Lyon 1CNRSUMR 5306Institut Lumière Matière69622LyonFrance
| | - Amina Bensalah‐Ledoux
- Univ LyonUniversité Claude Bernard Lyon 1CNRSUMR 5306Institut Lumière Matière69622LyonFrance
| | - Bruno Baguenard
- Univ LyonUniversité Claude Bernard Lyon 1CNRSUMR 5306Institut Lumière Matière69622LyonFrance
| | - Geert L. J. A. Rikken
- Laboratoire National des Champs Magnétiques IntensesCNRSUniv. Grenoble AlpesINSA ToulouseUniv. Toulouse Paul SabatierEMFL38042GrenobleFrance
| | - Cyrille Train
- Laboratoire National des Champs Magnétiques IntensesCNRSUniv. Grenoble AlpesINSA ToulouseUniv. Toulouse Paul SabatierEMFL38042GrenobleFrance
| | - Boris Le Guennic
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) – UMR 622635000RennesFrance
| | - Matteo Atzori
- Laboratoire National des Champs Magnétiques IntensesCNRSUniv. Grenoble AlpesINSA ToulouseUniv. Toulouse Paul SabatierEMFL38042GrenobleFrance
| | - Fabrice Pointillart
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) – UMR 622635000RennesFrance
| | - Jeanne Crassous
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) – UMR 622635000RennesFrance
| |
Collapse
|
30
|
Naithani S, Goswami T, Thetiot F, Kumar S. Imidazo[4,5-f][1,10]phenanthroline based luminescent probes for anion recognition: Recent achievements and challenges. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Umabharathi PS, Karpagam S. Real scenario of metal ion sensor: is conjugated polymer helpful to detect hazardous metal ion. REV INORG CHEM 2022. [DOI: 10.1515/revic-2022-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Metal ions from natural and anthropogenic sources cause pollution to society and the environment is major concern in the present scenario. The deposition and contamination of metal ions in soil and water affect the biogeochemical cycles. Thus, it threatens the everyday life of living and non-living organisms. Reviews on the detection of metal ions through several techniques (Analytical methods, electrochemical techniques, and sensors) and materials (Nanoparticles, carbon dots (quantum dots), polymers, chiral molecules, metal-organic framework, carbon nanotubes, etc.) are addressed separately in the present literature. This review reveals the advantages and disadvantages of the techniques and materials for metal ion sensing with crucial factors. Furthermore, it focus on the capability of conjugated polymers (CPs) as metal ion sensors able to detect/sense hazardous metal ions from environmental samples. Six different routes can synthesize this type of CPs to get specific properties and better metal ion detecting capability in vast research areas. The metal ion detection by CP is time-independent, simple, and low cost compared to other materials/techniques. This review outlines recent literature on the conjugated polymer for cation, anion, and dual ion sensors. Over the last half decades published articles on the conjugated polymer are discussed and compared.
Collapse
Affiliation(s)
| | - Subramanian Karpagam
- Department of Chemistry , School of Advanced Sciences, Vellore Institute of Technology , Vellore - 14 , Tamil Nadu , India
| |
Collapse
|
32
|
Schnable D, Schley ND, Ung G. Circularly Polarized Luminescence from Uranyl Improves Resolution of Electronic Transitions. J Am Chem Soc 2022; 144:10718-10722. [PMID: 35678629 DOI: 10.1021/jacs.2c03791] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first reported example of circularly polarized luminescence from a chiral, molecular uranyl (UO22+) complex in solution is presented. This uranyl chiroptical activity is enabled by complexation with ibuprofen, an enantiopure chiral carboxylate ligand. Salt metathesis between [UO2Cl2(thf)2]2 and the sodium ibuprofenate salts results in the formation of the anionic tris complexes; these complexes are found to be luminescent in solution, both under visible excitation, directly targeting the metal, and through sensitization by UV absorption and energy transfer from the ligand. Each enantiomer displays both circular dichroism and circularly polarized luminescence (CPL) with |gabs| ≤ 8.1 × 10-2 and |glum| ≤ 8.0 × 10-3 under UV excitation, comparable to chiral transition metal complexes or purely organic emitters. The strength of the CPL emission is found to be comparable following excitation of either the ligand or metal directly. Further, use of CPL allows for resolution of subcomponents of the emission spectrum not previously possible at room temperature using standard fluorescence techniques. Observation of CPL following direct uranyl excitation presents a new tool for probing speciation of uranyl complexes when chiral ligands are used, without the need for synthetic modification to incorporate a suitable chromophore, and could enable the design of improved ligands for uranyl extraction from wastewater.
Collapse
Affiliation(s)
- David Schnable
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Nathan D Schley
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Gaël Ung
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
33
|
Kazem-Rostami M, Orte A, Ortuño AM, David AHG, Roy I, Miguel D, Garci A, Cruz CM, Stern CL, Cuerva JM, Stoddart JF. Helically Chiral Hybrid Cyclodextrin Metal-Organic Framework Exhibiting Circularly Polarized Luminescence. J Am Chem Soc 2022; 144:9380-9389. [PMID: 35595282 DOI: 10.1021/jacs.2c01554] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three achiral polycyclic aromatic fluorophores─namely, 1-pyrenecarboxylic acid, 9-anthracenecarboxylic acid, and perylene-3,9-dicarboxylic acid─were chosen based on their desired properties before being incorporated into the construction of a K+-carrying gamma-cyclodextrin (γ-CD)-based metal-organic framework (CD-MOF-1) and γ-CD-containing hybrid frameworks (CD-HFs). Among these fluorophores, only the pyrene-carrying one shows significant noncovalent bonding interactions with γ-CD in solution. This fluorophore is encapsulated in a CD-HF with a trigonal superstructure instead of the common cubic CD-MOF-1 found in the case of the other two fluorophores. Single-crystal X-ray diffraction analysis of the trigonal CD-HF reveals a π-stacked chiral positioning of the pyrene-carrying fluorophore inside the (γ-CD)2 tunnels and held uniformly around an enantiomorphous 32 screw axis along the c direction in the solid-state structure. This helix-like structure demonstrates an additional level of chirality over and above the point-chiral stereogenic centers of γ-CD and the axial chirality associated with the self-assembled π-stacked fluorophores. These arrangements result in specifically generated photophysical and chiroptical properties, such as the controlled emergence of circularly polarized luminescence (CPL) emission. In this manner, a complete understanding of the mechanism of chirality transfer from a chiral host (CD-HF) to an encapsulated achiral fluorophore has been achieved, an attribute which is often missing in the development of materials with CPL.
Collapse
Affiliation(s)
- Masoud Kazem-Rostami
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Angel Orte
- Nanoscopy-UGR Laboratory, Departamento de Fisicoquimica, Facultad de Farmacia, Unidad de Excelencia de Química, University of Granada, Granada 18071, Spain
| | - Ana M Ortuño
- Department of Organic Chemistry, Unidad de Excelencia de Química, University of Granada, Avda. Fuentenueva, Granada 18071, Spain
| | - Arthur H G David
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Indranil Roy
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Delia Miguel
- Nanoscopy-UGR Laboratory, Departamento de Fisicoquimica, Facultad de Farmacia, Unidad de Excelencia de Química, University of Granada, Granada 18071, Spain
| | - Amine Garci
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Carlos M Cruz
- Department of Organic Chemistry, Unidad de Excelencia de Química, University of Granada, Avda. Fuentenueva, Granada 18071, Spain
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Juan M Cuerva
- Department of Organic Chemistry, Unidad de Excelencia de Química, University of Granada, Avda. Fuentenueva, Granada 18071, Spain
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States.,School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
34
|
First Trifluoromethylated Phenanthrolinediamides: Synthesis, Structure, Stereodynamics and Complexation with Ln(III). Molecules 2022; 27:molecules27103114. [PMID: 35630590 PMCID: PMC9143926 DOI: 10.3390/molecules27103114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
The first examples of 1,10-phenanthroline-2,9-diamides bearing CF3-groups on the side amide substituents were synthesized. Due to stereoisomerism and amide rotation, such complexes have complicated behavior in solutions. Using advanced NMR techniques and X-ray analysis, their structures were completely elucidated. The possibility of the formation of complex compounds with lanthanoids nitrates was shown, and the constants of their stability are quantified. The results obtained are explained in terms of quantum-chemical calculations.
Collapse
|
35
|
Rodríguez R, Naranjo C, Kumar A, Matozzo P, Das TK, Zhu Q, Vanthuyne N, Gómez R, Naaman R, Sánchez L, Crassous J. Mutual Monomer Orientation To Bias the Supramolecular Polymerization of [6]Helicenes and the Resulting Circularly Polarized Light and Spin Filtering Properties. J Am Chem Soc 2022; 144:7709-7719. [PMID: 35404592 PMCID: PMC9073930 DOI: 10.1021/jacs.2c00556] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We
report on the synthesis and self-assembly of 2,15- and 4,13-disubstituted
carbo[6]helicenes 1 and 2 bearing 3,4,5-tridodecyloxybenzamide
groups. The self-assembly of these [6]helicenes is strongly influenced
by the substitution pattern in the helicene core that affects the
mutual orientation of the monomeric units in the aggregated form.
Thus, the 2,15-substituted derivative 1 undergoes an
isodesmic supramolecular polymerization forming globular nanoparticles
that maintain circularly polarized light (CPL) with glum values as high as 2 × 10–2.
Unlike carbo[6]helicene 1, the 4,13-substituted derivative 2 follows a cooperative mechanism generating helical one-dimensional
fibers. As a result of this helical organization, [6]helicene 2 exhibits a unique modification in its ECD spectral pattern
showing sign inversion at low energy, accompanied by a sign change
of the CPL with glum values of 1.2 ×
10–3, thus unveiling an example of CPL inversion
upon supramolecular polymerization. These helical supramolecular structures
with high chiroptical activity, when deposited on conductive surfaces,
revealed highly efficient electron-spin filtering abilities, with
electron spin polarizations up to 80% for 1 and 60% for 2, as measured by magnetic conducting atomic force microscopy.
Collapse
Affiliation(s)
- Rafael Rodríguez
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Cristina Naranjo
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Anil Kumar
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Paola Matozzo
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Tapan Kumar Das
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Qirong Zhu
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nicolas Vanthuyne
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2, UMR 7313, Marseille 13397, France
| | - Rafael Gómez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ron Naaman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Luis Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jeanne Crassous
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| |
Collapse
|
36
|
Fan H, Li K, Tu T, Zhu X, Zhang L, Liu M. ATP-Induced Emergent Circularly Polarized Luminescence and Encryption. Angew Chem Int Ed Engl 2022; 61:e202200727. [PMID: 35195948 DOI: 10.1002/anie.202200727] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 02/06/2023]
Abstract
Biomimetic ATP-driven supramolecular assembly is important to understand various biological processes and dissipative systems. Here, we report an ATP-driven chiral assembly exhibiting circularly polarized luminescence (CPL) via the interaction of an achiral terpyridine-based ZnII complex with nucleotides. It was found that while the metal complexes could co-assemble with the nucleotides to form fluorescent assemblies, only a combination of furan-substituted terpyridine complex and ATP showed an intense CPL with a dissymmetry factor (glum ) as high as 0.20. This means that the complex could recognize ATP using CPL as a readout signal, thus providing an example of ATP encryption. Interestingly, when ATP was transferred into ADP or AMP under enzymatic hydrolysis, the CPL decreases or disappears. Addition of ATP generates CPL again, thus producing an ATP-induced CPL system. This work presents the first example of ATP-induced CPL and encryption.
Collapse
Affiliation(s)
- Huahua Fan
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kun Li
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Tu
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Xuefeng Zhu
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
| | - Li Zhang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
| | - Minghua Liu
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
37
|
Kumar S, Sharma N, Kaur S, Singh P. Pseudo-crown ether III: Naphthalimide-Pd(II) based fluorogenic ensemble for solution, vapour and Intracellular detection of amine and anti-counterfeiting applications. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Wu X, Feng Y, Zhang C, Liu HL. Three-dimensional chiral metasurfaces for circular-polarized anomalous beam steering. OPTICS LETTERS 2022; 47:1794-1797. [PMID: 35363737 DOI: 10.1364/ol.450390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Metasurfaces offer unprecedented possibilities for developing versatile ultracompact photonic devices with unique functions, e.g., for linear- or circular-polarized light beam steering. Here we report a three-dimensional (3D) chiral metasurface for phase controlling and beam steering, which consists of periodically arranged double-layer circular arc chiral nanostructures. By tuning the central angle of the lower circular arc, the left- and right-circularly polarized light (LCP and RCP) induce different spatial phases, which have been designed as a beam steering device to realize the abnormal reflection of LCP and the mirror reflection of RCP in the near-infrared (NIR) spectrum from 900 nm to 1150 nm, providing a potential device for chiral molecule detection.
Collapse
|
39
|
Fan H, Li K, Tu T, Zhu X, Zhang L, Liu M. ATP‐Induced Emergent Circularly Polarized Luminescence and Encryption. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Huahua Fan
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry, Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Kun Li
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry, Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tao Tu
- Department of Chemistry Fudan University 220 Handan Road Shanghai 200433 China
| | - Xuefeng Zhu
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry, Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 China
| | - Li Zhang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry, Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 China
| | - Minghua Liu
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry, Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
40
|
Tang T, Liu M, Chen Z, Wang X, Lai C, Ding L, Zeng C. Highly sensitive luminescent lanthanide metal–organic framework sensor for L-kynurenine. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2021.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
41
|
Zhou S, Zhang Z, Bai D, Li J, Cui X, Xu ZJ, Tang Y, Tang X, Liu W. A Discrete 3d-4f Metallacage as an Efficient Catalytic Nanoreactor for a Three-Component Aza-Darzens Reaction. Inorg Chem 2022; 61:4009-4017. [PMID: 35188386 DOI: 10.1021/acs.inorgchem.1c03729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The exploration and development of coordination nanocages can provide an approach to control chemical reactions beyond the bounds of the flask, which has aroused great interest due to their significant applications in the field of molecular recognition, supramolecular catalysis, and molecular self-assembly. Herein, we take the advantage of a semirigid and nonsymmetric bridging ligand (H5L) with rich metal-chelating sites to construct an unusual and discrete 3d-4f metallacage, [Zn2Er4(H2L)4(NO3)Cl2(H2O)]·NO3·xCH3OH·yH2O (Zn2Er4). The 3d-4f Zn2Er4 cage possesses a quadruple-stranded structure, and all of the ligands wrap around an open spherical cavity within the core. The self-assembly of the unique cage not only ensures the structural stability of the Zn2Er4 cage as a nanoreactor in solution but also makes the bimetallic lanthanide cluster units active sites that are exposed in the medium-sized cavity. It is important to note that the Zn2Er4 cage as a homogeneous catalyst has been successfully applied to catalyze three-component aza-Darzens reactions of formaldehyde, anilines, and α-diazo esters without another additive under mild conditions, displaying better catalytic activity, higher specificity, short reaction time, and low catalyst loadings. A possible mechanism for this three-component aza-Darzens reaction catalyzed by the Zn2Er4 cage has been proposed. These experimental results have demonstrated the great potential of the discrete 3d-4f metallacage as a host nanoreactor for the development of supramolecular or molecular catalysis.
Collapse
Affiliation(s)
- Shengbin Zhou
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhichao Zhang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Dongjie Bai
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jingzhe Li
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiang Cui
- College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810016, People's Republic of China
| | - Zhichuan J Xu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yu Tang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiaoliang Tang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
42
|
Mautner FA, Bierbaumer F, Vicente R, Speed S, Tubau Á, Font-Bardía M, Fischer RC, Massoud SS. Magnetic and Luminescence Properties of 8-Coordinate Holmium(III) Complexes Containing 4,4,4-Trifluoro-1-Phenyl- and 1-(Naphthalen-2-yl)-1,3-Butanedionates. Molecules 2022; 27:molecules27031129. [PMID: 35164394 PMCID: PMC8840565 DOI: 10.3390/molecules27031129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
A new series of mononuclear Ho3+ complexes derived from the β-diketonate anions: 4,4,4-trifluoro-1-phenyl-1,3-butanedioneate (btfa−) and 4,4,4-trifuoro-1-(naphthalen-2-yl)-1,3-butanedionate (ntfa−) have been synthesized, [Ho(btfa)3(H2O)2] (1a), [Ho(ntfa)3(MeOH)2] (1b), (1), [Ho(btfa)3(phen)] (2), [Ho(btfa)3(bipy)] (3), [Ho(btfa)3(di-tbubipy)] (4), [Ho(ntfa)3(Me2bipy)] (5), and [Ho(ntfa)3(bipy)] (6), where phen is 1,10-phenantroline, bipy is 2,2′-bipyridyl, di-tbubipy is 4,4′-di-tert-butyl-2,2′-bipyridyl, and Me2bipy is 4,4′-dimethyl-2,2′-bipyridyl. These compounds have been characterized by elemental microanalysis and infrared spectroscopy as well as single-crystal X-ray difraction for 2–6. The central Ho3+ ions in these compounds display coordination number 8. The luminescence-emission properties of the pyridyl adducts 2–6 display a strong characteristic band in the visible region at 661 nm and a series of bands in the NIR region (excitation wavelengths (λex) of 367 nm for 2–4 and 380 nm for 5 and 6). The magnetic properties of the complexes revealed magnetically uncoupled Ho3+ compounds with no field-induced, single-molecule magnet (SMMs).
Collapse
Affiliation(s)
- Franz A. Mautner
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria;
- Correspondence: (F.A.M.); (S.S.M.); Tel.: +43-316-873-32270 (F.A.M.); +1-337-482–5672 (S.S.M.); Fax: +43-316-873-8225 (F.A.M.); +1-337-482–5676 (S.S.M.)
| | - Florian Bierbaumer
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria;
| | - Ramon Vicente
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain; (R.V.); (S.S.); (Á.T.)
| | - Saskia Speed
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain; (R.V.); (S.S.); (Á.T.)
| | - Ánnia Tubau
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain; (R.V.); (S.S.); (Á.T.)
| | - Mercè Font-Bardía
- Departament de Mineralogia, Cristallografia i Dipòsits Minerals and Unitat de Difracció de R-X, Centre Científic i Tecnològic de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona, Solé i Sabarís 1–3, 08028 Barcelona, Spain;
| | - Roland C. Fischer
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria;
| | - Salah S. Massoud
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 43700, Lafayette, LA 70504, USA
- Department of Chemistry, Faculty of Sciences, Alexandria University, Moharam Bey, Alexandria 21511, Egypt
- Correspondence: (F.A.M.); (S.S.M.); Tel.: +43-316-873-32270 (F.A.M.); +1-337-482–5672 (S.S.M.); Fax: +43-316-873-8225 (F.A.M.); +1-337-482–5676 (S.S.M.)
| |
Collapse
|
43
|
Gong J, Zhang X. Coordination-based circularly polarized luminescence emitters: Design strategy and application in sensing. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214329] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Belousov YA, Kiskin MA, Sidoruk AV, Varaksina EA, Shmelev MA, Gogoleva NV, Taydakov IV, Eremenko IL. Monometallic Ln3+ and heterometallic Ln3+–Cd2+complexes based on pentafluorophenylacetic acid: efficient control of dimension and luminescent properties†. Aust J Chem 2022. [DOI: 10.1071/ch21333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Li H, Wang Y, Zhou Y, Yao Z, Huang W, Gao T, Yan P. Asymmetric induction in quadruple-stranded europium(III) helicates and circularly polarized luminescence. Dalton Trans 2022; 51:10973-10982. [DOI: 10.1039/d2dt01379g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral supramolecular lanthanide-helicates are regarded as promising chiroptical materials due to their combination of ground and excited state chirality and special luminescence property from Ln3+, named as circularly polarized luminescence...
Collapse
|
46
|
Ma J, Huang L, Zhou B, Yao L. Construction and Catalysis Advances of Inorganic Chiral Nanostructures. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22070308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Li B, Li Y, Chan MHY, Yam VWW. Phosphorescent Cyclometalated Platinum(II) Enantiomers with Circularly Polarized Luminescence Properties and Their Assembly Behaviors. J Am Chem Soc 2021; 143:21676-21684. [PMID: 34907777 DOI: 10.1021/jacs.1c10943] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Platinum(II) complexes as supramolecular luminescent materials have received considerable attention due to their unique planar structures and fascinating photophysical properties. However, the molecular design of platinum(II) complexes with impressive circularly polarized luminescence properties still remains challenging and rarely explored. Herein, we reported a series of cyclometalated platinum(II) complexes with benzaldehyde and its derived imine-containing alkynyl ligands to investigate their phosphorescent, chiroptical, and self-assembly behaviors. An isodesmic growth mechanism is found for their temperature-dependent self-assembly process. The chiral sense of the enantiomers can be transferred from the chiral alkynyl ligands to the cyclometalated platinum(II) dipyridylbenzene N^C^N chromophore and further amplified through supramolecular assembly via intermolecular noncovalent interactions. Notably, distinctive phosphorescent properties and nanostructured morphologies have been found for enantiomers 4R and 4S. Their intriguing self-assembled nanostructures and phosphorescence behaviors are supported by crystal structure determination, 1H NMR, emission, and UV-vis absorption spectroscopy, scanning electron microscopy, and X-ray powder diffraction studies.
Collapse
Affiliation(s)
- Baoning Li
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China.,State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, People's Republic of China
| | - Yongguang Li
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Michael Ho-Yeung Chan
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, People's Republic of China
| | - Vivian Wing-Wah Yam
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China.,State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, People's Republic of China
| |
Collapse
|
48
|
Tanase T, Nakamae K, Okawa Y, Hamada M, Matsumoto A, Nakajima T, Nakashima T, Kawai T. Chiral Dinuclear Eu(III), Tb(III), and Y(III) Complexes Supported by P-Stereogenic Linear Tetraphosphine Tetraoxide. Chemistry 2021; 28:e202104060. [PMID: 34911149 DOI: 10.1002/chem.202104060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Indexed: 11/10/2022]
Abstract
A P -stereogenic linear tetraphosphine tetraoxide, ( R,R )- or ( S,S )-dpmppm(=O) 4 , was synthesized to prepare C 2 dinuclear M(hfa) 3 complexes (M = Eu, Tb, Y) as the first example of lanthanide(III) complexes with P -chiral multidentate phosphine oxides. The mononuclear M(hfa) 3 complexes (M = Eu, Y) with a P -chiral diphosphine oxide, tpdpb(=O) 2 , were also prepared, and comparison of their photophysical properties for the Eu(III) complexes revealed that significant chiral induction from the P -chiral centers arises on the achiral M(hfa) 3 units through intramolecular π-π stacking constraint in the dinuclear system.
Collapse
Affiliation(s)
- Tomoaki Tanase
- Nara Women's University, Faculty of Science, Kitauoya-nishi-machi, 630-8506, Nara, JAPAN
| | | | - Yume Okawa
- Nara Joshi Daigaku Rigakubu Kagaku Seimei Kankyo Gakka, Faculty of Science, JAPAN
| | - Mami Hamada
- Nara Joshi Daigaku, Faculty of Science, JAPAN
| | | | | | - Takuya Nakashima
- Nara Institute of Science and Technology: Nara Sentan Kagaku Gijutsu Daigakuin Daigaku, Division of Material Science, JAPAN
| | - Tsuyoshi Kawai
- Nara Institute of Science and Technology: Nara Sentan Kagaku Gijutsu Daigakuin Daigaku, Division of Material Science, JAPAN
| |
Collapse
|
49
|
Yao K, Zheng Y. Controlling the polarization of chiral dipolar emission with a spherical dielectric nanoantenna. J Chem Phys 2021; 155:224110. [PMID: 34911301 PMCID: PMC10423074 DOI: 10.1063/5.0072210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/24/2021] [Indexed: 11/14/2022] Open
Abstract
Circularly polarized light (CPL) carrying spin angular momentum is crucial to many applications, such as quantum computing, optical communication, novel displays, and biosensing. Nonetheless, the emission from chiral molecules contains comparable CPL components with opposite handedness, resulting in low levels of CPL overall with a small dissymmetry factor and fixed handedness consistent with the handedness of the molecules. Nanoantennas have proved to be useful tools for controlling the emission properties of quantum emitters. In particular, dielectric resonators support electric and magnetic modes, which implies unparalleled opportunities to interact with chiral molecules whose emission originates from both electric and magnetic dipole transitions. In this work, we theoretically study the effects of a spherical dielectric nanoantenna on the directionality and polarization of emission from a chiral molecule. With exact analytical solutions based on generalized Mie theory, we show that directional chiral light emission and nontrivial polarization modulation, such as handedness reversal or chirality enhancement, can be achieved simultaneously for a chiral dipole tangentially coupled with a silicon nanosphere. The influence of the relative strength and orientation between the electric and magnetic dipole moments is also discussed. Our results suggest a new approach to controlling chiral dipolar emission and could benefit the development of chiral light sources.
Collapse
Affiliation(s)
- Kan Yao
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
50
|
Li Z, Minami H, Nakamura K, Kobayashi N. Anion-Dependent Outstanding Luminescence Enhancement of Eu(D-facam) 3 Upon Coexistence With the Tetramethylammonium Cation. Chemphyschem 2021; 22:2511-2516. [PMID: 34617379 DOI: 10.1002/cphc.202100609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/21/2021] [Indexed: 11/08/2022]
Abstract
The effect of a series of tetramethylammonium salts with different counter anions on the photophysical properties of a chiral Eu(III) complex (Eu(D-facam)3 ) was investigated. Anion-dependent luminescence of the Eu(III) complex was observed, and particularly in the presence of acetate ions, an outstanding luminescence enhancement (>300 times) and induced circularly polarized luminescence (glum =-0.63) were obtained. The energy transfer process was then evaluated using key photophysical parameters, and it was found that the sensitisation efficiency of the Eu(III) complex significantly increased in the presence of tetramethylammonium acetate (TMAOAc). The interactions between Eu(D-facam)3 and TMAOAc were confirmed by luminescence analysis, circular dichroism spectroscopy, Fourier transform infrared spectroscopy and mass spectral measurements.
Collapse
Affiliation(s)
- Ziying Li
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Haruki Minami
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Kazuki Nakamura
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Norihisa Kobayashi
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| |
Collapse
|