1
|
Lu X, Zhang P, Pan H, Yin P, Zhang P, Yang L, Suo X, Cui X, Xing H. Ionic porous materials: from synthetic strategies to applications in gas separation and catalysis. Chem Soc Rev 2025; 54:3061-3139. [PMID: 39963797 DOI: 10.1039/d3cs01163a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Ionic porous materials possess a unique combination of tunable pore sizes and task-specific interactions between guest molecules and the charged frameworks, which endow them with versatility across diverse domains in chemistry and materials science. Significant advancements in their applications for gas separation and catalysis have been achieved in recent years due to the incorporation of ionic functionalities and ultra-microporous structures that enable molecular-scale recognition of guest molecules. This review summarizes recent advancements in the synthetic strategies of ionic porous materials, establishing design guidelines for the incorporation of ionic moieties into the backbone to fine-tune pore sizes and chemistry. It highlights the synergistic interplay of task-specific interactions with custom-designed pore structures in key applications, including adsorption separation, membrane separation, and gas conversion. Additionally, it examines structure-property relationships, offering deeper insights into enhancing performance. The report also addresses the current challenges in the practical application of these materials. Finally, the review provides future perspectives on ionic porous materials from both scientific and industrial viewpoints. Overall, this review aims to provide insights into pore structure and chemistry, supporting the precise placement of ionic functionalities.
Collapse
Affiliation(s)
- Xiaofei Lu
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Penghui Zhang
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Hanqian Pan
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Pengyuan Yin
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Peixin Zhang
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Lifeng Yang
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xian Suo
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Xili Cui
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Huabin Xing
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| |
Collapse
|
2
|
Zhao S, Peng J, Meng C, Wei S, Kang Z, Chen K, Zhao S, Yuan B, Li P, Hou Y, Xia D, Niu QJ. Ultrafast Water Transport of Reverse Osmosis Membrane Based on Quasi-Vertically Oriented 2D Interlayer. NANO LETTERS 2024; 24:14329-14336. [PMID: 39480247 DOI: 10.1021/acs.nanolett.4c04033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Interlayered thin-film composite (i-TFC) membranes based on 2D materials have been widely studied due to their high efficiency in mass transfer. However, the randomly stacked 2D nanosheets usually increase the fluid path length to some extent. Herein, in situ-grown quasi-vertically oriented 2D ZIF-L was introduced as an interlayer for preparing high-performance reverse osmosis (RO) membranes. Through the optimization of the crystal growth based on the inert polyethylene substrate, the novel i-TFC RO membrane via interfacial polymerization shows an outstanding water permeance (5.50 L m-2 h-1 bar-1) and good NaCl rejection (96.3%). The membrane also shows promising potential in domestic water purification and organic solvent separation applications. Compared with the randomly stacked ZIF-L interlayer, the advantages of the vertically oriented one were ascribed to the excellent storage capacity of the amine monomers and the intensified gutter effect. This work will encourage more exploration on the interlayer architectures for high-performance i-TFC membranes.
Collapse
Affiliation(s)
- Shengchao Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jianquan Peng
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Chenchen Meng
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Shengchao Wei
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zixi Kang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Kuo Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Siheng Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Bingbing Yuan
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Peng Li
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yingfei Hou
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Daohong Xia
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Q Jason Niu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
3
|
Jia Y, Huo X, Gao L, Shao W, Chang N. Controllable Design of Polyamide Composite Membrane Separation Layer Structures via Metal-Organic Frameworks: A Review. MEMBRANES 2024; 14:201. [PMID: 39330542 PMCID: PMC11433959 DOI: 10.3390/membranes14090201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Optimizing the structure of the polyamide (PA) layer to improve the separation performance of PA thin-film composite (TFC) membranes has always been a hot topic in the field of membrane preparation. As novel crystalline materials with high porosity, multi-functional groups, and good compatibility with membrane substrate, metal-organic frameworks (MOFs) have been introduced in the past decade for the modification of the PA structure in order to break through the separation trade-off between permeability and selectivity. This review begins by summarizing the recent progress in the control of MOF-based thin-film nanocomposite (TFN) membrane structures. The review also covers different strategies used for preparing TFN membranes. Additionally, it discusses the mechanisms behind how these strategies regulate the structure and properties of PA. Finally, the design of a competent MOF material that is suitable to reach the requirements for the fabrication of TFN membranes is also discussed. The aim of this paper is to provide key insights into the precise control of TFN-PA structures based on MOFs.
Collapse
Affiliation(s)
- Yanjun Jia
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xiaowen Huo
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Lu Gao
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wei Shao
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Na Chang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| |
Collapse
|
4
|
Xu H, Chen S, Zhao YF, Wang F, Guo F. MOF-Based Membranes for Remediated Application of Water Pollution. Chempluschem 2024; 89:e202400027. [PMID: 38369654 DOI: 10.1002/cplu.202400027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Membrane separation plays a crucial role in the current increasingly complex energy environment. Membranes prepared by metal-organic framework (MOF) materials usually possess unique advantages in common, such as uniform pore size, ultra-high porosity, enhanced selectivity and throughput, and excellent adsorption property, which have been contributed to the separation fields. In this comprehensive review, we summarize various designs and synthesized strategies of free-standing MOF and composite MOF-based membranes for water treatment. Special emphases are given not only on the effects of MOF on membrane performance, removal efficiencies, and elimination mechanisms, but also on the importance of MOF-based membranes for the applications of oily and micro-pollutant removal, adsorption, separation, and catalysis. The challenges and opportunities in the future for the industrial implementation of MOF-based membranes are also discussed.
Collapse
Affiliation(s)
- Huan Xu
- School of art and design, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Shuyuan Chen
- School of art and design, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Ye-Fan Zhao
- School of art and design, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Fangfang Wang
- School of art and design, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Fan Guo
- School of art and design, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
5
|
Mu Q, Tian W, Zhang J, Li R, Ji Y. Nanocrystalline Porous Materials for Chiral Separation: Synthesis, Mechanisms, and Applications. Anal Chem 2024; 96:7864-7879. [PMID: 38320090 DOI: 10.1021/acs.analchem.3c01178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Affiliation(s)
- Qixuan Mu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Wanting Tian
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Jiale Zhang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Ruijun Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Yibing Ji
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| |
Collapse
|
6
|
Liu C, Hou J, Yan M, Zhang J, Gebrekiros Alemayehu H, Zheng W, Liu P, Tang Z, Li L. Regulating the Layered Stacking of a Covalent Triazine Framework Membrane for Aromatic/Aliphatic Separation. Angew Chem Int Ed Engl 2024; 63:e202320137. [PMID: 38362792 DOI: 10.1002/anie.202320137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/17/2024]
Abstract
Membrane separation of aromatics and aliphatics is a crucial requirement in chemical and petroleum industries. However, this task presents a significant challenge due to the lack of membrane materials that can endure harsh solvents, exhibit molecular specificity, and facilitate easy processing. Herein, we present a novel approach to fabricate a covalent triazine framework (CTF) membrane by employing a mix-monomer strategy. By incorporating a spatial monomer alongside a planar monomer, we were able to subtly modulate both the pore aperture and membrane affinity, enabling preferential permeation of aromatics over aliphatics with molecular weight below 200 Dalton (Da). Consequently, we achieved successful all-liquid phase separation of aromatic/aliphatic mixtures. Our investigation revealed that the synergistic effects of size sieving and the affinity between the permeating molecules and the membrane played a pivotal role in separating these closely resembling species. Furthermore, the membrane exhibited remarkable robustness under practical operating conditions, including prolonged operation time, various feed compositions, different applied pressure, and multiple feed components. This versatile strategy offers a feasible approach to fabricate membranes with molecule selectivity toward aromatic/aliphatic mixtures, taking a significant step forward in addressing the grand challenge of separating small organic molecules through membrane technology.
Collapse
Affiliation(s)
- Cuijing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, P. R. China
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, 710055, Xi'an, P. R. China
| | - Junjun Hou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Mingzheng Yan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Haftu Gebrekiros Alemayehu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Wei Zheng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, P. R. China
| | - Pengchao Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Lianshan Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| |
Collapse
|
7
|
Zhang C, Fan L, Kang Z, Sun D. Solution processing of crystalline porous material based membranes for CO 2 separation. Chem Commun (Camb) 2024. [PMID: 38273772 DOI: 10.1039/d3cc05545k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The carbon emission problem is a significant challenge in today's society, which has led to severe global climate issues. Membrane-based separation technology has gained considerable interest in CO2 separation due to its simplicity, environmental friendliness, and energy efficiency. Crystalline porous materials (CPMs), such as zeolites, metal-organic frameworks, covalent organic frameworks, hydrogen-bonded organic frameworks, and porous organic cages, hold great promise for advanced CO2 separation membranes because of their ordered and customizable pore structures. However, the preparation of defect-free and large-area crystalline porous material (CPM)-based membranes remains challenging, limiting their practical use in CO2 separation. To address this challenge, the solution-processing method, commonly employed in commercial polymer preparation, has been adapted for CPM membranes in recent years. Nanosheets, spheres, molecular cages, and even organic monomers, depending on the CPM type, are dissolved in suitable solvents and processed into continuous membranes for CO2 separation. This feature article provides an overview of the recent advancements in the solution processing of CPM membranes. It summarizes the differences among the solution-processing methods used for forming various CPM membranes, highlighting the key factors for achieving continuous membranes. The article also summarizes and discusses the CO2 separation performance of these membranes. Furthermore, it addresses the current issues and proposes future research directions in this field. Overall, this feature article aims to shed light on the development of solution-processing techniques for CPM membranes, facilitating their practical application in CO2 separation.
Collapse
Affiliation(s)
- Caiyan Zhang
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Lili Fan
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Zixi Kang
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Daofeng Sun
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| |
Collapse
|
8
|
Sui J, Wang N, Wang J, Huang X, Wang T, Zhou L, Hao H. Strategies for chiral separation: from racemate to enantiomer. Chem Sci 2023; 14:11955-12003. [PMID: 37969602 PMCID: PMC10631238 DOI: 10.1039/d3sc01630g] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/26/2023] [Indexed: 11/17/2023] Open
Abstract
Chiral separation has become a crucial topic for effectively utilizing superfluous racemates synthesized by chemical means and satisfying the growing requirements for producing enantiopure chiral compounds. However, the remarkably close physical and chemical properties of enantiomers present significant obstacles, making it necessary to develop novel enantioseparation methods. This review comprehensively summaries the latest developments in the main enantioseparation methods, including preparative-scale chromatography, enantioselective liquid-liquid extraction, crystallization-based methods for chiral separation, deracemization process coupling racemization and crystallization, porous material method and membrane resolution method, focusing on significant cases involving crystallization, deracemization and membranes. Notably, potential trends and future directions are suggested based on the state-of-art "coupling" strategy, which may greatly reinvigorate the existing individual methods and facilitate the emergence of cross-cutting ideas among researchers from different enantioseparation domains.
Collapse
Affiliation(s)
- Jingchen Sui
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 P. R. China +86-22-2740-5754
| | - Na Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 P. R. China +86-22-2740-5754
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
| | - Jingkang Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 P. R. China +86-22-2740-5754
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 P. R. China +86-22-2740-5754
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
| | - Ting Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 P. R. China +86-22-2740-5754
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
| | - Lina Zhou
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 P. R. China +86-22-2740-5754
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 P. R. China +86-22-2740-5754
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
- School of Chemical Engineering and Technology, Hainan University Haikou 570228 China
| |
Collapse
|
9
|
Sun X, Di M, Liu J, Gao L, Yan X, He G. Continuous Covalent Organic Frameworks Membranes: From Preparation Strategies to Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303757. [PMID: 37381640 DOI: 10.1002/smll.202303757] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Indexed: 06/30/2023]
Abstract
Covalent organic frameworks (COFs) are porous crystalline polymeric materials formed by the covalent bonding of organic units. The abundant organic units library gives the COFs species diversity, easily tuned pore channels, and pore sizes. In addition, the periodic arrangement of organic units endows COFs regular and highly connected pore channels, which has led to the rapid development of COFs in membrane separations. Continuous defect-free and high crystallinity of COF membranes is the key to their application in separations, which is the most important issue to be addressed in the research. This review article describes the linkage types of covalent bonds, synthesis methods, and pore size regulation strategies of COFs materials. Further, the preparation strategies of continuous COFs membranes are highlighted, including layer-by-layer (LBL) stacking, in situ growth, interfacial polymerization (IP), and solvent casting. The applications in separation fields of continuous COFs membranes are also discussed, including gas separation, water treatment, organic solvent nanofiltration, ion conduction, and energy battery membranes. Finally, the research results are summarized and the future prospect for the development of COFs membranes are outlined. More attention may be paid to the large-scale preparation of COFs membranes and the development of conductive COFs membranes in future research.
Collapse
Affiliation(s)
- Xiaojun Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116023, China
| | - Mengting Di
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116023, China
| | - Jie Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116023, China
| | - Li Gao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116023, China
| | - Xiaoming Yan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116023, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116023, China
| |
Collapse
|
10
|
Ostrowski A, Jankowska A, Tabero A, Janiszewska E, Kowalak S. Synthesis and Characterization of Proton-Conducting Composites Prepared by Introducing Imidazole or 1,2,4-Triazole into AlPO-5 and SAPO-5 Molecular Sieves. Molecules 2023; 28:7312. [PMID: 37959732 PMCID: PMC10647750 DOI: 10.3390/molecules28217312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The present work concerns proton-conducting composites obtained by replacing the water molecules present in aluminophosphate and silicoaluminophosphate AFI-type molecular sieves (AlPO-5 and SAPO-5) with azole molecules (imidazole or 1,2,4-triazole). Both the introduction of azoles and the generation of Brønsted acid centers by isomorphous substitution in aluminophosphate materials were aimed at improving the proton conductivity of the materials and its stability. In the presented study, AlPO-5 and several SAPO-5 materials differing in silicon content were synthesized. The obtained porous matrices were studied using PXRD, low-temperature nitrogen sorption, TPD-NH3, FTIR, and SEM. The proton conductivity of composites was measured using impedance spectroscopy. The results show that the increase in silicon content of the porous matrices is accompanied by an increase in their acidity. However, this does not translate into an increase in the conductivity of the azole composites. Triazole composites show lower conductivity and significantly higher activation energies than imidazole composites; however, most triazole composites show much higher stability. The different conductivity values for imidazole and triazole composites may be due to differences in chemical properties of the azoles.
Collapse
Affiliation(s)
- Adam Ostrowski
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland
| | - Aldona Jankowska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (A.J.); (A.T.); (E.J.)
| | - Agata Tabero
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (A.J.); (A.T.); (E.J.)
| | - Ewa Janiszewska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (A.J.); (A.T.); (E.J.)
| | - Stanisław Kowalak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (A.J.); (A.T.); (E.J.)
| |
Collapse
|
11
|
Ito T. Single-Molecule Fluorescence Investigations of Solute Transport Dynamics in Nanostructured Membrane Separation Materials. J Phys Chem B 2023. [PMID: 37364247 DOI: 10.1021/acs.jpcb.3c02807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Many materials used for membrane separations are composed of nanoscale structures such as pores and domains. Such nanostructures often control the solute permeability and selectivity of the separation membranes. Thus, for future development of highly efficient separation membranes, it is important to understand the structural and chemical properties of these nanostructures and also their influences on solute transport dynamics. For the last two decades, single-molecule fluorescence techniques have been used to measure the detailed dynamics of solute molecules diffusing in various nanostructured materials, giving valuable insights into molecular transport mechanisms influenced by nanoscale material heterogeneity. This Perspective discusses recent single-molecule fluorescence studies on solute diffusion in materials relevant to membrane separations, including dense polymer films and nanoporous materials. These studies have revealed the formation and properties of nanostructures and unique transport dynamics of solute molecules manipulated by their confinement and partitioning to the nanostructures, which play key roles in membrane separations. This Perspective will also point out scientific challenges toward a thorough understanding of molecular-level mechanisms in membrane separations.
Collapse
Affiliation(s)
- Takashi Ito
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506-0401, United States
| |
Collapse
|
12
|
Lin R, Lu J, Ma F, Yan M, Wu Y, Pan J. Continuous-imprinted-layer nanofiber membrane with MXene-based precise-designed nanocages for high-accuracy recognition and separation of shikimic acid. J Colloid Interface Sci 2023; 641:875-892. [PMID: 36972623 DOI: 10.1016/j.jcis.2023.03.104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
Ti3C2Tx (MXene) has attracted extensive attention from scholars at home and abroad due to its rich surface termination functional groups and two-dimensional multilayer structure. In this work, MXene was introduced to the membrane by vacuum-assisted filtration processes, and the formed interlayer channel facilitated the construction of recognition sites and molecular transmission. In this paper, PDA@MXene@PDA@SiO2-PVDF dual-imprinted mixed matrix membrane (PMS-DIMs) were developed by the cooperative dual-imprinting strategy, which was used for the adsorption of shikimic acid (SA). Firstly, SiO2-PVDF nanofiber basement membrane were prepared by electrospinning method and the first Polydopamine (PDA)-based imprinted layer was constructed on the membrane. PDA not only realized the imprinting process, PDA modification was used to give MXene nanosheets better antioxidant properties and to confer the SiO2-PVDF nanofiber membrane the interface stability. After that, the second-imprinted sites were constructed on the stacked MXene nanosheets surface as well as between the layers. The SA dual-imprinted sites significantly increased the efficiency of the selective adsorption efficiency, when the template molecule passed through the membrane, the cooperative dual-imprinting strategy enabled multiplex recognition and adsorption of template molecules. As a consequence, which greatly improving the rebinding ability(262.17 g m-2), and mselectivity factors (βCatechol/SA, βP-HB/SA, βP-NP/SA were 2.34, 4.50 and 5.68). High stability proved the potentials of the PMS-DIMs for practical application. Precise SA-recognition sites were constructed on the PMS-DIMs, PMS-DIMs not only exhibit excellent selective rebinding properties but also have high permeability.
Collapse
Affiliation(s)
- Rongxin Lin
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jian Lu
- Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Faguang Ma
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ming Yan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yilin Wu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jianming Pan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
13
|
Wang J, Tian K, Li D, Chen M, Feng X, Zhang Y, Wang Y, Van der Bruggen B. Machine learning in gas separation membrane developing: ready for prime time. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
14
|
Affiliation(s)
- Hai-Long Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shu-Ting Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
15
|
Li B, Nan P, Gao Z, Tang B, Qiu S, Fang Q. Room-Temperature Preparation of Covalent Organic Framework Membrane for Nanofiltration. Macromol Rapid Commun 2022:e2200774. [PMID: 36520529 DOI: 10.1002/marc.202200774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/06/2022] [Indexed: 12/23/2022]
Abstract
The uniquely tunable nature of covalent organic frameworks (COFs), whose pore size and stability can be controlled by choosing diverse organic building blocks and linkage types, makes COFs potential candidates for the membrane separation. Therefore, the preparation of membranes with effective separation efficiency based on COFs has aroused great interest among researchers. Although solvothermal approach has been the most popular method for the preparation of COF membranes, fabricating COF membranes at room temperature (RT) will provide a simple and captivating strategy for separation membranes. Herein, a P-COF membrane on porous alumina substrate at RT, showing 99.7% rejection of rhodamine B and excellent water permeance up to 52 L m-2 h-1 bar-1 , which can effectively purify wastewater is successfully obtained. P-COF is directly grown on alumina to form the composite membrane, which enhances the mechanical strength of COF membrane and avoids the risk of damaging the membrane structure during the transfer process of self-standing membrane. Moreover, P-COF membrane is grown at RT, which is more energy efficient than the conventional solvothermal method. Thus, it is of great significance to obtain COF membranes with excellent nanofiltration performance in a simple and mild condition to alleviate environmental and energy concerns.
Collapse
Affiliation(s)
- Baoju Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Pihan Nan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zhuangzhuang Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Bin Tang
- Institute for Frontier Materials, Deakin University, Geelong, Victoria, 3216, Australia
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
16
|
Yu C, Jia Y, Fang K, Qin Y, Deng N, Liang Y. Preparation hierarchical porous MOF membranes with island-like structure for efficient gas separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Liu H, Cong S, Yan X, Wang X, Gao A, Wang Z, Liu X. Honeycomb-like Hofmann-type metal-organic framework membranes for C2H2/CO2 and H2/CO2 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Ebadi Amooghin A, Sanaeepur H, Luque R, Garcia H, Chen B. Fluorinated metal-organic frameworks for gas separation. Chem Soc Rev 2022; 51:7427-7508. [PMID: 35920324 DOI: 10.1039/d2cs00442a] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fluorinated metal-organic frameworks (F-MOFs) as fast-growing porous materials have revolutionized the field of gas separation due to their tunable pore apertures, appealing chemical features, and excellent stability. A deep understanding of their structure-performance relationships is critical for the synthesis and development of new F-MOFs. This critical review has focused on several strategies for the precise design and synthesis of new F-MOFs with structures tuned for specific gas separation purposes. First, the basic principles and concepts of F-MOFs as well as their structure, synthesis and modification and their structure to property relationships are studied. Then, applications of F-MOFs in adsorption and membrane gas separation are discussed. A detailed account of the design and capabilities of F-MOFs for the adsorption of various gases and the governing principles is provided. In addition, the exceptional characteristics of highly stable F-MOFs with engineered pore size and tuned structures are put into perspective to fabricate selective membranes for gas separation. Systematic analysis of the position of F-MOFs in gas separation revealed that F-MOFs are benchmark materials in most of the challenging gas separations. The outlook and future directions of the science and engineering of F-MOFs and their challenges are highlighted to tackle the issues of overcoming the trade-off between capacity/permeability and selectivity for a serious move towards industrialization.
Collapse
Affiliation(s)
- Abtin Ebadi Amooghin
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran.
| | - Hamidreza Sanaeepur
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran.
| | - Rafael Luque
- Department of Organic Chemistry, University of Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014 Cordoba, Spain. .,Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198, Moscow, Russian Federation
| | - Hermenegildo Garcia
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, Valencia 46022, Spain.
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas, 78249-0698, USA.
| |
Collapse
|
19
|
Guo B, Liu H, Pang J, Lyu Q, Wang Y, Fan W, Lu X, Sun D. Tunable rare-earth metal-organic frameworks for ultra-high selenite capture. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129094. [PMID: 35567811 DOI: 10.1016/j.jhazmat.2022.129094] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Linkers and clusters with various conformations present challenges for the design and prediction of highly porous and stable rare-earth metal-organic frameworks (RE-MOFs) for trapping toxic ions in aqueous solutions. Herein, we designed and synthesized a series of RE-MOFs based on a malleable ligand to explore the effects of ligands, clusters, and configurations on structural stability. The results showed that the nonanuclear high-connected UPC-183 exhibited better stability than the hexanuclear low-connected RE-MOF (UPC-181/182 series). Due to the syngenetic effect of chemi- and physisorption, the adsorption capacity of UPC-183-Eu for selenite (SeO32-) is as high as 308.39 mg/g, recorded one of the highest ever reported for MOFs. Furthermore, we accurately analyzed the adsorption site of UPC-183-Eu for SeO32- through single-crystal structure and theoretical simulation. The ultra-high selenite adsorption capacity and removal efficiency endow UPC-183-Eu an excellent porous adsorbent for removing pollutants.
Collapse
Affiliation(s)
- Bingbing Guo
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Hongyan Liu
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Jia Pang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Qiang Lyu
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Yutong Wang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Weidong Fan
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China.
| | - Xiaoqing Lu
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Daofeng Sun
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| |
Collapse
|
20
|
Aggarwal V, Solanki S, Malhotra BD. Applications of metal-organic framework-based bioelectrodes. Chem Sci 2022; 13:8727-8743. [PMID: 35975162 PMCID: PMC9350594 DOI: 10.1039/d2sc03441g] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 12/22/2022] Open
Abstract
Metal-organic frameworks (MOFs) are an emerging class of porous nanomaterials that have opened new research possibilities. The inherent characteristics of MOFs such as their large surface area, high porosity, tunable pore size, stability, facile synthetic strategies and catalytic nature have made them promising materials for enormous number of applications, including fuel storage, energy conversion, separation, and gas purification. Recently, their high potential as ideal platforms for biomolecule immobilization has been discovered. MOF-enzyme-based materials have attracted the attention of researchers from all fields with the expansion of MOFs development, paving way for the fabrication of bioelectrochemical devices with unique characteristics. MOFs-based bioelectrodes have steadily gained interest, wherein MOFs can be utilized for improved biomolecule immobilization, electrolyte membranes, fuel storage, biocatalysis and biosensing. Likewise, applications of MOFs in point-of-care diagnostics, including self-powered biosensors, are exponentially increasing. This paper reviews the current trends in the fabrication of MOFs-based bioelectrodes with emphasis on their applications in biosensors and biofuel cells.
Collapse
Affiliation(s)
- Vidushi Aggarwal
- Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University Shahbad Daulatpur Delhi 110042 India
| | - Shipra Solanki
- Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University Shahbad Daulatpur Delhi 110042 India
- Department of Applied Chemistry, Delhi Technological University Shahbad Daulatpur Delhi 110042 India
| | - Bansi D Malhotra
- Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University Shahbad Daulatpur Delhi 110042 India
| |
Collapse
|
21
|
Rong H, Zhang J, Guan Y, Gai D, Zou X. Interzeolite Conversion-Synthesized Sub-1 μm NaA Zeolite Membrane for C 2H 2/C 2H 4 Selective Separation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26171-26179. [PMID: 35605136 DOI: 10.1021/acsami.2c03353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Zeolite membranes with reduced thickness and high continuity are of paramount importance for accelerating selective gas separation for resemblant molecules, and the synthesis of such membranes remains a grand challenge. Herein, we developed an interzeolite conversion synthesis approach to grow NaA zeolite membranes on NaX. The conversion of NaX into NaA proceeded via mild hydrothermal treatment of a dilute synthesis solution, preferentially forming a continuous polycrystalline NaA layer on the surface of NaX, which was precrystallized on a porous alumina support. The thickness of the NaA zeolite membrane was successfully controlled to the submicron scale (500 nm). The synthesized NaA membrane functioned as a selective separator for C2H2 and C2H4 gases. Taking the traditionally in situ grown membrane as a reference, the interzeolite-derived membrane exhibited a 3.5-fold separation factor and ∼4.0 times C2H2 permeance. This approach provides an alternative synthesis option for zeolite membranes with advanced properties, and high efficiency in terms of superior gas selectivity and permeability is promising in precise gas separation.
Collapse
Affiliation(s)
- Huazhen Rong
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Jingjing Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Yixing Guan
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Dongxu Gai
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Xiaoqin Zou
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|
22
|
Cao H, Xia Y, Lu Y, Wu Y, Xia Y, Hou X, Wang Y, Liu G, Huang K, Xu Z. MOF
‐801 polycrystalline membrane with sub‐10 nm polymeric assembly layer for ion sieving and flow battery storage. AIChE J 2022. [DOI: 10.1002/aic.17657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hongyan Cao
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Yu Xia
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Yuqin Lu
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Yulin Wu
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Yongsheng Xia
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Xiaoxuan Hou
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Yixing Wang
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Gongping Liu
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Kang Huang
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Zhi Xu
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
23
|
Wang Y, Ban Y, Hu Z, Zhao Y, Zheng M, Yang W, Zhang T. Hetero‐Lattice Intergrown and Robust MOF Membranes for Polyol Upgrading. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuecheng Wang
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 P. R. China
| | - Yujie Ban
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 P. R. China
| | - Ziyi Hu
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Yang Zhao
- Dalian National Laboratory for Clean Energy Dalian 116023 P. R. China
| | - Mingyuan Zheng
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Weishen Yang
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 P. R. China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| |
Collapse
|
24
|
Wang Y, Ban Y, Hu Z, Zhao Y, Zheng M, Yang W, Zhang T. Hetero-lattice intergrown and robust MOF membranes for polyol upgrading. Angew Chem Int Ed Engl 2021; 61:e202114479. [PMID: 34939272 DOI: 10.1002/anie.202114479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 11/09/2022]
Abstract
Metal-organic framework membranes are frequently used in gas separations, but rare in pervaporation for liquid chemical upgrading, especially for separating water from polyols, due to lack of highly compact and robust micro-architecture. Here, we report hetero-lattice intergrown membranes in which amino-MIL-101 (Cr) particles embedded into the micro-gaps of MIL-53 (Al) rod arrays after secondary growth. By means of high-resolution TEM and two-dimensional topologic simulation, the connection between these two distinct MOF lattices at molecular-level and their crystallographic geometry harmony is identified, which leads to a close-knit structure at crystal boundaries of membranes. Typically, the membrane shows a separation factor as high as 13,000 for 90/10 ethanediol/water solution in pervaporation, yields polymer-grade ethanediol, and saves ca. 32% of energy consumption vs. vacuum distillation. It has a highly robust micro-architecture, with great tolerance to high pressure, durability against ultrasonic therapy and long-term separation stability over 600 h.
Collapse
Affiliation(s)
- Yuecheng Wang
- Dalian Institute of Chemical Physics, State Key Laboratory of Catalysis, CHINA
| | - Yujie Ban
- Dalian Institute of Chemical Physics, State Key Laboratory of Catalysis, CHINA
| | - Ziyi Hu
- Dalian Institute of Chemical Physics, State Key Laboratory of Catalysis, CHINA
| | - Yang Zhao
- Dalian Institute of Chemical Physics, State Key Laboratory of Catalysis, CHINA
| | - Mingyuan Zheng
- Dalian Institute of Chemical Physics, CAS Key Laboratory of Science and Technology on Applied Catalysis, CHINA
| | - Weishen Yang
- Dalian Institute of Chemical Physics, State Key Laboratory of Catalysis, 457 Zhongshan Road, 116023, Dalian, CHINA
| | - Tao Zhang
- Dalian Institute of Chemical Physics, State Key Laboratory of Catalysis, CHINA
| |
Collapse
|
25
|
Liu X, Xiao Y, Zhang Z, You Z, Li J, Ma D, Li B. Recent Progress in
Metal‐Organic
Frameworks@Cellulose Hybrids and Their Applications. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Xiongli Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Yun Xiao
- General English Department, College of Foreign Languages Nankai University Tianjin 300071 China
| | - Zhiyuan Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Zifeng You
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Jinli Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Dingxuan Ma
- College of Chemistry and Molecular Engineering, Laboratory of Eco‐chemical Engineering, Ministry of Education Qingdao University of Science and Technology Qingdao 266042 China
| | - Baiyan Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| |
Collapse
|
26
|
Fan W, Ying Y, Peh SB, Yuan H, Yang Z, Yuan YD, Shi D, Yu X, Kang C, Zhao D. Multivariate Polycrystalline Metal-Organic Framework Membranes for CO 2/CH 4 Separation. J Am Chem Soc 2021; 143:17716-17723. [PMID: 34608802 DOI: 10.1021/jacs.1c08404] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Membrane technology is attractive for natural gas separation (removing CO2, H2O, and hydrocarbons from CH4) because of membranes' low energy consumption and small environmental footprint. Compared to polymeric membranes, microporous inorganic membranes such as silicoaluminophosphate-34 (SAPO-34) membrane can retain their separation performance under conditions close to industrial requirements. However, moisture and hydrocarbons in natural gas can be strongly adsorbed in the pores of those membranes, thereby reducing the membrane separation performance. Herein, we report the fabrication of a polycrystalline MIL-160 membrane on an Al2O3 substrate by in situ hydrothermal synthesis. The MIL-160 membrane with a thickness of ca. 3 μm shows a remarkable molecular sieving effect in gas separation. Besides, the pore size and environment of the MIL-160 membrane can be precisely controlled using reticular chemistry by regulating the size and functionality of the ligand. Interestingly, the more polar fluorine-functionalized multivariate MIL-160/CAU-10-F membrane exhibits a 10.7% increase in selectivity for CO2/CH4 separation and a 31.2% increase in CO2 permeance compared to those of the MIL-160 membrane. In addition, hydrophobic MIL-160 membranes and MIL-160/CAU-10-F membranes are more resistant to water vapor and hydrocarbons than the hydrophilic SAPO-34 membranes.
Collapse
Affiliation(s)
- Weidong Fan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585 Singapore
| | - Yunpan Ying
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585 Singapore
| | - Shing Bo Peh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585 Singapore
| | - Hongye Yuan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585 Singapore
| | - Ziqi Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585 Singapore
| | - Yi Di Yuan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585 Singapore
| | - Dongchen Shi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585 Singapore
| | - Xin Yu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585 Singapore
| | - Chengjun Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585 Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585 Singapore
| |
Collapse
|
27
|
Liang YJ, Yao J, Deng M, Liu YE, Xu QQ, Li QX, Jing B, Zhu AX, Huang B. A porous anionic zinc( ii) metal–organic framework for gas adsorption, selective uptake of dyes and sensing of Fe 3+ by Tb 3+ ion encapsulation. CrystEngComm 2021. [DOI: 10.1039/d1ce01074c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A 3D anionic, porous MOF exhibits selective adsorption of cationic dyes and can be used as a fast-response fluorescence sensor for the detection of Fe3+ ions by Tb3+ ion encapsulation.
Collapse
Affiliation(s)
- Yu-Jie Liang
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Jun Yao
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Min Deng
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Yan-E. Liu
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Quan-Qing Xu
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Qiu-Xia Li
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Bi Jing
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Ai-Xin Zhu
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Bo Huang
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|