1
|
Jangjooye Shaldehi T, Rowshanzamir S, Exner KS, Viñes F, Illas F. Conventional versus Unconventional Oxygen Reduction Reaction Intermediates on Single Atom Catalysts. ACS APPLIED MATERIALS & INTERFACES 2025; 17:6450-6459. [PMID: 39812406 DOI: 10.1021/acsami.4c23082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The oxygen reduction reaction (ORR) stands as a pivotal process in electrochemistry, finding applications in various energy conversion technologies such as fuel cells, metal-air batteries, and chlor-alkali electrolyzers. Hereby, a comprehensive density functional theory (DFT) investigation is presented into the proposed conventional and unconventional ORR mechanisms using single-atom catalysts (SACs) supported on nitrogen-doped graphene (NG) as model systems. Several reaction intermediates have been identified that appear to be more stable than the ones postulated in the conventional mechanism, which follows the *OOH, *O, and *OH intermediates. This finding particularly holds for adsorbed *O2, which can have different adsorption geometries, ranging from η1Ο2 or η2Ο2 superoxo complexes as well as sin and anti complexes, with the two O-related ligands binding on the same or opposite sides, respectively. In the case of M@NG (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, and Pt), the ORR follows these unconventional *O2 intermediates, whereas for Cr@NG and Cu@NG classical and unconventional *O2 intermediates compete. We approximate the electrocatalytic activity using the concept of the thermodynamic overpotential and demonstrate that the conventional mechanism gives rise to a smaller overpotential compared to mechanisms following unconventional intermediates during the four proton-coupled electron transfer steps. Our trend study indicates that transition metals with fewer d electrons reveal smaller electrocatalytic activity due to a larger thermodynamic overpotential. Among the investigated SAC systems, Co emerges as a promising candidate, with thermodynamic overpotential and limiting potential values of 0.38 and 0.85 V vs the standard hydrogen electrode, respectively, with the conventional mechanism being favored, and with Cu appearing as the second-best candidate.
Collapse
Affiliation(s)
- Tahereh Jangjooye Shaldehi
- Hydrogen & Fuel Cell Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| | - Soosan Rowshanzamir
- Hydrogen & Fuel Cell Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| | - Kai S Exner
- Faculty of Chemistry, Theoretical Catalysis and Electrochemistry, University Duisburg-Essen, Universitätsstraße 5, Essen 45141, Germany
- Cluster of Excellence RESOLV, Bochum 44801, Germany
- Center for Nanointegration (CENIDE) Duisburg-Essen, Duisburg 47057, Germany
| | - Francesc Viñes
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona 08028, Spain
| | - Francesc Illas
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona 08028, Spain
| |
Collapse
|
2
|
Wang H, Yang TC, Zheng H, Jiang Z, Yang CM, Lai NC. Identification of true active sites in N-doped carbon-supported Fe 2P nanoparticles toward oxygen reduction reaction. J Colloid Interface Sci 2025; 678:806-817. [PMID: 39217696 DOI: 10.1016/j.jcis.2024.08.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Transition metal-based nanoparticles (NPs) are emerging as potential alternatives to platinum for catalyzing the oxygen reduction reaction (ORR) in zinc-air batteries (ZAB). However, the simultaneous coexistence of single-atom moieties in the preparation of NPs is inevitable, and the structural complexity of catalysts poses a great challenge to identifying the true active site. Herein, by employing in situ and ex situ XAS analysis, we demonstrate the coexistence of single-atom moieties and iron phosphide NPs in the N, P co-doped porous carbon (in short, Fe-N4-Fe2P NPs/NPC), and identify that ORR predominantly proceeds via the atomic-dispersed Fe-N4 sites, while the presence of Fe2P NPs exerts an inhibitory effect by decreasing the site utilization and impeding mass transfer of reactants. The single-atom catalyst Fe-N4/NPC displays a half-wave potential of 0.873 V, surpassing both Fe-N4-Fe2P NPs/NPC (0.858 V) and commercial Pt/C (0.842 V) in alkaline condition. In addition, the ZAB based on Fe-N4/NPC achieves a peak power density of 140.3 mW cm-2, outperforming that of Pt/C-based ZAB (91.8 mW cm-2) and exhibits excellent long-term stability. This study provides insight into the identification of true active sites of supported ORR catalysts and offers an approach for developing highly efficient, nonprecious metal-based catalysts for high-energy-density metal-air batteries.
Collapse
Affiliation(s)
- Hongwei Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tsung-Cheng Yang
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Hao Zheng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zeyi Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chia-Min Yang
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan.
| | - Nien-Chu Lai
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Higher Institution Engineering Research Center of Energy Conservation and Environmental Protection, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
3
|
Wu H, Li J, Ji Q, Ariga K. Nanoarchitectonics for structural tailoring of yolk-shell architectures for electrochemical applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2420664. [PMID: 39539602 PMCID: PMC11559037 DOI: 10.1080/14686996.2024.2420664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Developing electrochemical energy storage and conversion systems, such as capacitors, batteries, and fuel cells is crucial to address rapidly growing global energy demands and environmental concerns for a sustainable society. Significant efforts have been devoted to the structural design and engineering of various electrode materials to improve economic applicability and electrochemical performance. The yolk-shell structures represent a special kind of core-shell morphologies, which show great application potential in energy storage, controlled delivery, adsorption, nanoreactors, sensing, and catalysis. Their controllable void spaces may facilitate the exposure of more active sites for redox reactions and enhance selective adsorption. Based on different nanoarchitectonic designs and fabrication techniques, the yolk-shell structures with controllable structural nanofeatures and the homo- or hetero-compositions provide multiple synergistic effects to promote reactions on the electrode/electrolyte interfaces. This review is focused on the key structural features of yolk-shell architectures, highlighting the recent advancements in their fabrication with adjustable space and mono- or multi-metallic composites. The effects of tailorable structure and functionality of yolk-shell nanostructures on various electrochemical processes are also summarized.
Collapse
Affiliation(s)
- Huan Wu
- Herbert Gleiter Institute for Nanoscience, School of Materials Science and Engineering Nanjing University of Science and Technology, Nanjing, China
| | - Jiahao Li
- Herbert Gleiter Institute for Nanoscience, School of Materials Science and Engineering Nanjing University of Science and Technology, Nanjing, China
| | - Qingmin Ji
- Herbert Gleiter Institute for Nanoscience, School of Materials Science and Engineering Nanjing University of Science and Technology, Nanjing, China
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
4
|
Yang Y, Wang G, Liu C, Lin Y, Jiao C, Chen Q, Zhuo Z, Mao J, Liu Y. Asymmetrically Coordinated Calcium Single Atom for High-Performance Oxygen Reduction Reaction. Inorg Chem 2024; 63:13086-13092. [PMID: 38937860 DOI: 10.1021/acs.inorgchem.4c02178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
S-block single atoms represent an ideal catalyst for the oxygen reduction reaction (ORR) as they can suppress the Fenton reaction. However, the symmetry of the s/p orbitals tends to generate either an excessively strong or weak interaction with intermediates. Herein, Ca single atoms coordinated with -S, -OP, and three N atoms (Ca/NPS-HC) were fabricated to modulate the adsorption of intermediates and promote the efficiency of s-block ORR catalysts. The experimental results from ORR demonstrated that the Ca/NPS-HC catalyst exhibited outstanding catalytic capability with a half-wave potential of 0.89 V, a kinetic current density of 56.6 mA cm-2 at 0.85 V, and a Tafel slope of 42 mV dec-1, outperforming commercial Pt/C. The detailed mechanistic studies revealed that the asymmetric coordination of Ca single atoms led to the symmetry-breaking of electron distribution in Ca single atoms, attenuating the s-p hybridization from the intermediate adsorption process, and thereby minimizing the energy barrier of the whole ORR.
Collapse
Affiliation(s)
- Yan Yang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Gang Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Changwei Liu
- Chery New Energy Automobile Co., Ltd, Wuhu 241002, China
| | - Yutao Lin
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Chi Jiao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qingqing Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Zhiwen Zhuo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yan Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
5
|
Yu MY, Yao YF, Fang K, Chen LS, Si LP, Liu HY. 2D Metal Porphyrin-Based MOFs and ZIF-8 Composite-Derived Carbon Materials Containing M-N x Active Sites as Bifunctional Electrocatalysts for Zinc-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16132-16144. [PMID: 38511296 DOI: 10.1021/acsami.3c18384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The main impediment to the development of zinc-air batteries is the sluggish kinetics of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Transition metal N-doped carbon catalysts offer a promising alternative to noble metal catalysts, with metal-organic framework (MOF)-derived carbon material catalysts being particularly noteworthy. Here, we synthesized MxP-Z-C carbon catalysts by combining two-dimensional (2D) metal porphyrin-based MOFs (MxPMFs, x = Fe, Co, Ni, Mn) and three-dimensional zeolitic imidazole framework-8 (ZIF-8) through electrostatic interaction, followed by carbonization. ZIF-8 was inserted between the layers of MxPMFs to prevent its Π-Π stacking, allowing the active sites to become fully exposed. MxP-Z-C demonstrated an impressive catalytic activity for both the ORR and the OER reactions. Among them, FeP-Z-C showed the best catalytic activity. The half-wave potential for ORR was 0.92 V (vs the reversible hydrogen electrode (RHE)), while the overpotential for the OER was 290 mV. In addition, the zinc-air battery assembled by FeP-Z-C exhibited high power density (133.14 mW cm-2) and significant specific capacity (816 mAh gZn-1), indicating considerable potential as a bifunctional catalyst for electronic devices.
Collapse
Affiliation(s)
- Min-Yi Yu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou 510641, China
| | - Yan-Fang Yao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou 510641, China
| | - Kun Fang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou 510641, China
| | - Li-Shui Chen
- Guangzhou Double One Latex Products Co., Ltd., Guangzhou 510830, China
| | - Li-Ping Si
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou 510641, China
- School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China
| | - Hai-Yang Liu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
6
|
Cook EN, Courter IM, Dickie DA, Machan CW. Controlling product selectivity during dioxygen reduction with Mn complexes using pendent proton donor relays and added base. Chem Sci 2024; 15:4478-4488. [PMID: 38516070 PMCID: PMC10952101 DOI: 10.1039/d3sc02611f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
The catalytic reduction of dioxygen (O2) is important in biological energy conversion and alternative energy applications. In comparison to Fe- and Co-based systems, examples of catalytic O2 reduction by homogeneous Mn-based systems is relatively sparse. Motivated by this lack of knowledge, two Mn-based catalysts for the oxygen reduction reaction (ORR) containing a bipyridine-based non-porphyrinic ligand framework have been developed to evaluate how pendent proton donor relays alter activity and selectivity for the ORR, where Mn(p-tbudhbpy)Cl (1) was used as a control complex and Mn(nPrdhbpy)Cl (2) contains a pendent -OMe group in the secondary coordination sphere. Using an ammonium-based proton source, N,N'-diisopropylethylammonium hexafluorophosphate, we analyzed catalytic activity for the ORR: 1 was found to be 64% selective for H2O2 and 2 is quantitative for H2O2, with O2 binding to the reduced Mn(ii) center being the rate-determining step. Upon addition of the conjugate base, N,N'-diisopropylethylamine, the observed catalytic selectivity of both 1 and 2 shifted to H2O as the primary product. Interestingly, while the shift in selectivity suggests a change in mechanism for both 1 and 2, the catalytic activity of 2 is substantially enhanced in the presence of base and the rate-determining step becomes the bimetallic cleavage of the O-O bond in a Mn-hydroperoxo species. These data suggest that the introduction of pendent relay moieties can improve selectivity for H2O2 at the expense of diminished reaction rates from strong hydrogen bonding interactions. Further, although catalytic rate enhancements are observed with a change in product selectivity when base is added to buffer proton activity, the pendent relays stabilize dimer intermediates, limiting the maximum rate.
Collapse
Affiliation(s)
- Emma N Cook
- Department of Chemistry University of Virginia PO Box 400319 McCormick Rd Charlottesville VA 22904-4319 USA
| | - Ian M Courter
- Department of Chemistry University of Virginia PO Box 400319 McCormick Rd Charlottesville VA 22904-4319 USA
| | - Diane A Dickie
- Department of Chemistry University of Virginia PO Box 400319 McCormick Rd Charlottesville VA 22904-4319 USA
| | - Charles W Machan
- Department of Chemistry University of Virginia PO Box 400319 McCormick Rd Charlottesville VA 22904-4319 USA
| |
Collapse
|
7
|
Monini V, Bonechi M, Bazzicalupi C, Bianchi A, Gentilesca P, Giurlani W, Innocenti M, Meoli A, Romano GM, Savastano M. Oxygen reduction reaction (ORR) in alkaline solution catalysed by an atomically precise catalyst based on a Pd(II) complex supported on multi-walled carbon nanotubes (MWCNTs). Electrochemical and structural considerations. Dalton Trans 2024; 53:2487-2500. [PMID: 38193252 DOI: 10.1039/d3dt03947a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
A new atomically precise, single-ion catalyst (MWCNT-LPd) for ORR (oxygen reduction reaction), consisting of a Pd(II) complex of a tetraazacycloalkane anchored on multiwalled carbon nanotubes, has been prepared through a supramolecular approach ensuring a uniform distribution of catalytic centres on the support surface. A tetraazacycloalkane was chosen to saturate the four coordination sites of the typical square planar coordination geometry of Pd(II) with the aim of ascertaining whether the metal ion must have free coordination sites to function effectively in the ORR or whether, as predicted by quantum mechanical calculations, the catalytic effect can be originated from an interaction of O2 in the fifth coordinative position. The results clearly demonstrated that tetracoordination of Pd(II) does not influence its catalytic capacity in the ORR. Electrodes based on this catalyst show ORR performance very close to that of commercial Pt electrodes, despite the low Pd(II) content (1.72% by weight) in the catalyst. The onset potential (Eon) value and the half-wave potential (E1/2) of the catalyst are, respectively, only 53 mV and 24 mV less positive than those observed for the Pt electrode and direct conversion of O2 to H2O reaches 85.0%, compared to 89% of the Pt electrode. Furthermore, a preliminary galvanostatic test (simulating a working fuel cell at a fixed potential) showed that the catalyst maintains its efficiency continuing to produce water throughout the process (the average number of electrons exchanged over time per O2 molecule remains close to 4).
Collapse
Affiliation(s)
- Valeria Monini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.
| | - Marco Bonechi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.
| | - Carla Bazzicalupi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.
| | - Antonio Bianchi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Research Unit of Florence, Via G. Giusti 9, 50121 Florence, Italy.
| | - Pietro Gentilesca
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.
| | - Walter Giurlani
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.
| | - Massimo Innocenti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Research Unit of Florence, Via G. Giusti 9, 50121 Florence, Italy.
| | - Arianna Meoli
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.
| | - Giammarco Maria Romano
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.
| | - Matteo Savastano
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Research Unit of Florence, Via G. Giusti 9, 50121 Florence, Italy.
- Department of Human Sciences for the Promotion of Quality of Life, University San Raffaele Roma, Via di Val Cannuta 247, 00166 Rome, Italy
| |
Collapse
|
8
|
Samala NR, Friedman A, Elbaz L, Grinberg I. Identification of a Durability Descriptor for Molecular Oxygen Reduction Reaction Catalysts. J Phys Chem Lett 2024; 15:481-489. [PMID: 38190330 DOI: 10.1021/acs.jpclett.3c03209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The development of durable platinum-group-metal-free oxygen reduction reaction (ORR) catalysts is a key research direction for enabling the wide use of fuel cells. Here, we use a combination of experimental measurements and density functional theory calculations to study the activity and durability of seven iron-based metallophthalocyanine (MPc) ORR catalysts that differ only in the identity of the substituent groups on the MPcs. While the MPcs show similar ORR activity, their durabilities as measured by the current decay half-life differ greatly. We find that the energy difference between the hydrogenated intermediate structure and the final demetalated structure (ΔEdemetalation) of the MPcs is linearly related to the degradation reaction barrier energy. Comparison to the degradation data for the previously studied metallocorrole systems suggested that ΔEdemetalation also serves as a descriptor for the corrole systems and that the high availability of protons at the active site due to the COOH group of the o-corrole decreases the durability.
Collapse
Affiliation(s)
| | - Ariel Friedman
- Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Lior Elbaz
- Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Ilya Grinberg
- Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
9
|
Hao W, Lee SH, Peera SG. Xerogel-Derived Manganese Oxide/N-Doped Carbon as a Non-Precious Metal-Based Oxygen Reduction Reaction Catalyst in Microbial Fuel Cells for Energy Conversion Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2949. [PMID: 37999303 PMCID: PMC10674280 DOI: 10.3390/nano13222949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 11/25/2023]
Abstract
Current study provides a novel strategy to synthesize the nano-sized MnO nanoparticles from the quick, ascendable, sol-gel synthesis strategy. The MnO nanoparticles are supported on nitrogen-doped carbon derived from the cheap sustainable source. The resulting MnO/N-doped carbon catalysts developed in this study are systematically evaluated via several physicochemical and electrochemical characterizations. The physicochemical characterizations confirms that the crystalline MnO nanoparticles are successfully synthesized and are supported on N-doped carbons, ascertained from the X-ray diffraction and transmission electron microscopic studies. In addition, the developed MnO/N-doped carbon catalyst was also found to have adequate surface area and porosity, similar to the traditional Pt/C catalyst. Detailed investigations on the effect of the nitrogen precursor, heat treatment temperature, and N-doped carbon support on the ORR activity is established in 0.1 M of HClO4. It was found that the MnO/N-doped carbon catalysts showed enhanced ORR activity with a half-wave potential of 0.69 V vs. RHE, with nearly four electron transfers and excellent stability with just a loss of 10 mV after 20,000 potential cycles. When analyzed as an ORR catalyst in dual-chamber microbial fuel cells (DCMFC) with Nafion 117 membrane as the electrolyte, the MnO/N-doped carbon catalyst exhibited a volumetric power density of ~45 mW m2 and a 60% degradation of organic matter in 30 days of continuous operation.
Collapse
Affiliation(s)
| | - Sang-Hun Lee
- Department of Environmental Science, Keimyung University, Daegu 42601, Republic of Korea
| | - Shaik Gouse Peera
- Department of Environmental Science, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
10
|
Bhatti AK, Jabeen N, Bashir A, Khan LU, Bokhari SW, Akhter Z. Insight into a pure spinel Co 3O 4 and boron, nitrogen, sulphur (BNS) tri-doped Co 3O 4-rGO nanocomposite for the electrocatalytic oxygen reduction reaction. RSC Adv 2023; 13:28602-28612. [PMID: 37795048 PMCID: PMC10546277 DOI: 10.1039/d3ra04600a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
The intricate problems concerning energy require innovative solutions. Herein, we propose a smart composite nano system that can be used in a sustainable and dichotomous manner to resolve energy crises. The current study describes a new way to synthesize a pure spinel cobalt oxide (Co3O4) and boron (B), nitrogen (N), and sulfur (S) tri-doped Co3O4-reduced graphite oxide (rGO) nanocomposite (CBNS). A hydrothermal method has been used for the synthesis of these nanomaterials. The synthesized nanocomposite was characterized by UV-visible spectroscopy, X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), X-ray absorption spectroscopy (XAS), and transmission electron microscopy (TEM). The XRD results showed the formation of Co3O4 and B, N, S doped nanocomposite with high purity and crystallinity. XAS analysis elucidates the formation of spinel Co3O4 with tetrahedral and octahedral arrangement of cobalt ions. The peaks at 2.50 Å and 3.07 Å are due to the Co-Co bonding. The electrocatalytic oxygen reduction (ORR) was successfully implemented using these nanocomposites. The electrochemical study exhibits the better activity of the B, N, and S tri-doped Co3O4-rGO nanocomposite due to the mutual effect of B, N and S. The synthesized catalyst has maximum current density of 9.97 mA cm-2 with onset potential (Eonset) of 0.98 V in alkaline medium.
Collapse
Affiliation(s)
- Afia Kanwal Bhatti
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Naila Jabeen
- Nanoscience's and Technology Division, National Center for Physics, Quaid-i-Azam University Campus Shahdra Valley Road, P.O. Box 2141 Islamabad 44000 Pakistan
| | - Amna Bashir
- Department of Chemistry, Fatima Jinnah Women University The Mall Rawalpindi Pakistan
| | - Latif U Khan
- Synchrotron-Light for Experimental Science and Applications in the Middle East (SESAME) P.O. Box 7 Allan 19252 Jordan
| | - Syeda Wishal Bokhari
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 Zhejiang People's Republic of China
| | - Zareen Akhter
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| |
Collapse
|
11
|
Liu Y, Mou X, Yu S, Zhang C, Chen J. Mechanisms of the Higher Catalytic Activity of Polymer Forms over Complexes for Non-pyrolytic Mono-1,10-phenanthroline-Coordinated Cu 2+ (Cu-N 2 Type) in an Oxygen Reduction Reaction. Inorg Chem 2023. [PMID: 37433112 DOI: 10.1021/acs.inorgchem.3c01005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
In this paper, we have thoroughly investigated the ORR mechanism of non-pyrolytic mono-1,10-phenanthroline-coordinated Cu2+ (Cu-N2 type) complexes and polymers by molecular dynamics and quantum mechanics calculation. In contrast to the complex-catalyzed ORR, which follows a direct four-electron pathway along intermediates of Cu(I)-Phen, the polymer-catalyzed ORR follows an indirect four-electron pathway by intermediates of Cu(II)-Phen. By analyzing the structure, spin population, electrostatic potential (ESP), and density of states, we confirmed that the higher ORR catalytic activity of the polymer is due to the conjugation effect of coplanar phenanthroline and Cu(II) in the planar reactants or at the base of the square-pyramidal intermediates. The conjugation effect allows the highest ESP to be located near the active center Cu(II), while the lower ESPs are distributed on the phenanthroline, which is very favorable for the reduction current. This will serve as a theoretical foundation for the development of new highly efficient ORR non-pyrolytic CuN2 polymer catalysts.
Collapse
Affiliation(s)
- Yaoze Liu
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Xinxing Mou
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Shengping Yu
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Chunchun Zhang
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610064, P.R. China
| | - Junxian Chen
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
12
|
An C, Wang T, Wang S, Chen X, Han X, Wu S, Deng Q, Zhao L, Hu N. Ultrasonic-assisted preparation of two-dimensional materials for electrocatalysts. ULTRASONICS SONOCHEMISTRY 2023; 98:106503. [PMID: 37393853 PMCID: PMC10316695 DOI: 10.1016/j.ultsonch.2023.106503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/11/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023]
Abstract
Developing green, environmental, sustainable new energy sources is an important problem to be solved in the world. Among the new energy technologies, water splitting system, fuel cell technology and metal-air battery technology are the main energy production and conversion methods, which involve three main electrocatalytic reactions, hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). The efficiency of the electrocatalytic reaction and the power consumption are very dependent on the activity of the electrocatalysts. Among various electrocatalysts, the two-dimensional (2D) materials have received widespread attention due to multiple advantages, such as their easy availability and low price. What' important is that they have adjustable physical and chemical properties. It is possible to develop them as electrocatalysts to replace the noble metals. Therefore, the design of two-dimensional electrocatalysts is a focus in the research area. Some recent advances in ultrasound-assisted preparation of two-dimensional (2D) materials have been overviewed according to the kind of materials in this review. Firstly, the effect of the ultrasonic cavitation and its applications in the synthesis of inorganic materials are introduced. The ultrasonic-assisted synthesis of representative 2D materials for example transition metal dichalcogenides (TMDs), graphene, layered double metal hydroxide (LDH), and MXene, and their catalytic properties as electrocatalysts are discussed in detail. For example, the CoMoS4 electrocatalysts have been synthesized through a facile ultrasound-assisted hydrothermal method. The obatined HER and OER overpotential of CoMoS4 electrode is 141 and 250 mV, respectively. This review points out some problems that need to be solved urgently at present, and provides some ideas for designing and constructing two-dimensional materials with better electrocatalytic performance.
Collapse
Affiliation(s)
- Cuihua An
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology and School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China; Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, Guangdong, China
| | - Tianyu Wang
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology and School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Shikang Wang
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology and School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xiaodong Chen
- Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, Guangdong, China
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Shuai Wu
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology and School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Qibo Deng
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology and School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China; Advanced Equipment Research Institute Co., Ltd. of HEBUT, Tianjin 300401, China.
| | - Libin Zhao
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology and School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China; Advanced Equipment Research Institute Co., Ltd. of HEBUT, Tianjin 300401, China
| | - Ning Hu
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology and School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China; Advanced Equipment Research Institute Co., Ltd. of HEBUT, Tianjin 300401, China.
| |
Collapse
|
13
|
Marinoiu A, Raceanu M, Carcadea E, Varlam M. Nitrogen-Doped Graphene Oxide as Efficient Metal-Free Electrocatalyst in PEM Fuel Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1233. [PMID: 37049326 PMCID: PMC10096973 DOI: 10.3390/nano13071233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Nitrogen-doped graphene is currently recognized as one of the most promising catalysts for the oxygen reduction reaction (ORR). It has been demonstrated to act as a metal-free electrode with good electrocatalytic activity and long-term operation stability, excellent for the ORR in proton exchange membrane fuel cells (PEMFCs). As a consequence, intensive research has been dedicated to the investigation of this catalyst through varying the methodologies for the synthesis, characterization, and technologies improvement. A simple, scalable, single-step synthesis method for nitrogen-doped graphene oxide preparation was adopted in this paper. The physical and chemical properties of various materials obtained from different precursors have been evaluated and compared, leading to the conclusion that ammonia allows for a higher resulting nitrogen concentration, due to its high vapor pressure, which facilitates the functionalization reaction of graphene oxide. Electrochemical measurements indicated that the presence of nitrogen-doped oxide can effectively enhance the electrocatalytic activity and stability for ORR, making it a viable candidate for practical application as a PEMFC cathode electrode.
Collapse
Affiliation(s)
- Adriana Marinoiu
- ICSI Energy Department, National Research and Development Institute for Cryogenic and Isotopic Technologies, 240050 Ramnicu Valcea, Romania
| | - Mircea Raceanu
- ICSI Energy Department, National Research and Development Institute for Cryogenic and Isotopic Technologies, 240050 Ramnicu Valcea, Romania
- Doctoral School, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Elena Carcadea
- ICSI Energy Department, National Research and Development Institute for Cryogenic and Isotopic Technologies, 240050 Ramnicu Valcea, Romania
| | - Mihai Varlam
- ICSI Energy Department, National Research and Development Institute for Cryogenic and Isotopic Technologies, 240050 Ramnicu Valcea, Romania
| |
Collapse
|
14
|
Alkaline hydrogen oxidation reaction on Ni-based electrocatalysts: From mechanistic study to material development. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Advances in Low Pt Loading Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cells. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020773. [PMID: 36677836 PMCID: PMC9866934 DOI: 10.3390/molecules28020773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
Hydrogen has the potential to be one of the solutions that can address environmental pollution and greenhouse emissions from traditional fossil fuels. However, high costs hinder its large-scale commercialization, particularly for enabling devices such as proton exchange membrane fuel cells (PEMFCs). The precious metal Pt is indispensable in boosting the oxygen reduction reaction (ORR) in cathode electrocatalysts from the most crucial component, i.e., the membrane electrode assembly (MEA). MEAs account for a considerable amount of the entire cost of PEMFCs. To address these bottlenecks, researchers either increase Pt utilization efficiency or produce MEAs with enhanced performance but less Pt. Only a few reviews that explain the approaches are available. This review summarizes advances in designing nanocatalysts and optimizing the catalyst layer structure to achieve low-Pt loading MEAs. Different strategies and their corresponding effectiveness, e.g., performance in half-cells or MEA, are summarized and compared. Finally, future directions are discussed and proposed, aiming at affordable, highly active, and durable PEMFCs.
Collapse
|
16
|
Zhao J, Lian J, Zhao Z, Wang X, Zhang J. A Review of In-Situ Techniques for Probing Active Sites and Mechanisms of Electrocatalytic Oxygen Reduction Reactions. NANO-MICRO LETTERS 2022; 15:19. [PMID: 36580130 PMCID: PMC9800687 DOI: 10.1007/s40820-022-00984-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/16/2022] [Indexed: 06/03/2023]
Abstract
Electrocatalytic oxygen reduction reaction (ORR) is one of the most important reactions in electrochemical energy technologies such as fuel cells and metal-O2/air batteries, etc. However, the essential catalysts to overcome its slow reaction kinetic always undergo a complex dynamic evolution in the actual catalytic process, and the concomitant intermediates and catalytic products also occur continuous conversion and reconstruction. This makes them difficult to be accurately captured, making the identification of ORR active sites and the elucidation of ORR mechanisms difficult. Thus, it is necessary to use extensive in-situ characterization techniques to proceed the real-time monitoring of the catalyst structure and the evolution state of intermediates and products during ORR. This work reviews the major advances in the use of various in-situ techniques to characterize the catalytic processes of various catalysts. Specifically, the catalyst structure evolutions revealed directly by in-situ techniques are systematically summarized, such as phase, valence, electronic transfer, coordination, and spin states varies. In-situ revelation of intermediate adsorption/desorption behavior, and the real-time monitoring of the product nucleation, growth, and reconstruction evolution are equally emphasized in the discussion. Other interference factors, as well as in-situ signal assignment with the aid of theoretical calculations, are also covered. Finally, some major challenges and prospects of in-situ techniques for future catalysts research in the ORR process are proposed.
Collapse
Affiliation(s)
- Jinyu Zhao
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Jie Lian
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Zhenxin Zhao
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Xiaomin Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China.
| | - Jiujun Zhang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China.
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
17
|
Li F, Du M, Xiao X, Xu Q. Self-Supporting Metal-Organic Framework-Based Nanoarrays for Electrocatalysis. ACS NANO 2022; 16:19913-19939. [PMID: 36399093 DOI: 10.1021/acsnano.2c09396] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The replacement of powdery catalysts with self-supporting alternatives for catalyzing various electrochemical reactions is extremely important for the large-scale commercial application of renewable energy storage and conversion technologies. Metal-organic framework (MOF)-based nanoarrays possess tunable compositions, well-defined structure, abundant active sites, effective mass and electron transport, etc., which enable them to exhibit superior electrocatalytic performance in multiple electrochemical reactions. This review presents the latest research progress in developing MOF-based nanoarrays for electrocatalysis. We first highlight the structural features and electrocatalytic advantages of MOF-based nanoarrays, followed by a detailed summary of the design and synthesis strategies of MOF-based nanoarrays, and then describe the recent progress of their application in various electrocatalytic reactions. Finally, the challenges and perspectives are discussed, where further exploration into MOF-based nanoarrays will facilitate the development of electrochemical energy conversion technologies.
Collapse
Affiliation(s)
- Fayan Li
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Department of Chemistry, Department of Materials Science and Engineering and Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Meng Du
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Department of Chemistry, Department of Materials Science and Engineering and Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Xin Xiao
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Department of Chemistry, Department of Materials Science and Engineering and Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Department of Chemistry, Department of Materials Science and Engineering and Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
18
|
Chu C, Tang J, Zhao Z, Kong Y, Shen X. Fe Ions-Doped TiO 2 Aerogels as Catalysts of Oxygen Reduction Reactions in Alkaline Solutions. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8380. [PMID: 36499876 PMCID: PMC9739684 DOI: 10.3390/ma15238380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Aerogels have interconnected networks and preeminent pore structures. When used as the catalysts for oxygen reduction reaction (ORR), they can facilitate the mass transfer and expose more active sites. Here, we synthesized the Fe-doped titanium oxide-based aerogels (TA/Fes) by the sol-gel method combined with thermal treatment. The specific surface areas of the TA/Fes ranged from 475 to 774 m2·g-1, and the pore volumes varied from 0.96 to 1.72 cm3·g-1. The doping effect of the Fe ions and the oxygen vacancies in anatase enhance the electrical conductivity, leading to the low Rct (313.3-828.2 Ω). All samples showed excellent stability (2.0-4.5 mV) and 4e- pathway. The limiting current density of TA/Fe3 reached 5.34 mA·cm-2, which was comparable to that of commercial Pt/C. The preparation method is inspiring and the as-prepared aerogel catalysts have potential in promoting the scale of fuel cells.
Collapse
Affiliation(s)
- Chen Chu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 210009, China
| | - Jinqiong Tang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 210009, China
| | - Zhiyang Zhao
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 210009, China
| | - Yong Kong
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 210009, China
| | - Xiaodong Shen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 210009, China
| |
Collapse
|
19
|
Marinoiu A, Ion-Ebrasu D, Soare A, Raceanu M. Iodine-Doped Graphene Oxide: Fast Single-Stage Synthesis and Application as Electrocatalyst. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15176174. [PMID: 36079555 PMCID: PMC9457577 DOI: 10.3390/ma15176174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 05/12/2023]
Abstract
Iodine-doped graphene oxide is attracting great attention as fuel cell (FC) electrocatalysts with a high activity for the oxygen reduction reaction (ORR). However, most of the reported preparation techniques for iodine-doped graphene (I/rGO) could be transposed into practice as multiple step procedures, a significant disadvantage for scale-up applications. Herein, we describe an effective, eco-friendly, and fast technique for synthesis by a microwave-tuned one-stage technique. Structural and morphological characterizations evidenced the obtaining of nanocomposite sheets, with iodine bonded in the graphene matrix. The ORR performance of I/rGO was electrochemically investigated and the enhancement of the cathodic peak was noted. Based on the noteworthy electrochemical properties for ORR activity, the prepared I/rGO can be considered an encouraging alternative for a more economical electrode for fuel cell fabrication and commercialization. In this perspective, the iodine-based catalysts synthesis can be considered a step forward for the metal-free electrocatalysts development for the oxygen reduction reaction in fuel cells.
Collapse
|
20
|
Zhao T, Wei S, Niu S, Wu Q, Liu K, Ma Z, Huang Y, Wang H, Cai Y, Li Q. Thermal Migration Promotes the Formation of Manganese and Nitrogen Doped Polyhedral Surface for Boosted Oxygen Reduction Electrocatalysis. Inorg Chem 2022; 61:13165-13173. [PMID: 35943289 DOI: 10.1021/acs.inorgchem.2c01943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Increasing the oxygen reduction reaction (ORR) catalytic activity of carbon-based electrocatalysts with robust stability is of great significance for their application. Herein, a feasible thermal migration strategy was proposed to construct manganese- and nitrogen-doped carbonaceous polyhedron frameworks coupled with manganese monoxide microrods (MnO-NC). Mn species were migrated to the surface of polyhedron frameworks, the shape of which was maintained at the high-temperature treatment. The Mn thermal migration not only created highly dispersed Mn-Nx active sites but also promoted graphitization, which benefited ORR electrocatalysis. Moreover, the MnO microrod-supported polyhedron frameworks provide beneficial mass transfer channels for electrocatalysis. Therefore, MnO-NC exhibited impressive ORR catalytic activity and stability in both alkaline and neutral electrolytes compared to commercial Pt/C catalysts. A magnesium-air battery (MAB) driven by MnO-NC delivered a high open circuit voltage and peak power density comparable to that driven by Pt/C. Notably, MnO-NC-driven MAB possessed a longer discharge time than the Pt/C-driven one, indicative of the superior catalytic performance of Mn-NC. This work provides a simple but effective strategy to construct carbonaceous framework electrocatalysts for boosted ORR, promoting the widespread application of metal-air batteries and fuel cells.
Collapse
Affiliation(s)
- Tong Zhao
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Sisi Wei
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shaoyang Niu
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Qiang Wu
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Kui Liu
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Zhaoling Ma
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Youguo Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Hongqiang Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yezheng Cai
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Qingyu Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
21
|
An Efficient Electrocatalyst (PtCo/C) for the Oxygen Reduction Reaction. Catalysts 2022. [DOI: 10.3390/catal12070794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The oxygen reduction reaction (ORR) is paid much more attention because of the high overpotential required for driving the four-electron process in the field of storage and sustainable energy conversion, including fuel cell applications. In this paper, PtCo nanoparticles encapsulated on carbon supports were prepared by a simple modified polyol method with ethylene glycol. Structural as well as electrochemical characterizations illustrated that the PtCo/C electrocatalysts had a minimum particle size of 4.8 nm, which is close to the commercial 40 wt% Pt/JM. Moreover, the electrochemical measurements indicated that ORR activity was competitive with the commercial 40 wt% Pt/JM catalyst. The synthesis method is a critical way to produce PtCo/C catalysts for use in polymer electrolyte membranes in fuel cells (PEMFCs).
Collapse
|
22
|
Abstract
Fuel cells (FCs) have received huge attention for development from lab and pilot scales to full commercial scale. This is mainly due to their inherent advantage of direct conversion of chemical energy to electrical energy as a high-quality energy supply and, hence, higher conversion efficiency. Additionally, FCs have been produced at a wide range of capacities with high flexibility due to modularity characteristics. Using the right materials and efficient manufacturing processes is directly proportional to the total production cost. This work explored the different components of proton exchange membrane fuel cells (PEMFCs) and their manufacturing processes. The challenges associated with these manufacturing processes were critically analyzed, and possible mitigation strategies were proposed. The PEMFC is a relatively new and developing technology so there is a need for a thorough analysis to comprehend the current state of fuel cell operational characteristics and discover new areas for development. It is hoped that the view discussed in this paper will be a means for improved fuel cell development.
Collapse
|
23
|
Wu Q, Jia Y, Liu Q, Mao X, Guo Q, Yan X, Zhao J, Liu F, Du A, Yao X. Ultra-dense carbon defects as highly active sites for oxygen reduction catalysis. Chem 2022. [DOI: 10.1016/j.chempr.2022.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
24
|
Kochergin VK, Manzhos RA, Khodos II, Krivenko AG. One-step synthesis of nitrogen-doped few-layer graphene structures decorated with Mn1.5Co1.5O4 nanoparticles for highly efficient electrocatalysis of oxygen reduction reaction. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
25
|
Thangarasu S, Oh TH. Impact of Polymers on Magnesium-Based Hydrogen Storage Systems. Polymers (Basel) 2022; 14:2608. [PMID: 35808653 PMCID: PMC9269507 DOI: 10.3390/polym14132608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
In the present scenario, much importance has been provided to hydrogen energy systems (HES) in the energy sector because of their clean and green behavior during utilization. The developments of novel techniques and materials have focused on overcoming the practical difficulties in the HES (production, storage and utilization). Comparatively, considerable attention needs to be provided in the hydrogen storage systems (HSS) because of physical-based storage (compressed gas, cold/cryo compressed and liquid) issues such as low gravimetric/volumetric density, storage conditions/parameters and safety. In material-based HSS, a high amount of hydrogen can be effectively stored in materials via physical or chemical bonds. In different hydride materials, Mg-based hydrides (Mg-H) showed considerable benefits such as low density, hydrogen uptake and reversibility. However, the inferior sorption kinetics and severe oxidation/contamination at exposure to air limit its benefits. There are numerous kinds of efforts, like the inclusion of catalysts that have been made for Mg-H to alter the thermodynamic-related issues. Still, those efforts do not overcome the oxidation/contamination-related issues. The developments of Mg-H encapsulated by gas-selective polymers can effectively and positively influence hydrogen sorption kinetics and prevent the Mg-H from contaminating (air and moisture). In this review, the impact of different polymers (carboxymethyl cellulose, polystyrene, polyimide, polypyrrole, polyvinylpyrrolidone, polyvinylidene fluoride, polymethylpentene, and poly(methyl methacrylate)) with Mg-H systems has been systematically reviewed. In polymer-encapsulated Mg-H, the polymers act as a barrier for the reaction between Mg-H and O2/H2O, selectively allowing the H2 gas and preventing the aggregation of hydride nanoparticles. Thus, the H2 uptake amount and sorption kinetics improved considerably in Mg-H.
Collapse
Affiliation(s)
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
26
|
Immobilized Non-Precious Electrocatalysts for Advanced Energy Devices. Catalysts 2022. [DOI: 10.3390/catal12060607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The expected near depletion of fossil fuels encourages both the research and industrial communities to focus their efforts to find effective and sustainable alternatives [...]
Collapse
|
27
|
Pt-Based Multimetal Electrocatalysts and Potential Applications: Recent Advancements in the Synthesis of Nanoparticles by Modified Polyol Methods. CRYSTALS 2022. [DOI: 10.3390/cryst12030375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In our review, we have presented a summary of the research accomplishments of nanostructured multimetal-based electrocatalysts synthesized by modified polyol methods, especially the special case of Pt-based nanoparticles associated with increasing potential applications for batteries, capacitors, and fuel cells. To address the problems raised in serious environmental pollution, disease, health, and energy shortages, we discuss and present an improved polyol process used to synthesize nanoparticles from Pt metal to Pt-based bimetal, and Pt-based multimetal catalysts in the various forms of alloy and shell core nanostructures by practical experience, experimental skills, and the evidences from the designed polyol processes. In their prospects, there are the micro/nanostructured variants of hybrid Pt/nanomaterials, typically such as Pt/ABO3-type perovskite, Pt/AB2O4-type ferrite, Pt/CoFe2O4, Pt/oxide, or Pt/ceramic by modified polyol processes for the development of electrocatalysis and energy technology. In the future, we suggest that both the polyol and the sol-gel processes of diversity and originality, and with the use of various kinds of water, alcohols, polyols, other solvents, reducing agents, long-term capping and stabilizing agents, and structure- and property-controlling agents, are very effectively used in the controlled synthesis of micro/nanoparticles and micro/nanomaterials. It is understood that at the levels of controlling and modifying molecules, ions, atoms, and nano/microscales, the polyol or sol-gel processes, and their technologies are effectively combined in bottom-up and top-down approaches, as are the simplest synthetic methods of physics, chemistry, and biology from the most common aqueous solutions as well as possible experimental conditions.
Collapse
|
28
|
Wang S, Liu Y, Liu X, Chen Y, Zhao Y, Gao S. Fabricating N, S Co‐Doped Hierarchical Macro‐Meso‐Micro Carbon Materials as pH‐Universal ORR Electrocatalysts**. ChemistrySelect 2022. [DOI: 10.1002/slct.202200044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shouting Wang
- School of Materials Science and Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Yang Liu
- School of Materials Science and Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Xupo Liu
- School of Materials Science and Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Ye Chen
- School of Materials Science and Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Yaling Zhao
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Shuyan Gao
- School of Materials Science and Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| |
Collapse
|
29
|
Zhao M, Gan G, Zhang Q. Different Bonding Defects on Dual-Metal Single-Atom Electrocatalyst CoZnN6(OH) for Oxygen Reduction Reaction. Chemphyschem 2022; 23:e202100902. [PMID: 35170167 DOI: 10.1002/cphc.202100902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/14/2022] [Indexed: 11/11/2022]
Abstract
Since dual-metal single-atom catalyst (CoZnN/C) has been experimentally synthesized by atomically arching CoZn on N-doped carbon nanofibers and exhibited potential electrocatalysis activity toward oxygen reduction reaction (ORR), we perform first-principles calculation to identify the high active sites at different defects by comparing the four-step ORR processes on the constructed four CoZnN 6 models on graphene. The corresponding N-edge effect, dopant effect and C-edge ring-closing effect are evaluated with the ORR evolution on different bonding environments, including pristine CoZnN 6 (OH), nanoribbon (NR) along zigzag direction, substitution of oxygen/carbon (C/O substitution), and C-edge ring-closing configurations. OH-ligand is shown to significantly improve the ORR activities for all the considered structures, especially, C-substituted CoZnN 6 (OH), NR-CoZnN 5 O(OH) and CoZnN 6 (OH) with C-edge-effect exhibit obviously reduced overpotentials (h lim = 0.28, 0.48 and 0.41 V) of RDS among all the considered nine candidates. By plotting the relationship between the limiting potentials (U lim ) and free energies of intermediate *OH (DG OH* ), two prior catalysts of pristine-CoZnN 5 C(OH) and defect-CoZnN 6 CH(OH) are located near the top of the volcano curve with higher U lim = 0.95 and 0.82 V than Pt(111) (U lim = 0.80 V), implying that C-substitution could facilitate ORR performance in pristine- and defect-CoZnN 6 (OH) bonding situation.
Collapse
Affiliation(s)
- Mengyuan Zhao
- Kunming University of Science and Technology - Lianhua Campus: Kunming University of Science and Technology, Faculty of Metallurgical and Energy Engineering, CHINA
| | - Guoyou Gan
- Kunming University of Science and Technology, Faculty of Metallurgical and Energy Engineering, CHINA
| | | |
Collapse
|
30
|
Yang S, Cheng Y, Liu H, Huang X. Catalytic activity of Ru‐N
4
doped vacancy fullerenes (Ru‐N
4
‐C
54
and Ru‐N
4
‐C
64
) for oxygen reduction and CO oxidation: A density functional theory investigation. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Siwei Yang
- Laboratory of Theoretical and Computational Chemistry Institute of Theoretical Chemistry, Jilin University Liutiao Road 2 Changchun 130023 China
| | - Yaxuan Cheng
- Laboratory of Theoretical and Computational Chemistry Institute of Theoretical Chemistry, Jilin University Liutiao Road 2 Changchun 130023 China
| | - Huiling Liu
- Laboratory of Theoretical and Computational Chemistry Institute of Theoretical Chemistry, Jilin University Liutiao Road 2 Changchun 130023 China
| | - Xuri Huang
- Laboratory of Theoretical and Computational Chemistry Institute of Theoretical Chemistry, Jilin University Liutiao Road 2 Changchun 130023 China
| |
Collapse
|
31
|
Zhou Y, Abazari R, Chen J, Tahir M, Kumar A, Ikreedeegh RR, Rani E, Singh H, Kirillov AM. Bimetallic metal–organic frameworks and MOF-derived composites: Recent progress on electro- and photoelectrocatalytic applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214264] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
32
|
Renzi M, Nobili F, Miecznikowski K, Kostuch A, Wadas A, Rutkowska IA, Kulesza PJ. Activation of bimetallic PtFe nanoparticles with zeolite-type cesium salts of vanadium-substituted polyoxometallates toward electroreduction of oxygen at low Pt loadings for fuel cells. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-05088-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
AbstractThe catalytic activity of commercial carbon-supported PtFe (PtFe/C) nanoparticles admixed with mesoporous polyoxometalate Cs3H3PMo9V3O40, (POM3-3–9), has been evaluated towards oxygen reduction reaction (ORR) in acid medium. The polyoxometalate cesium salt co-catalyst/co-support has been prepared by titration using the aqueous solution of phosphovanadomolibdic acid. The synthesized material has been characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results confirm formation of the polyoxometalate salt with the characteristic Keggin-type structure. The composite catalyst has been prepared by mixing the POM3-3–9 sample with the commercial PtFe/C by sonication. The diagnostic rotating ring-disk voltammetric studies are consistent with good performance of the system with low Pt loading during ORR. The fuel cell membrane electrode assembly (MEA) utilizing the PtFe/POM-based cathode has exhibited comparable or better performance (at relative humidity on the level of 100, 62, and 17%), in comparison to the commercial MEA with higher Pt loading at the cathode. Furthermore, based on the cell potential and power density polarization curves, noticeable improvements in the fuel cell behavior have been observed at the low relative humidity (17%). Finally, the accelerated stress test, which uses the potential square wave between 0.4 V and 0.8 V, has been performed to evaluate MEA stability for at least 100 h. It has been demonstrated that, after initial losses, the proposed catalytic system seems to retain stable performance and good morphological rigidity.
Collapse
|
33
|
Samireddi S, Aishwarya V, Shown I, Muthusamy S, Unni SM, Wong KT, Chen KH, Chen LC. Synergistic Dual-Atom Molecular Catalyst Derived from Low-Temperature Pyrolyzed Heterobimetallic Macrocycle-N4 Corrole Complex for Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103823. [PMID: 34665522 DOI: 10.1002/smll.202103823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/21/2021] [Indexed: 06/13/2023]
Abstract
A heterobimetallic corrole complex, comprising oxygen reduction reaction (ORR) active non-precious metals Co and Fe with a corrole-N4 center (PhFCC), is successfully synthesized and used to prepare a dual-atom molecular catalyst (DAMC) through subsequent low-temperature pyrolysis. This low-temperature pyrolyzed electrocatalyst exhibited impressive ORR performance, with onset potentials of 0.86 and 0.94 V, and half-wave potentials of 0.75 and 0.85 V, under acidic and basic conditions, respectively. During potential cycling, this DAMC displayed half-wave potential losses of only 25 and 5 mV under acidic and alkaline conditions after 3000 cycles, respectively, demonstrating its excellent stability. Single-cell Nafion-based proton exchange membrane fuel cell performance using this DAMC as the cathode catalyst showed a maximum power density of 225 mW cm-2 , almost close to that of most metal-N4 macrocycle-based catalysts. The present study showed that preservation of the defined CoN4 structure along with the cocatalytic Fe-Cx site synergistically acted as a dual ORR active center to boost overall ORR performance. The development of DAMC from a heterobimetallic CoN4-macrocyclic system using low-temperature pyrolysis is also advantageous for practical applications.
Collapse
Affiliation(s)
- Satyanarayana Samireddi
- CSIR-Central Electrochemical Research Institute, CSIR Madras Complex, Chennai, 600113, India
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - V Aishwarya
- CSIR-Central Electrochemical Research Institute, CSIR Madras Complex, Chennai, 600113, India
| | - Indrajit Shown
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- Department of Chemistry, Hindustan Institute of Technology and Science, Chennai, 603103, India
| | - Saravanakumar Muthusamy
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
| | - Sreekuttan M Unni
- CSIR-Central Electrochemical Research Institute, CSIR Madras Complex, Chennai, 600113, India
| | - Ken-Tsung Wong
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Kuei-Hsien Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Li-Chyong Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
34
|
Kumar A, Ibraheem S, Anh Nguyen T, Gupta RK, Maiyalagan T, Yasin G. Molecular-MN4 vs atomically dispersed M−N4−C electrocatalysts for oxygen reduction reaction. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214122] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|