1
|
Huang S, Cao Y, Liang C, Li M, Yao H, Ye KH, Huang Z, Meng J, Zhang S. Oxygen doping-triggered electron redistribution in cobalt-rich sulfide for efficient electrocatalytic water splitting. J Colloid Interface Sci 2025; 690:137382. [PMID: 40121841 DOI: 10.1016/j.jcis.2025.137382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Cobalt-rich sulfide (Co9S8) holds great promise as an electrocatalyst for water splitting, but its performance for hydrogen evolution reaction (HER) in alkaline and neutral media is limited by sluggish water dissociation kinetics. Herein, we find that moderate oxygen doping within Co9S8, preferentially at the interstitial sites, triggers significant electron redistribution via Co-O-S bridges, which decreases the local electron density of Co and S sites. This treatment enhances H2O adsorption and dissociation at the Co-sites and optimizes H* adsorption/desorption at the S-sites, notably on the high-index (311) facet, thus accelerating the water dissociation kinetics. The oxygen-doped Co9S8 catalyst, dominated by the (311) crystal plane, demonstrates remarkable HER activity and stability in alkaline solution, with a low overpotential of 142 mV at 10 mA cm-2 and a Tafel slope of 96 mV dec-1, outperforming most Co9S8-based catalysts. Under neutral condition, it exhibits a low overpotential of 264 mV at 10 mA cm-2. Further applied in an anion exchange membrane water electrolyzer, it reaches 150mA cm-2 at 1.70 V, surpassing the commercial Pt/C (134 mA cm-2). This oxygen doping-triggered electron redistribution strategy paves new ways for developing highly efficient transition metal-based electrocatalysts for sustainable energy applications.
Collapse
Affiliation(s)
- Senchuan Huang
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yangfei Cao
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Chaolun Liang
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou 510275, China
| | - Meng Li
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Honghu Yao
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Kai-Hang Ye
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zimo Huang
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Junxia Meng
- School of Physics and Electronics, Gannan Normal University, Ganzhou 341000, China
| | - Shanqing Zhang
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
2
|
Li Y, Liu Z, Zhang L, Chen J, Wang S, Ma M, Yin Z, Man Z, Yi D, Wang Z, Tang A. Boosting Photocatalytic Hydrogen Evolution of 2D Multinary Copper Chalcogenide Nanocrystals Enabled by Tuning Metal Precursors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2501503. [PMID: 40143587 DOI: 10.1002/smll.202501503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/13/2025] [Indexed: 03/28/2025]
Abstract
It is challenging to clarify modulation mechanisms and structure-activity relationships in the ion-regulation engineering of multinary copper chalcogenide nanocrystals (NCs) for solar-to-hydrogen conversion. Herein, quaternary 2D Cu-In-Zn-S NCs are fabricated using various indium precursors to expose a high proportion of (0002) crystal facets that are positively correlated with their photocatalytic activities. Theoretical calculations demonstrate that the specific adsorption of anions on the crystal facets significantly influences their anisotropic growth and, in turn, photocatalytic performance. Furthermore, 2D Cu-In-Ga-Zn-S (CIGZS) NCs are prepared by partially or completely substituting In3+ with Ga3+ cations. As the Ga3⁺ content gradually increases, the resulting photocatalytic activities follow a bell-shaped trend. The initial increase is attributed to a synergistic effect of optimized catalytic ability and a stronger electron driving force introduced by Ga3⁺ incorporation. However, excessive Ga3⁺ substitution widens the bandgap, reducing light absorption and conversion, ultimately leading to a decline in photocatalytic activities. Notably, the photocatalytic activity of Cu-Ga-Zn-S NCs with the highest hydrogen evolution rate of 1566.8 µmol g-1 h-1 under visible light surpassed those of all In-based NCs due to enhanced electron-hole separation efficiency and highly effective active sites. This study provides valuable insights into the rational design of multinary copper-based photocatalysts for solar-driven hydrogen production.
Collapse
Affiliation(s)
- Yu Li
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Sciences and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Zheming Liu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Sciences and Engineering, Beijing Jiaotong University, Beijing, 100044, China
- Nanochemistry, Istituto Italiano di Tecnologia, Genova, 16163, Italy
| | - Liya Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Sciences and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Jie Chen
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Sciences and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Shuaibing Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Sciences and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Mengmeng Ma
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhe Yin
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Sciences and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Zhongwei Man
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Sciences and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Ding Yi
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Sciences and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Zhijie Wang
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aiwei Tang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Sciences and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| |
Collapse
|
3
|
Xu D, Li X, Liu Z, Wang Q, Tian D, Liu W, Qu Z. Crystal Field Stabilization Energy Asymmetrically Constructed Built-in Electric Fields for Efficient Water Cracking. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502250. [PMID: 40272110 DOI: 10.1002/smll.202502250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/13/2025] [Indexed: 04/25/2025]
Abstract
Efficient bifunctional electrocatalysts for hydrogen and oxygen evolution reactions (HER and OER) play crucial roles in water electrolysis. However, the discrepancy in binding affinities of catalytic sites to O/H-contained intermediates makes it difficult to achieve OER and HER bifunctional catalysis simultaneously. Multi-component heterostructures have been demonstrated to be an effective solution to realize bifunctional electrocatalysts, but the division of labor and action mechanism of each component are not fully elucidated. Therefore, based on asymmetrical crystal field stabilization energy (CFSE) between NiS and Ni2P, the heterogeneous catalyst (NiS/Ni2P@NF) with built-in electric field (BEF) is constructed in this paper, which showed efficient bifocal water cracking. DFT calculation has confirmed that BEF causes the directional movement of electrons in the material, thus optimizing the OER/HER reaction path. Further control experiments indicated that NiS and Ni2P serves as the active species for the corresponding OER and HER, thus NiS/Ni2P@NF delivers a remarkably reduced cell voltage of 1.62 V (10 mA cm-2) within a H-type electrolyzer as both anode and cathode electrodes. The strategy of constructing BEF based on asymmetrical CFSE has the potential to precisely induce the local electron flow of the catalytic site and accurately design multifunctional catalysts with composition-function contrast.
Collapse
Affiliation(s)
- Dengji Xu
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xinran Li
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhenyan Liu
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qiang Wang
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Di Tian
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wei Liu
- China Energy Hydrogen Technology Co., Ltd., Beijing, 100007, China
| | - Zhiguo Qu
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
4
|
Luo Q, Lv Y, Zhang P, Zhao Z, Bao X, Gou L, Luo H, Fan X, Ma F. Interface engineering of hollow Janus-structured NiCoP/P-MoS 2 heterojunction as self-supported electrode enables boosted alkaline hydrogen evolution reaction. J Colloid Interface Sci 2025; 684:668-677. [PMID: 39813783 DOI: 10.1016/j.jcis.2025.01.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
Transition metal phosphorus (TMPs) and sulfides have attracted extensive attention as important candidates to replace noble metal-based hydrogen evolution (HER) catalysts. However, the insufficient specific surface area, low conductivity and easy detachments from electrode seriously affect the HER catalytic activity and stability. Herein, a novel self-supported hollow Janus-structured NiCoP/P-MoS2 heterojunction is designed on carbon cloth (CC) as high-performance electrocatalyst for alkaline HER. The binder-free NiCoP/P-MoS2/CC electrode with well-dispersed hollow structure exhibits acceptable durability and low overpotential, which requires overpotential of 52.6 mV to reach 10 mA cm-2, far superior to that of NiCoP/CC (111.2 mV), P-MoS2/CC (213.3 mV) electrode and also the corresponding NiCoP/P-MoS2 powder catalyst (113.1 mV). Experimental and theoretical results confirm that heterointerface interaction can improve the electronic state, accelerate charge transfer and optimize hydrogen adsorption energy, resulting in boosted HER kinetic process. Additionally, self-supported strategy is conducive to tightly anchoring high-quality active substances with well-organized hollow array structure, which significantly prevents the catalyst agglomeration and shedding, leading to the improved HER stability. This work offers valuable insights into the catalytic mechanisms and provides an avenue for designing hierarchical architecture for highly efficient and stable HER electrocatalysts.
Collapse
Affiliation(s)
- Qiaomei Luo
- School of Materials Science and Engineering, Chang'an University, Xi'an 710061 China.
| | - Yuanjiang Lv
- School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049 China
| | - Peng Zhang
- School of Materials Science and Engineering, Chang'an University, Xi'an 710061 China
| | - Zipu Zhao
- School of Materials Science and Engineering, Chang'an University, Xi'an 710061 China
| | - Xiaobing Bao
- School of Materials Science and Engineering, Chang'an University, Xi'an 710061 China
| | - Lei Gou
- School of Materials Science and Engineering, Chang'an University, Xi'an 710061 China
| | - Hao Luo
- School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049 China
| | - Xiaoyong Fan
- School of Materials Science and Engineering, Chang'an University, Xi'an 710061 China.
| | - Fei Ma
- School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049 China.
| |
Collapse
|
5
|
Ding H, Liu D, Liu X, Zhang L, Xu G. Tuning the electronic-state of metal cobalt/cobalt iron alloy hetero-interface embedded in nitrogen-doped carbon nanotube arrays for boosting electrocatalytic overall water splitting. J Colloid Interface Sci 2025; 682:392-402. [PMID: 39631311 DOI: 10.1016/j.jcis.2024.11.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/14/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
Maximizing the utilization of active sites and tuning the electronic-state are crucial yet extremely challenging in enhancing the ability of alloy-based catalysts to catalyze hydrogen and oxygen evolution reactions (HER and OER). Here, the 3D self-supported N-doped carbon nanotube arrays (NCNTAs) was synthesized on Ni foam by the drop-casting and calcination method, where the metal Co and Co7Fe3 alloy were enclosed at the NCNT tip (denoted as Co/Co7Fe3@NCNT/NF). The Co/Co7Fe3 hetero-interface formation led to changes in the electronic state, which can optimize the adsorption free energy of reaction intermediates and thereby boost the intrinsic catalytic performance. The well-dispersed carbon nanotube arrays with superhydrophilic and superaerophobic characteristic promotes electrolyte permeation and bubbles escape. Therefore, the optimized Co/Co7Fe3-10@NCNT/NF exhibits superior bifunctional activities with overpotential of 93 and 174 mV at 10 mA cm-2 for HER and OER, respectively. For overall water splitting (OWS), the assembled dual electrode device with Co/Co7Fe3-10@NCNT/NF only requires a low voltage of 1.56 V to achieve 10 mA cm-2 and stabilizes for 24 h at 100 mA cm-2. The result underscores the importance of hetero-interface electronic effect and carbon nanotube arrays in catalytic water splitting, providing valuable insights for the design of more advanced bifunctional electrocatalysts for OWS.
Collapse
Affiliation(s)
- Hui Ding
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Dejiang Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Xia Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Li Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China; College of Chemical Engineering, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| | - Guancheng Xu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| |
Collapse
|
6
|
Li S, Ye L, Cen W, Sun D. Electrocatalytic biomass upgrading coupled with hydrogen evolution and CO 2 reduction. NANOSCALE 2025; 17:6308-6328. [PMID: 39937545 DOI: 10.1039/d4nr04433a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Clean energy production and CO2 utilization have attracted increasing interest. Electrocatalysis represents an effective way to produce green hydrogen from water and reduce CO2 to valuable compounds. However, for either the hydrogen evolution reaction (HER) or the CO2 reduction reaction (CO2RR), the reaction efficiency is significantly limited by the slow kinetics of the oxygen evolution reaction (OER) at the anode, which consumes most of the input energy. Therefore, great efforts have been made to replace the OER with organic oxidation reactions at the anode to decrease the reaction energy barrier. Biomass has an advantage of broad source, and when it is employed as an OER alternative in the anode oxidation reactions, not only can the reduction reaction efficiency at the cathode including the HER and CO2RR be enhanced but high-value chemicals can also be obtained, representing an attractive OER alternative. This review comprehensively summarizes the recent achievements in electrocatalytic biomass upgrading coupled with the HER and CO2RR, cataloged based on the type of biomass. The design of electrocatalysts for such coupled reaction systems is discussed. Finally, the challenges and perspectives in the field of this energy-saving and value-added coupling system are provided to inspire more efforts in pushing forward the development of this field.
Collapse
Affiliation(s)
- Shuke Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lin Ye
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| | - Wanglai Cen
- Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu 610065, P. R. China
| | - Dengrong Sun
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
7
|
Wang J, Yang G, Jiao Y, Yan H, Fu H. Subtle 2D/2D MXene-Based Heterostructures for High-Performance Electrocatalytic Water Splitting. SMALL METHODS 2025; 9:e2301602. [PMID: 38385824 DOI: 10.1002/smtd.202301602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/11/2024] [Indexed: 02/23/2024]
Abstract
Developing efficient electrocatalysts is significant for the commercial application of electrocatalytic water splitting. 2D materials have presented great prospects in electrocatalysis for their high surface-to-volume ratio and tunable electronic properties. Particularly, MXene emerges as one of the most promising candidates for electrocatalysts, exhibiting unique advantages of hydrophilicity, outstanding conductivity, and exceptional stability. However, it suffers from lacking catalytic active sites, poor oxidation resistance, and easy stacking, leading to a significant suppression of the catalytic performance. Combining MXene with other 2D materials is an effective way to tackle the aforementioned drawbacks. In this review, the focus is on the accurate synthesis of 2D/2D MXene-based catalysts toward electrocatalytic water splitting. First, the mechanisms of electrocatalytic water splitting and the relative properties and preparation methods of MXenes are introduced to offer the basis for accurate synthesis of 2D/2D MXene-based catalysts. Then, the accurate synthesis methods for various categories of 2D/2D MXene-based catalysts, such as wet-chemical, phase-transformation, electrodeposition, etc., are systematically elaborated. Furthermore, in-depth investigations are conducted into the internal interactions and structure-performance relationship of 2D/2D MXene-based catalysts. Finally, the current challenges and future opportunities are proposed for the development of 2D/2D MXene-based catalysts, aiming to enlighten these promising nanomaterials for electrocatalytic water splitting.
Collapse
Affiliation(s)
- Jiaqi Wang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Ganceng Yang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Yanqing Jiao
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Haijing Yan
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Honggang Fu
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| |
Collapse
|
8
|
Zhou C, Cui W, Cui S, Li G, Han L. MOF-Derived Co(Fe)OOH Slab and Co/MoN Nanosheet-Covered Hollow-Slab for Efficient Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69368-69378. [PMID: 39630086 DOI: 10.1021/acsami.4c15634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The development of economical, efficient, and stable nonprecious metal electrocatalysts presents a crucial approach to achieving alkaline overall water splitting and generating renewable hydrogen. This work presents a simple method for the synthesis of transition metal oxyhydroxides and nitrides derived from the MOF template with different morphological structures for efficient overall water splitting. Co(Fe)OOH slab array is obtained by the electro-activation of Fe-doped Co-MOF precursor, which is usually regarded as the real active substance in the alkaline OER process. Doping the Co(Fe)OOH with Fe alters the local electronic structure of the Co sites, leading to a notable improvement in OER performance, which shows an overpotential of 209 mV at 10 mA cm-2 and demonstrates excellent stability. On the other hand, Co/MoN nanosheet-covered hollow-slab heterostructure is prepared by the nitrogenization of Na2MoO4-etched Co-MOF template, which displays superior HER performance due to its abundant electrochemical active sites and rapid interfacial electron transfer, achieving an overpotential of 37 mV at 10 mA cm-2 while sustaining good stability. Notably, utilizing Co(Fe)OOH as the anode and Co/MoN as the cathode in the alkaline electrolyzer results in a cell voltage of 1.49 V at 10 mA cm-2, while demonstrating a remarkable long-term stability of 100 h. This work provides a facile way to construct an efficient alkaline electrolyzer for overall water splitting by controlling the structures of MOF derivatives.
Collapse
Affiliation(s)
- Chenyue Zhou
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Wan Cui
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Shuangxing Cui
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Guochang Li
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Lei Han
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
9
|
Gao L, Wu D, Li S, Li H, Ma D. Graphene-supported MN 4 single-atom catalysts for multifunctional electrocatalysis enabled by axial Fe tetramer coordination. J Colloid Interface Sci 2024; 676:261-271. [PMID: 39029252 DOI: 10.1016/j.jcis.2024.07.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Multifunctional electrocatalysts for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) are crucial for development of the key electrochemical energy storage and conversion devices, for which single-atom catalyst (SAC) has present great promises. Very recently, some experimental works showed that structurally well-defined ultra-small transition-metal clusters (such as Fe and Co tetramers, denoted as Fe4 and Co4, respectively), can efficiently modulate the catalytic behavior of SACs by axial coordination. Herein, taking the graphene-supported MN4 SACs as representatives, we theoretically explored the feasibility of realizing multifunctional SACs for ORR, OER and HER by this novel axial coordination engineering. Through extensive first-principles calculations, from 23 candidates, IrN4 decorated with Fe4 (IrN4/Fe4) is identified as the promising trifunctional catalyst with the theoretical overpotential of 0.43, 0.51 and 0.30 V for OER, ORR and HER, respectively. RhN4/Fe4 and CoN4/Fe4 are recognized as potential OER and ORR bifunctional catalysts. In addition, NiN4/Fe4 exhibits the best ORR activity with an overpotential of 0.30 V, far superior to the pristine NiN4 SAC (0.88 V). Electronic structure analyses reveal that the significantly enhanced ORR/OER activity can be ascribed to the orbital and charge redistribution of Ni/Ir active center, resulting from its electronic interaction with Fe4 cluster. This work could stimulate and guide the rational design of graphene-based multifunctional SACs realized by axial coordination of small TM clusters, and provide insights into the modulation mechanism.
Collapse
Affiliation(s)
- Lulu Gao
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Donghai Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China; Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China.
| | - Silu Li
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Haobo Li
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China; Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, Anhui 235000, China.
| |
Collapse
|
10
|
Li X, Fang D, Yi J, Zhang L, Liu J, Liu F. Ti 3C 2T x MXene-supported ruthenium nanoclusters for efficient electrocatalytic hydrogen evolution. Dalton Trans 2024; 53:18549-18559. [PMID: 39469980 DOI: 10.1039/d4dt02600d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Developing an efficient and stable catalyst is both attractive and challenging for the electrochemical hydrogen evolution reaction (HER) due to the aggravation under the operating environment. MXene (Ti3C2Tx) is a potential catalyst support because of its abundant surface functional groups and unique hydrophilicity. However, anchoring noble metals onto MXene to construct high-performance electrocatalysts still presents some challenges. Herein, we present an MXene nanoparticle-supported Ru nanocluster (Ru@MXene-NP) electrocatalyst for HER. The Ru@MXene-NP not only effectively prohibits self-stacking but also ensures the full exposure of Ru nanoclusters. Thus, the Ru@MXene-NP catalyst exhibits an overpotential of 38.4 mV at 10 mA cm-2 and a Tafel slope of 26.4 mV dec-1 in an acidic medium, showcasing superior performance compared to most previously reported MXene-based catalysts. The small Tafel slope and low charge transfer resistance (Rct = 0.39 Ω) value indicate its fast electron transfer behavior. In addition, cyclic voltammetry curves and chronoamperometry tests demonstrate the high stability of Ru@MXene-NP. This work offers a novel perspective for designing catalysts by supporting noble metal nanoclusters on the MXene substrate's surface.
Collapse
Affiliation(s)
- Xuanyin Li
- Advanced Power Materials Innovation Team, Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China.
| | - Dong Fang
- Advanced Power Materials Innovation Team, Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China.
| | - Jianhong Yi
- Advanced Power Materials Innovation Team, Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China.
| | - Lang Zhang
- Advanced Power Materials Innovation Team, Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China.
| | - Jian Liu
- Yunnan Precious Metals Lab Co., Ltd., Kunming, Yunnan 650106, P. R. China
| | - Feng Liu
- Yunnan Precious Metals Lab Co., Ltd., Kunming, Yunnan 650106, P. R. China
| |
Collapse
|
11
|
Garstenauer D, Guggenberger P, Zobač O, Jirsa F, Richter KW. Active site engineering of intermetallic nanoparticles by the vapour-solid synthesis: carbon black supported nickel tellurides for hydrogen evolution. NANOSCALE 2024; 16:20168-20181. [PMID: 39400230 DOI: 10.1039/d4nr03397c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The development and design of catalysts have become a major pillar of latest research efforts to make sustainable forms of energy generation accessible. The production of green hydrogen by electrocatalytic water splitting is dealt as one of the most promising ways to enable decarbonization. To make the hydrogen evolution reaction through electrocatalytic water splitting usable on a large scale, the development of highly-active catalysts with long-term stability and simple producibility is required. Recently, nickel tellurides were found to be an interesting alternative to noble-metal materials. Previous publications dealt with individual nickel telluride species of certain compositions due to the lack of broadly applicable synthesis strategies. For the first time, in this work the preparation of carbon black supported nickel telluride nanoparticles and their catalytic performance for the electrocatalytic hydrogen evolution reaction in alkaline media is presented. The facile vapour-solid synthesis strategy enabled remarkable control over the crystal structure and composition, demonstrating interesting opportunities of active site engineering. Both single- and multi-phase samples containing the Ni-Te compounds Ni3Te2, NiTe, NiTe2-x & NiTe2 were prepared. Onset potentials and overpotentials of -0.145 V vs. RHE and 315 mV at 10 mA cm-2 respectively were achieved. Furthermore, it was found that the mass activity was dependent on the structure and composition of the nickel tellurides following the particular order: Ni3Te2 > NiTe > NiTe2-x > NiTe2.
Collapse
Affiliation(s)
- Daniel Garstenauer
- Department of Functional Materials & Catalysis, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Vienna Doctoral School in Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Patrick Guggenberger
- Department of Functional Materials & Catalysis, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Vienna Doctoral School in Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Ondřej Zobač
- Institute of Physics of Materials, Czech Academy of Sciences, Žižkova 22, 61600 Brno, Czech Republic
| | - Franz Jirsa
- Department of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Department of Zoology, University of Johannesburg, Auckland Park, 2006 Johannesburg, South Africa
| | - Klaus W Richter
- Department of Functional Materials & Catalysis, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- X-ray Structure Analysis Centre, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| |
Collapse
|
12
|
Kubińska L, Szkoda M, Skorupska M, Grabowska P, Gajewska M, Lukaszewicz JP, Ilnicka A. Combined effect of nitrogen-doped carbon and NiCo 2O 4 for electrochemical water splitting. Sci Rep 2024; 14:26930. [PMID: 39505972 PMCID: PMC11541751 DOI: 10.1038/s41598-024-74031-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/23/2024] [Indexed: 11/08/2024] Open
Abstract
Electrocatalytic water splitting for green hydrogen production necessitates effective electrocatalysts. Currently, commercial catalysts are primarily platinum-based. Therefore, finding catalysts with comparable catalytic activity but lower cost is essential. This paper describes spinel-structured catalysts containing nickel cobaltite NiCo2O4, graphene, and additionally doped with heteroatoms. The structure and elemental composition of the obtained materials were analyzed by research methods such as TEM, SEM-EDX, XRD, XPS, and Raman spectroscopy. The electrochemical measurements showed that hybrid materials containing nickel cobaltite NiCo2O4 doped with graphene are highly active catalysts in the hydrogen evolution reaction (Tafel slopes = 91 mV dec-1, overpotential = 468 mV and onset potential = -339 mV), while in the oxygen evolution reaction (Tafel slopes = 51 mV dec-1, overpotential = 1752 mV and onset potential = 370 mV), bare NiCo2O4 without the addition of carbon has a worse activity (for HER: Tafel slopes = 120 mV dec-1, overpotential - does not achieve and onset potential = -404 mV, for OER: Tafel slopes = 54 mV dec-1, overpotential = 1796 mV and onset potential = 410 mV). In terms of stability, comparable results were obtained for each synthesized compound for both the HER and OER reactions.
Collapse
Affiliation(s)
- Laura Kubińska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland
| | - Mariusz Szkoda
- Faculty of Chemistry, Department of Chemistry and Technology of Functional Materials, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
- Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Malgorzata Skorupska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland
| | - Patrycja Grabowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland
| | - Marta Gajewska
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Mickiewicza 30, 30-059, Kraków, Poland
| | - Jerzy P Lukaszewicz
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wilenska 4, 87-100, Torun, Poland
| | - Anna Ilnicka
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland.
| |
Collapse
|
13
|
Wang Y, Fan C, Wang K, Wang YQ. Nitrogen-doped carbon layer coated Co(OH)F/CoP 2 nanosheets for high-current hydrogen evolution reaction in alkaline freshwater and seawater. Dalton Trans 2024; 53:15509-15516. [PMID: 39249552 DOI: 10.1039/d4dt01713g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Utilizing renewable energy such as offshore wind power to electrolyze seawater for hydrogen production offers a sustainable development pathway to address energy and climate change issues. In this study, by incorporating nitrogen-doped carbon quantum dots (N-CDs) into precursors, we successfully synthesized a nitrogen-doped carbon (NC)-layer-coated Co(OH)F/CoP2 catalyst NC@Co(OH)F/CoP2/NF loaded on nickel foam (NF). The introduction of N-CDs induced significant morphology change of the catalyst, facilitating the exposure of numerous active sites, ensuring the presence of catalytically active species CoP2 in nanoparticle form and avoiding agglomeration, which was advantageous to enhancing the overall hydrogen evolution reaction (HER) activity of the catalyst. The formation of Co-N bonds accelerated electron transfer, regulated the electronic structure, and optimized the catalyst's adsorption capacity for H* intermediates, which resulted in remarkably improved HER performance. In addition, Co(OH)F can also serve as a structural support, preventing the catalyst from collapsing during the HER catalytic process. NC@Co(OH)F/CoP2/NF exhibited excellent HER activity in alkaline freshwater and alkaline seawater, respectively requiring overpotentials of only 107 and 128 mV to achieve a current density of 100 mA cm-2. More importantly, it also demonstrated excellent HER activity at high current densities, with overpotentials of 189 and 237 mV at a current density of 1000 mA cm-2 in alkaline freshwater and alkaline seawater, respectively. This work provides new insights into the design and construction of highly efficient HER catalysts for applications in alkaline freshwater and seawater.
Collapse
Affiliation(s)
- Yuxuan Wang
- Inner Mongolia Key Laboratory of Rare Earth Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot, 010021, China.
| | - Chao Fan
- Inner Mongolia Key Laboratory of Rare Earth Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot, 010021, China.
| | - Kang Wang
- Inner Mongolia Key Laboratory of Rare Earth Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot, 010021, China.
| | - Yan-Qin Wang
- Inner Mongolia Key Laboratory of Rare Earth Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot, 010021, China.
| |
Collapse
|
14
|
Mariappan VK, Krishnamoorthy K, Pazhamalai P, Swaminathan R, Kim SJ. Stimulus of Work Function on Electron Transfer Process of Intermetallic Nickel-Antimonide Toward Bifunctional Electrocatalyst for Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402355. [PMID: 38751066 DOI: 10.1002/smll.202402355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Indexed: 10/04/2024]
Abstract
Engineering the intermetallic nanostructures as an effective bifunctional electrocatalyst for hydrogen and oxygen evolution reactions (HER and OER) is of great interest in green hydrogen production. However, a few non-noble metals act as bifunctional electrocatalysts, exhibiting terrific HER and OER processes reported to date. Herein the intermetallic nickel-antimonide (Ni─Sb) dendritic nanostructure via cost-effective electro-co-deposition method is designed and their bifunctional electrocatalytic property toward HER and OER is unrevealed. The designed Ni─Sb delivers a superior bifunctional activity in 1 m KOH electrolyte, with a shallow overpotential of ≈119 mV at -10 mA for HER and ≈200 mV at 50 mA for OER. The mechanism behind the excellent bifunctional property of Ni─Sb is discussed via "interfacial descriptor" with the aid of Kelvin probe force microscopy (KPFM). This study reveals the rate of electrocatalytic reaction depends on the energy required for electron and proton transfer from the catalyst's surface. It is noteworthy that the assembled Ni─Sb-90 electrolyzer requires only a minuscule cell voltage of ≈1.46 V for water splitting, which is far superior to the art of commercial catalysts.
Collapse
Affiliation(s)
- Vimal Kumar Mariappan
- Department of Materials Engineering, Indian Institute of Science, Printed Electronics and Nanoionics Lab, Bangalore, 560012, India
- Nanomaterials & System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea
| | - Karthikeyan Krishnamoorthy
- Nanomaterials & System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea
- Research Institute of New Energy Industry (RINEI), Jeju National University, Jeju, 63243, South Korea
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, Madhya Pradesh, 462026, India
| | - Parthiban Pazhamalai
- Nanomaterials & System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea
- Research Institute of New Energy Industry (RINEI), Jeju National University, Jeju, 63243, South Korea
| | - Rajavarman Swaminathan
- Nanomaterials & System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea
| | - Sang-Jae Kim
- Nanomaterials & System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea
- Research Institute of New Energy Industry (RINEI), Jeju National University, Jeju, 63243, South Korea
- Nanomaterials & System Lab, Major of Mechanical System Engineering, College of Engineering, Jeju National University, Jeju, 63243, South Korea
| |
Collapse
|
15
|
Kong D, Xu Q, Chu N, Wang H, Lim YV, Cheng J, Huang S, Xu T, Li X, Wang Y, Luo Y, Yang HY. Rational Construction of 3D Self-Supported MOF-Derived Cobalt Phosphide-Based Hollow Nanowall Arrays for Efficient Overall Water Splitting At large Current Density. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310012. [PMID: 38368250 DOI: 10.1002/smll.202310012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/26/2023] [Indexed: 02/19/2024]
Abstract
Developing efficient nonprecious bifunctional electrocatalysts for hydrogen and oxygen evolution reactions (HER and OER) in the same electrolyte with a low overpotential and large current density presents an appealing yet challenging goal for large-scale water electrolysis. Herein, a unique 3D self-branched hierarchical nanostructure composed of ultra-small cobalt phosphide (CoP) nanoparticles embedded into N, P-codoped carbon nanotubes knitted hollow nanowall arrays (CoPʘNPCNTs HNWAs) on carbon textiles (CTs) through a carbonization-phosphatization process is presented. Benefiting from the uniform protrusion distributions of CoP nanoparticles, the optimum CoPʘNPCNTs HNWAs composites with high abundant porosity exhibit superior electrocatalytic activity and excellent stability for OER in alkaline conditions, as well as for HER in both acidic and alkaline electrolytes, even under large current densities. Furthermore, the assembled CoPʘNPCNTs/CTs||CoPʘNPCNTs/CTs electrolyzer demonstrates exceptional performance, requiring an ultralow cell voltage of 1.50 V to deliver the current density of 10 mA cm-2 for overall water splitting (OWS) with favorable stability, even achieving a large current density of 200 mA cm-2 at a low cell voltage of 1.78 V. Density functional theory (DFT) calculation further reveals that all the C atoms between N and P atoms in CoPʘNPCNTs/CTs act as the most efficient active sites, significantly enhancing the electrocatalytic properties. This strategy, utilizing 2D MOF arrays as a structural and compositional material to create multifunctional composites/hybrids, opens new avenues for the exploration of highly efficient and robust non-noble-metal catalysts for energy-conversion reactions.
Collapse
Affiliation(s)
- Dezhi Kong
- Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Qingguo Xu
- Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Ningning Chu
- Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Hui Wang
- Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Yew Von Lim
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Jinbing Cheng
- Henan International Joint Laboratory of MXene Materials Microstructure, College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Shaozhuan Huang
- Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, Hubei, 430074, China
| | - Tingting Xu
- Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Xinjian Li
- Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Ye Wang
- Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Yongsong Luo
- Henan International Joint Laboratory of MXene Materials Microstructure, College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| |
Collapse
|
16
|
Huang H, Shao B, He X, Xin J, Huang J, Zhang Z, Huang FP. Accurately Modulating Binuclear Metal Nodes of Metal-Organic Frameworks for Oxygen Evolution. Inorg Chem 2024; 63:10366-10372. [PMID: 38772004 DOI: 10.1021/acs.inorgchem.4c01254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The accurate manipulation of the species and locations of catalytic centers is crucial for regulating the catalytic activity of catalysts, which is essential for their efficient design and development. Metal-organic frameworks (MOFs) with coordinated metal sites are ideal materials for investigating the origin of catalytic activity. In this study, we present a Ni2-MOF featuring novel Ni-based binuclear nodes with open metal sites (OMSs) and saturated metal sites (SMSs). The nickel was replaced by iron to obtain Ni1Fe1-MOF. In the electrocatalytic oxygen evolution reaction, Ni1Fe1-MOF exhibited an overpotential and Tafel slope of 370 mV@10 mA cm-2 and 87.06 mV dec-1, respectively, which were higher than those of Ni2-MOF (283 mV@10 mA cm-2 and 39.59 mV dec-1, respectively), demonstrating the superior performance of Ni1Fe1-MOF. Furthermore, theoretical calculations revealed that iron as an SMS may effectively regulate the electronic structure of the nickel catalytic center to reduce the free energy barrier ΔG*OH of the rate-determining step.
Collapse
Affiliation(s)
- Huiling Huang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Bing Shao
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Xinglu He
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, P. R. China
| | - Jiwen Xin
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Jin Huang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, P. R. China
| | - Zhong Zhang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Fu-Ping Huang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
17
|
Zhou H, Zhang Y, Shi C, Yuan K, Zhou R, Zhao P, Qu Y, Wang Y. Synthesis of self-supported NiCoFe(OH) x via fenton-like effect corrosion for highly efficient water oxidation. J Colloid Interface Sci 2024; 663:725-734. [PMID: 38432171 DOI: 10.1016/j.jcis.2024.02.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Efficientandinexpensiveoxygenevolutionreaction(OER)catalysts are essential for the electrochemical splitting of water into hydrogen fuel. Herein, we have successfully synthesized NiCoFe(OH)x nanosheets on Ni-Fe foam (NFF) by exploiting the Fenton-like effect of Co2+ and S2O82- to corrode the NFF foam. The as-prepared NiCoFe(OH)x/NFF exhibits the porous structure with the interconnected nanosheets that are firmly bonded to the conductive substrate of NFF, thereby enhancing ions and charge transfer kinetics. The unique structure and composition of NiCoFe(OH)x/NFF result in the low overpotentials of 200 and 262 mV at current densities of 10 and 100 mA cm-2, respectively, as well as a low Tafel slope of 53.25 mV dec-1. In addition, NiCoFe(OH)x/NFF displays low overpotentials of 267 and 294 mV at a high current density of 100 mA cm-2 in simulated and real seawater, respectively. Furthermore, the assembled NiCoFe(OH)x//Pt/C water electrolysis cell has achieved a current density of 10 mA cm-2 at a low voltage of 1.49 V, and displayed the good stability with slight attenuation for 110 h. The high OER performance of NiCoFe(OH)x is attributed to the co-catalytic effect of the three metal ions and the interconnected porous nanosheet structure.
Collapse
Affiliation(s)
- Huajun Zhou
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China; Institute of Advanced Energy Materials and System, North University of China, Taiyuan 030051, PR China
| | - Yuzhen Zhang
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China; Institute of Advanced Energy Materials and System, North University of China, Taiyuan 030051, PR China
| | - Chenxi Shi
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China
| | - Kai Yuan
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China
| | - Rui Zhou
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China
| | - Peihua Zhao
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China
| | - Yongping Qu
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China.
| | - Yanzhong Wang
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China; Institute of Advanced Energy Materials and System, North University of China, Taiyuan 030051, PR China.
| |
Collapse
|
18
|
Shi H, Gao S, Liu X, Wang Y, Zhou S, Liu Q, Zhang L, Hu G. Recent Advances in Catalyst Design and Performance Optimization of Nanostructured Cathode Materials in Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309557. [PMID: 38705855 DOI: 10.1002/smll.202309557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/30/2023] [Indexed: 05/07/2024]
Abstract
This review focuses on the advanced design and optimization of nanostructured zinc-air batteries (ZABs), with the aim of boosting their energy storage and conversion capabilities. The findings show that ZABs favor porous nanostructures owing to their large surface area, and this enhances the battery capacity, catalytic activity, and life cycle. In addition, the nanomaterials improve the electrical conductivity, ion transport, and overall battery stability, which crucially reduces dendrite growth on the zinc anodes and improves cycle life and energy efficiency. To obtain a superior performance, the importance of controlling the operational conditions and using custom nanostructural designs, optimal electrode materials, and carefully adjusted electrolytes is highlighted. In conclusion, porous nanostructures and nanoscale materials significantly boost the energy density, longevity, and efficiency of Zn-air batteries. It is suggested that future research should focus on the fundamental design principles of these materials to further enhance the battery performance and drive sustainable energy solutions.
Collapse
Affiliation(s)
- Haiyang Shi
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
- School of Materials Science and Engineering, State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, 232001, China
| | - Sanshuang Gao
- MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, China
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, China
| | - Yin Wang
- Hubei Key Laboratory of Low-Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Shuxing Zhou
- Hubei Key Laboratory of Low-Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Lei Zhang
- School of Materials Science and Engineering, State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, 232001, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| |
Collapse
|
19
|
Wang R, Zhang L, Wang N, Zhang X, Huang L, Zhang Q, Lin H, Chen J, Jiao Y, Xu Y. Transforming electrochemical hydrogen Production: Tannic Acid-Boosted CoNi alloy integration with Multi-Walled carbon nanotubes for advanced bifunctional catalysis. J Colloid Interface Sci 2024; 661:113-122. [PMID: 38295693 DOI: 10.1016/j.jcis.2024.01.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 02/27/2024]
Abstract
The dimensions of alloy nanoparticles or nanosheets have emerged as a critical determinant for their prowess as outstanding electrocatalysts in water decomposition. Remarkably, the reduction in nanoparticle size results in an expanded active specific surface area, elevating reaction kinetics and showcasing groundbreaking potential. In a significant leap towards innovation, we introduced tannic acid (TA) to modify multi-walled carbon nanotubes (MWCNTs) and CoNi alloys. This ingenious strategy not only finely tuned the size of CoNi alloys but also securely anchored them to the MWCNTs substrate. The resulting synergistic "carbon transportation network" accelerated electron transfer during the reaction, markedly enhancing efficiency. Furthermore, the exceptional synergy of Co and Ni elements establishes Co0.84Ni1.69/MWCNTs as highly efficient electrocatalysts. Experimental findings unequivocally demonstrate that TA-Co0.84Ni1.69/MWCNTs require minimal overpotentials of 171 and 294 mV to achieve a current density of ± 10 mA cm-2. Serving as both anode and cathode for overall water splitting, TA-Co0.84Ni1.69/MWCNTs demand a low voltage of 1.66 V at 10 mA cm-2, maintaining structural integrity throughout extensive cyclic stability testing. These results propel TA-Co0.84Ni1.69/MWCNTs as promising candidates for future electrocatalytic advancements.
Collapse
Affiliation(s)
- Ran Wang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Ling Zhang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Nana Wang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xiao Zhang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Lijun Huang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Qiang Zhang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Jianrong Chen
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yang Jiao
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China.
| | - Yanchao Xu
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
20
|
Wu K, Lyu C, Cheng J, Guo Z, Li H, Zhu X, Lau WM, Zheng J. Modulating Electronic Structure by Etching Strategy to Construct NiSe 2 /Ni 0.85 Se Heterostructure for Urea-Assisted Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304390. [PMID: 37845029 DOI: 10.1002/smll.202304390] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/03/2023] [Indexed: 10/18/2023]
Abstract
Exploring and developing novel strategies for constructing heterostructure electrocatalysts is still challenging for water electrolysis. Herein, a creative etching treatment strategy is adopted to construct NiSe2 /Ni0.85 Se heterostructure. The rich heterointerfaces between NiSe2 and Ni0.85 Se emerge strong electronic interaction, which easily induces the electron transfer from NiSe2 to Ni0.85 Se, and tunes the charge-state of NiSe2 and Ni0.85 Se. In the NiSe2 /Ni0.85 Se heterojunction nanomaterial, the higher charge-state Ni0.85 Se is capable of affording partial electrons to combine with hydrogen protons, inducing the rapid formation of H2 molecule. Accordingly, the lower charge-state NiSe2 in the NiSe2 /Ni0.85 Se heterojunction nanomaterial is more easily oxidized into high valence state Ni3+ during the oxygen evolution reaction (OER) process, which is beneficial to accelerate the mass/charge transfer and enhance the electrocatalytic activities towards OER. Theoretical calculations indicate that the heterointerfaces are conducive to modulating the electronic structure and optimizing the adsorption energy toward intermediate H* during the hydrogen evolution reaction (HER) process, leading to superior electrocatalytic activities. To expand the application of the NiSe2 /Ni0.85 Se-2h electrocatalyst, urea is served as the adjuvant to proceed with the energy-saving hydrogen production and pollutant degradation, and it is proven to be a brilliant strategy.
Collapse
Affiliation(s)
- Kaili Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Chaojie Lyu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jiarun Cheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhonglu Guo
- School of Materials Science and Engineering, Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Hongyu Li
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Xixi Zhu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Woon-Ming Lau
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, P. R. China
| | - Jinlong Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, P. R. China
| |
Collapse
|
21
|
Malima NM, Khan MD, Masikane SC, de Souza FM, Choi J, Gupta RK, Revaprasadu N. Eco-friendly mixed metal (Mg-Ni) ferrite nanosheets for efficient electrocatalytic water splitting. Sci Rep 2023; 13:22179. [PMID: 38092868 PMCID: PMC10719248 DOI: 10.1038/s41598-023-49259-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
Eco-friendly and cost-effective catalysts with multiple active sites, large surface area, high stability and catalytic activity are highly desired for efficient water splitting as a sustainable green energy source. Within this line, a facile synthetic approach based on solventless thermolysis was employed for the simple and tunable synthesis of Ni1-xMgxFe2O4 (0 ≤ x ≤ 1) nanosheets. The characterization of nanosheets (via p-XRD, EDX, SEM, TEM, HRTEM, and SAED) revealed that the pristine ferrites (NiFe2O4 and MgFe2O4), and their solid solutions maintain the same cubic symmetry throughout the composition regulation. Elucidation of the electrochemical performance of the nanoferrite solid solutions showed that by tuning the local chemical environment of Ni in NiFe2O4 via Mg substitution, the intrinsic catalytic activity was enhanced. Evidently, the optimized Ni0.4Mg0.6Fe2O4 catalyst showed drastically enhanced HER activity with a much lower overpotential of 121 mV compared to the pristine NiFe2O4 catalyst. Moreover, Ni0.2Mg0.8Fe2O4 catalyst exhibited the best OER performance with a low overpotential of 284 mV at 10 mA/cm2 in 1 M KOH. This enhanced electrocatalytic activity could be due to improved electronic conductivity caused by the partial substitution of Ni2+ by Mg2+ in the NiFe2O4 matrix as well as the synergistic effect in the Mg-substituted NiFe2O4. Our results suggest a feasible route for developing earth-abundant metal oxide-based electrocatalysts for future water electrolysis applications.
Collapse
Affiliation(s)
- Nyemaga M Malima
- Department of Chemistry, University of Zululand, Private Bag X1001, KwaDlangezwa, 3880, South Africa
- Department of Chemistry, College of Natural and Mathematical Sciences, University of Dodoma, P.O. Box 338, Dodoma, Tanzania
| | - Malik Dilshad Khan
- Department of Chemistry, University of Zululand, Private Bag X1001, KwaDlangezwa, 3880, South Africa.
| | - Siphamandla C Masikane
- Department of Chemistry, University of Zululand, Private Bag X1001, KwaDlangezwa, 3880, South Africa
| | - Felipe M de Souza
- Department of Chemistry, National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS, 66762, USA
| | - Jonghyun Choi
- Department of Chemistry, National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS, 66762, USA
| | - Ram K Gupta
- Department of Chemistry, National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS, 66762, USA
| | - Neerish Revaprasadu
- Department of Chemistry, University of Zululand, Private Bag X1001, KwaDlangezwa, 3880, South Africa.
| |
Collapse
|
22
|
Dou M, Yao M, Ding K, Cheng Y, Shao H, Li S, Chen Y. Ni(OH) 2-derived lamellar MoS 2/Ni 3S 2/NF with Fe-doped heterojunction catalysts for efficient overall water splitting. Dalton Trans 2023. [PMID: 37999648 DOI: 10.1039/d3dt02830e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Heterostructures formed by combining semiconductor materials with different band structures can provide work functions, d-band positions and electronic properties different from bulk materials and are considered as an effective strategy to improve the catalytic activity through electronic modification. In this study, an efficient MoS2/Fe-Ni3S2/NF heterojunction material was prepared by a two-step hydrothermal method. With the help of flake Ni(OH)2 synthesized in the first step, growth sites were provided for flake Ni3S2. The electronic structure of Ni3S2 was optimized by Fe doping, while the construction of the MoS2/Fe-Ni3S2 heterostructure allowed the catalyst to expose more active sites. MoS2/Fe-Ni3S2/NF exhibited a small charge transfer resistance and excellent electrocatalytic performance. At a current density of 10 mA cm-2, only low overpotentials of 148 mV and 118 mV were required for the oxygen precipitation reaction (OER) and hydrogen precipitation reaction (HER), respectively. Notably, when MoS2/Fe-Ni3S2/NF is used as the anode and cathode for overall hydrolysis, only 1.51 V is required to reach a current density of 10 mA cm-2, demonstrating its great potential for application in hydrolysis. This work provides a feasible idea for the rational construction of non-precious metal bifunctional electrocatalysts with excellent performance.
Collapse
Affiliation(s)
- Minghao Dou
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Mengjie Yao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Kai Ding
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Yuye Cheng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Hongyu Shao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Shenjie Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Yanyan Chen
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| |
Collapse
|
23
|
Wang X, Zhang K, Xie Y, Yu D, Tian H, Lou Y. MnO xH y-modified CoMoP/NF nanosheet arrays as hydrogen evolution reaction and oxygen evolution reaction bifunctional catalysts under alkaline conditions. Dalton Trans 2023; 52:15091-15100. [PMID: 37814596 DOI: 10.1039/d3dt02467a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
It is widely acknowledged that interface engineering strategies can significantly enhance the activity of catalysts. In this study, we developed a CoMoP nanoarray directly grown in situ on a nickel foam (NF) substrate, with the interface structure formed through the electrodeposition of MnOxHy. The resulting heterostructure MnOxHy/CoMoP/NF exhibited remarkable hydrogen evolution reaction (HER) activity, achieving overpotentials as low as 61 and 138 mV at 10 and 100 mA cm-2, respectively. Moreover, MnOxHy/CoMoP/NF demonstrated efficient oxygen evolution reaction (OER) activity with an overpotential of 330 mV at 100 mA cm-2. Remarkably, MnOxHy/CoMoP/NF maintained its catalytic properties and structural integrity even after working continuously for 20 h facilitating the HER at 10 mA cm-2 and the OER at 100 mA cm-2. The Tafel slopes of the HER and OER were determined to be as small as 14 and 55 mV dec-1, respectively, confirming that the coupled interface conferred fast reaction kinetics on the catalyst. When applied in overall water splitting, MnOxHy/CoMoP/NF delivered a voltage of 1.91 V at 100 mA cm-2 with excellent stability. This study demonstrated the feasibility of utilizing a simple electrodeposition technique to fabricate a heterogeneous structure with bifunctional catalytic activity, establishing a solid foundation for diverse industrial applications.
Collapse
Affiliation(s)
- Xuemin Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Ke Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Yuhan Xie
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Dehua Yu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Haoze Tian
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Yongbing Lou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
24
|
Shenoy S, Chuaicham C, Sasaki K, Park S, Nallal M, Park KH, Sekar K. Nitridation-free preparation of bimetallic oxide-nitride bifunctional electrocatalysts for overall water splitting. Chem Commun (Camb) 2023; 59:12451-12454. [PMID: 37781773 DOI: 10.1039/d3cc03452f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
A novel one-pot surfactant-free synthesis is presented for designing bimetallic oxide-nitride electrocatalysts with tunable morphologies using metal salts and nitrogen-rich precursors. This innovative approach eliminates the need for a distinct nitridation process. Bifunctional electrode Co3O4/MoO3/MoxNy achieved a current density of 10 mA cm-2 while maintaining a cell voltage of 1.52 V, outperforming many bimetallic oxide-nitride catalysts in the scientific literature.
Collapse
Affiliation(s)
- Sulakshana Shenoy
- Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| | - Chitiphon Chuaicham
- Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| | - Keiko Sasaki
- Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| | - Sungkyun Park
- Department of Physics, Pusan National University, Busan 46241, Republic of Korea.
| | - Muthuchamy Nallal
- Department of Physics, Pusan National University, Busan 46241, Republic of Korea.
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| | - Kang Hyun Park
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| | - Karthikeyan Sekar
- Sustainable Energy and Environmental Research Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India.
| |
Collapse
|
25
|
Shrestha NK, Patil SA, Salunke AS, Inamdar AI, Kim H, Im H. Metal-ion doping in metal-organic-frameworks: modulating the electronic structure and local coordination for enhanced oxygen evolution reaction activity. Dalton Trans 2023; 52:13852-13857. [PMID: 37772345 DOI: 10.1039/d3dt02405a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The doping of metal-organic frameworks (MOFs) with metal-ions has emerged as a powerful strategy for enhancing their catalytic performance. Doping allows for the tailoring of the electronic structure and local coordination environment of MOFs, thus imparting on them unique properties and enhanced functionalities. This frontier article discusses the impact of metal-ion doping on the electronic structure and local coordination of MOFs, highlighting the effects on their electrocatalytic properties in relation to the oxygen evolution reaction (OER). The fundamental mechanisms underlying these modifications are explored, while recent advances, challenges, and prospects in the field are discussed. In addition, experimental techniques that can be applied to tackle the realization of effective metal-ion doping of MOFs are also noted briefly.
Collapse
Affiliation(s)
- Nabeen K Shrestha
- Division of Physics and Semiconductor Science, Dongguk University, Seoul-04620, Republic of Korea.
| | - Supriya A Patil
- Department Nanotechnology & Advanced Materials Engineering, Sejong University, Seoul-05006, Republic of Korea
| | - Amol S Salunke
- Division of Physics and Semiconductor Science, Dongguk University, Seoul-04620, Republic of Korea.
| | - Akbar I Inamdar
- Division of Physics and Semiconductor Science, Dongguk University, Seoul-04620, Republic of Korea.
| | - Hyungsang Kim
- Division of Physics and Semiconductor Science, Dongguk University, Seoul-04620, Republic of Korea.
| | - Hyunsik Im
- Division of Physics and Semiconductor Science, Dongguk University, Seoul-04620, Republic of Korea.
| |
Collapse
|
26
|
Birla PN, Arbuj S, Shinde MD, Joseph S, Rane S, Kulkarni S, Kale B. Electroless Ni plated nanostructured TiO 2 as a photocatalyst for solar hydrogen production. RSC Adv 2023; 13:20068-20080. [PMID: 37409038 PMCID: PMC10318574 DOI: 10.1039/d3ra03139j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/25/2023] [Indexed: 07/07/2023] Open
Abstract
Herein, we have demonstrated a facile electroless Ni coated nanostructured TiO2 photocatalyst for the first time. More significantly the photocatalytic water splitting shows excellent performance for hydrogen production which is hitherto unattempted. The structural study exhibits majorly the anatase phase along with the minor rutile phase of TiO2. Interestingly, electroless nickel deposited on the TiO2 nanoparticles of size 20 nm shows a cubic structure with nanometer scale Ni coating (1-2 nm). XPS supports the existence of Ni without any oxygen impurity. The FTIR and Raman studies support the formation of TiO2 phases without any other impurities. The optical study shows a red shift in the band gap due to optimum nickel loading. The emission spectra show variation in the intensity of the peaks with Ni concentration. The vacancy defects are pronounced in lower concentrations of Ni loading which shows the formation of a huge number of charge carriers. The electroless Ni loaded TiO2 has been used as a photocatalyst for water splitting under solar light. The primary results manifest that the hydrogen evolution of electroless Ni plated TiO2 is 3.5 times higher (1600 μmol g-1 h-1) than pristine TiO2 (470 μmol g-1 h-1). As shown in the TEM images, nickel is completely electroless plated on the TiO2 surface, which accelerates the fast transport of electrons to the surface. It suppresses the electron-hole recombination drastically which is responsible for higher hydrogen evolution using electroless Ni plated TiO2. The recycling study exhibits a similar amount of hydrogen evolution at similar conditions which shows the stability of the Ni loaded sample. Interestingly, Ni powder loaded TiO2 did not show any hydrogen evolution. Hence, the approach of electroless plating of nickel over the semiconductor surface will have potential as a good photocatalyst for hydrogen evolution.
Collapse
Affiliation(s)
- Priyanka N Birla
- Centre for Materials for Electronics Technology (C-MET), Ministry of Electronics and Information Technology (MeitY) Panchavati Pune 411008 India
| | - Sudhir Arbuj
- Centre for Materials for Electronics Technology (C-MET), Ministry of Electronics and Information Technology (MeitY) Panchavati Pune 411008 India
| | - Manish D Shinde
- Centre for Materials for Electronics Technology (C-MET), Ministry of Electronics and Information Technology (MeitY) Panchavati Pune 411008 India
| | - Shany Joseph
- Centre for Materials for Electronics Technology (C-MET), Ministry of Electronics and Information Technology (MeitY) Panchavati Pune 411008 India
| | - Sunit Rane
- Centre for Materials for Electronics Technology (C-MET), Ministry of Electronics and Information Technology (MeitY) Panchavati Pune 411008 India
| | - Sulabha Kulkarni
- Centre for Materials for Electronics Technology (C-MET), Ministry of Electronics and Information Technology (MeitY) Panchavati Pune 411008 India
| | - Bharat Kale
- Centre for Materials for Electronics Technology (C-MET), Ministry of Electronics and Information Technology (MeitY) Panchavati Pune 411008 India
| |
Collapse
|
27
|
Zhang X, Shi XR, Wang P, Bao Z, Huang M, Xu Y, Xu S. Bio-inspired design of NiFeP nanoparticles embedded in (N,P) co-doped carbon for boosting overall water splitting. Dalton Trans 2023; 52:6860-6869. [PMID: 37157968 DOI: 10.1039/d3dt00583f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The design and synthesis of cost-effective and stable bifunctional electrocatalysts for water splitting via a green and sustainable fabrication way remain a challenging problem. Herein, a bio-inspired method was used to synthesize NiFeP nanoparticles embedded in (N,P) co-doped carbon with the added carbon nanotubes. The obtained Ni0.8Fe0.2P-C catalyst displayed excellent hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performances in both alkaline and alkaline simulated seawater solutions. The optimal Ni0.8Fe0.2P-C/NF only needs overpotentials of 45 and 242 mV to reach the current density of 10 mA cm-2 under HER and OER working conditions in 1.0 M KOH solution, respectively. First-principles calculations revealed the presence of a strong interaction between the carbon layer and metal phosphide nanoparticles. Benefiting from this and carbon nanotubes modification, the fabricated Ni0.8Fe0.2P-C presents impressive stability, working continuously for 100 h without collapse. A low alkaline cell voltage of 1.56 V for the assembled Ni0.8Fe0.2P-C/NF//Ni0.8Fe0.2P-C/NF electrocatalyzer could afford a current density of 10 mA cm-2. Moreover, when integrated with a photovoltaic device, the bifunctional Ni0.8Fe0.2P-C electrocatalyst demonstrates application potential for sustainable solar-driven water electrolysis.
Collapse
Affiliation(s)
- Xiangrui Zhang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, P.R. China.
| | - Xue-Rong Shi
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, P.R. China.
| | - Peijie Wang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, P.R. China.
| | - Zhiyu Bao
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, P.R. China.
| | - Mengru Huang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, P.R. China.
| | - Yanan Xu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, P.R. China.
| | - Shusheng Xu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, P.R. China.
| |
Collapse
|
28
|
Hao J, Wu K, Lyu C, Yang Y, Wu H, Liu J, Liu N, Lau WM, Zheng J. Recent advances in interface engineering of Fe/Co/Ni-based heterostructure electrocatalysts for water splitting. MATERIALS HORIZONS 2023. [PMID: 37132292 DOI: 10.1039/d3mh00366c] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Among various methods of developing hydrogen energy, electrocatalytic water splitting for hydrogen production is one of the approaches to achieve the goal of zero carbon emissions. It is of great significance to develop highly active and stable catalysts to improve the efficiency of hydrogen production. In recent years, the construction of nanoscale heterostructure electrocatalysts through interface engineering can not only overcome the shortcomings of single-component materials to effectively improve their electrocatalytic efficiency and stability but also adjust the intrinsic activity or design synergistic interfaces to improve catalytic performance. Among them, some researchers proposed to replace the slow oxygen evolution reaction at the anode with the oxidation reaction of renewable resources such as biomass to improve the catalytic efficiency of the overall water splitting. The existing reviews in the field of electrocatalysis mainly focus on the relationship between the interface structure, principle, and principle of catalytic reaction, and some articles summarize the performance and improvement schemes of transition metal electrocatalysts. Among them, few studies are focusing on Fe/Co/Ni-based heterogeneous compounds, and there are fewer summaries on the oxidation reactions of organic compounds at the anode. To this end, this paper comprehensively describes the interface design and synthesis, interface classification, and application in the field of electrocatalysis of Fe/Co/Ni-based electrocatalysts. Based on the development and application of current interface engineering strategies, the experimental results of biomass electrooxidation reaction (BEOR) replacing anode oxygen evolution reaction (OER) are discussed, and it is feasible to improve the overall electrocatalytic reaction efficiency by coupling with hydrogen evolution reaction (HER). In the end, the challenges and prospects for the application of Fe/Co/Ni-based heterogeneous compounds in water splitting are briefly discussed.
Collapse
Affiliation(s)
- Ju Hao
- Beijing Advanced Innovation Center for Materials Genome Engineering Center for Green Innovation, School of Mathematics and Physics University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Kaili Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering Center for Green Innovation, School of Mathematics and Physics University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Chaojie Lyu
- Beijing Advanced Innovation Center for Materials Genome Engineering Center for Green Innovation, School of Mathematics and Physics University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Yuquan Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering Center for Green Innovation, School of Mathematics and Physics University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Hongjing Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering Center for Green Innovation, School of Mathematics and Physics University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Jiajia Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering Center for Green Innovation, School of Mathematics and Physics University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Naiyan Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering Center for Green Innovation, School of Mathematics and Physics University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Woon-Ming Lau
- Beijing Advanced Innovation Center for Materials Genome Engineering Center for Green Innovation, School of Mathematics and Physics University of Science and Technology Beijing, Beijing 100083, P. R. China.
- Shunde Innovation School, University of Science and Technology Beijing Foshan 528399, P. R. China
| | - Jinlong Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering Center for Green Innovation, School of Mathematics and Physics University of Science and Technology Beijing, Beijing 100083, P. R. China.
- Shunde Innovation School, University of Science and Technology Beijing Foshan 528399, P. R. China
| |
Collapse
|
29
|
Wu JX, Chen WX, He CT, Zheng K, Zhuo LL, Zhao ZH, Zhang JP. Atomically Dispersed Dual-Metal Sites Showing Unique Reactivity and Dynamism for Electrocatalysis. NANO-MICRO LETTERS 2023; 15:120. [PMID: 37127819 PMCID: PMC10151301 DOI: 10.1007/s40820-023-01080-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/18/2023] [Indexed: 05/03/2023]
Abstract
The real structure and in situ evolution of catalysts under working conditions are of paramount importance, especially for bifunctional electrocatalysis. Here, we report asymmetric structural evolution and dynamic hydrogen-bonding promotion mechanism of an atomically dispersed electrocatalyst. Pyrolysis of Co/Ni-doped MAF-4/ZIF-8 yielded nitrogen-doped porous carbons functionalized by atomically dispersed Co-Ni dual-metal sites with an unprecedented N8V4 structure, which can serve as an efficient bifunctional electrocatalyst for overall water splitting. More importantly, the electrocatalyst showed remarkable activation behavior due to the in situ oxidation of the carbon substrate to form C-OH groups. Density functional theory calculations suggested that the flexible C-OH groups can form reversible hydrogen bonds with the oxygen evolution reaction intermediates, giving a bridge between elementary reactions to break the conventional scaling relationship.
Collapse
Affiliation(s)
- Jun-Xi Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Wen-Xing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Chun-Ting He
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, People's Republic of China.
| | - Kai Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Lin-Ling Zhuo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zhen-Hua Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jie-Peng Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
30
|
Jayabharathi J, Karthikeyan B, Vishnu B, Sriram S. Research on engineered electrocatalysts for efficient water splitting: a comprehensive review. Phys Chem Chem Phys 2023; 25:8992-9019. [PMID: 36928479 DOI: 10.1039/d2cp05522h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Water electrolysis plays an interesting role toward hydrogen generation for overcoming global environmental crisis and solving the energy storage problem. However, there is still a deficiency of efficient electrocatalysts to overcome sluggish kinetics for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Great efforts have been employed to produce potential catalysts with low overpotential, rapid kinetics, and excellent stability for HER and OER. At present, hydrogen economy is driven by electrocatalysts with excellent characteristics; thus, systematic design strategy has become the driving force to exploit earth-abundant transition metal-based electrocatalysts toward H2 economy. In this review, the recent progress on newer materials including metals, alloys, and transition metal oxides (manganese oxides, cobalt oxides, nickel oxides, PBA-derived metal oxides, and metal complexes) as photocatalysts/electrocatalysts has been overviewed together with some methodologies for efficient water splitting. Metal-organic framework (MOF)-based electrocatalysts have been highly exploited owing to their interesting functionalities. The photovoltaic-electrocatalytic (PV-EC) process focused on harvesting high solar-to-hydrogen efficiency (STH) among various solar energy conversion as well as storage systems. Electrocatalysts/photocatalysts with high efficiency have become an urgent need for overall water splitting. Also, cutting-edge achievements in the fabrication of electrocatalysts along with theoretical consideration have been discussed.
Collapse
Affiliation(s)
- Jayaraman Jayabharathi
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalainagar, Tamilnadu 608002, India.
| | - Balakrishnan Karthikeyan
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalainagar, Tamilnadu 608002, India.
| | - Bakthavachalam Vishnu
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalainagar, Tamilnadu 608002, India.
| | - Sundarraj Sriram
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalainagar, Tamilnadu 608002, India.
| |
Collapse
|
31
|
Fu C, Fan J, Zhang Y, Lv H, Ji D, Hao W. Mild construction of an Fe-B-O based flexible electrode toward highly efficient alkaline simulated seawater splitting. J Colloid Interface Sci 2023; 634:804-816. [PMID: 36565622 DOI: 10.1016/j.jcis.2022.12.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
It is essential to construct self-supporting electrodes based on earth-abundant iron borides in a mild and economical manner for grid-scale hydrogen production. Herein, a series of highly efficient, flexible, robust, and scalable Fe-B-O@FeBx modified on hydrophilic cloth (denoted as Fe-B-O@FeBx/HC, 10 cm × 10 cm) are fabricated by mild electroless plating. The overpotentials and Tafel slope values for the hydrogen and oxygen evolution reactions are 59 mV and 57.62 mV dec-1 and 181 mV and 65.44 mV dec-1, respectively; only 1.462 V is required to achieve 10 mA cm-2 during overall water splitting (OWS). Fe-B-O@FeBx/HC maintains its high catalytic activity for more than 7 days at an industrial current density (400 mA cm-2), owing to the loosened popcorn-like Fe-B-O@FeBx that is firmly loaded on a 2D-layered and mechanically robust substrate along with its fast charge and mass transfer kinetics. The chimney effect of core-shell borides@(oxyhydro)oxides enhances the OWS performance and protects the inner metal borides from further corrosion. Moreover, the flexible Fe-B-O@FeBx/HC electrode has a low cost for grid-scale hydrogen production ($2.97 kg-1). The proposed strategy lays a solid foundation for universal preparation, large-scale hydrogen production and practical applications thereof.
Collapse
Affiliation(s)
- Chengyu Fu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Jinli Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yiran Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Haiyang Lv
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Dingkun Ji
- Institute of Molecular Medicine (IMM), School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Weiju Hao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
32
|
Low temperature plasma-assisted synthesis and modification of water splitting electrocatalysts. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
33
|
Wang C, Zhang Q, Yan B, You B, Zheng J, Feng L, Zhang C, Jiang S, Chen W, He S. Facet Engineering of Advanced Electrocatalysts Toward Hydrogen/Oxygen Evolution Reactions. NANO-MICRO LETTERS 2023; 15:52. [PMID: 36795218 PMCID: PMC9935811 DOI: 10.1007/s40820-023-01024-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/04/2023] [Indexed: 05/19/2023]
Abstract
The crystal facets featured with facet-dependent physical and chemical properties can exhibit varied electrocatalytic activity toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) attributed to their anisotropy. The highly active exposed crystal facets enable increased mass activity of active sites, lower reaction energy barriers, and enhanced catalytic reaction rates for HER and OER. The formation mechanism and control strategy of the crystal facet, significant contributions as well as challenges and perspectives of facet-engineered catalysts for HER and OER are provided. The electrocatalytic water splitting technology can generate high-purity hydrogen without emitting carbon dioxide, which is in favor of relieving environmental pollution and energy crisis and achieving carbon neutrality. Electrocatalysts can effectively reduce the reaction energy barrier and increase the reaction efficiency. Facet engineering is considered as a promising strategy in controlling the ratio of desired crystal planes on the surface. Owing to the anisotropy, crystal planes with different orientations usually feature facet-dependent physical and chemical properties, leading to differences in the adsorption energies of oxygen or hydrogen intermediates, and thus exhibit varied electrocatalytic activity toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this review, a brief introduction of the basic concepts, fundamental understanding of the reaction mechanisms as well as key evaluating parameters for both HER and OER are provided. The formation mechanisms of the crystal facets are comprehensively overviewed aiming to give scientific theory guides to realize dominant crystal planes. Subsequently, three strategies of selective capping agent, selective etching agent, and coordination modulation to tune crystal planes are comprehensively summarized. Then, we present an overview of significant contributions of facet-engineered catalysts toward HER, OER, and overall water splitting. In particular, we highlight that density functional theory calculations play an indispensable role in unveiling the structure–activity correlation between the crystal plane and catalytic activity. Finally, the remaining challenges in facet-engineered catalysts for HER and OER are provided and future prospects for designing advanced facet-engineered electrocatalysts are discussed.
Collapse
Affiliation(s)
- Changshui Wang
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Qian Zhang
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Bing Yan
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China.
| | - Jiaojiao Zheng
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Li Feng
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 2150009, People's Republic of China
| | - Shaohua Jiang
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Wei Chen
- Guangxi Key Laboratory of Low Carbon Energy Materials, College of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China.
- University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| | - Shuijian He
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
34
|
Zhu Y, Wang X, Zhu X, Wu Z, Zhao D, Wang F, Sun D, Tang Y, Li H, Fu G. Improving the Oxygen Evolution Activity of Layered Double-Hydroxide via Erbium-Induced Electronic Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206531. [PMID: 36445024 DOI: 10.1002/smll.202206531] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Layered double-hydroxide (LDH) has been considered an important class of electrocatalysts for the oxygen evolution reaction (OER), but the adsorption-desorption behaviors of oxygen intermediates on its surface still remain unsatisfactory. Apart from transition-metal doping to solve this electrocatalytic problem of LDH, rare-earth (RE) species have sprung up as emerging dopants owing to their unique 4f valence-electronic configurations. Herein, the Er is chosen as a RE model to improve OER activity of LDH via constructing nickel foam supported Er-doped NiFe-LDH catalyst (Er-NiFe-LDH@NF). The optimal Er-NiFe-LDH@NF exhibits a low overpotential (191 mV at 10 mA cm-2 ), high turnover frequency (0.588 s-1 ), and low activation energy (36.03 kJ mol-1 ), which are superior to Er-free sample. Electrochemical in situ Raman spectra reveal the facilitated transition of Ni-OH into Ni-OOH for promoted OER kinetics through the Er doping effect. Theoretical calculations demonstrate that the introduction of Er facilitates the spin crossover of valence electrons by optimizing the d band center of NiFe-LDH, which leads to the GO -GHO closer to the optimal activity of the kinetic OER volcano by balancing the bonding strength of *O and *OH. Moreover, the Er-NiFe-LDH@NF presents high practicability in electrochemical water-splitting devices with a low driving potential of and a well-extended driving period.
Collapse
Affiliation(s)
- Yu Zhu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xuan Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xiaoheng Zhu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Zixin Wu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Dongsheng Zhao
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Fei Wang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin, 300130, P. R. China
| | - Dongmei Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| |
Collapse
|
35
|
Al-Naggar AH, Shinde NM, Kim JS, Mane RS. Water splitting performance of metal and non-metal-doped transition metal oxide electrocatalysts. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Li F, Du M, Xiao X, Xu Q. Self-Supporting Metal-Organic Framework-Based Nanoarrays for Electrocatalysis. ACS NANO 2022; 16:19913-19939. [PMID: 36399093 DOI: 10.1021/acsnano.2c09396] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The replacement of powdery catalysts with self-supporting alternatives for catalyzing various electrochemical reactions is extremely important for the large-scale commercial application of renewable energy storage and conversion technologies. Metal-organic framework (MOF)-based nanoarrays possess tunable compositions, well-defined structure, abundant active sites, effective mass and electron transport, etc., which enable them to exhibit superior electrocatalytic performance in multiple electrochemical reactions. This review presents the latest research progress in developing MOF-based nanoarrays for electrocatalysis. We first highlight the structural features and electrocatalytic advantages of MOF-based nanoarrays, followed by a detailed summary of the design and synthesis strategies of MOF-based nanoarrays, and then describe the recent progress of their application in various electrocatalytic reactions. Finally, the challenges and perspectives are discussed, where further exploration into MOF-based nanoarrays will facilitate the development of electrochemical energy conversion technologies.
Collapse
Affiliation(s)
- Fayan Li
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Department of Chemistry, Department of Materials Science and Engineering and Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Meng Du
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Department of Chemistry, Department of Materials Science and Engineering and Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Xin Xiao
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Department of Chemistry, Department of Materials Science and Engineering and Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Department of Chemistry, Department of Materials Science and Engineering and Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
37
|
Liang T, Wang A, Ma D, Mao Z, Wang J, Xie J. Low-dimensional transition metal sulfide-based electrocatalysts for water electrolysis: overview and perspectives. NANOSCALE 2022; 14:17841-17861. [PMID: 36464978 DOI: 10.1039/d2nr05205a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Hydrogen prepared by electrocatalytic decomposition of water ("green hydrogen") has the advantages of high energy density and being clean and pollution-free, which is an important energy carrier to face the problems of the energy crisis and environmental pollution. However, the most used commercial electrocatalysts are based on expensive and scarce precious metals and their alloy materials, which seriously restricts the large-scale industrial application of hydrogen energy. The development of efficient non-precious metal electrocatalysts is the key to achieving the sustainable development of the hydrogen energy industry. Transition metal sulfides (TMS) have become popular non-precious metal electrocatalysts with great application potential due to their large specific surface area, unique electronic structure, and rich regulatory strategies. To further improve their catalytic activities for practical application, many methods have been tried in recent years, including control of morphology and crystal plane, metal/nonmetal doping, vacancy engineering, building of self-supporting electrocatalysts, interface engineering, etc. In this review, we introduce firstly the common types of TMS and their preparation. Additionally, we summarize the recent developments of the many different strategies mentioned above for efficient water electrolysis applications. Furthermore, the rationales behind their enhanced electrochemical performances are discussed. Lastly, the challenges and future perspectives are briefly discussed for TMS-based water dissociation catalysts.
Collapse
Affiliation(s)
- Tingting Liang
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, China
| | - Aiqin Wang
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
- Provincial and Ministerial Co-Construction of Collaborative Innovation Center of Non-Ferrous Metals New Materials and Advanced Processing Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Douqin Ma
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
- Provincial and Ministerial Co-Construction of Collaborative Innovation Center of Non-Ferrous Metals New Materials and Advanced Processing Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhiping Mao
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
- Provincial and Ministerial Co-Construction of Collaborative Innovation Center of Non-Ferrous Metals New Materials and Advanced Processing Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Jian Wang
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
- Provincial and Ministerial Co-Construction of Collaborative Innovation Center of Non-Ferrous Metals New Materials and Advanced Processing Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Jingpei Xie
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
- Provincial and Ministerial Co-Construction of Collaborative Innovation Center of Non-Ferrous Metals New Materials and Advanced Processing Technology, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
38
|
Song D, Zhu T, Yang R, Zhao Y, Sun C, Zhao J. Graft-growth of CoCo-PBA on defect-rich Cu1.94S arrays for high-current-density water splitting. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Xu X, Ji S, Wang H, Wang X, Linkov V, Wang P, Pan L, Wang G, Wang R. Cu-induced NiCu-P and NiCu-Pi with multilayered nanostructures as highly efficient electrodes for hydrogen production via urea electrolysis. NANOSCALE 2022; 14:16490-16501. [PMID: 36278435 DOI: 10.1039/d2nr04409a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Since urea is commonly present in domestic sewage and industrial wastewater, its use in hydrogen production by electrolysis can simultaneously help in water decontamination. To achieve this goal, the development of highly active and inexpensive urea electrolysis catalysts is necessary. This study deals with the preparation of multilayered nickel and copper phosphides/phosphates (NiCu-P/NF and NiCu-Pi/NF) supported on Ni foam (NF) and their application as new electrocatalyst types for the electrolysis of urea-containing wastewaters. In these materials, Cu atoms induce the formation of multilayer nanostructures and modulate electron distribution, allowing for the exposure of additional active sites and acceleration of the process kinetics. NiCu-P/NF is used as a cathode and NiCu-Pi/NF as an anode in an electrolysis cell and exhibits significant catalytic activity and stability in the urea oxidation reaction (UOR) and the hydrogen evolution reaction (HER). The NiCu-Pi/NF||NiCu-P/NF electrolysis cell, operating with an alkaline urea-containing aqueous electrolyte, achieves a current density of 10 mA cm- at a potential of 1.41 V, which is less than required by the RuO2||Pt/C cell utilizing commercial noble metal-based electrodes. The study provides a novel strategy for designing efficient catalysts to produce hydrogen by urea electrolysis.
Collapse
Affiliation(s)
- Xiao Xu
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Shan Ji
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, China.
| | - Hui Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Xuyun Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Vladimir Linkov
- South African Institute for Advanced Materials Chemistry, University of the Western Cape, Cape Town, 7535, South Africa
| | - Peng Wang
- Shandong Hydrogen Energy Co., Ltd, Weifang, 261000, China
| | - Lei Pan
- Shandong Hydrogen Energy Co., Ltd, Weifang, 261000, China
| | - Guoqiang Wang
- Shandong Hydrogen Energy Co., Ltd, Weifang, 261000, China
| | - Rongfang Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
40
|
Ai L, Chen M, Luo Y, Tian Y, Wang X, Wei W, Jiang J. One-pot corrosive synthesis of Ru-Fe3O4 heterostructure: A localized photothermal electrocatalyst towards accelerated water splitting. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
41
|
Chen J, Abazari R, Adegoke KA, Maxakato NW, Bello OS, Tahir M, Tasleem S, Sanati S, Kirillov AM, Zhou Y. Metal–organic frameworks and derived materials as photocatalysts for water splitting and carbon dioxide reduction. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214664] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Wang H, Cui M, Fu G, Zhang J, Ding X, Azaceta I, Bugnet M, Kepaptsoglou DM, Lazarov VK, de la Peña O’Shea VA, Oropeza FE, Zhang KHL. Vertically aligned Ni/NiO nanocomposites with abundant oxygen deficient hetero-interfaces for enhanced overall water splitting. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1326-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Li X, Zhang Z, Shen M, Wang Z, Zheng R, Sun H, Liu Y, Wang D, Liu C. Highly efficient oxygen evolution reaction enabled by phosphorus-boron facilitating surface reconstruction of amorphous high-entropy materials. J Colloid Interface Sci 2022; 628:242-251. [PMID: 35998450 DOI: 10.1016/j.jcis.2022.08.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022]
Abstract
Efficient, cost-effective and durable electrocatalysts are highly required to overcome the slow kinetics and high overpotential of oxygen evolution reaction (OER). Here we report a series of novel amorphous high-entropy borophosphate catalysts FeCoNiMBPOx (M = Mg, Al, Cr, Mn) prepared by a low-temperature reduction method. The leaching of boron and phosphorus accelerates the surface self-reconstruction of FeCoNiMnBPOx, and the subsequently formed high-oxidation-state metal-OOH species is beneficial to improve the catalyst performance. Moreover, the unique amorphous structure with abundant defects provides more active sites for OER. As a return, all the samples exhibit excellent OER activity and stability. Among them, FeCoNiMnBPOx with the highest conductivity and the largest electrochemical active surface area (ECSA) exhibits the best electrocatalytic performance, requiring only low overpotentials of 248 mV and 294 mV to reach current densities of 10 mA cm-2 and 100 mA cm-2, respectively. This sample also shows an exceptional durability for 50 h without a significant increase in potential, which is superior to that of the benchmark RuO2 electrocatalyst. The combination of the adsorbate evolution mechanism (AEM) and the lattice oxygen-mediated mechanism (LOM) are responsible for the excellent catalyst performance. This work provides new ideas for designing high-activity multiple-element catalysts.
Collapse
Affiliation(s)
- Xinglong Li
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
| | - Ziyun Zhang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
| | - Ming Shen
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
| | - Zhiyuan Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
| | - Runguo Zheng
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Hongyu Sun
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Yanguo Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Dan Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
| | - Chunli Liu
- Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea
| |
Collapse
|
44
|
Topchiyan P, Vasilchenko D, Tkachev S, Sheven D, Eltsov I, Asanov I, Sidorenko N, Saraev A, Gerasimov E, Kurenkova A, Kozlova E. Highly Active Visible Light-Promoted Ir/ g-C 3N 4 Photocatalysts for the Water Oxidation Reaction Prepared from a Halogen-Free Iridium Precursor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35600-35612. [PMID: 35881890 DOI: 10.1021/acsami.2c07485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A combination of the exceptional stability of fac-[Ir(H2O)3(NO2)3] together with thermolability of nitro and aqua ligands and high solubility in various solvents makes it promising as a brand-new chlorine-free precursor of iridium for the preparation of heterogeneous catalysts. In the current work, a new technique of fac-[Ir(H2O)3(NO2)3] preparation based on hydrothermal treatment of (NH4)3[Ir(NO2)6] was developed. For this purpose, the influence of reaction parameters such as the reaction time, temperature, and pH of the solution on the process of hexanitroiridate salt hydrolysis was investigated. The synthesized fac-[Ir(H2O)3(NO2)3] solution in this optimized way was used for the preparation of the series of Ir/g-C3N4 catalysts, which were evaluated in the water oxidation reaction with NaIO4 utilized as a sacrificial reagent. A 20-fold enhancement of the oxygen evolution reaction (OER) activity was found to take place under visible light (λ = 411 nm) illumination of the systems. The highest rate of the photoinduced OER per iridium center was achieved by the Ir0.005/g-C3N4 (air, 400°C) catalyst with an exceptional turnover frequency value of 967 min-1 approaching the activity of known homogeneous iridium OER catalysts. The leaching experiments have shown that aquated Ir species are generated in a solution after prolonged functioning of the catalysts. Despite this, in the closed system the photodriven OER activity persists at a steady-state level evidencing an equilibrium achieved between dissolved and anchored Ir species forming catalytic tandem with the g-C3N4.
Collapse
Affiliation(s)
- Polina Topchiyan
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russian Federation
- Federal Research Center Boreskov Institute of Catalysis, 630090 Novosibirsk, Russian Federation
| | - Danila Vasilchenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russian Federation
- Federal Research Center Boreskov Institute of Catalysis, 630090 Novosibirsk, Russian Federation
| | - Sergey Tkachev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russian Federation
| | - Dmitriy Sheven
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russian Federation
| | - Ilia Eltsov
- Novosibirsk State University, 630090 Novosibirsk, Russian Federation
| | - Igor Asanov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russian Federation
| | - Nikolay Sidorenko
- Federal Research Center Boreskov Institute of Catalysis, 630090 Novosibirsk, Russian Federation
- Novosibirsk State University, 630090 Novosibirsk, Russian Federation
| | - Andrey Saraev
- Federal Research Center Boreskov Institute of Catalysis, 630090 Novosibirsk, Russian Federation
| | - Evgeny Gerasimov
- Federal Research Center Boreskov Institute of Catalysis, 630090 Novosibirsk, Russian Federation
| | - Anna Kurenkova
- Federal Research Center Boreskov Institute of Catalysis, 630090 Novosibirsk, Russian Federation
| | - Ekaterina Kozlova
- Federal Research Center Boreskov Institute of Catalysis, 630090 Novosibirsk, Russian Federation
| |
Collapse
|
45
|
Fe3C coupled with Fe-Nx supported on N-doped carbon as oxygen reduction catalyst for assembling Zn-air battery to drive water splitting. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Hierarchical Ni Modified PW12 Clusters In Situ Integrated on Ni Foam for Efficient Alkaline Hydrogen Evolution. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02318-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
47
|
Li M, Yang T, Bakker JM, Janssens E, Hou GL. Unveiling the role of C60-supported vanadium single atoms for catalytic overall water splitting. CELL REPORTS PHYSICAL SCIENCE 2022; 3:100910. [DOI: 10.1016/j.xcrp.2022.100910] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
|
48
|
Zhi L, Tu J, Li J, Li M, Liu J. 3D holey hierarchical nanoflowers assembled by cobalt phosphide embedded N-doped carbon nanosheets as bifunctional electrocatalyst for highly efficient overall water splitting. J Colloid Interface Sci 2022; 616:379-388. [DOI: 10.1016/j.jcis.2022.02.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/30/2022] [Accepted: 02/16/2022] [Indexed: 01/17/2023]
|
49
|
Light alloying element-regulated noble metal catalysts for energy-related applications. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63899-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
Yao Y, Hu E, Wang Z, Cui Y, Qian G. Boosting Hydrogen Evolution through the Interface Effects of Amorphous NiMoO 4-MoO 2 and Crystalline Cu. ACS OMEGA 2022; 7:2244-2251. [PMID: 35071913 PMCID: PMC8771971 DOI: 10.1021/acsomega.1c05844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The rational design and synthesis of a highly efficient and cost-effective electrocatalyst for hydrogen evolution reaction (HER) are of great importance for the efficient generation of sustainable energy. Herein, amorphous/crystalline heterophase Ni-Mo-O/Cu (denoted as a/c Ni-Mo-O/Cu) was synthesized by a one-pot electrodeposition method. Thanks to the introduction of metallic Cu and the formation of amorphous Ni-Mo-O, the prepared electrocatalyst exhibits favorable conductivity and abundant active sites, which are favorable to the HER progress. Moreover, the interfaces consisting of Cu and Ni-Mo-O show electron transfers between these components, which might modify the absorption/desorption energy of H atoms, thus accelerating HER activity. As expected, the prepared a/c Ni-Mo-O/Cu possesses excellent HER performance, which affords an ultralow overpotential of 34.8 mV at 10 mA cm-2, comparable to that of 20 wt % Pt/C (35.0 mV), and remarkable stability under alkaline conditions.
Collapse
|