1
|
Qiu SQ, He XF, Liang XL, Shi GY, Zhao ML, Li F, Wu ZY, Tian J, Zhai TT, Du Y. GLUT1 as a generic biomarker enables near-infrared fluorescence molecular imaging guided precise intraoperative tumor detection in breast cancer. Eur J Nucl Med Mol Imaging 2025; 52:2171-2186. [PMID: 39833507 DOI: 10.1007/s00259-025-07095-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
PURPOSE Precise tumor excision is important but challenging in breast-conserving surgery (BCS). Tumor-specific fluorescence imaging may be used for intraoperative tumor detection and, therefore, to guide precise tumor excision. The aims of this study are to develop a glucose transporter 1 (GLUT1)-targeted near-infrared fluorescence tracer and evaluate its accuracy for breast cancer detection using fresh surgical breast specimens. METHODS Bioinformatic analysis was performed to compare GLUT1 expression between breast cancer and normal breast tissues. A GLUT1-targeted fluorescence imaging tracer WZB117-CY7.5 was developed. In combination with fluorescence imaging (FMI), its binding specificity to GLUT1 was examined in in vitro breast cancer cell experiments, in vivo 4T1 breast tumor-bearing mouse models, and 60 freshly resected human breast tumor tissues. The diagnostic accuracy of WZB117-CY7.5, was evaluated in fresh specimens derived from 60 patients diagnosed with breast cancer. RESULTS GLUT1 expression is higher in breast cancer tissues compared with normal tissues. WZB117-CY7.5 specifically bound to breast cancer cells in in vitro cell experiments and accumulated in tumor areas in a 4T1 tumor-bearing mice after intravenous injection by FMI. Moreover, WZB117-CY7.5 specifically bound to freshly resected human breast cancer and demonstrated excellent diagnostic performance in discriminating breast cancer, irrespective of cancer subtype, from normal breast tissue on fresh surgically resected breast tissues. CONCLUSIONS WZB117-CY7.5 showed high accuracy in intraoperative breast cancer detection, irrespective of the cancer subtype. This highlights its potential for clinical applications as a generic tracer for fluorescence image-guided surgery (FIGS) in BCS and fluorescence image-guided pathology for tissue sampling.
Collapse
Affiliation(s)
- Si-Qi Qiu
- Diagnosis and Treatment Center of Breast Diseases, Shantou Central Hospital, No.114 Waima Road, Shantou, 515041, Shantou, China
- Clinical Research Center, Shantou Central Hospital, Shantou, 515041, China
| | - Xiao-Feng He
- Shantou University Medical College, Shantou, 515041, China
| | - Xiao-Long Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Guang-Yuan Shi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, No.95 Zhongguancun East Road, Hai Dian District, Beijing, 100190, China
| | - Meng-Long Zhao
- Clinical Research Center, Shantou Central Hospital, Shantou, 515041, China
| | - Fan Li
- Biobank, Shantou Central Hospital, Shantou, 515041, China
| | - Zhi-Yong Wu
- Diagnosis and Treatment Center of Breast Diseases, Shantou Central Hospital, No.114 Waima Road, Shantou, 515041, Shantou, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, No.95 Zhongguancun East Road, Hai Dian District, Beijing, 100190, China.
- Beijing Advanced Innovation Centre for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, China.
| | - Tian-Tian Zhai
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, No.7 Raoping Road, Jinping District, Shantou, 515041, China.
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, No.95 Zhongguancun East Road, Hai Dian District, Beijing, 100190, China.
- The University of Chinese Academy of Sciences, Beijing, 100080, China.
| |
Collapse
|
2
|
Bin Y, Huang L, Qin J, Zhao S, Tian J, Zhang L. Exceptional Near-Infrared II Organic Small Molecule Nanoagent for Photoacoustic/Photothermal Imaging-Guided Highly Efficient Therapy in Cancer. Bioconjug Chem 2025; 36:803-814. [PMID: 40071675 DOI: 10.1021/acs.bioconjchem.5c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Near-infrared II (NIR-II) photoacoustic (PA)/photothermal imaging-guided tumor therapy holds great promise in precision medicine for cancer treatment. This work reports on the synthesis and application of an organic small molecule nanoagent that has exceptional PA and photothermal properties in the near-infrared region. BCy-TPE was constructed by linking an NIR-II absorbing cyanine dye BCy-Cl with a twisted tetraphenylethene unit. The synthesized BCy-TPE exhibited an intense absorption peak at 1032 nm. After encapsulation into water-dispersible nanoparticles (NPs), BCy-TPE NPs exhibited two absorption peaks at 880 and 1046 nm. Notably, under 1064 nm laser excitation, BCy-TPE NPs deliver a remarkable photothermal conversion efficiency of 92%, together with superior biocompatibility, photostability, and PA/photothermal imaging capability. Moreover, after intravenous administration of BCy-TPE NPs into 4T1 tumor-bearing mice and treatment with safe-intensity (1.0 W cm-2 and 1064 nm) laser irradiation, tumor temperature increased rapidly to 52 °C within 1 min and tumors are completely ablated after a single photothermal therapy treatment. Overall, this work offers a novel strategy to develop superb NIR-II photothermal agents for PA/photothermal imaging-guided highly efficient therapy in cancer.
Collapse
Affiliation(s)
- Yidong Bin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Lixian Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jiangke Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jianniao Tian
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Liangliang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
3
|
Jia M, Wu J, Wu X, Chan DSH, Hu B, Wong CY, Leung CH, Yang K, Wang W. A photostable luminescent iridium(III) complex probe for imaging endogenous mitochondrial sulfur dioxide in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 338:126147. [PMID: 40188568 DOI: 10.1016/j.saa.2025.126147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/26/2025] [Accepted: 03/30/2025] [Indexed: 04/08/2025]
Abstract
Sulfur dioxide (SO2) is an important signaling gas molecule, but its aberration is highly associated with inflammatory diseases and cancers. Luminescence probes for SO2 have emerged as essential instruments for elucidating its biological roles and facilitating disease diagnosis, owing to their high sensitivity and capabilities for real-time detection. Nevertheless, the majority of current probes lack subcellular selectivity and suffer from limited photostability. In this work, we develop an Ir(III)-based luminescence probe (Ir3) for the rapid, real-time, and accurate detection of SO2 in aqueous solution. This probe exhibits low cytotoxicity and provides exceptional imaging of mitochondrial SO2 in living cells. We anticipate that this probe will serve as a foundational tool for the advancement of effective imaging technologies for SO2, thereby enhancing the clinical and biomedical applications of Ir(III) complex-based detection probes.
Collapse
Affiliation(s)
- Mengzhao Jia
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, China
| | - Jia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Xiaolei Wu
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Daniel Shiu-Hin Chan
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Bingjie Hu
- Analytical Testing Center, Shandong University of Technology, Zibo 255049, China
| | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China.
| | - Kai Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, China.
| | - Wanhe Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
4
|
Wu R, Tian G, Zhang S, Zhang P, Lei X. A Comprehensive Review: Versatile Imaging Probe Based on Chemical Materials for Biomedical Applications. Appl Biochem Biotechnol 2025; 197:1301-1328. [PMID: 39215904 DOI: 10.1007/s12010-024-05043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Imaging probe and contrast agents play significant role in combating cancer. Based on special chemical materials, imaging probe can convert cancer symptoms into information-rich images with high sensitivity and signal amplification, accompanying with detection, diagnosis, drug delivery and treatment. In the paper, some inorganic and organic chemical materials as imaging probe, including Ultrasound imaging (US), Optical imaging (OP), Photoacoustic imaging (PA), X-ray Computed Tomography (CT), Magnetic Resonance imaging (MRI), Radionuclide imaging (RNI) probe, as well as multi-modality imaging probe for diagnosis and therapy of tumour were introduced. The sophisticated and comprehensive chemical materials as imaging probe were highlighted in detail. Meanwhile, the advantages and disadvantages of the imaging probe were compared. In order to provide some reference and help researchers for construction imaging probe for tumour diagnosis and treatment, it attempts to exhaustively cover the whole field. Finally, the prospect and challenge for imaging probe were discussed.
Collapse
Affiliation(s)
- Rui Wu
- Shaanxi Key Laboratory of Catalysis, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China.
| | - Guanghui Tian
- Shaanxi Key Laboratory of Catalysis, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Shengrui Zhang
- Shaanxi Key Laboratory of Catalysis, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Pengfei Zhang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, Shaanxi, China
| | - Xiaoyun Lei
- Shaanxi Key Laboratory of Catalysis, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| |
Collapse
|
5
|
Jiang G, Huang R, Qian M, Hu W, Huang R. IR813-Induced Photothermal Therapy: Leveraging Immunogenic Cell Death for Cancer Treatment. Pharmaceutics 2025; 17:166. [PMID: 40006533 PMCID: PMC11859857 DOI: 10.3390/pharmaceutics17020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Photothermal therapy has the potential to enhance the precision and safety of oncological treatments. However, applicable photothermal agents associated with its photothermal activated immunogenic cell death remain exploiting. Methods: This study evaluates the effectiveness of IR813, a photothermal agent, combined with near-infrared (NIR) light for cancer treatment. In vitro, 4T1 cancer cells were treated with IR813 (5 μg/mL) and exposed to NIR irradiation (1 W/cm2) for 5 min. In vivo, after the tumor-bearing mice administered with IR813 (1 mg/kg) and exposed to NIR irradiation (1 W/cm2) for 10 min, the tumor volume, survival and immune activation were evaluated. Results: IR813 significantly increased the cytotoxicity of 4T1 cancer cells following near-infrared irradiation, resulting in the release of damage-associated molecular patterns and immunogenic cell death. Specifically, the cell viability was reduced to 5% compared to the control group. In vivo, irradiating the accumulation of IR813 at the tumor site had the potential to mediate substantial photothermal tumor suppression, improved mouse survival, and reduced metastasis, with minimal adverse reactions. Furthermore, the immune responses stimulated by IR813-induced photothermal therapy were evidenced by increased mature dendritic cell and cytotoxic T lymphocyte counts and a decrease in regulatory T cells in the spleen, tumor, and lymph nodes. Conclusions: These findings suggest that IR813-induced photothermal therapy is a promising approach for enhancing immunotherapy, directly inhibiting tumors while boosting systemic anti-cancer immunity.
Collapse
Affiliation(s)
| | | | | | - Wenjuan Hu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Rongqin Huang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, Fudan University, Shanghai 201203, China
| |
Collapse
|
6
|
Yu J, Xu W, Chen H, Yuan H, Wang Y, Qian X, Zhang J, Ji Y, Zhao Q, Li S. Charge Engineering of Star-Shaped Organic Photosensitizers Enables Efficient Type-I Radicals for Photodynamic Therapy of Multidrug-Resistant Bacterial Infection. Adv Healthc Mater 2025; 14:e2402615. [PMID: 39648533 DOI: 10.1002/adhm.202402615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/18/2024] [Indexed: 12/10/2024]
Abstract
Infection induced by multidrug-resistant bacteria is now the second most common cause of accidental death worldwide. However, identifying a high-performance strategy with good efficiency and low toxicity is still urgently needed. Antibacterial photodynamic therapy (PDT) is considered a non-invasive and efficient approach with minimal drug resistance. Whereas, the precise molecular design for highly efficient oxygen-independent type-I photosensitizers is still undefined. In this work, the regulation of the positive charge of star-shaped NIR-emissive organic photosensitizers can boost radical generation for the efficient treatment of wounds infected with multidrug-resistant bacteria. With positive charge engineering, TPAT-DNN, which has six positive charges, mainly produces hydroxyl radicals via the type-I pathway, while TPAT-DN, which has three positive charges, tends to generate singlet oxygen and superoxide radicals. For multidrug-resistant bacteria, TPAT-DNN exhibited specific killing effects on multidrug-resistant gram-positive bacteria at low concentrations, while TPAT-DN is similar antibacterial effects on both multidrug-resistant gram-negative and gram-positive bacteria. Furthermore, the efficiency and safety of TPAT-DNN for eradicating multidrug-resistant bacteria methicillin-resistant S. aureus (MRSA) infection and accelerating wound healing in an MRSA-infected mouse model are demonstrated. This work offers a new approach toward manipulating efficient type-I photosensitizers for MRSA treatment.
Collapse
Affiliation(s)
- Jie Yu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Wenchang Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Huan Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Haitao Yuan
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery System Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Yu Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Xiandie Qian
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Jie Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Yu Ji
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Qi Zhao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
7
|
Bel'ko N, Mal'tanova A, Bahdanava A, Lugovski A, Fatykhava S, Shabunya P, Smaliakou A, Poznyak S, Kulahava T, Samtsov M. A near-infrared superoxide generator based on a biocompatible indene-bearing heptamethine cyanine dye. J Mater Chem B 2024; 12:11202-11209. [PMID: 39364565 DOI: 10.1039/d4tb01663g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
One of the most significant limitations of photodynamic therapy is its reduced efficacy in hypoxic microenvironments, which are typical of the majority of tumors. This work demonstrates that indolenine heptamethine cyanines with different substituents in the polymethine chain and at the terminal heterocycles are effective superoxide generators that can be activated in the near-infrared range. The introduction of an indene moiety into the polymethine chain results in a significant enhancement in photostability compared to dyes with a cyclohexene moiety or an unsubstituted polymethine chain. A hydrophilic indene-bearing heptamethine cyanine dye is shown to be efficiently internalized by Vero E6 cells and to give bright intracellular fluorescence in the 700-850 nm range. Furthermore, the dye generates superoxide anion radicals and induces severe oxidative stress in cells upon activation in the near-infrared range (∼750 nm), ultimately resulting in cell death. The capacity of heptamethine cyanines to generate a superoxide anion radical may prove advantageous for enhancing the efficacy of photodynamic therapy under hypoxic conditions.
Collapse
Affiliation(s)
- Nikita Bel'ko
- A.N. Sevchenko Institute of Applied Physical Problems, Belarusian State University, Kurchatova str. 7, Minsk 220045, Belarus.
| | - Anna Mal'tanova
- Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya str. 14, Minsk 220006, Belarus
| | - Anastasiya Bahdanava
- Institute for Nuclear Problems, Belarusian State University, Bobruiskaya str. 11, Minsk 220006, Belarus
| | - Anatol Lugovski
- A.N. Sevchenko Institute of Applied Physical Problems, Belarusian State University, Kurchatova str. 7, Minsk 220045, Belarus.
| | - Sviatlana Fatykhava
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Akademika Kuprevicha str. 5-2, Minsk 220141, Belarus
| | - Polina Shabunya
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Akademika Kuprevicha str. 5-2, Minsk 220141, Belarus
| | - Adam Smaliakou
- Department of Physics, Belarusian State University, Bobruiskaya str. 5, Minsk 220006, Belarus
| | - Sergey Poznyak
- Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya str. 14, Minsk 220006, Belarus
| | - Tatsiana Kulahava
- Institute for Nuclear Problems, Belarusian State University, Bobruiskaya str. 11, Minsk 220006, Belarus
| | - Michael Samtsov
- A.N. Sevchenko Institute of Applied Physical Problems, Belarusian State University, Kurchatova str. 7, Minsk 220045, Belarus.
| |
Collapse
|
8
|
Ganai AM, Vrettos EI, Kyrkou SG, Zoi V, Khan Pathan T, Karpoormath R, Bouziotis P, Alexiou GA, Kastis GA, Protonotarios NE, Tzakos AG. Design Principles and Applications of Fluorescent Kinase Inhibitors for Simultaneous Cancer Bioimaging and Therapy. Cancers (Basel) 2024; 16:3667. [PMID: 39518106 PMCID: PMC11545566 DOI: 10.3390/cancers16213667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Kinase inhibitors are potent therapeutic agents in cancer treatment, but their effectiveness is frequently restricted by the inability to image the tumor microenvironment. To address this constraint, kinase inhibitor-fluorophore conjugates have emerged as promising theranostic agents, allowing for simultaneous cancer diagnosis and treatment. These conjugates are gaining attention for their ability to visualize malignant tissues and concurrently enhance therapeutic interventions. This review explores the design principles governing the development of multimodal inhibitors, highlighting their potential as platforms for kinase tracking and inhibition via bioimaging. The structural aspects of constructing such theranostic agents are critically analyzed. This work could shed light on this intriguing field and provide adequate impetus for developing novel theranostic compounds based on small molecule inhibitors and fluorophores.
Collapse
Affiliation(s)
- Ab Majeed Ganai
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (A.M.G.); (E.I.V.); (S.G.K.); (T.K.P.)
| | - Eirinaios I. Vrettos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (A.M.G.); (E.I.V.); (S.G.K.); (T.K.P.)
| | - Stavroula G. Kyrkou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (A.M.G.); (E.I.V.); (S.G.K.); (T.K.P.)
| | - Vasiliki Zoi
- Neurosurgical Institute, University of Ioannina, 45110 Ioannina, Greece; (V.Z.); (G.A.A.)
| | - Tabasum Khan Pathan
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (A.M.G.); (E.I.V.); (S.G.K.); (T.K.P.)
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa;
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa;
| | - Penelope Bouziotis
- Institute of Nuclear and Radiological Science and Technology, Energy and Safety (INRASTES), National Center for Scientific Research “Demokritos”, 15310 Athens, Greece; (P.B.); (G.A.K.); (N.E.P.)
| | - George A. Alexiou
- Neurosurgical Institute, University of Ioannina, 45110 Ioannina, Greece; (V.Z.); (G.A.A.)
| | - George A. Kastis
- Institute of Nuclear and Radiological Science and Technology, Energy and Safety (INRASTES), National Center for Scientific Research “Demokritos”, 15310 Athens, Greece; (P.B.); (G.A.K.); (N.E.P.)
- Mathematics Research Center, Academy of Athens, 11527 Athens, Greece
| | - Nicholas E. Protonotarios
- Institute of Nuclear and Radiological Science and Technology, Energy and Safety (INRASTES), National Center for Scientific Research “Demokritos”, 15310 Athens, Greece; (P.B.); (G.A.K.); (N.E.P.)
- Mathematics Research Center, Academy of Athens, 11527 Athens, Greece
| | - Andreas G. Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (A.M.G.); (E.I.V.); (S.G.K.); (T.K.P.)
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), Ioannina 45110, Greece
| |
Collapse
|
9
|
Liu N, O'Connor P, Gujrati V, Shelar D, Ma X, Anzenhofer P, Klemm U, Su X, Huang Y, Kleigrewe K, Feuchtinger A, Walch A, Sattler M, Plettenburg O, Ntziachristos V. Tuning the photophysical properties of cyanine by barbiturate functionalization and nanoformulation for efficient optoacoustics- guided phototherapy. J Control Release 2024; 372:522-530. [PMID: 38897293 DOI: 10.1016/j.jconrel.2024.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Cyanine derivatives are organic dyes widely used for optical imaging. However, their potential in longitudinal optoacoustic imaging and photothermal therapy remains limited due to challenges such as poor chemical stability, poor photostability, and low photothermal conversion. In this study, we present a new structural modification for cyanine dyes by introducing a strongly electron-withdrawing group (barbiturate), resulting in a new series of barbiturate-cyanine dyes (BC810, BC885, and BC1010) with suppressed fluorescence and enhanced stability. Furthermore, the introduction of BC1010 into block copolymers (PEG114-b-PCL60) induces aggregation-caused quenching, further boosting the photothermal performance. The photophysical properties of nanoparticles (BC1010-NPs) include their remarkably broad absorption range from 900 to 1200 nm for optoacoustic imaging, allowing imaging applications in NIR-I and NIR-II windows. The combined effect of these strategies, including improved photostability, enhanced nonradiative relaxation, and aggregation-caused quenching, enables the detection of optoacoustic signals with high sensitivity and effective photothermal treatment of in vivo tumor models when BC1010-NPs are administered before irradiation with a 1064 nm laser. This research introduces a barbiturate-functionalized cyanine derivative with optimal properties for efficient optoacoustics-guided theranostic applications. This new compound holds significant potential for biomedical use, facilitating advancements in optoacoustic-guided diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Nian Liu
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich 81675, Germany; Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Patrick O'Connor
- Institute of Medicinal Chemistry, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany; Institute of Structural Biology, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany
| | - Vipul Gujrati
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich 81675, Germany; Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg 85764, Germany.
| | - Divyesh Shelar
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Xiaopeng Ma
- School of Control Science and Engineering, Shandong University, Jinan 250061, China
| | - Pia Anzenhofer
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Uwe Klemm
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Xinhui Su
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuanhui Huang
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising 85354, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany; Bavarian NMR Center, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany
| | - Oliver Plettenburg
- Institute of Medicinal Chemistry, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany; Center for Biomolecular Drug Research (BMWZ), Institute of Organic Chemistry, Leibniz Universität Hannover, Hannover 30167, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich 81675, Germany; Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg 85764, Germany.
| |
Collapse
|
10
|
Yang Z, Li X, Sun T, Bian J, Bu X, Ge X, Sun J, Liu Z, Xie Z, Xi P, Ai Q, Wei C, Gao B. Multicolor Tuning of Perylene Diimides Dyes for Targeted Organelle Imaging In Vivo. Anal Chem 2024. [PMID: 39023238 DOI: 10.1021/acs.analchem.4c01601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The adjustment of the emission wavelengths and cell permeability of the perylene diimides (PDI) for multicolor cell imaging is a great challenge. Herein, based on a bay-region substituent engineering strategy, multicolor perylene diimides (MCPDI) were rationally designed and synthesized by introducing azetidine substituents on the bay region of PDIs. With the fine-tuned electron-donating ability of the azetidine substituents, these MCPDI showed high brightness, orange, red, and near infrared (NIR) fluorescence along with Stokes shifts increasing from 35 to 110 nm. Interestingly, azetidine substituents distorted to the plane of the MCPDI dyes, and the twist angle of monosubstituted MCPDI was larger than that of disubstituted MCPDI, which might efficiently decrease their π-π stacking. Moreover, all of these MCPDI dyes were cell-permeable and selectively stained various organelles for multicolor imaging of multiple organelles in living cells. Two-color imaging of lipid droplets (LDs) and other organelles stained with MCPDI dyes was performed to reveal the interaction between the LDs and other organelles in living cells. Furthermore, a NIR-emitting MCPDI dye with a mitochondria-targeted characteristic was successfully applied for tumor-specific imaging. The facile synthesis, excellent stability, high brightness, tunable fluorescence emission, and Stokes shifts make these MCPDI promising fluorescent probes for biological applications.
Collapse
Affiliation(s)
- Zikang Yang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding 071002, P. R. China
| | - Xinwei Li
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding 071002, P. R. China
| | - Tingting Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jiqing Bian
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding 071002, P. R. China
| | - Xiaoyu Bu
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding 071002, P. R. China
| | - Xichuan Ge
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding 071002, P. R. China
| | - Jing Sun
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding 071002, P. R. China
| | - Zugang Liu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Peng Xi
- National Biomedical Imaging Center, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, P. R. China
| | - Qi Ai
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, P. R. China
| | - Chao Wei
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding 071002, P. R. China
| | - Baoxiang Gao
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
11
|
Xu S, Yan KC, Xu ZH, Wang Y, James TD. Fluorescent probes for targeting the Golgi apparatus: design strategies and applications. Chem Soc Rev 2024; 53:7590-7631. [PMID: 38904177 DOI: 10.1039/d3cs00171g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The Golgi apparatus is an essential organelle constructed by the stacking of flattened vesicles, that is widely distributed in eukaryotic cells and is dynamically regulated during cell cycles. It is a central station which is responsible for collecting, processing, sorting, transporting, and secreting some important proteins/enzymes from the endoplasmic reticulum to intra- and extra-cellular destinations. Golgi-specific fluorescent probes provide powerful non-invasive tools for the real-time and in situ visualization of the temporal and spatial fluctuations of bioactive species. Over recent years, more and more Golgi-targeting probes have been developed, which are essential for the evaluation of diseases including cancer. However, when compared with systems that target other important organelles (e.g. lysosomes and mitochondria), Golgi-targeting strategies are still in their infancy, therefore it is important to develop more Golgi-targeting probes. This review systematically summarizes the currently reported Golgi-specific fluorescent probes, and highlights the design strategies, mechanisms, and biological uses of these probes, we have structured the review based on the different targeting groups. In addition, we highlight the future challenges and opportunities in the development of Golgi-specific imaging agents and therapeutic systems.
Collapse
Affiliation(s)
- Silin Xu
- Key Laboratory of Chemo/Biosensing and Detection, Xuchang University, 461000, P. R. China.
| | - Kai-Cheng Yan
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Zhi-Hong Xu
- Key Laboratory of Chemo/Biosensing and Detection, Xuchang University, 461000, P. R. China.
- College of Chemical and Materials Engineering, Xuchang University, Xuchang, 461000, P. R. China
| | - Yuan Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, P. R. China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| |
Collapse
|
12
|
Sun P, Chen HC, Guo W, Zhang Z, Sun S, Gao N, Jing YH, Wang B. A ratiometric fluorescent probe revealing the abnormality of acetylated tau by visualizing polarity in Alzheimer's disease. J Mater Chem B 2024; 12:5619-5627. [PMID: 38770837 DOI: 10.1039/d4tb00357h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Abnormal neuronal polarity leads to early deficits in Alzheimer's disease (AD) by affecting the function of axons. Precise and rapid evaluation of polarity changes is very important for the early prevention and diagnosis of AD. However, due to the limitations of existing detection methods, the mechanism related to how neuronal polarity changes in AD is unclear. Herein, we reported a ratiometric fluorescent probe characterized by neutral molecule to disclose the polarity changes in nerve cells and the brain of APP/PS1 mice. Cy7-K showed a sensitive and selective ratiometric fluorescence response to polarity. Remarkably, unlike conventional intramolecular charge transfer fluorescent probes, the fluorescence quantum yield of Cy7-K in highly polar solvents is higher than that in low polar solvents due to the transition of neutral quinones to aromatic zwitterions. Using the ratiometric fluorescence imaging, we found that beta-amyloid protein (Aβ) inhibits the expression of histone deacetylase 6, thereby increasing the amount of acetylated Tau protein (AC-Tau) and ultimately enhancing cell polarity. There was a high correlation between polarity and AC-Tau. Furthermore, Cy7-K penetrated the blood-brain barrier to image the polarity of different brain regions and confirmed that APP/PS1 mice had higher polarity than Wild-type mice. The probe Cy7-K will be a promising tool for assessing the progression of AD development by monitoring polarity.
Collapse
Affiliation(s)
- Panpan Sun
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
- College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Hai-Chao Chen
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Wenting Guo
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Zefan Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Shihao Sun
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Ningshuang Gao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Yu-Hong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| |
Collapse
|
13
|
Yan L, Tang L, Wu X, Li L. Recent Advances in Organic Small-Molecule Fluorescent Probes Based on Dicyanoisophorone Derivatives. Crit Rev Anal Chem 2024:1-28. [PMID: 38836446 DOI: 10.1080/10408347.2024.2354328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Fluorescent probe technology holds great promise in the fields of environmental monitoring and clinical diagnosis due to its inherent advantages, including easy operation, reliable detection signals, fast analysis speed, and in situ imaging capabilities. In recent years, a wide range of fluorescent probes based on diverse fluorophores have been developed for the analysis and detection of various analytes, yielding significant achievement. Among these fluorophores, the dicyanoisophorone-based fluorophores have garnered significant attention. Dicyanoisoporone exhibits minimal fluorescence, yet possesses a robust electron-withdrawing capability, rendering it suitable for constructing of D-π-A structured fluorophores. Leveraging the intramolecular charge transfer (ICT) effect, such fluorophores exhibit near-infrared (NIR) fluorescence emission with a large Stokes shift, thereby offering remarkable advantages in the design and development of NIR fluorescence probes. This review article primarily focus on small-molecule dicyanoisoporone-based probes from the past two years, elucidating their design strategies, detection performances, and applications. Additionally, we summarize current challenges while predicting future directions to provide valuable references for developing novel and advanced fluorescence probes based on dicyanoisoporone derivatives.
Collapse
Affiliation(s)
- Liqiang Yan
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| | - Liting Tang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| | - Xiongzhi Wu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| | - Lin Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| |
Collapse
|
14
|
Ostruszka R, Halili A, Pluháček T, Rárová L, Jirák D, Šišková K. Advanced protein-embedded bimetallic nanocomposite optimized for in vivo fluorescence and magnetic resonance bimodal imaging. J Colloid Interface Sci 2024; 663:467-477. [PMID: 38422973 DOI: 10.1016/j.jcis.2024.02.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
HYPOTHESIS The development of bimodal imaging probes represents a hot topic of current research. Herein, we deal with developing an innovative bimodal contrast agent enabling fluorescence imaging (FI)/magnetic resonance imaging (MRI) and, simultaneously, consisting of biocompatible nanostructures. Optimized synthesis of advanced protein-embedded bimetallic (APEBM) nanocomposite containing luminescent gold nanoclusters (AuNC) and superparamagnetic iron oxide nanoparticles (SPION), suitable for in vivo dual-modal FI/MR imaging is reported. EXPERIMENTS The APEBM nanocomposite was prepared by a specific sequential one-pot green synthetic approach that is optimized to increase metals (Au, Fe) content and, consequently, the imaging ability of the resulting nanostructures. The protein matrix, represented by serum albumin, was intentionally chosen, and used since it creates an efficient protein corona for both types of optically/magnetically-susceptible nanostructures (AuNC, SPION) and ensures biocompatibility of the resulting APEBM nanocomposite although it contains elevated metal concentrations (approx. 1 mg·mL-1 of Au, around 0.3 mg·mL-1 of Fe). In vitro and in vivo imaging was performed. FINDINGS Successful in vivo FI and MRI recorded in healthy mice corroborated the applicability of the APEBM nanocomposite and, simultaneously, served as a proof of concept concerning the potential future exploitation of this new FI/MRI bimodal contrast agent in preclinical and clinical practice.
Collapse
Affiliation(s)
- Radek Ostruszka
- Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, tř. 17. listopadu 12, 77900 Olomouc, Czech Republic
| | - Aminadav Halili
- Institute for Clinical and Experimental Medicine, Vídeňská 9, 140 21 Prague, Czech Republic
| | - Tomáš Pluháček
- Department of Analytical Chemistry, Faculty of Science, Palacký University Olomouc, tř. 17. listopadu 12, 77900 Olomouc, Czech Republic
| | - Lucie Rárová
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 77900 Olomouc, Czech Republic
| | - Daniel Jirák
- Institute for Clinical and Experimental Medicine, Vídeňská 9, 140 21 Prague, Czech Republic; Faculty of Health Studies, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic
| | - Karolína Šišková
- Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, tř. 17. listopadu 12, 77900 Olomouc, Czech Republic.
| |
Collapse
|
15
|
Li H, Wang J, Jiao L, Hao E. BODIPY-based photocages: rational design and their biomedical application. Chem Commun (Camb) 2024; 60:5770-5789. [PMID: 38752310 DOI: 10.1039/d4cc01412j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Photocages, also known as photoactivated protective groups (PPGs), have been utilized to achieve controlled release of target molecules in a non-invasive and spatiotemporal manner. In the past decade, BODIPY fluorophores, a well-established class of fluorescent dyes, have emerged as a novel type of photoactivated protective group capable of efficiently releasing cargo species upon irradiation. This is due to their exceptional properties, including high molar absorption coefficients, resistance to photochemical and thermal degradation, multiple modification sites, favorable uncaging quantum yields, and highly adjustable spectral properties. Compared to traditional photocages that mainly absorb UV light, BODIPY-based photocages that absorb visible/near-infrared (Vis/NIR) light offer advantages such as deeper tissue penetration and reduced bio-autofluorescence, making them highly suitable for various biomedical applications. Consequently, different types of photoactivated protective groups based on the BODIPY skeleton have been established. This highlight provides a comprehensive overview of the strategies employed to construct BODIPY photocages by substituting leaving groups at different positions within the BODIPY fluorophore, including the meso-methyl position, boron position, 2,6-position, and 3,5-position. Furthermore, the application of these BODIPY photocages in biomedical fields, such as fluorescence imaging and controlled release of active species, is discussed.
Collapse
Affiliation(s)
- Heng Li
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Jun Wang
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Department of Chemistry and Pharmaceutical Engineering, Hefei Normal University, Hefei, 230601, China.
| | - Lijuan Jiao
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Erhong Hao
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
16
|
Ye C, Huang R, Chiou MF, Wang B, Li D, Bao H. Synthesis of a new fluorophore: wavelength-tunable bisbenzo[ f]isoindolylidenes. Chem Sci 2023; 14:13151-13158. [PMID: 38023512 PMCID: PMC10664550 DOI: 10.1039/d3sc04445a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
The creation of new functional molecules is a central task in chemical synthesis. Herein, we report the synthesis of a new type of fluorophore, bisbenzo[f]isoindolylidenes, from easily accessible dipropargyl benzenesulfonamides. Wavelength-tunable fluorophores emitting strong fluorescence of green to red light were obtained in this reaction. Late-stage modifications and incorporation of bioactive molecules into these fluorophores give rise to potential applications in biological studies. Detailed computational and experimental studies were conducted to elucidate the mechanism, and suggest a reaction sequence involving Garratt-Braverman type cyclization, isomerization, fragmentation, dimerization and oxidation.
Collapse
Affiliation(s)
- Changqing Ye
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Rui Huang
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University Fuzhou Fujian 350002 P. R. China
| | - Mong-Feng Chiou
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Bo Wang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University Fuzhou Fujian 350002 P. R. China
| | - Daliang Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University Fuzhou Fujian 350002 P. R. China
| | - Hongli Bao
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
17
|
Gandioso A, Izquierdo-García E, Mesdom P, Arnoux P, Demeubayeva N, Burckel P, Saubaméa B, Bosch M, Frochot C, Marchán V, Gasser G. Ru(II)-Cyanine Complexes as Promising Photodynamic Photosensitizers for the Treatment of Hypoxic Tumours with Highly Penetrating 770 nm Near-Infrared Light. Chemistry 2023; 29:e202301742. [PMID: 37548580 DOI: 10.1002/chem.202301742] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/08/2023]
Abstract
Light-activated treatments, such as photodynamic therapy (PDT), provide temporal and spatial control over a specific cytotoxic response by exploiting toxicity differences between irradiated and dark conditions. In this work, a novel strategy for developing near infrared (NIR)-activatable Ru(II) polypyridyl-based photosensitizers (PSs) was successfully developed through the incorporation of symmetric heptamethine cyanine dyes in the metal complex via a phenanthrimidazole ligand. Owing to their strong absorption in the NIR region, the PSs could be efficiently photoactivated with highly penetrating NIR light (770 nm), leading to high photocytotoxicities towards several cancer cell lines under both normoxic and hypoxic conditions. Notably, our lead PS (Ru-Cyn-1), which accumulated in the mitochondria, exhibited a good photocytotoxic activity under challenging low-oxygen concentration (2 % O2 ) upon NIR light irradiation conditions (770 nm), owing to a combination of type I and II PDT mechanisms. The fact that the PS Protoporphyrin IX (PpIX), the metabolite of the clinically approved 5-ALA PS, was found inactive under the same challenging conditions positions Ru-Cyn-1 complex as a promising PDT agent for the treatment of deep-seated hypoxic tumours.
Collapse
Affiliation(s)
- Albert Gandioso
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - Eduardo Izquierdo-García
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona (UB)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Pierre Mesdom
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | | | | | - Pierre Burckel
- Université de Paris, Institut de physique du globe de Paris, CNRS, 75005, Paris, France
| | - Bruno Saubaméa
- Cellular and Molecular Imaging platform, US25 Inserm, UAR3612 CNRS, Faculté de Pharmacie de Paris, Université Paris Cité, 75006, Paris, France
| | - Manel Bosch
- Unitat de Microscòpia Òptica Avançada, Centres Científics i Tecnològics, Universitat de Barcelona (CCiTUB), Av. Diagonal, 643, Barcelona, 08028, Spain
| | - Céline Frochot
- Université de Lorraine, CNRS, LRGP, 54000, Nancy, France
| | - Vicente Marchán
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona (UB)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| |
Collapse
|
18
|
Ma Y, Liu L, Ye Z, Xu L, Li Y, Liu S, Song G, Zhang XB. Engineering of cyanine-based nanoplatform with tunable response toward reactive species for ratiometric NIR-II fluorescent imaging in mice. Sci Bull (Beijing) 2023; 68:2382-2390. [PMID: 37679256 DOI: 10.1016/j.scib.2023.08.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/05/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023]
Abstract
High-quality second near-infrared (NIR-II) nanoprobes are of great significance for real-time bioimaging and medical diagnosis. Cyanine is an important class of fluorophores to construct activatable probes; however, there are still significant challenges hindering their biological applications, including weak fluorescence in aqueous solution, instability, and insufficient specificity. Herein, an integrated engineering strategy is conducted to develop the cyanine-based activatable NIR-II nanoplatforms with bright, stable emission and high specificity. Specifically, poly(styrene-co-maleic anhydride) (PSMA) is employed to encapsulate NIR-II fluorescent molecules (IR1048) to render the stable and bright NIR-II nanoparticles (PSMA@IR1048 NPs). By charge-modulated strategy, a series of cyanine-fluorophores are loaded on the surface of PSMA@IR1048 NPs and exhibit tunable response toward reactive species. Combing those two strategies, NIR-II ratiometric fluorescent nanoprobes (RNPs, including RNP1, RNP2, and RNP3) are constructed; among them, RNP2 displays hypochlorous acid (HClO) responsive performance and generates a higher NIR-II fluorescent ratio (FL2/FL1) signal. Such nanoprobe can reliably report the pathological HClO level in models of diabetic liver injury and lower limb ischemia-reperfusion (I/R) injury mice. Our study paves an engineering strategy to construct cyanine-based stable, bright, and specific NIR-II probes for bioimaging.
Collapse
Affiliation(s)
- Yuan Ma
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Liuhui Liu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhifei Ye
- Department of Chemistry, Case Western Reserve University, Cleveland OH 44106, USA
| | - Li Xu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yuhang Li
- Department of Hepatobiliary Surgery/Central Laboratory, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410082, China
| | - Sulai Liu
- Department of Hepatobiliary Surgery/Central Laboratory, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410082, China.
| | - Guosheng Song
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
19
|
Tian Y, Chen Z, Liu S, Wu F, Cao W, Pang DW, Xiong H. "Dual-Key-and-Lock" NIR-II NSCyanines Enable High-Contrast Activatable Phototheranostics in Extrahepatic Diseases. Angew Chem Int Ed Engl 2023; 62:e202309768. [PMID: 37559354 DOI: 10.1002/anie.202309768] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/23/2023] [Accepted: 08/09/2023] [Indexed: 08/11/2023]
Abstract
Conventional cyanine dyes with a symmetric structure are "always-on", which can easily accumulate in the liver and display high liver background fluorescence, inevitably interfering the accurate diagnosis and therapy in extrahepatic diseases. We herein report a platform of NIR-II non-symmetric cyanine (NSCyanine) dyes by harnessing a non-symmetric strategy, which are extremely sensitive to pH/viscosity and can be activated via a "dual-key-and-lock" strategy. These NSCyanine dyes with a low pKa (<4.0) only show weak fluorescence at lysosome pH (key1), however, the fluorescence can be completely switched on and significantly enhanced by intracellular viscosity (key2) in disease tissues, exhibiting high target-to-liver ratios up to 19.5/1. Notably, high-contrast phototheranostics in extrahepatic diseases are achieved, including intestinal metastasis-imaging, acute gastritis-imaging, bacteria infected wound healing, and tumor ablation via targeted combined photothermal therapy and chemotherapy.
Collapse
Affiliation(s)
- Yang Tian
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Zhaoming Chen
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Senyao Liu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Fapu Wu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Wenwen Cao
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Dai-Wen Pang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Hu Xiong
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| |
Collapse
|
20
|
Guan L, Zhou Y, Li X, Mao Y, Li A, Fu Y, Liu W, Dong S, Liang Z, Zhang Y, Zhao Q, Zhang L. ON-OFF Fluorescent Cyanine Dye Based on a Benzothiophenyl Rotor Enables Selective Illumination of G-Quadruplexes in Mitochondria. Anal Chem 2023. [PMID: 37290004 DOI: 10.1021/acs.analchem.3c01153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Conventional cyanine dyes exist as "always-on" fluorescent probes leading to inevitable background signals which often limit their performance and scope of applications. To develop specific fluorescent probes with high sensitivity and robust OFF/ON switching for targeting G4s, we introduced aromatic heterocycles through conjugation with polymethine chains to construct a rotor-π system. Here, a universal strategy is presented to synthesize pentamethine cyanines with different aromatic heterocycle substituents on the meso-polymethine chain. In these probes, SN-Cy5-S is self-quenched in aqueous solution due to H-aggregation. The structure indicates that SN-Cy5-S with a flexible meso-benzothiophenyl rotor conjugated to the cyanine backbone matches adaptively with G-tetrad planes, enhancing π-π stacking and resulting in triggered fluorescence. This allows recognition of G-quadruplexes due to the synergy of disaggregation-induced emission (DIE) and inhibited twisted intramolecular charge-transfer effects. This combination leads to a robust lighting-up fluorescence response for c-myc G4 with superior fluorescence enhancement (98-fold), allowing for a low detection limit of 1.51 nM, which is much more sensitive than the previously reported DIE-based G4 probes (22-83.5 nM). In addition, the superior imaging properties and rapid internalization time (5 min) in mitochondria allow SN-Cy5-S to also have a high potential for mitochondrially targeting anti-cancer therapy.
Collapse
Affiliation(s)
- Li Guan
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yanyan Zhou
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiao Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yongbao Mao
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Anyang Li
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yile Fu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wen Liu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sheying Dong
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
21
|
Jin W, Fan B, Qin X, Liu Y, Qian C, Tang B, James TD, Chen G. Structure-activity of chlormethine fluorescent prodrugs: Witnessing the development of trackable drug delivery. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
22
|
Mao Z, Kim JH, Lee J, Xiong H, Zhang F, Kim JS. Engineering of BODIPY-based theranostics for cancer therapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Exner R, Cortezon-Tamarit F, Ge H, Pourzand C, Pascu SI. Unraveling the Chemistry of meso-Cl Tricarbocyanine Dyes in Conjugation Reactions for the Creation of Peptide Bonds. ACS BIO & MED CHEM AU 2022; 2:642-654. [PMID: 36573095 PMCID: PMC9782398 DOI: 10.1021/acsbiomedchemau.2c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022]
Abstract
Tricarbocyanine dyes have become popular tools in life sciences and medicine. Their near-infrared (NIR) fluorescence makes them ideal agents for imaging of thick specimens or in vivo imaging, e.g., in fluorescence-guided surgery. Among other types of cyanine dyes, meso-Cl tricarbocyanine dyes have received a surge of interest, as it emerged that their high reactivity makes them inherently tumor-targeting. As such, significant research efforts have focused on conjugating these to functional moieties. However, the syntheses generally suffer from low yields. Hereby, we report on the reaction of meso-Cl dyes with a small selection of coupling reagents to give the corresponding keto-polymethines, potentially explaining low yields and the prevalence of monofunctionalized cyanine conjugates in the current state of the art of functional near-infrared dyes. We present the synthesis and isolation of the first keto-polymethine-based conjugate and present preliminary investigation in the prostate cancer cell lines PC3 and DU145 by confocal microscopy and discuss changes to optical properties in biological media.
Collapse
Affiliation(s)
- Rüdiger
M. Exner
- Department
of Chemistry, University of Bath, Claverton Down Road, BA2 7AY Bath, U.K.
| | | | - Haobo Ge
- Department
of Chemistry, University of Bath, Claverton Down Road, BA2 7AY Bath, U.K.
| | - Charareh Pourzand
- Department
of Pharmacy and Pharmacology, University
of Bath, Claverton Down
Road, BA2 7AY Bath, U.K.,Centre
of Therapeutic Innovations, University of
Bath, Claverton Down
Road, BA2 7AY Bath, U.K.
| | - Sofia I. Pascu
- Department
of Chemistry, University of Bath, Claverton Down Road, BA2 7AY Bath, U.K.,Centre
of Therapeutic Innovations, University of
Bath, Claverton Down
Road, BA2 7AY Bath, U.K.,
| |
Collapse
|
24
|
Advancing biomedical applications via manipulating intersystem crossing. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Ma Y, Guo B, Ge JY, Chen L, Lv N, Wu X, Chen J, Chen Z. Rational Design of a Near-Infrared Ratiometric Probe with a Large Stokes Shift: Visualization of Polarity Abnormalities in Non-Alcoholic Fatty Liver Model Mice. Anal Chem 2022; 94:12383-12390. [PMID: 36049122 DOI: 10.1021/acs.analchem.2c01972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tracking liver polarity with noninvasive and dynamic imaging techniques is helpful to better understand the non-alcoholic fatty liver (NAFL). Herein, a novel near-infrared (NIR) fluorescent probe Cy-Mp is constructed using a "symmetry collapse" strategy. The structure modification leads to the conversion of locally excited state fluorescence to charge transfer state fluorescence. Cy-Mp emits at near-infrared (NIR) wavelengths with high photostability as well as a large Stokes shift. Cy-Mp exhibits a ratiometric response to polarity, providing more accurate analysis of intracellular polarity via the built-in internal reference correction. Most importantly, the in vivo studies indicate that Cy-Mp can accumulate in the liver and the decreased polarity in the liver of mice with NAFL is verified by the ratiometric imaging, implying the great potential of Cy-Mp in the diagnosis of NAFL.
Collapse
Affiliation(s)
- Yaogeng Ma
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Bingjie Guo
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Jing-Yuan Ge
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Lepeng Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Ningning Lv
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Xuan Wu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325035, P. R. China
| | - Jiuxi Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Zhongyan Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| |
Collapse
|
26
|
Highly bright aggregation-induced emission nanodots for precise photoacoustic/NIR-II fluorescence imaging-guided resection of neuroendocrine neoplasms and sentinel lymph nodes. Biomaterials 2022; 289:121780. [DOI: 10.1016/j.biomaterials.2022.121780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022]
|
27
|
Leng J, Lan X, Liu S, Jia W, Cheng W, Cheng J, Liu Z. Synthesis and bioimaging of a BODIPY-based fluorescence quenching probe for Fe 3. RSC Adv 2022; 12:21332-21339. [PMID: 35975086 PMCID: PMC9344281 DOI: 10.1039/d2ra00818a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/18/2022] [Indexed: 11/21/2022] Open
Abstract
Iron is the main substance for maintaining life. Real-time determination of ferric ion (Fe3+) in living cells is of great significance for understanding the relationship of Fe3+ concentration changes with various physiological and pathological processes. Fluorescent probes are suitable for the detection of trace metal ions in cells due to their low toxicity and high sensitivity. In this work, a boron-dipyrromethene-based fluorescent probe (BODIPY-CL) for selective detection of Fe3+ was synthesized. The fluorescence emission of BODIPY-CL was determined at 516 nm. In a pH range of 1 to 10, the probe BODIPY-CL exhibits a quenching response to Fe3+. Meanwhile, BODIPY-CL showed a highly selective response to Fe3+ compared with 16 kinds of metal ions. The stoichiometry ratio of BODIPY-CL bound to Fe3+ was nearly 2 : 1. The fluorescence quenching response obtained by the sensor was linear with the Fe3+ concentration in the range of 0-400 μM, and the detection limit was 2.9 μM. BODIPY-CL was successfully applied to image Fe3+ in cells. This study provides a promising fluorescent imaging probe for further research on the physiological and pathological effects of Fe3+.
Collapse
Affiliation(s)
- Junqiang Leng
- School of Chemistry and Chemical Engineering, Yantai University Yantai 264005 P. R. China
| | - Xinyu Lan
- School of Chemistry and Chemical Engineering, Yantai University Yantai 264005 P. R. China
| | - Shuang Liu
- School of Chemistry and Chemical Engineering, Yantai University Yantai 264005 P. R. China
| | - Wenxuan Jia
- School of Chemistry and Chemical Engineering, Yantai University Yantai 264005 P. R. China
| | - Wenshuai Cheng
- School of Chemistry and Chemical Engineering, Yantai University Yantai 264005 P. R. China
| | - Jianbo Cheng
- School of Chemistry and Chemical Engineering, Yantai University Yantai 264005 P. R. China
| | - Zhenbo Liu
- School of Chemistry and Chemical Engineering, Yantai University Yantai 264005 P. R. China
| |
Collapse
|
28
|
Peng HY, Zhang G, Xu YJ, Sun R, Ge JF. Near-infrared fluorescent probes based on a quinoxaline skeleton for imaging nucleic acids in mitochondria. Org Biomol Chem 2022; 20:5558-5565. [PMID: 35791887 DOI: 10.1039/d2ob01095j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, two cationic probes 1a and 1b and a neutral dye 1c were successfully designed and synthesized according to the Knoevenagel condensation reaction, which combines the good optical properties of hemocyanine and the biocompatibility of nitrogen-containing heterocyclic rings based on a quinoxaline skeleton. Probes 1a and 1b showed an OFF-ON fluorescence response to nucleic acids with excellent selectivity. Specifically, the fluorescence intensity of probe 1a was enhanced by 18 and 133 times, respectively, along with the increase of DNA or RNA concentrations (0-600 μg mL-1). Furthermore, a good linear correlation between the fluorescence intensity of probes 1a and 1b and the concentrations of DNA or RNA (0-350 μg mL-1) was obtained. In particular, the maximum emission wavelengths of probes 1a and 1b reached the near-infrared region (660-664 nm) when DNA or RNA was detected, which might reduce the light damage to cells and facilitate cell experiments. Fluorescence imaging revealed that all three dyes could be localized in the mitochondria of HeLa cells. The difference was that probes 1a and 1b could stain the nucleic acid in the mitochondria, while dye 1c was only a neutral mitochondrial biomarker. The results indicated that probes 1a and 1b are promising in the development of low toxicity mitochondrial nucleic acid probes and are expected to be used in monitoring the normal state of mitochondrial nucleic acids for living cells, which will help improve the situation in that currently reported studies of fluorescent probes are mainly focused on the nucleic acids in the nucleus, but less so on DNA in the mitochondria.
Collapse
Affiliation(s)
- Hai-Yan Peng
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China.
| | - Gang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yu-Jie Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ru Sun
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China.
| | - Jian-Feng Ge
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China.
| |
Collapse
|
29
|
Dou WT, Han HH, Sedgwick AC, Zhu GB, Zang Y, Yang XR, Yoon J, James TD, Li J, He XP. Fluorescent probes for the detection of disease-associated biomarkers. Sci Bull (Beijing) 2022; 67:853-878. [PMID: 36546238 DOI: 10.1016/j.scib.2022.01.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023]
Abstract
Fluorescent probes have emerged as indispensable chemical tools to the field of chemical biology and medicine. The ability to detect intracellular species and monitor physiological processes has not only advanced our knowledge in biology but has provided new approaches towards disease diagnosis. In this review, we detail the design criteria and strategies for some recently reported fluorescent probes that can detect a wide range of biologically important species in cells and in vivo. In doing so, we highlight the importance of each biological species and their role in biological systems and for disease progression. We then discuss the current problems and challenges of existing technologies and provide our perspective on the future directions of the research area. Overall, we hope this review will provide inspiration for researchers and prove as useful guide for the development of the next generation of fluorescent probes.
Collapse
Affiliation(s)
- Wei-Tao Dou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224, USA
| | - Guo-Biao Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin-Rong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
30
|
Zhang L, Jiang FL, Guo QL, Liu Y, Jiang P. pH-Sensitive Bioprobe for Multichannel Mitochondrial Imaging and Photodynamic Therapy. Anal Chem 2022; 94:4126-4133. [PMID: 35220719 DOI: 10.1021/acs.analchem.2c00306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tumor targeting therapy and photodynamic therapy are effective anti-cancer therapies. Their research progress has attracted wide attention and is one of the focuses of anti-cancer drug research and development. The design and synthesis of multifunctional organic phototheranostic agents for superior image-guided diagnosis and phototherapy play an increasingly positive role in cancer diagnosis and treatment. Herein, F16M and CyM were obtained through functional design from cyanine and F16. Physicochemical characterization and biological application results showed that CyM is a multifunctional organic biological probe, which can realize intracellular multichannel (green, yellow, red, and NIR) imaging, pH detection, and mitochondrial-targeted photodynamic therapy. As an organic phototheranostic agent, it could not only realize near-infrared imaging and photodynamic therapy in vivo and in vitro but also has excellent biocompatibility and good guiding significance for the development of multichannel imaging and mitochondrial-targeting photodynamic therapy.
Collapse
Affiliation(s)
- Lu Zhang
- College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Feng-Lei Jiang
- College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Qing-Lian Guo
- Zhongnan Hospital, Wuhan University, Wuhan 430071, P. R. China
| | - Yi Liu
- College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, P. R. China.,State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry and Chemical Engineering & School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Peng Jiang
- College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|