1
|
Khoshnood A, Iranpour S, Khaksari S, Mousavi Shaegh SA, Abnous K, Taghdisi SM. Liposome/AZIF-8 Janus nanoplatforms: Promising nanocarriers for improving chemotherapeutic outcomes in breast cancer treatment. Int J Pharm 2025; 678:125702. [PMID: 40348299 DOI: 10.1016/j.ijpharm.2025.125702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND The incorporation of fascinating properties from multiple functional elements into a single nanoplatform has increasingly garnered interest as a strategy to improve the effectiveness of treatments, especially chemotherapy. Herein, we designed a multifunctional Janus nanoplatform composed of AZIF-8 and liposomes for the concurrent delivery of both hydrophobic and hydrophilic therapeutic agents to cancer cells for the first time. This hybrid nanoplatform integrates biomimetic strategies and active targeting mechanisms to enhance therapeutic efficacy. METHODS AZIF-8 nanoparticles encapsulating doxorubicin (DOX) and liposomes loaded with mitoxantrone (MTX) on opposite faces of a Janus nanoplatform were synthesized using one-pot and thin-film techniques, respectively. These two compartments were further combined through a microfluidic technique, then coated with 4T1 cancer cell membranes and conjugated with the AS1411 aptamer to enable effective tumor targeting. Upon confirming the physicochemical properties of the Janus nanoparticles, their cellular internalization, cytotoxicity, and mechanisms of cell death were evaluated in both AS1411-positive 4T1 cancer and AS1411-negative CHO cells. Following these in vitro studies, the anti-tumor efficacy, potential side effects, and in vivo biodistribution of the formulation were further assessed in BALB/c mice bearing breast tumors. RESULTS Characterization results confirmed the formation of liposome with a zeta potential of -51 mV and a size of 47.73 nm; AZIF-8 with a zeta potential of 6.49 mV and a size of 34.96 nm; and the final Janus nanoparticle formulation, stabilized with the cell membrane and aptamer, which exhibited a zeta potential of -38.23 mV and a size of 160 nm. The Janus@Membrane-Aptamer demonstrated significant anti-tumor activity with a potential for an effective cell-targeting towards 4T1 cell lines. This novel formulation offers a promising alternative for breast cancer therapy, utilizing dual targeting via cancer cell membrane and AS1411 aptamer to enhance precision and therapeutic efficacy. The simultaneous administration of MTX and DOX using a unified nanoplatform improves tumor treatment outcomes while minimizing adverse effects, owing to its dual-targeting capability. In vivo findings revealed considerable tumor suppression in BALB/c mice, with no observed complications affecting the organs, underscoring its potential as a safe and efficient cancer treatment approach. CONCLUSION Hence, Janus@Membrane-Aptamer might be an effective and safe nano-delivery platform for combined chemotherapy.
Collapse
Affiliation(s)
- Ali Khoshnood
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sonia Iranpour
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sedighe Khaksari
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Laboratory of Microfluidics and Medical Microsystems, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ali Mousavi Shaegh
- Laboratory of Microfluidics and Medical Microsystems, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Clinical Research Unit, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Yang J, Ding C, He M, Wang X, Chen J, Qi D, Sun Y. Charge-dominated phase separation synthesis method of Janus particles with well-defined separated lobes and patternable surface chemistries. J Colloid Interface Sci 2025; 695:137804. [PMID: 40347652 DOI: 10.1016/j.jcis.2025.137804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/30/2025] [Accepted: 05/04/2025] [Indexed: 05/14/2025]
Abstract
Synthesizing Janus particles (JPs) with well-defined separated lobes and customizable surface chemistries has broad scientific and engineering application prospects but has proven extremely challenging. Here, we report a novel phase-separation-based fabrication method leveraging charge-dominated seeded emulsion polymerization, which enables the synthesis of JPs with multi-scale lobe architectures (ranging from isotropic asymmetric shapes to chemically anisotropic forms such as ellipses, dumbbells, and triblock structures) and customizable surface chemistries (including functional groups like carboxyl, sulfate, and sulfonate). Our method is based on the principles of multicomponent systems' heterogeneous nucleation and growth, where the interfacial energy is meticulously controlled by fine-tuning the surface charges/chemical properties of polystyrene (PS) seeds and methacryloxypropyl trimethoxysilane (MPS) emulsions, while the growth kinetics of polymethacryloxypropyl trimethoxysilane (PMPS) lobes are guided through a synergistic combination of radical polymerization and hydrolysis-condensation reactions. Charge-dominated repulsive forces at the interface play a crucial role in driving the phase separation, enabling the synthesis of well-defined JPs and making this strategy broadly applicable to a variety of negatively charged PS seeds or MPS emulsions for customizable two-lobe surface chemistries. Furthermore, the PMPS hemisphere can be selectively modified, enabling applications in Pickering emulsions. This work offers a scalable method for the controllable fabrication of JPs with programmable architectures and surface chemistries.
Collapse
Affiliation(s)
- Jifu Yang
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chunyu Ding
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Mengyao He
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinqing Wang
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junyu Chen
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dongming Qi
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yangyi Sun
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
3
|
Li D, Liu W, Peng T, Liu Y, Zhong L, Wang X. Janus Textile: Advancing Wearable Technology for Autonomous Sweat Management and Beyond. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409730. [PMID: 40042440 DOI: 10.1002/smll.202409730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/09/2025] [Indexed: 04/03/2025]
Abstract
To alleviate the discomfort caused by excessive sweating, there is a growing emphasis on developing wearable textiles that can evacuate sweat autonomously. These advanced fabrics, unlike their absorbent and retention-prone predecessors, harness the Janus structure-distinguished by its asymmetric wettability-to facilitate one-way transport of liquid. This unique characteristic has significant potential in addressing issues related to excessive bodily moisture and propelling the realm of smart wearables. This review offers a comprehensive overview of the advancements in Janus-structured textiles within the wearable field, delving into the mechanisms behind their unidirectional liquid transport, which rely on chemical gradient and curvature gradient strategies, alongside the methodologies for achieving asymmetric wettability. It further spotlights the multifaceted applications of Janus-based textiles in wearables, including moisture and thermal management, wound care, and sweat analysis. In addition to examining existing hurdles, the review also explores avenues for future innovation, envisioning a new era of Janus textiles tailored for personalized comfort and health monitoring capabilities.
Collapse
Affiliation(s)
- Dan Li
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Weiyi Liu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Tianhan Peng
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Yunya Liu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Lieshuang Zhong
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Xiufeng Wang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| |
Collapse
|
4
|
Sarkar S, Jagirdar BR. Ionic liquid-directed synthesis of Au-AgBr Janus nanoparticles via digestive ripening and solvated metal atom dispersion. NANOSCALE 2025; 17:8057-8068. [PMID: 40035558 DOI: 10.1039/d5nr00010f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Multicomponent nanoparticles (MCNs) leverage the synergistic properties of their constituents, offering enhanced performance in diverse applications, including catalysis and photocatalysis. Among them, Janus nanoparticles (JNPs) with their dual domains, stand out as particularly promising. This study presents a novel two-step method to synthesize Au-AgBr JNPs, combining the solvated metal atom dispersion (SMAD) method with digestive ripening (DR). Using ultra-pure metals as precursors negates the need for post-synthesis purification. By adjusting the Au/Ag molar ratio, yields of JNPs up to 85% with precise control of particle size and composition were achieved. The ionic liquid [C18BIm]Br plays a crucial role in promoting AgBr growth on Au nanoparticles, with only low concentrations of ionic liquid favoring Janus structure formation. Additionally, a wet chemical reduction method was also carried out, affording results comparable to those obtained using SMAD and digestive ripening. A mechanistic study for the formation of Au-AgBr JNPs has also been carried out. Driven by a galvanic replacement reaction, the formation mechanism of Au-AgBr JNPs was traced using X-ray photoelectron spectroscopy (XPS). Further, a bromide-free ionic liquid ([C18BIm]NTf2) was also employed for the synthesis which yields AgAu alloy only and no Janus heterostructure formation.
Collapse
Affiliation(s)
- Saibalendu Sarkar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Balaji R Jagirdar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
5
|
Equy E, Ibarboure E, Grelet E, Lecommandoux S. Janus Polymeric Giant Vesicles on Demand: A Predictive Phase Separation Approach for Efficient Formation. J Am Chem Soc 2025; 147:9727-9738. [PMID: 40066799 DOI: 10.1021/jacs.4c18003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Janus particles, with their intrinsic asymmetry, are attracting major interest in various applications, including emulsion stabilization, micro/nanomotors, imaging, and drug delivery. In this context, Janus polymersomes are particularly attractive for synthetic cell development and drug delivery systems. While they can be achieved by inducing a phase separation within their membrane, their fabrication method remains largely empirical. Here, we propose a rational approach, using Flory-Huggins theory, to predict the self-assembly of amphiphilic block copolymers into asymmetric Janus polymersomes. Our predictions are experimentally validated by forming highly stable Janus giant unilamellar vesicles (JGUVs) with a remarkable yield exceeding 90% obtained from electroformation of various biocompatible block copolymers. We also present a general phase diagram correlating mixing energy with polymersome morphology, offering a valuable tool for JGUV design. These polymersomes can be extruded to achieve quasi-monodisperse vesicles while maintaining their Janus-like morphology, paving the way for their asymmetric functionalization and use as active carriers.
Collapse
Affiliation(s)
- Eloise Equy
- Univ. Bordeaux, CNRS, Bordeaux INP LCPO, UMR 5629, Pessac F-33600, France
- Univ. Bordeaux, CNRS, CRPP UMR 5031, , Pessac F-33600, France
| | - Emmanuel Ibarboure
- Univ. Bordeaux, CNRS, Bordeaux INP LCPO, UMR 5629, Pessac F-33600, France
| | - Eric Grelet
- Univ. Bordeaux, CNRS, CRPP UMR 5031, , Pessac F-33600, France
| | | |
Collapse
|
6
|
Saeedi Dehaghani AH, Gharibshahi R, Mohammadi M. Synthesis and performance analysis of novel SiO 2 Janus nanoparticles for enhancing gas foam injection in oil reservoirs. Sci Rep 2025; 15:2994. [PMID: 39849042 PMCID: PMC11758065 DOI: 10.1038/s41598-025-87367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/17/2025] [Indexed: 01/25/2025] Open
Abstract
Gas foam injection offers a viable solution to challenges faced in oil reservoirs, yet ensuring optimal foamability and stability remains a pivotal hurdle in practical field operations. This study presents a novel synthesis procedure to create silica (SiO2) Janus nanoparticles (JNPs) and examines their potential to enhance gas foam stability for enhanced oil recovery (EOR) applications. Two variations of SiO2 JNPs were synthesized via a masking procedure, employing oleic acid and ascorbic acid within a Pickering emulsion, marking a pioneering approach. These nanoparticles underwent comprehensive analysis for a deeper understanding. The investigation sought to unravel the mechanisms behind these JNPs' performance in the foam injection process, probing various operational parameters such as JNP type, concentration, and gas medium (air, CO2, and CH4) impact on surface tension reduction, foamability, and stability through static tests. Results uncovered remarkable efficiency in SiO2-oleic acid JNPs, showcasing a substantial edge in reducing surface tension compared to bare SiO2 nanoparticles. Specifically, at a concentration of 15,000 ppm, SiO2-oleic acid JNPs demonstrated a 25 mN/m greater reduction in surface tension than bare SiO2 within a CH4 medium. Notably, while the gas type had limited influence on surface tension under standard pressure, the synthesized JNPs showed superior foam stabilization in air compared to CO2 and CH4 environments. SiO2-oleic JNPs exhibited outstanding foamability, stabilizing 80% of the foam generator cell's height and remaining stable for 122 min during the EOR process. Conversely, ascorbic acid-SiO2-oleic acid JNPs displayed elevated foamability but reduced stability compared to SiO2-oleic acid JNPs. Despite achieving full height in the foam generator cell, stability was limited to 26 min in the CO2 medium.
Collapse
Affiliation(s)
| | - Reza Gharibshahi
- Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Mohammadi
- Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Luo L, Li J, Zhou Y, Xiang D, Luan Y, Wang Q, Huang J, Liu J, Yang X, Wang K. Spatially Controlled DNA Frameworks for Sensitive Detection and Specific Isolation of Tumor Cells. Angew Chem Int Ed Engl 2024; 63:e202411382. [PMID: 39405000 DOI: 10.1002/anie.202411382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/14/2024] [Indexed: 11/13/2024]
Abstract
High-affinity, specific, and sensitive probes are crucial for the specific recognition and identification of tumor cells from complex matrices. Multivalent binding is a powerful strategy, but the irrational spatial distribution of the functional moieties may reduce the probe performance. Here, we constructed a Janus DNA triangular prism nanostructure (3Zy1-JTP-3) for sensitive detection and specific isolation of tumor cells. Benefiting from spatial features of the triangular prism, the fluorescence intensity induced by 3Zy1-JTP-3 was almost 4 times that of the monovalent structure. Moreover, the DNA triangular prisms were connected to form hand-in-hand multivalent DNA triangular prism structures (Zy1-MTP), in which the fluorescence intensity and affinity were increased to 9-fold and 10-fold of 3Zy1-JTP-3, respectively. Furthermore, 3Zy1-JTP-3 and Zy1-MTP were combined with magnetic beads, and the latter showed higher capture efficiency (>90 %) in whole blood. This work provides a new strategy for the efficient capture of rare cells in complex biological samples.
Collapse
Affiliation(s)
- Lei Luo
- State key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Jiaojiao Li
- State key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yuan Zhou
- State key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Dongliu Xiang
- State key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yanan Luan
- State key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Qing Wang
- State key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Jin Huang
- State key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Jianbo Liu
- State key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Xiaohai Yang
- State key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Kemin Wang
- State key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| |
Collapse
|
8
|
Wang J, Li S, Yang L, Kwan C, Xie C, Cheung KY, Sun RW, Chan ASC, Huang Z, Cai Z, Zeng T, Leung KC. Janus and Amphiphilic MoS 2 2D Sheets for Surface-Directed Orientational Assemblies toward Ex Vivo Dual Substrate Release. SMALL METHODS 2024; 8:e2400533. [PMID: 38874104 PMCID: PMC11671850 DOI: 10.1002/smtd.202400533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/17/2024] [Indexed: 06/15/2024]
Abstract
The two-dimensional (2-D) Janus and amphiphilic molybdenum disulfide (MoS2) nanosheet with opposite optical activities on each side (amphichiral) is synthesized by modifying sandwich-like bulk MoS2 with tannic acid and cholesterol through biphasic emulsion method. This new type of amphichiral Janus MoS2 nanosheet consists of a hydrophilic and positive optical activity tannic acid side as well as a hydrophobic and negative optical activity cholesterol side thereby characterized by circular dichroism. Surface-directed orientational differentiation assemblies are performed for the as-synthesized 2D material and are characterized by contact angle, infrared spectroscopy, X-ray photoelectron, and circular dichroism spectroscopies. The amphiphilic nature of the materials is demonstrated by the pre-organization of the nanosheets on either hydrophobic or hydrophilic surfaces, providing unprecedented properties of circular dichroism signal enhancement and wettability. Selective detachment of the surface organic groups (cholesterol and tannic acid fragments) is realized by matrix-assisted laser desorption/ionisation - time-of-flight (MALDI-TOF) mass spectrometry, and the dual substrate release in tissue is detected by ex vivo mass spectrometry imaging.
Collapse
Affiliation(s)
- Jianing Wang
- Department of Chemistry and State Key Laboratory of Environmental and Biological AnalysisHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARP. R. China
| | - Shuqi Li
- College of EnvironmentZhejiang University of Technology18 Chaowang RoadHangzhouZhejiang310014P. R. China
| | - Lin Yang
- Department of ChemistryThe Chinese University of Hong KongShatin, New TerritoriesHong Kong SARP. R. China
| | - Chak‐Shing Kwan
- Department of Chemistry and State Key Laboratory of Environmental and Biological AnalysisHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARP. R. China
- Department of ChemistryGreat Bay University and Great Bay Institute for Advanced StudyDongguan523000P. R. China
| | - Chengyi Xie
- Department of Chemistry and State Key Laboratory of Environmental and Biological AnalysisHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARP. R. China
| | - Kwan Yin Cheung
- Department of Chemistry and State Key Laboratory of Environmental and Biological AnalysisHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARP. R. China
| | - Raymond Wai‐Yin Sun
- Guangzhou Lee & Man Technology Company Limited8 Huanshi Avenue, NanshaGuangzhou511458P. R. China
| | - Albert S. C. Chan
- Guangzhou Lee & Man Technology Company Limited8 Huanshi Avenue, NanshaGuangzhou511458P. R. China
| | - Zhifeng Huang
- Department of ChemistryThe Chinese University of Hong KongShatin, New TerritoriesHong Kong SARP. R. China
| | - Zongwei Cai
- Department of Chemistry and State Key Laboratory of Environmental and Biological AnalysisHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARP. R. China
| | - Tao Zeng
- Department of Chemistry and State Key Laboratory of Environmental and Biological AnalysisHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARP. R. China
- College of EnvironmentZhejiang University of Technology18 Chaowang RoadHangzhouZhejiang310014P. R. China
| | - Ken Cham‐Fai Leung
- Department of Chemistry and State Key Laboratory of Environmental and Biological AnalysisHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARP. R. China
| |
Collapse
|
9
|
Li Y, Xia M, Zhou J, Hu L, Du Y. Recent advances in gold Janus nanomaterials: Preparation and application. Adv Colloid Interface Sci 2024; 334:103315. [PMID: 39454268 DOI: 10.1016/j.cis.2024.103315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 09/02/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Gold Janus nanomaterials have a tremendous significance for the novel bifunctional materials, significantly expanding the application scope of gold nanomaterials, especially Janus gold-thiol coordination polymer due to their exceptional biological characteristics, stability, plasmon effect, etc. The recent research on Janus gold nanoparticles and monolayer films of preparation and application has been summarized and in this review. To begin, we briefly introduce overview of Janus nanomaterials which received intense attention, outline current research trends, and detail the preparation and application of gold nanomaterials. Subsequently, we present comprehensively detailing fabrication strategies and applications of Janus gold nanoparticles. Additionally, we survey recent studies on the Janus gold nano-thickness films and point out the outstanding advantage of application on the tunable surface plasmon resonance, high sensitivity of surface-enhanced Raman scattering and electrical analysis fields. Finally, we discuss the emerging trends in Janus gold nanomaterials and address the associated challenges, thereby providing a comprehensive overview of this area of research.
Collapse
Affiliation(s)
- Yunbo Li
- School of Materials Science & Engineering, Shanghai University, Shanghai 200444, China.
| | - Minqiang Xia
- School of Materials Science & Engineering, Shanghai University, Shanghai 200444, China
| | - Jiahang Zhou
- School of Materials Science & Engineering, Shanghai University, Shanghai 200444, China
| | - Lingui Hu
- School of Materials Science & Engineering, Shanghai University, Shanghai 200444, China
| | - Yixuan Du
- School of Materials Science & Engineering, Bayreuth Universität, Bayreuth, 95445, Germany.
| |
Collapse
|
10
|
Lee HM, Jeong HW, Revadekar C, Lee SJ, Bae J, Im SH, Park BJ. Nondeterministic Wetting of Janus Microspheres at the Oil/Water Interface. J Phys Chem Lett 2024; 15:11815-11822. [PMID: 39561263 DOI: 10.1021/acs.jpclett.4c02919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
We investigate the nondeterministic wetting behaviors of Janus particles at the n-decane/water interface. Upon adsorption at the interface, only some particles reach their thermodynamically stable configuration, while many remain in random nonequilibrium states likely due to contact line pinning. Experimental data and Monte Carlo simulations show that particles in nonequilibrium states with lower three-phase contact angles exhibit reduced attractive forces due to a smaller radius of the three-phase contact line. We also find that vertical translation more easily leads to equilibrium than rotational motion. This work motivates further exploration into the effects of surface tension and surface roughness on identifying the pinning energy barrier, as well as the pinning behavior of biological materials.
Collapse
Affiliation(s)
- Hyang Mi Lee
- Department of Chemical Engineering (BK21 Four Integrated Engineering Program), College of Engineering, Kyung Hee University, Yongin, Gyeonggi-do 17104, Republic of Korea
| | - Hye Won Jeong
- Department of Chemical Engineering (BK21 Four Integrated Engineering Program), College of Engineering, Kyung Hee University, Yongin, Gyeonggi-do 17104, Republic of Korea
| | - Chetan Revadekar
- Department of Chemical Engineering (BK21 Four Integrated Engineering Program), College of Engineering, Kyung Hee University, Yongin, Gyeonggi-do 17104, Republic of Korea
| | - Seong Jae Lee
- Department of Polymer Engineering, The University of Suwon, Hwaseong, Gyeonggi-do 18323, Republic of Korea
| | - Jinhye Bae
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Sang Hyuk Im
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Bum Jun Park
- Department of Chemical Engineering (BK21 Four Integrated Engineering Program), College of Engineering, Kyung Hee University, Yongin, Gyeonggi-do 17104, Republic of Korea
| |
Collapse
|
11
|
Lan L, Li L, Wang C, Naumov P, Zhang H. Efficient Aerial Water Harvesting with Self-Sensing Dynamic Janus Crystals. J Am Chem Soc 2024; 146:30529-30538. [PMID: 39438244 PMCID: PMC11544689 DOI: 10.1021/jacs.4c11689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Water scarcity is one of the most pressing issues of contemporary societal development that requires innovative technologies where the material not only harvests water but also plays an active role in the process. Here, we demonstrate a highly efficient optical self-sensing approach to humidity capture from the air, where both humidity-harvesting and water-transduction functionalities are imparted on slender organic crystals by partial silanization via layer-by-layer hybridization. We report that due to the integration of the harvesting of aerial moisture and the collection of the condensed water, the ensuing Janus-type crystals capture humidity with the highest-to-date water collection efficiency of 15.96 ± 0.63 g cm-2 h-1. The water-collecting elements are also capable of delivering the water by reversible and periodic elastic deformation, and their high optical transparency allows real-time monitoring of the periodic fog collection process by deformational modulation of passively or actively transduced light that outcouples at the crystal-droplet interface. The results could inspire sophisticated approaches to humidity harvesting where optically transparent crystals combine fog capture with self-sensing capabilities for continuous and optimized operation to maximize the cost-gain balance of aerial fog capture.
Collapse
Affiliation(s)
- Linfeng Lan
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
- State
Key Laboratory of Integrated Optoelectronics, College of Electronic
Science and Engineering, Jilin University, Changchun 130012, P. R. China
| | - Liang Li
- Smart
Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
- Department
of Sciences and Engineering Department, Sorbonne University Abu Dhabi, PO Box
38044, Abu Dhabi, UAE
| | - Chenguang Wang
- State
Key Laboratory of Integrated Optoelectronics, College of Electronic
Science and Engineering, Jilin University, Changchun 130012, P. R. China
| | - Panče Naumov
- Smart
Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
- Center
for Smart Engineering Materials, New York
University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
- Research
Center for Environment and Materials, Macedonian
Academy of Sciences and Arts, Bul. Krste Misirkov 2, MK−1000 Skopje, Macedonia
- Molecular
Design Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Hongyu Zhang
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
12
|
Mayol B, Pradana-López S, García A, de la Torre C, Díez P, Villalonga A, Anillo C, Vilela D, Sánchez A, Martínez-Ruiz P, Martínez-Máñez R, Villalonga R. Self-propelled enzyme-controlled IR-mesoporous silica Janus nanomotor for smart delivery. J Colloid Interface Sci 2024; 671:294-302. [PMID: 38815366 DOI: 10.1016/j.jcis.2024.05.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/08/2024] [Accepted: 05/18/2024] [Indexed: 06/01/2024]
Abstract
Here, we report the preparation of a novel Janus nanoparticle with opposite Ir and mesoporous silica nanoparticles through a partial surface masking with toposelective modification method. This nanomaterial was employed to construct an enzyme-powered nanomachine with self-propulsion properties for on-command delivery. The cargo-loaded nanoparticle was provided with a pH-sensitive gate and unit control at the mesoporous face by first attaching boronic acid residues and further immobilization of glucose oxidase through reversible boronic acid esters with the carbohydrate residues of the glycoenzyme. Addition of glucose leads to the enzymatic production of H2O2 and gluconic acid, being the first compound catalytically decomposed at the Ir nanoparticle face producing O2 and causing the nanomachine propulsion. Gluconic acid leads to a pH reduction at the nanomachine microenvironment causing the disruption of the gating mechanism with the subsequent cargo release. This work demonstrates that enzyme-mediated self-propulsion improved release efficiency being this nanomotor successfully employed for the smart release of Doxorubicin in HeLa cancer cells.
Collapse
Affiliation(s)
- Beatriz Mayol
- Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Sandra Pradana-López
- Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Alba García
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Cristina de la Torre
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Paula Díez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Av. Fernando Abril Martorell, 106 Torre A 7ª planta. 46026, Valencia, Spain
| | - Anabel Villalonga
- Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Carlos Anillo
- Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Diana Vilela
- Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Alfredo Sánchez
- Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Paloma Martínez-Ruiz
- Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Av. Fernando Abril Martorell, 106 Torre A 7ª planta. 46026, Valencia, Spain.
| | - Reynaldo Villalonga
- Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
13
|
Ai Y, Yangnan J, He J, Ohtsuka Y, Sakai M, Seki T, Yamanaka T, Tarutani N, Katagiri K, Takeoka Y. Influence of Sodium Ions and Carbon Black on the Formation and Structural Color of Photonic Balls by Silica Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39264800 DOI: 10.1021/acs.langmuir.4c02283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
In this study, photonic balls─spherical aggregates of submicrometer-sized silica particles with uniform particle size─were investigated as structural colored materials. The structural color of these photonic balls is influenced by the ordered arrangement of the silica particles. The research focused on how the addition of electrolytes, specifically NaCl, affects the formation of photonic balls to achieve the desired structural color. Without NaCl, the photonic balls formed onion-shaped colloidal crystals. At NaCl concentrations above 0.006 mol/L, the particles aggregated into short-range ordered structures. When the concentration exceeded 0.05 mol/L, the aggregates lost their spherical shape. The study also explored the addition of carbon black (CB), a water-dispersible material due to its surface charge. The findings revealed that NaCl induced the phase separation between the charged silica particles and CB, resulting in Janus-shaped photonic balls─one side exhibiting structural color and the other side appearing black due to the presence of CB. Changing the silica particle size altered the hues of these Janus-shaped photonic balls, though they appeared uniformly colored to the naked eye. While this study did not specifically examine the applications of Janus-shaped photonic balls composed of silica particles and CB, CB is known for its ability to absorb near-infrared radiation and convert it into heat as well as its conductive properties. Silica, on the other hand, has a low thermal conductivity and acts as an electrical insulator. The structurally colored Janus-shaped photonic balls created in this study may serve as pigments in applications requiring anisotropic heat generation and electrical conduction. Additionally, the study's findings suggest the potential for creating various types of Janus-shaped photonic balls from materials with differing densities.
Collapse
Affiliation(s)
- Yuwen Ai
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Jiang Yangnan
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Jialei He
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yumiko Ohtsuka
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Miki Sakai
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Takahiro Seki
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Takahiro Yamanaka
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Naoki Tarutani
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Kiyofumi Katagiri
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Yukikazu Takeoka
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
14
|
Dehdari M, Jazi B, Khosravi F. A Theoretical Explanation for the Existence of Certain Maxima in the Visible Spectrum Pattern of Wave Scattering from Spherical Metal-Dielectric-Janus Nanoparticles Based on Surface Plasmon Excitation. PLASMONICS 2024. [DOI: 10.1007/s11468-024-02447-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 07/18/2024] [Indexed: 01/06/2025]
|
15
|
Trindade AC. Controlled Surface Textures of Elastomeric Polyurethane Janus Particles: A Comprehensive Review. Polymers (Basel) 2024; 16:1835. [PMID: 39000690 PMCID: PMC11244459 DOI: 10.3390/polym16131835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
Colloidal particle research has witnessed significant advancements in the past century, resulting in a plethora of studies, novel applications, and beneficial products. This review article presents a cost-effective and low-tech method for producing Janus elastomeric particles of varied geometries, including planar films, spherical particles, and cylindrical fibers, utilizing a single elastomeric material and easily accessible chemicals. Different surface textures are attained through strain application or solvent-induced swelling, featuring well-defined wavelengths ranging from sub-microns to millimeters and offering easy adjustability. Such versatility renders these particles potentially invaluable for medical applications, especially in bacterial adhesion studies. The coexistence of "young" regions (smooth, with a small surface area) and "old" regions (wrinkled, with a large surface area) within the same material opens up avenues for biomimetic materials endowed with additional functionalities; for example, a Janus micromanipulator where micro- or nano-sized objects are grasped and transported by an array of wrinkled particles, facilitating precise release at designated locations through wrinkle pattern adjustments. This article underscores the versatility and potential applications of Janus elastomeric particles while highlighting the intriguing prospects of biomimetic materials with controlled surface textures.
Collapse
Affiliation(s)
- Ana Catarina Trindade
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
- Atlântica, Instituto Universitário, Fábrica da Pólvora de Barcarena, 2730-036 Barcarena, Portugal
| |
Collapse
|
16
|
Xie C, Wilson BA, Qin Z. Regulating nanoscale directional heat transfer with Janus nanoparticles. NANOSCALE ADVANCES 2024; 6:3082-3092. [PMID: 38868822 PMCID: PMC11166103 DOI: 10.1039/d3na00781b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/25/2024] [Indexed: 06/14/2024]
Abstract
Janus nanoparticles (JNPs) with heterogeneous compositions or interfacial properties can exhibit directional heating upon external excitation with optical or magnetic energy. This directional heating may be harnessed for new nanotechnology and biomedical applications. However, it remains unclear how the JNP properties (size, interface) and laser excitation method (pulsed vs. continuous) regulate the directional heating. Here, we developed a numerical framework to analyze the asymmetric thermal transport in JNP heating under photothermal stimulation. We found that JNP-induced temperature contrast, defined as the ratio of temperature increase on the opposite sides in the surrounding medium, is highest for smaller JNPs and when a low thermal resistance coating covers a minor fraction of JNP surface. Notably, we discovered up to 20-fold enhancement of the temperature contrast based on thermal confinement under pulsed heating compared with continuous heating. This work brings new insights to maximize the asymmetric thermal responses for JNP heating.
Collapse
Affiliation(s)
- Chen Xie
- Department of Mechanical Engineering, University of Texas at Dallas 800 West Campbell Road EW31 Richardson Texas 75080 USA
| | - Blake A Wilson
- Department of Mechanical Engineering, University of Texas at Dallas 800 West Campbell Road EW31 Richardson Texas 75080 USA
| | - Zhenpeng Qin
- Department of Mechanical Engineering, University of Texas at Dallas 800 West Campbell Road EW31 Richardson Texas 75080 USA
- Department of Bioengineering, Center for Advanced Pain Studies, University of Texas at Dallas 800 West Campbell Road Richardson Texas 75080 USA
- Department of Biomedical Engineering, University of Texas at Southwestern Medical Center 5323 Harry Hines Boulevard Dallas Texas 75390 USA
| |
Collapse
|
17
|
Muhammad F, Chen X, Tang J, Cheng Y, Li Y, Zhu C, Zhang Y, Miao L, Deng Y, Wei H. Hydrous ruthenium oxide triggers template-free and spontaneous growth of metal nanostructures. Chem Sci 2024; 15:1679-1691. [PMID: 38303952 PMCID: PMC10829032 DOI: 10.1039/d3sc05644a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024] Open
Abstract
Intrinsically conductive ruthenium oxide is an excellent material for energy storage and conversion. Herein, we present hydrous RuO2 (H-RuO2) as a potent reducing agent to achieve spontaneous growth of multiple noble metals at room temperature. Self-assembled gold and platinum, comprising small-sized nanoparticles, are generated on the surface of H-RuO2 without the need for additional templates. Structural analysis reveals that the disordered structure and the presence of oxygen vacancies trigger interfacial redox reactions between H-RuO2 and oxidative metal salts. The resulting integrated nanostructures, consisting of a metal oxide and different metals (H-RuO2@metal), are subsequently used to treat inflammatory bowel diseases. In addition to biomedical applications, our developed synthetic strategy, using reactive oxides to spontaneously generate multicomponent nanostructures, also holds great significance for other catalysis-based applications.
Collapse
Affiliation(s)
- Faheem Muhammad
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University Nanjing Jiangsu 210023 China
| | - Xiwen Chen
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University Nanjing Jiangsu 210023 China
| | - Jiayi Tang
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University Nanjing Jiangsu 210023 China
| | - Yuan Cheng
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University Nanjing Jiangsu 210023 China
| | - Yuyang Li
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University Nanjing 210008 China
| | - Chenxin Zhu
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University Nanjing Jiangsu 210023 China
| | - Yihong Zhang
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University Nanjing Jiangsu 210023 China
| | - Leiying Miao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University Nanjing 210008 China
| | - Yu Deng
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University Nanjing Jiangsu 210023 China
| | - Hui Wei
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University Nanjing Jiangsu 210023 China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing Jiangsu 210023 China
| |
Collapse
|
18
|
Bhattacharyya A, Tiwari V, Karmakar T. Electrostatic-Driven Self-Assembly of Janus-like Monolayer-Protected Metal Nanoclusters. J Phys Chem Lett 2024; 15:687-692. [PMID: 38206834 DOI: 10.1021/acs.jpclett.3c03508] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The generation of controlled microstructures of functionalized nanoparticles has been a crucial challenge in nanoscience and nanotechnology. Efforts have been made to tune ligand charge states that can affect the aggregation propensity and modulate the self-assembled structures. In this work, we modeled zwitterionic Janus-like monolayer ligand-protected metal nanoclusters (J-MPCs) and studied their self-assembly using atomistic molecular dynamics and on-the-fly probability-based enhanced sampling simulations. The oppositely charged ligand functionalization on two hemispheres of a J-MPC elicits asymmetric solvation, primarily driven by distinctive hydrogen bonding patterns in the ligand-solvent interactions. Electrostatic interactions between the oppositely charged residues in J-MPCs guide the formation of one-dimensional and ring-like self-assembled superstructures with molecular dipoles oriented in specific patterns. The pertinent atomistic insights into the intermolecular interactions governing the self-assembled structures of zwitterionic J-MPCs obtained from this work can be used to design a general strategy to create tunable microstructures of charged MPCs.
Collapse
Affiliation(s)
- Anushna Bhattacharyya
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Vikas Tiwari
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Tarak Karmakar
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
19
|
Nedyalkova M, Russo G, Loche P, Lattuada M. Revealing the Formation Dynamics of Janus Polymer Particles: Insights from Experiments and Molecular Dynamics. J Chem Inf Model 2023; 63:7453-7463. [PMID: 38033045 DOI: 10.1021/acs.jcim.3c01547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Seeded emulsion polymerization is one of the best-known methods for preparing polymer particles with a controlled size, composition, and shape. It first requires the preparation of seed particles, which are then swollen with additional monomer (the same as the one used for the seed or a different one), to either increase the seed's size or change its morphology. The use of surfactants plays a central role in guaranteeing the required colloidal stability and contributing to the final shape and structure of the particles by lowering the interfacial energy between the polymer of the seed and the added monomer. We here study the polymerization of methyl methacrylate in the presence of polystyrene seed particles at various surfactant concentrations in the presence and absence of a surfactant (sodium dodecyl sulfate). We first show experimentally that the morphology of the colloidal particles can be tuned from Janus to core-shell, depending on the presence or absence of surfactant on the seeds particles' surface. Furthermore, using classical molecular dynamics simulations, we investigate the mechanism and behavior of the surfactants during the first stages of the polymerization process. We use a newly developed approach based on contact statistical analysis to confirm the critical role played by the organization of surfactant molecules on the surface of the seed particles in dictating the final particle morphology.
Collapse
Affiliation(s)
- Miroslava Nedyalkova
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg 1700, Switzerland
| | - Giovanni Russo
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg 1700, Switzerland
| | - Philip Loche
- Laboratory of Computational Science and Modeling, IMX, Ecole Polytechnique Federale de Lausanne, Lausanne 1015, Switzerland
| | - Marco Lattuada
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg 1700, Switzerland
| |
Collapse
|
20
|
Li W, Liu S, Huang K, Qin S, Liang B, Wang J. Preparation of magnetic Janus microparticles for the rapid removal of microplastics from water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166627. [PMID: 37647968 DOI: 10.1016/j.scitotenv.2023.166627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
The continuous spread of microplastics in aquatic environments poses a growing concern and a potential risk to human health. To address this concern, this paper presents a novel approach using magnetic Janus microparticles (MJMs) synthesized via a modified Pickering emulsion method with aminated Fe3O4@SiO2 as the raw material. The effectiveness of these MJMs in removing polystyrene (PS) and polyethylene (PE) microplastics from water was investigated. Paraffin was employed as the masking agent, while N-Octadecylphosphosphonic acid (PAC18) was used as the graft material for MJM preparation. The resulting particles exhibited a distinctive asymmetric flower-shaped structure on the surface, which was confirmed through various analytical techniques including FTIR, TGA, SEM, and water phase contact angle analysis. The MJMs demonstrated exceptional efficiency in adsorbing microplastics. With a microplastic suspension concentration of 2 mg/mL and an adsorbent dosage of 1 mg/mL, the MJMs can attain removal efficiencies of 92.08 % for PS and 60.67 % for PE in just 20 min of contact time. The effectiveness of the adsorption process was attributed to several factors, including hydrophobic interactions, cation-π interactions, electrostatic attraction, and the efficient dispersion of particles in water, as revealed by size distribution and zeta potential analysis. Additionally, kinetic and thermodynamic studies confirmed the remarkable adsorption rate and capacity of the MJMs (0.759 min-1 and 2.72 mg/mg for PS, 0.539 min-1 and 2.42 mg/mg for PE), highlighting their potential as a promising method for rapidly removing microplastics from water. This work provides valuable insights into the development of effective strategies for addressing microplastic pollution in aquatic environments.
Collapse
Affiliation(s)
- Wanhe Li
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Shihong Liu
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Kai Huang
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China.
| | - Shibin Qin
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Bin Liang
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Jun Wang
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China; College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
21
|
Saeedi Dehaghani AH, Gharibshahi R, Mohammadi M. Utilization of synthesized silane-based silica Janus nanoparticles to improve foam stability applicable in oil production: static study. Sci Rep 2023; 13:18652. [PMID: 37903908 PMCID: PMC10616180 DOI: 10.1038/s41598-023-46030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/26/2023] [Indexed: 11/01/2023] Open
Abstract
This study investigated the effect of silane-based silica (SiO2) Janus nanoparticles (JNPs) on stabilizing the foam generated by different types of gases. Two types of SiO2 JNPs were synthesized through surface modification using HMDS and APTS silane compounds. Static analyses were conducted to examine the impact of different concentrations of the synthesized nanoparticles in various atmospheres (air, CO2, and CH4) on surface tension, foamability, and foam stability. The results indicated that the synthesized SiO2 JNPs and bare SiO2 nanoparticles exhibited nearly the same ability to reduce surface tension at ambient temperature and pressure. Both of these nanoparticles reduced the surface tension from 71 to 58-59 mN m-1 at 15,000 ppm and 25 °C. While bare SiO2 nanoparticles exhibited no foamability, the synthesis of SiO2 JNPs significantly enhanced their ability to generate and stabilize gas foam. The foamability of HMDS-SiO2 JNPs started at a higher concentration than APTS-SiO2 JNPs (6000 ppm compared to 4000 ppm, respectively). The type of gas atmosphere played a crucial role in the efficiency of the synthesized JNPs. In a CH4 medium, the foamability of synthesized JNPs was superior to that in air and CO2. At a concentration of 1500 ppm in a CH4 medium, HMDS-SiO2 and APTS-SiO2 JNPs could stabilize the generated foam for 36 and 12 min, respectively. Due to the very low dissolution of CO2 gas in water at ambient pressure, the potential of synthesized JNPs decreased in this medium. Finally, it was found that HMDS-SiO2 JNPs exhibited better foamability and foam stability in all gas mediums compared to APTS-SiO2 JNPs for use in oil reservoirs. Also, the optimal performance of these JNPs was observed at a concentration of 15,000 ppm in a methane gas medium.
Collapse
Affiliation(s)
| | - Reza Gharibshahi
- Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Mohammadi
- Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
22
|
Jeevanandam J, Tan KX, Rodrigues J, Danquah MK. Target-Specific Delivery and Bioavailability of Pharmaceuticals via Janus and Dendrimer Particles. Pharmaceutics 2023; 15:1614. [DOI: https:/doi.org/10.3390/pharmaceutics15061614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
Nanosized Janus and dendrimer particles have emerged as promising nanocarriers for the target-specific delivery and improved bioavailability of pharmaceuticals. Janus particles, with two distinct regions exhibiting different physical and chemical properties, provide a unique platform for the simultaneous delivery of multiple drugs or tissue-specific targeting. Conversely, dendrimers are branched, nanoscale polymers with well-defined surface functionalities that can be designed for improved drug targeting and release. Both Janus particles and dendrimers have demonstrated their potential to improve the solubility and stability of poorly water-soluble drugs, increase the intracellular uptake of drugs, and reduce their toxicity by controlling the release rate. The surface functionalities of these nanocarriers can be tailored to specific targets, such as overexpressed receptors on cancer cells, leading to enhanced drug efficacy The design of these nanocarriers can be optimized by tuning the size, shape, and surface functionalities, among other parameters. The incorporation of Janus and dendrimer particles into composite materials to create hybrid systems for enhancing drug delivery, leveraging the unique properties and functionalities of both materials, can offer promising outcomes. Nanosized Janus and dendrimer particles hold great promise for the delivery and improved bioavailability of pharmaceuticals. Further research is required to optimize these nanocarriers and bring them to the clinical setting to treat various diseases. This article discusses various nanosized Janus and dendrimer particles for target-specific delivery and bioavailability of pharmaceuticals. In addition, the development of Janus-dendrimer hybrid nanoparticles to address some limitations of standalone nanosized Janus and dendrimer particles is discussed.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Kei Xian Tan
- GenScript Biotech (Singapore) Pte. Ltd., 164, Kallang Way, Solaris@Kallang 164, Singapore 349248, Singapore
| | - João Rodrigues
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Michael K. Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga, TN 37403-2598, USA
| |
Collapse
|
23
|
Jeevanandam J, Tan KX, Rodrigues J, Danquah MK. Target-Specific Delivery and Bioavailability of Pharmaceuticals via Janus and Dendrimer Particles. Pharmaceutics 2023; 15:1614. [PMID: 37376062 PMCID: PMC10301094 DOI: 10.3390/pharmaceutics15061614] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Nanosized Janus and dendrimer particles have emerged as promising nanocarriers for the target-specific delivery and improved bioavailability of pharmaceuticals. Janus particles, with two distinct regions exhibiting different physical and chemical properties, provide a unique platform for the simultaneous delivery of multiple drugs or tissue-specific targeting. Conversely, dendrimers are branched, nanoscale polymers with well-defined surface functionalities that can be designed for improved drug targeting and release. Both Janus particles and dendrimers have demonstrated their potential to improve the solubility and stability of poorly water-soluble drugs, increase the intracellular uptake of drugs, and reduce their toxicity by controlling the release rate. The surface functionalities of these nanocarriers can be tailored to specific targets, such as overexpressed receptors on cancer cells, leading to enhanced drug efficacy The design of these nanocarriers can be optimized by tuning the size, shape, and surface functionalities, among other parameters. The incorporation of Janus and dendrimer particles into composite materials to create hybrid systems for enhancing drug delivery, leveraging the unique properties and functionalities of both materials, can offer promising outcomes. Nanosized Janus and dendrimer particles hold great promise for the delivery and improved bioavailability of pharmaceuticals. Further research is required to optimize these nanocarriers and bring them to the clinical setting to treat various diseases. This article discusses various nanosized Janus and dendrimer particles for target-specific delivery and bioavailability of pharmaceuticals. In addition, the development of Janus-dendrimer hybrid nanoparticles to address some limitations of standalone nanosized Janus and dendrimer particles is discussed.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal;
| | - Kei Xian Tan
- GenScript Biotech (Singapore) Pte. Ltd., 164, Kallang Way, Solaris@Kallang 164, Singapore 349248, Singapore;
| | - João Rodrigues
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal;
| | - Michael K. Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga, TN 37403-2598, USA
| |
Collapse
|
24
|
Huang Y, Liu D, Guo R, Wang B, Lu Y. Intelligent Jellyfish-type Janus Nanoreactor Targeting Synergistic Treatment of Bacterial Infections. ACS APPLIED BIO MATERIALS 2023. [PMID: 37191675 DOI: 10.1021/acsabm.3c00204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Infections caused by multidrug-resistant bacteria continue to pose a serious threat to human health, and therefore it is important to explore the availability of antimicrobial drugs and modalities. Herein, jellyfish-type irregular mesoporous iron oxide nanoreactors containing ciprofloxacin, Janus Fe3O4@mSiO2@Cip nanoparticles (JFmS@Cip NPs), were developed for pH-responsive synergistic antimicrobial therapy in a microacidic environment. Compared with the use of symmetric nanocarriers, the asymmetric decoration on both sides of the particles allows different components to act on bacteria, Fe3O4 NPs have good magnetic and peroxidase-like catalytic activity, and the antibiotic ciprofloxacin can kill bacteria efficiently. Notably, due to the synergistic effect between different components of Janus particles, in vitro antibacterial experiments showed that JFmS@Cip NPs can kill bacteria efficiently at low concentrations, reaching an antibacterial rate of 99.6%. JFmS@Cip NPs combine multiple antibacterial properties that can be used to improve the therapeutic efficacy of current nanomedicines against drug-resistant bacteria.
Collapse
Affiliation(s)
- Yanjie Huang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Dong Liu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ruirui Guo
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Bin Wang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
Wei K, Xie S, Zhang Z, Zhang Z, Cao W, Fang Q, Li X. Surface Wettability-Switchable Janus Fiber Fragments Stabilize Pickering Emulsions for Effective Oil/Water Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6455-6465. [PMID: 37092960 DOI: 10.1021/acs.langmuir.3c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Pickering emulsions indicate stronger resistance against droplet coalescence than the surfactant-stabilized emulsions. To resemble the surfactant amphiphilicity, Janus fiber fragments (JFs) were herein prepared through side-by-side electrospinning of poly(styrene-maleic anhydride) (PSMA) derivatives and cryosection of the aligned fibers, followed by conjugation of hydrophobic cetylamine (C16) and hydrophilic poly(N-isopropylacrylamide) (PNIPAm) ligands on the separate sides. Orthogonal analysis table L25(56) was designed to examine the effect of process parameters on the emulsification efficiency and stability index of Pickering emulsions. The emulsification efficiency is dominated by the JF concentration and length, while the emulsion stability could be prolonged through adjusting the JF concentration and hydrophilic graft density. JF-stabilized emulsions exhibit a much higher stability index (96.4%) than that of Janus microparticle counterparts (37.7%). Though there is no apparent effect on the surface wettability, JFs with PNIPAm grafts of about 2200 Da achieve the most stable Pickering emulsions. Superparamagnetic Fe3O4 nanoparticles are inoculated into JFs to collect emulsion droplets under a magnetic field, and the emulsions could be demulsified at an elevated temperature to harvest oil. Meanwhile, the recovered JF emulsifiers could be repeatedly used without loss of the emulsification efficiency. Thus, this study demonstrates surface-switchable JFs to be effective stabilizers of Pickering emulsions and readily recycled for oil harvesting from wastewater.
Collapse
Affiliation(s)
- Kun Wei
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P.R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Songzhi Xie
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Zhao Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Zhanlin Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Wenxiong Cao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P.R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Qibo Fang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P.R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Xiaohong Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P.R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| |
Collapse
|
26
|
Wang C, Ma S, Wei Y, Ou J. Facile Fabrication of Monodisperse Micron-Sized Dual Janus Silica Particles with Asymmetric Morphology and Chemical Environment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208194. [PMID: 36707410 DOI: 10.1002/smll.202208194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Janus particles are a kind of materials with asymmetric morphology or surface chemical environment. But so far, the preparation of particles with dual asymmetry is still a challenging problem. Hence the cation surfactant hexadecyl trimethyl ammonium bromide and co-surfactant octadecylamine are applied to improve the Pickering emulsion stability, and the micron-sized silica particles are arranged in a single layer at the toluene-water interface through electrostatic interaction. Furthermore, organosilane reagents are added in the preparation process, resulting in the construction of asymmetric hydrophilic or hydrophobic mesoporous precisely onto the micron-sized silica particles surface. The cation surfactant-assisted Pickering emulsion method is simple, effective, and convenience, which can be applied in the synthesis of various dual Janus silica particles for specific applications.
Collapse
Affiliation(s)
- Chenyang Wang
- State Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Shujuan Ma
- State Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, P. R. China
| | - Yinmao Wei
- State Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Junjie Ou
- State Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
- State Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, P. R. China
| |
Collapse
|
27
|
Wu C, Xing Z, Yang S, Li Z, Zhou W. Nanoreactors for photocatalysis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Development of Janus Particles as Potential Drug Delivery Systems for Diabetes Treatment and Antimicrobial Applications. Pharmaceutics 2023; 15:pharmaceutics15020423. [PMID: 36839746 PMCID: PMC9967574 DOI: 10.3390/pharmaceutics15020423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Janus particles have emerged as a novel and smart material that could improve pharmaceutical formulation, drug delivery, and theranostics. Janus particles have two distinct compartments that differ in functionality, physicochemical properties, and morphological characteristics, among other conventional particles. Recently, Janus particles have attracted considerable attention as effective particulate drug delivery systems as they can accommodate two opposing pharmaceutical agents that can be engineered at the molecular level to achieve better target affinity, lower drug dosage to achieve a therapeutic effect, and controlled drug release with improved pharmacokinetics and pharmacodynamics. This article discusses the development of Janus particles for tailored and improved delivery of pharmaceutical agents for diabetes treatment and antimicrobial applications. It provides an account of advances in the synthesis of Janus particles from various materials using different approaches. It appraises Janus particles as a promising particulate system with the potential to improve conventional delivery systems, providing a better loading capacity and targeting specificity whilst promoting multi-drugs loading and single-dose-drug administration.
Collapse
|
29
|
Guzman-Juarez B, Abdelaal AB, Reven L. NMR Characterization of Nanoscale Surface Patterning in Mixed Ligand Nanoparticles. ACS NANO 2022; 16:20116-20128. [PMID: 36411252 DOI: 10.1021/acsnano.2c03707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Spontaneous phase separation in binary mixed ligand shells is a proposed strategy to create patchy nanoparticles. The surface anisotropy, providing directionality along with interfacial properties emerging from both ligands, is highly desirable for targeted drug delivery, catalysis, and other applications. However, characterization of phase separation on the nanoscale remains quite challenging. Here we have adapted solid-state 1H spin diffusion NMR experiments designed to detect and quantify spatial heterogeneity in polymeric materials to nanoparticles (NPs) functionalized with mixed short ligands. Janus NPs and physical mixtures of homoligand 3.5 nm diameter ZrO2 NPs, with aromatic (phenylphosphonic acid, PPA) and aliphatic (oleic acid, OA) ligands, were used to calibrate the 1H spin diffusion experiments. The Janus NPs, prepared by a facile wax/water Pickering emulsion method, and mixed ligand NPs, produced by ligand exchange, both with 1:1 PPA:OA ligand compositions, display strikingly different solvent and particle-particle interactions. 1H spin diffusion NMR experiments are most consistent with a lamellar surface pattern for the mixed ligand ZrO2 NPs. Solid-state 1H spin diffusion NMR is shown to be a valuable additional characterization tool for mixed ligand NPs, as it not only detects the presence of nanoscale phase separation but also allows measurement of the domain sizes and geometries of the surface phase separation.
Collapse
Affiliation(s)
- Brenda Guzman-Juarez
- Centre Québécois sur les Matériaux Fonctionnels/Quebec Centre for Advanced Materials (CQMF/QCAM), Department of Chemistry, McGill University, 801 Sherbrooke Street W., MontrealQuebec, CanadaH3A 0B8
| | - Ahmed Bahaeldin Abdelaal
- Centre Québécois sur les Matériaux Fonctionnels/Quebec Centre for Advanced Materials (CQMF/QCAM), Department of Chemistry, McGill University, 801 Sherbrooke Street W., MontrealQuebec, CanadaH3A 0B8
| | - Linda Reven
- Centre Québécois sur les Matériaux Fonctionnels/Quebec Centre for Advanced Materials (CQMF/QCAM), Department of Chemistry, McGill University, 801 Sherbrooke Street W., MontrealQuebec, CanadaH3A 0B8
| |
Collapse
|
30
|
Vafaeezadeh M, Thiel WR. Task-Specific Janus Materials in Heterogeneous Catalysis. Angew Chem Int Ed Engl 2022; 61:e202206403. [PMID: 35670287 PMCID: PMC9804448 DOI: 10.1002/anie.202206403] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Indexed: 01/05/2023]
Abstract
Janus materials are anisotropic nano- and microarchitectures with two different faces consisting of distinguishable or opposite physicochemical properties. In parallel with the discovery of new methods for the fabrication of these materials, decisive progress has been made in their application, for example, in biological science, catalysis, pharmaceuticals, and, more recently, in battery technology. This Minireview systematically covers recent and significant achievements in the application of task-specific Janus nanomaterials as heterogeneous catalysts in various types of chemical reactions, including reduction, oxidative desulfurization and dye degradation, asymmetric catalysis, biomass transformation, cascade reactions, oxidation, transition-metal-catalyzed cross-coupling reactions, electro- and photocatalytic reactions, as well as gas-phase reactions. Finally, an outlook on possible future applications is given.
Collapse
Affiliation(s)
- Majid Vafaeezadeh
- Fachbereich ChemieTechnische Universität KaiserslauternErwin-Schrödinger-Strasse 5467663KaiserslauternGermany
| | - Werner R. Thiel
- Fachbereich ChemieTechnische Universität KaiserslauternErwin-Schrödinger-Strasse 5467663KaiserslauternGermany
| |
Collapse
|
31
|
Li Z, Gao Z, Wang C, Zou D, Zhou H, Yi Y, Wang J, Wang L. Recent progress on bioimaging strategies based on Janus nanoparticles. NANOSCALE 2022; 14:12560-12568. [PMID: 36000475 DOI: 10.1039/d2nr03186h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Janus nanoparticles refer to a kind of asymmetric-structured nanoparticles composed of two or more distinct sides with differences in chemical nature and/or polarity on each side and thus can integrate two or more properties in one single particle. Due to their unique structure and surface properties, Janus nanoparticles have shown broad application potentials in optics, nuclear magnetic resonance, multi-mode imaging, and other fields. Unlike traditional contrast agents used in biological imaging, Janus nanoparticles are asymmetrically and directionally oriented to ensure stable partitioning of individual nanoparticles while integrating more functions. Much advancement have been carried out in the past few years, with some studies partially covering bioimaging applications. However, to our best knowledge, there are still no review papers specifically dedicated to the bioimaging applications with Janus nanoparticles. Bearing this in mind and taking the current challenges in this field into consideration, herein, we discuss representative approaches orchestrated for bioimaging applications, with the focus on the improvement of imaging quality brought by Janus nanoparticles and the development of multifunctional nanoplatforms in biological imaging fields, such as theranostics and therapies. Finally, based on the research experience of our group in this field, prospects for future research trends are put forward to provide new ideas for designing new Janus nanoparticles for clinical bioimaging.
Collapse
Affiliation(s)
- Zheyi Li
- School of Electronic and Information Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Zhiqiang Gao
- School of Aeronautics, Harbin Institute of Technology, Harbin 150001, China.
| | - Cong Wang
- School of Electronic and Information Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Danqing Zou
- School of Electronic and Information Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Huan Zhou
- School of Electronic and Information Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Yang Yi
- School of Electronic and Information Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Jun Wang
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Lei Wang
- School of Aeronautics, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
32
|
Wang Y, Zhao P, Zhang S, Zhu K, Shangguan X, Liu L, Zhang S. Application of Janus Particles in Point-of-Care Testing. BIOSENSORS 2022; 12:bios12090689. [PMID: 36140074 PMCID: PMC9496037 DOI: 10.3390/bios12090689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 06/01/2023]
Abstract
Janus particles (JPs), named after the two-faced Roman god, are asymmetric particles with different chemical properties or polarities. JPs have been widely used in the biomedical field in recent years, including as drug carriers for targeted controlled drug release and as biosensors for biological imaging and biomarker detection, which is crucial in the early detection and treatment of diseases. In this review, we highlight the most recent advancements made with regard to Janus particles in point-of-care testing (POCT). Firstly, we introduce several commonly used methods for preparing Janus particles. Secondly, we present biomarker detection using JPs based on various detection methods to achieve the goal of POCT. Finally, we discuss the challenges and opportunities for developing Janus particles in POCT. This review will facilitate the development of POCT biosensing devices based on the unique properties of Janus particles.
Collapse
|
33
|
Vafaeezadeh M, Thiel WR. Task‐Specific Janus Materials in Heterogeneous Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Majid Vafaeezadeh
- Technische Universitat Kaiserslautern Chemistry Erwin-Schrödinger-Str. 54 67663 Kaiserslautern GERMANY
| | - Werner R. Thiel
- Kaiserslautern University of Technology: Technische Universitat Kaiserslautern Chemistry Erwin-Schrödinger-Str. 54 67663 Kaiserslautern GERMANY
| |
Collapse
|
34
|
Abstract
Oil–water emulsions are widely generated in industries, which may facilitate some processes (e.g., transportation of heavy oil, storage of milk, synthesis of chemicals or materials, etc.) or lead to serious upgrading or environmental issues (e.g., pipeline plugging, corrosions to equipment, water pollution, soil pollution, etc.). Herein, the sources, classification, formation, stabilization, and separation of oil–water emulsions are systematically summarized. The roles of different interfacially active materials–especially the fine particles–in stabilizing the emulsions have been discussed. The advanced development of micro force measurement technologies for oil–water emulsion investigation has also been presented. To provide insights for future industrial application, the separation of oil–water emulsions by different methods are summarized, as well as the introduction of some industrial equipment and advanced combined processes. The gaps between some demulsification processes and industrial applications are also touched upon. Finally, the development perspectives of oil–water treatment technology are discussed for the purpose of achieving high-efficiency, energy-saving, and multi-functional treatment. We hope this review could bring forward the challenges and opportunities for future research in the fields of petroleum production, coal production, iron making, and environmental protection, etc.
Collapse
|