1
|
Nguyen VN, Nguyen MV, Pham Thi H, Vu AT, Nguyen TX. Recent advances in near-infrared organic photosensitizers for photodynamic cancer therapy. Biomater Sci 2025; 13:1179-1188. [PMID: 39868556 DOI: 10.1039/d4bm01457j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
With the advancement of photodynamic therapy, various photosensitizers have been developed to enhance the efficacy of cancer treatment while minimizing side effects. Recently, near-infrared organic fluorophores have gained significant attention as promising photodynamic agents for cancer therapy due to their tunable photophysical properties, structural versatility, good biocompatibility, high biosafety, and synthetic flexibility. In particular, near-infrared organic photosensitizers offer several notable advantages, including deep tissue penetration, a low fluorescence background for bioimaging, and reduced damage to biological tissues compared to traditional visible-spectrum photosensitizers. In this minireview, we will discuss the current developments in near-infrared organic photosensitizers for photodynamic cancer therapy. Furthermore, we will briefly highlight the challenges and prospects in this field. This minireview aims to encourage more researchers to develop advanced near-infrared organic photosensitizers and facilitate their transition from laboratory research to preclinical studies and ultimately to clinical use.
Collapse
Affiliation(s)
- Van-Nghia Nguyen
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Ha Noi, Vietnam.
| | - Minh Viet Nguyen
- VNU-Key Laboratory of Advanced Materials for Green Growth, Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, Vietnam.
| | - Huong Pham Thi
- Laboratory of Environmental Science and Climate Change, Institute for Computation Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam.
- Faculty of Environment, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Anh-Tuan Vu
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Ha Noi, Vietnam.
| | - Truong Xuan Nguyen
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Ha Noi, Vietnam.
| |
Collapse
|
2
|
Jia M, Lu R, Li P, Liao X, Tan Y, Zhang S. Inflammation-reducing thermosensitive hydrogel with photothermal conversion for skin cancer therapy. J Control Release 2025; 378:377-389. [PMID: 39701451 DOI: 10.1016/j.jconrel.2024.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Photothermal therapy (PTT) has widely been utilized for postoperative treatment of skin cancer, while high temperature, usually >50 °C, would induce damage to healthy tissue and increased wound inflammation. Herein, we developed an "all in one" hydrogel to enhance mild PTT for postoperative skin cancer treatment while circumventing photothermo-induced inflammation by loading quercetin (Que)-coated tannin‑iron (TA-Fe) nanoparticles with poly (N-acrylylglycine) amine (PNAGA) hydrogel (Que@TA-Fe@PNAGA). Exposure to near-infrared light, Que.@TA-Fe@PNAGA occurred a mild temperature increase (∼47 °C), which induces local mild PTT and disrupts the hydrogen bonds within the hydrogel, triggering a gel-to-sol phase transition and the release of Que.@TA-Fe nanoparticles. These released nanoparticles inhibit the expression of heat shock proteins in tumor cells by producing reactive oxygen species and enter inflammatory cells to release TA and Que. via acid hydrolysis, reducing tumor necrosis factor-α expression by 66.6 % and promoting M1-to-M2 macrophage conversion. Based on this integrated functionality, Que.@TA-Fe@PNAGA hydrogel achieves over 99.4 % tumor inhibition rate, effectively avoids photothermo-induced damage in normal tissue and inflammation, and thus represents a new approach for postoperative photothermal therapy in skin cancer treatment.
Collapse
Affiliation(s)
- Mengqi Jia
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; School of Basic Medical Science, Henan University, Zhengzhou 450046, China
| | - Ruilin Lu
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Pengfei Li
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xiaoming Liao
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Yanfei Tan
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Shiyong Zhang
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
3
|
Peng P, Li M, Wang X, Dong MJ, Xiao Y, Ahmad F, Hou T, Shu T, Zhang X. Stepwise Lighting Up Gold(I)-Thiolate Complexes from AIE Nanoaggregates to AIEE Nanoprobes with a ZIF-8 Shell for Glucose Biosensing. Anal Chem 2025; 97:2153-2163. [PMID: 39841624 DOI: 10.1021/acs.analchem.4c05119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Aggregation-induced emission (AIE) or aggregation-induced emission enhancement (AIEE) has endowed gold species with responsive fluorescent properties, favoring their potential applications in sensing, imaging, and therapy. However, it remains an interesting challenge to fabricate fluorophores with both AIE and AIEE effects. Herein, we presented highly luminescent Au(I) thiolate nanocomplex-based biosensors with Zn2+ induced-AIE and zeolite imidazolate framework (ZIF-8) induced-AIEE effects. The nonemissive monovalent gold-glutathione complexes (AuI-SGs) were obtained to synthesize the core-shell Zn2+/AuI-SG@ZIF-8 composites with strong luminescence via the coordination-assisted self-assembly strategy. By immobilizing GOx on the surface of Zn2+/AuI-SG@ZIF-8, Zn2+/AuI-SG@ZIF-8/GOx biosensors exhibited effective responsiveness to glucose, showing a "turn-off" detection model. The mechanism study revealed that the robust luminescence of Zn2+/AuI-SG@ZIF-8 to glucose sensing was attributed to the acid-stimulated degradation of the probe facilitated by H+ generated from the glucose oxidase (GOx)-catalyzed oxidation process. To achieve noninvasive and intelligent blood glucose detection, the Zn2+/AuI-SG@ZIF-8/GOx-loaded microneedle (MN)-patch fluorescent platform was further developed. The MN-patch-based sensing platform had promising performance for on-needle capture and in situ glucose detection. This study demonstrated a universal and feasible protocol to construct luminescent biosensors for glucose detection and their potential for the development of MN-based analytical devices.
Collapse
Affiliation(s)
- Peiwen Peng
- School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Mingyu Li
- School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xuan Wang
- School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China
| | - Ming-Jie Dong
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518107, China
| | - Yelan Xiao
- School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Faisal Ahmad
- School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Teng Hou
- Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, P. R. China
| | - Tong Shu
- School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
4
|
Chau JHC, Lee MMS, Yu EY, Kwok RTK, Lam JWY, Sun J, Tang BZ. Advances in biomimetic AIE nanoparticles for diagnosis and phototherapy. NANOSCALE 2024; 16:14707-14715. [PMID: 39037089 DOI: 10.1039/d4nr01417k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
This minireview provides an overview of the recent advancements in the development of biomimetic Aggregation-Induced Emission (AIE) nanoparticles and their applications in disease diagnosis, phototherapy, and photoimmunotherapy. AIE nanoparticles can be engineered to enable efficient image-guided photodynamic and photothermal therapies, however, challenges related to immune defense and target specificity persist. To overcome these, coating biomimetic materials on the surface of AIE nanoparticles, which mimic the features and functions of native cells, have emerged as a promising solution. This minireview will highlight the synthesis strategies and discuss the biomedical application of biomimetic AIE nanoparticles.
Collapse
Affiliation(s)
- Joe H C Chau
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.
| | - Michelle M S Lee
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.
| | - Eric Y Yu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.
| | - Jianwei Sun
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| |
Collapse
|
5
|
Hu Y, Yin SY, Deng T, Li J. A novel pH-activated AIEgen probe for dynamic lysosome tracking and high-efficiency photodynamic therapy. Chem Commun (Camb) 2024; 60:3047-3050. [PMID: 38376492 DOI: 10.1039/d3cc06247c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
A novel AIEgen molecular probe (N-3QL) with typical AIE effects, good biocompatibility, lysosome targeting, pH activation, excellent photostability, and high brightness was synthesized using two simple synthetic steps. Spectroscopic and cytotoxicity experiments indicate that N-3QL can not only be used for the dynamic monitoring of cancer cell lysosomes, but also for photodynamic therapy (PDT) ablation of cancer cells.
Collapse
Affiliation(s)
- Yingcai Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Sheng-Yan Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Ting Deng
- Institute of Applied Chemistry, School of Science, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Jishan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
6
|
Anil A, Chaskar J, Pawar AB, Tiwari A, Chaskar AC. Recent advances in DNA-based probes for photoacoustic imaging. J Biotechnol 2024; 382:8-20. [PMID: 38211667 DOI: 10.1016/j.jbiotec.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 11/29/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024]
Abstract
Photoacoustic imaging(PAI) is a widely developing imaging modality that has seen tremendous evolvement in the last decade. PAI has gained the upper hand in the imaging field as it takes advantage of optical absorption and ultrasound detection that imparts higher resolution, rich contrast and elevated penetration depth. Unlike other imaging techniques, PAI does not use ionising radiation and is a better, cost-effective and healthier alternative to other imaging techniques. It offers greater specificity than conventional ultrasound imaging with the ability to detect haemoglobin, lipids, water and other light-absorbing chromophores. These properties of PAI have led to its extended applications in the biomedical field in the treatment of diseases such as cancer. This paper reviews how DNA probes have been used in PAI, the various techniques by which it has been modified, and their role in the process. We also focus on different nanocomposites containing DNA having PAI and photothermal therapy(PTT) properties for detection, diagnosis and therapy, its constituents and the role of DNA in it.
Collapse
Affiliation(s)
- Anusri Anil
- National Centre for Nanosciences and Nanotechnology, University of Mumbai, Kalina, Mumbai 400098, India
| | - Jyotsna Chaskar
- National Centre for Nanosciences and Nanotechnology, University of Mumbai, Kalina, Mumbai 400098, India
| | - Avinash B Pawar
- Department of Chemistry, Bharati Vidyapeeth (Deemed to be University), Yashwantrao Mohite College of Arts, Science & Commerce, Pune 411038, India
| | - Abhishekh Tiwari
- National Centre for Nanosciences and Nanotechnology, University of Mumbai, Kalina, Mumbai 400098, India.
| | - Atul Changdev Chaskar
- National Centre for Nanosciences and Nanotechnology, University of Mumbai, Kalina, Mumbai 400098, India; Department of Chemistry, Institute of Chemical Technology, Mumbai.
| |
Collapse
|
7
|
Cao Q, Xing Y, Di L, Yang Z, Chen X, Xia Z, Ling J, Wang H. Photostable and high-brightness aggregation-induced emission of iridium luminogen achieving reliable and sensitive continuous luminescent quantification of molecular oxygen. Talanta 2024; 266:125059. [PMID: 37572477 DOI: 10.1016/j.talanta.2023.125059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
Online continuous luminescent oxygen quantification requires both high-brightness luminescence and superior photobleaching resistance of luminogens to afford the requisite level of sensitivity and operational stability, which remains a challenge. Herein, a fluorine-free design strategy of incremental rotors for preparing iridium luminogens with excellent photobleaching resistance and high-brightness aggregation-induced emission (AIE) is presented. The incremental rotors gradually improve the rotational activity of substituents, efficaciously activating the AIE with synchronously improved aggregation-state luminescence efficiency, which is theoretically confirmed by the variations of dipole moments and experimentally verified by the luminescent lifetimes. Moreover, the introduction of triphenylamine significantly improves the photobleaching resistance of iridium luminogens. Subsequently, by optimizing the loading capacity of the iridium luminogen, the improvement of high-brightness AIE on the oxygen sensitivity of ethocel films is successfully observed. Thickness attenuation of ethocel films dramatically shortens the quenching/recovery response to 4.7 s. Importantly, owing to the exceptional photobleaching resistance of the iridium luminogen, distinguished photo-fatigue resistance with operational stability is exhibited by the ethocel film with no luminescence attenuation during 8000 s continuous oxygen quantification.
Collapse
Affiliation(s)
- Qingsong Cao
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, 113001, China
| | - Yang Xing
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, 113001, China.
| | - Ling Di
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, 113001, China.
| | - Zhanxu Yang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, 113001, China.
| | - Xuebing Chen
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, 113001, China
| | - Zhengqiang Xia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China.
| | - Jianghua Ling
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, 113001, China
| | - Hongguo Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, 113001, China
| |
Collapse
|
8
|
Li J, Du X, Zhou X, Yoon J. Self-Assembly Induced Photosensitization of Long-Tailed Heavy-Atom-Free BODIPY Derivatives for Photodynamic Therapy. Adv Healthc Mater 2023; 12:e2301022. [PMID: 37209386 DOI: 10.1002/adhm.202301022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/09/2023] [Indexed: 05/22/2023]
Abstract
Type I photosensitizers (PSs) are a promising approach for photodynamic therapy (PDT) since they can generate radicals that are tolerant to hypoxia. Thus, the development of highly efficient type I PSs is essential. Self-assembly is a promising strategy for developing novel PSs with desirable properties. Here, a simple and effective approach is developed to create heavy-atom-free PSs for PDT by self-assembling long-tailed boron dipyrromethene dyes (BODIPYs). The resulting aggregates BY-I16 and BY-I18 can efficiently convert their excited energy to the triplet state, producing reactive oxygen species that are essential for PDT. Furthermore, the aggregation and PDT performance can be regulated by adjusting the length of the tailed alkyl chains. As proof of concept, the efficacy of these heavy-atom-free PSs both in vitro and in vivo under both normoxic and hypoxic conditions is demonstrated.
Collapse
Affiliation(s)
- Jigai Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Xianfa Du
- Department of Orthopedics, the Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Xin Zhou
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, South Korea
| |
Collapse
|
9
|
Xie Q, Tang J, Guo S, Zhao Q, Li S. Recent Progress of Preparation Strategies in Organic Nanoparticles for Cancer Phototherapeutics. Molecules 2023; 28:6038. [PMID: 37630290 PMCID: PMC10459389 DOI: 10.3390/molecules28166038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/27/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Phototherapy has the advantages of being a highly targeted, less toxic, less invasive, and repeatable treatment, compared with conventional treatment methods such as surgery, chemotherapy, and radiotherapy. The preparation strategies are significant in order to determine the physical and chemical properties of nanoparticles. However, choosing appropriate preparation strategies to meet applications is still challenging. This review summarizes the recent progress of preparation strategies in organic nanoparticles, mainly focusing on the principles, methods, and advantages of nanopreparation strategies. In addition, typical examples of cancer phototherapeutics are introduced in detail to inform the choice of appropriate preparation strategies. The relative future trend and outlook are preliminarily proposed.
Collapse
Affiliation(s)
| | | | | | - Qi Zhao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (Q.X.); (J.T.); (S.G.)
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (Q.X.); (J.T.); (S.G.)
| |
Collapse
|
10
|
Pan T, Tang Y, Pang E, Zhao S, Yao C, Wang B, Song X, Lan M. Vascular disruption agent and phototherapeutic assembled nanoparticles for enhanced tumor inhibition. Chem Commun (Camb) 2023; 59:9896-9899. [PMID: 37498195 DOI: 10.1039/d3cc02647g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Vascular disruption agent (combretastatin A-4 phosphate) and phototherapeutic (IEICO-4F) assembled nanoparticles (IFC NPs) were prepared for the first time. The IFC NPs have a high photo energy utilization efficiency of up to 96.1%, and could significantly inhibit tumor growth by photodynamic and photothermal therapy enhanced tumor vascular disruption.
Collapse
Affiliation(s)
- Tangna Pan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.
| | - Yuanyu Tang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.
| | - E Pang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.
| | - Shaojing Zhao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.
| | - Chaoyi Yao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.
| | - Benhua Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.
- Shenzhen Research Institute of Central South University, Shenzhen 518057, P. R. China
| | - Xiangzhi Song
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.
| | - Minhuan Lan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.
| |
Collapse
|
11
|
Cui J, Zhang F, Yan D, Han T, Wang L, Wang D, Tang BZ. "Trojan Horse" Phototheranostics: Fine-Engineering NIR-II AIEgen Camouflaged by Cancer Cell Membrane for Homologous-Targeting Multimodal Imaging-Guided Phototherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302639. [PMID: 37161639 DOI: 10.1002/adma.202302639] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/03/2023] [Indexed: 05/11/2023]
Abstract
Multimodal phototheranostics on the basis of a single molecule with one-for-all characteristics represents a convenient approach for effective cancer treatment. In this report, a versatile molecule featured by aggregation-induced emission, namely DHTDP, synchronously enabling second near-infrared (NIR-II) fluorescence emission and efficient photothermal conversion is developed by elaborate structural modulation. By camouflaging DHTDP nanoparticles with cancer cell membrane, the resultant biomimetic nanoparticles exhibit significantly both facilitated delivery efficiency and homologous targeting capability, and afford precise imaging guidance and maximize therapeutic outcomes in form of NIR-II fluorescence imaging (FLI)-photoacoustic imaging (PAI)-photothermal imaging (PTI) trimodal imaging-guided photothermal therapy (PTT). This study presents the first example of biomimetic multimodal phototheranostics loaded by homogeneity-targeting cell membrane, thus brings a new insight into the exploration of superior phototheranostics for practical cancer theranostics.
Collapse
Affiliation(s)
- Jie Cui
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Fei Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lei Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
12
|
Windra Sari A, Widyaningrum R, Setiawan A, Mitrayana. Recent development of photoacoustic imaging in dentistry: A review on studies over the last decade. Saudi Dent J 2023; 35:423-436. [PMID: 37520594 PMCID: PMC10373091 DOI: 10.1016/j.sdentj.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 08/01/2023] Open
Abstract
Background This work performs a literature review of photoacoustic imaging (PAI) in dentistry and discusses the development of PAI in relation to oral health. Methods A search method was used to locate papers published between 2011 and 2023 in Google Scholar and PubMed databases, and 25 studies were selected. Reports on PAI in dentistry were included. Articles not written in English or whose full text could not be accessed were excluded. The remaining publications were checked and evaluated to determine whether they contain supportive materials for PAI in dentistry. Results The majority of articles about PAI in dentistry are associated with caries studies. Photoacoustic microscopy is the most commonly utilized PAI system. PAI studies generally focus on ex-vivo investigations using extracted human teeth. The acoustic signal obtained from carious teeth is greater than that obtained from normal teeth. In addition to imaging oral soft tissues from animal models and the periodontal pocket depth in human volunteers, PAI is applied to evaluate dental implants and oral biofilms. Conclusion There have been numerous investigation on PAI in dentistry, but it is not yet applicable in dental practice. In the future, PAI studies are expected to contribute to the invention of an alternative non-ionizing imaging technology that is comfortable for patients, user friendly, and capable of providing reliable information at a reasonable cost.
Collapse
Affiliation(s)
- Atika Windra Sari
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, Indonesia
| | - Rini Widyaningrum
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Andreas Setiawan
- Department of Physics, Faculty of Science and Mathematics, Satya Wacana Christian University, Jl. Diponegoro 52-60, Salatiga, Indonesia
| | - Mitrayana
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, Indonesia
| |
Collapse
|
13
|
Li C, Pang Y, Xu Y, Lu M, Tu L, Li Q, Sharma A, Guo Z, Li X, Sun Y. Near-infrared metal agents assisting precision medicine: from strategic design to bioimaging and therapeutic applications. Chem Soc Rev 2023. [PMID: 37334831 DOI: 10.1039/d3cs00227f] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Metal agents have made incredible strides in preclinical research and clinical applications in recent years, but their short emission/absorption wavelengths continue to be a barrier to their distribution, therapeutic action, visual tracking, and efficacy evaluation. Nowadays, the near-infrared window (NIR, 650-1700 nm) provides a more accurate imaging and treatment option. Thus, there has been ongoing research focusing on developing multifunctional NIR metal agents for imaging and therapy that have deeper tissue penetration. The design, characteristics, bioimaging, and therapy of NIR metal agents are covered in this overview of papers and reports published to date. To start with, we focus on describing the structure, design strategies, and photophysical properties of metal agents from the NIR-I (650-1000 nm) to NIR-II (1000-1700 nm) region, in order of molecular metal complexes (MMCs), metal-organic complexes (MOCs), and metal-organic frameworks (MOFs). Next, the biomedical applications brought by these superior photophysical and chemical properties for more accurate imaging and therapy are discussed. Finally, we explore the challenges and prospects of each type of NIR metal agent for future biomedical research and clinical translation.
Collapse
Affiliation(s)
- Chonglu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Yida Pang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Yuling Xu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Mengjiao Lu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Le Tu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Qian Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Amit Sharma
- CSIR-Central Scientific Instruments Organisation, Sector-30C, Chandigarh 160030, India
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Yao Sun
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
14
|
Wei F, Chen Z, Shen XC, Ji L, Chao H. Recent progress in metal complexes functionalized nanomaterials for photodynamic therapy. Chem Commun (Camb) 2023. [PMID: 37184685 DOI: 10.1039/d3cc01355c] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Metal complexes have shown promise as photosensitizers for cancer diagnosis and therapeutics. However, the vast majority of metal photosensitizers are not ideal and associated with several limitations including pharmacokinetic limitations, off-target toxicity, fast systemic clearance, poor membrane permeability, and hypoxic tumour microenvironments. Metal complex functionalized nanomaterials have the potential to construct multifunctional systems, which not only overcome the above defects of metal complexes but are also conducive to modulating the tumour microenvironment (TME) and employing combination therapies to boost photodynamic therapy (PDT) efficacy. In this review, we first introduce the current challenges of photodynamic therapy and summarize the recent research strategies (such as metal coordination bonds, self-assembly, π-π stacking, physisorption, and so on) used for preparing metal complexes functionalized nanomaterials in the application of PDT.
Collapse
Affiliation(s)
- Fangmian Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, MOE Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Zhuoli Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, MOE Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.
| |
Collapse
|
15
|
Sun X, Li M, Wang P, Bai Q, Cao X, Mao D. Recent Organic Photosensitizer Designs for Evoking Proinflammatory Regulated Cell Death in Antitumor Immunotherapy. SMALL METHODS 2023; 7:e2201614. [PMID: 36960933 DOI: 10.1002/smtd.202201614] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/12/2023] [Indexed: 05/17/2023]
Abstract
In the past decades, immunotherapy has achieved a series of clinical successes in the field of cancer. However, existing therapeutic options usually show a low immune response to solid tumors caused by immunosuppressive "cold" tumor microenvironment (TME). Several types of proinflammatory regulated cell death (RCD), mainly including ferroptosis and pyroptosis, have been studied recently, which can provide proinflammatory signals and immunogenicity necessary for remodeling TME and activating an antitumor immune response. A variety of chemotherapeutic drugs are proven to be effective in the proinflammatory RCD induction of tumor cells, but several adverse effects and intrinsic drug resistance usually occur in the therapeutic process, greatly hindering their further clinical application. The emerging organic photosensitizer (PS)-based materials open new possibilities to effectively activate proinflammatory RCD through precise spatiotemporal regulation of intracellular reactive oxygen species-associated signaling pathways, which can overcome many challenges encountered in current proinflammatory RCD-mediated immunotherapy. In this review, the recent design strategies of PS probes are detailly summarized and their potential advantages for tumor-specific proinflammatory RCD induction are discussed. Moreover, the representative examples in cancer immunotherapy are highlighted and future perspectives in this emerging field are proposed.
Collapse
Affiliation(s)
- Xuan Sun
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, and Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Min Li
- Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510080, China
| | - Peng Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Qingqing Bai
- Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xuchen Cao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, and Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Duo Mao
- Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
16
|
Kim H, Yang M, Kwon N, Cho M, Han J, Wang R, Qi S, Li H, Nguyen V, Li X, Cheng H, Yoon J. Recent progress on photodynamic therapy and photothermal therapy. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Heejeong Kim
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| | - Mengyao Yang
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| | - Nahyun Kwon
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| | - Moonyeon Cho
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| | - Jingjing Han
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| | - Rui Wang
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| | - Sujie Qi
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| | - Haidong Li
- School of Bioengineering Dalian University of Technology Dalian China
| | - Van‐Nghia Nguyen
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| | - Xingshu Li
- College of Chemistry, State Key Laboratory of Photocatalysis for Energy and the Environment, Fujian Provincial Key Laboratory for Cancer Metastasis Chemoprevention and Chemotherapy Fuzhou University Fuzhou China
| | - Hong‐Bo Cheng
- State Key Laboratory of Organic−Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering Beijing University of Chemical Technology Beijing P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| |
Collapse
|
17
|
Gu H, Liu W, Li H, Sun W, Du J, Fan J, Peng X. 2,1,3-Benzothiadiazole derivative AIEgens for smart phototheranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|