1
|
Usman AN, Fendi F, Nulandari Z, Agustin DI. Trends, key contributors, and emerging issues in honey and breast cancer: A bibliometric analysis from 2014 to 2024. F1000Res 2025; 14:17. [PMID: 40212986 PMCID: PMC11983675 DOI: 10.12688/f1000research.159595.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/12/2025] [Indexed: 04/19/2025] Open
Abstract
Background Honey, a natural product with diverse bioactive compounds, has been increasingly explored for its potential anticancer properties. This study aims to comprehensively analyze the scientific literature on the relationship between honey and breast cancer. Methods A bibliometric analysis was conducted using the ScienceDirect database to identify publications from 2014 to 2024. Data on publication trends, author collaboration, and keyword analysis were extracted to gain insight into the research landscape. Keyword analysis identified nine distinct clusters, indicating diverse research directions regarding the role of honey in breast cancer treatment. Results In Key journals such as the Journal of Ethnopharmacology and Food Chemistry have been at the forefront of disseminating research findings in this domain, demonstrating a strongly interdisciplinary approach that bridges traditional medicine and modern scientific inquiry. The increasing interest in the anticancer properties of honey, as evidenced by the growing number of studies, underlines its potential as a promising natural agent for breast cancer prevention and treatment. Conclusions This study provides a comprehensive overview of the current knowledge landscape and highlights emerging issues that require further exploration.
Collapse
Affiliation(s)
- Andi Nilawati Usman
- Department of Midwifery, Graduate School, Hasanuddin University, Makassar, South Sulawesi, 90245, Indonesia
| | - Fendi Fendi
- Research Institute and Community Service, Wuna Agricultural Sciences University, Muna, Southeast Sulawesi, 93654, Indonesia
| | - Zafitri Nulandari
- Department of Midwifery, Graduate School, Hasanuddin University, Makassar, South Sulawesi, 90245, Indonesia
| | - Dinah Inrawati Agustin
- Department of Midwifery, Graduate School, Hasanuddin University, Makassar, South Sulawesi, 90245, Indonesia
| |
Collapse
|
2
|
Koppula S, Shaik B, Maddi S. Phytosomes as a New Frontier and Emerging Nanotechnology Platform for Phytopharmaceuticals: Therapeutic and Clinical Applications. Phytother Res 2025. [PMID: 40110760 DOI: 10.1002/ptr.8465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/17/2025] [Accepted: 02/08/2025] [Indexed: 03/22/2025]
Abstract
A complete investigation into phytosome-based formulations and innovative nanotechnology is presented in this review. This investigation aims to improve the bioavailability and therapeutic effectiveness of herbal components. Phytosomes can significantly increase solubility, absorption, and stability compared to standard herbal formulations by encapsulating active phytoconstituents into phospholipid complexes. This unique ability of phytosomes to overcome the limits of traditional herbal formulations is a potential game changer in medicine. This study highlights the different uses of phytosomes across various health disorders, such as neurodegenerative illnesses, inflammatory conditions, diabetes, cardiovascular diseases, and wound healing. The review also discusses the potential of phytosomes in treating infectious diseases by improving the delivery of bioactive compounds that have improved anticancer efficacy and antibacterial properties. Despite the emergence of numerous groundbreaking discoveries, substantial barriers remain that hinder their widespread application. Challenges that must be addressed include stability, large-scale manufacture, regulatory hurdles, and limited clinical translation. This review also examines the limitations present in clinical practice, mainly focusing on the variability in bioavailability. The review highlights the crucial need for future research in phytosomes, engaging the researchers and emphasizing the continuous evolution of this promising area of medicine.
Collapse
Affiliation(s)
- Suresh Koppula
- ACUBIOSYS Private Limited, Telangana State Industrial Infrastructure Corporation Limited-Industrial Area Local Authority (TSIIC-IALA), Hyderabad, India
| | - Bajee Shaik
- ACUBIOSYS Private Limited, Telangana State Industrial Infrastructure Corporation Limited-Industrial Area Local Authority (TSIIC-IALA), Hyderabad, India
| | - Srinivas Maddi
- ACUBIOSYS Private Limited, Telangana State Industrial Infrastructure Corporation Limited-Industrial Area Local Authority (TSIIC-IALA), Hyderabad, India
| |
Collapse
|
3
|
Ji M, Han J, Li L, Cheng L, Gao Y, Gu Z, Hong Y. Effect of the degree of substitution on water solubility of OSA-debranched starch and its potential use as a 1-Octacosanol carrier. Int J Biol Macromol 2025; 289:138715. [PMID: 39672405 DOI: 10.1016/j.ijbiomac.2024.138715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/28/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
1-Octacosanol(1-Octa) has anti-fatigue, anti-Parkinson's disease, and lipid-regulating effects; however, its long hydrophobic carbon chain results in very poor water solubility, which in turn leads to malabsorption and low bioavailability. To improve the solubility of 1-Octa, it was embedded in octenyl succinic acid and debranched complex-modified starch (OSD) to obtain aqueous OSD-Octa complexes. The solubility of OSD has been found to increase significantly, from 23.40 g/100 g to 94.24 g/100 g, as the degree of substitution increased. Critical micelle concentration determinations and iodine-staining indices indicated that OSD can potentially serve as a carrier for delivering hydrophobic functional factors. The encapsulation efficiency of 79.15 ± 0.02 % and the loading capacity of 44.66 ± 0.49 μg/mg were found with OSD-Octa complexes. Fluorescent 1-Octa particles inside starch were captured clearly. The solubility of 1-Octa in water was 1.532 ± 0.023 mg/mL after encapsulation. These results demonstrate the potential of OSD as a 1-Octa carrier that significantly improves its water solubility.
Collapse
Affiliation(s)
- Meiru Ji
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Junqing Han
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Lingjin Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Li Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Yahui Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China.
| | - Yan Hong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Jiaxing Institute of Future Food, Jiaxing 314050, Zhejiang Province, People's Republic of China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China.
| |
Collapse
|
4
|
Pandey RP, Dhiman R, Chang CM. The potential of nanoencapsulated probiotics in the modulation of the gut microbiome. Nanomedicine (Lond) 2025; 20:335-338. [PMID: 39803928 PMCID: PMC11812382 DOI: 10.1080/17435889.2025.2452152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Affiliation(s)
- Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), Department of Microbiology, SRM University, Sonepat, India
| | - Ruby Dhiman
- Centre for Drug Design Discovery and Development (C4D), Department of Microbiology, SRM University, Sonepat, India
| | - Chung-Ming Chang
- Program in Biotechnology Industry, Chang Gung University, Taoyuan City, Taiwan (R.O.C.)
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan City, Taiwan (R.O.C)
| |
Collapse
|
5
|
Shah S, Chauhan H, Madhu H, Mori D, Soniwala M, Singh S, Prajapati B. Lipids Fortified Nano Phytopharmaceuticals: A Breakthrough Approach in Delivering Bio-actives for Improved Therapeutic Efficacy. Pharm Nanotechnol 2025; 13:70-89. [PMID: 38279712 DOI: 10.2174/0122117385277686231127050723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 01/28/2024]
Abstract
Phytopharmaceuticals, derived from natural sources, manifest tremendous potential for therapeutic applications. Nevertheless, effective delivery of these bio-actives presents significant challenges. A breakthrough in fortifying phytopharmaceuticals within phosphatidylcholine is a promising remedy to overcome solubility, permeability, and other related drawbacks. This intrinsic lipid, which is obtained from both natural and synthetic sources, confers numerous benefits, encompassing heightened solubility, augmented bioavailability, and enhanced stability. The conjugation of phytopharmaceuticals with phosphatidylcholine enables improved dermal permeation, absorption, targeted distribution, and the possibility of synergistic results, eventually improving therapeutic efficacy. Additionally, the use of phytopharmaceuticals enriched with phosphatidylcholine presents a promising route for overcoming the limitations imposed by conventional delivery techniques, encouraging more effective treatments. The review provides a thorough analysis of phosphatidylcholine- incorporated phytopharmaceuticals as nanomedicine with variables that significantly affect their therapeutic efficacy. Moreover, the review elaborates on how phosphatidylcholine improves solubility, permeability, and tissue distribution and boosts the potential of phytopharmaceuticals. Further, the review underscores the significance of nano-formulation strategies, analytical methodologies, and forthcoming prospects to propel this field forward. Furthermore, the review emphasizes the potential inherent in this innovative approach while highlighting the importance of additional research endeavors and collaborative initiatives to unlock the therapeutic benefits of phosphatidylcholinefortified phytopharmaceuticals, enhancing patient well-being.
Collapse
Affiliation(s)
- Sunny Shah
- B. K. Mody Government Pharmacy College, Rajkot, Gujarat, 360003, India
| | - Harshida Chauhan
- B. K. Mody Government Pharmacy College, Rajkot, Gujarat, 360003, India
| | - Hardik Madhu
- B. K. Mody Government Pharmacy College, Rajkot, Gujarat, 360003, India
| | - Dhaval Mori
- B. K. Mody Government Pharmacy College, Rajkot, Gujarat, 360003, India
| | | | - Sudarshan Singh
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Bhupendra Prajapati
- Shree. S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, 384012, Gujarat, India
| |
Collapse
|
6
|
Hajimolaali M, Dorkoosh FA, Antimisiaris SG. Review of recent preclinical and clinical research on ligand-targeted liposomes as delivery systems in triple negative breast cancer therapy. J Liposome Res 2024; 34:671-696. [PMID: 38520185 DOI: 10.1080/08982104.2024.2325963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/06/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Triple-negative breast Cancer (TNBC) is one of the deadliest types, making up about 20% of all breast cancers. Chemotherapy is the traditional manner of progressed TNBC treatment; however, it has a short-term result with a high reversibility pace. The lack of targeted treatment limited and person-dependent treatment options for those suffering from TNBC cautions to be the worst type of cancer among breast cancer patients. Consequently, appropriate treatment for this disease is considered a major clinical challenge. Therefore, various treatment methods have been developed to treat TNBC, among which chemotherapy is the most common and well-known approach recently studied. Although effective methods are chemotherapies, they are often accompanied by critical limitations, especially the lack of specific functionality. These methods lead to systematic toxicity and, ultimately, the expansion of multidrug-resistant (MDR) cancer cells. Therefore, finding novel and efficient techniques to enhance the targeting of TNBC treatment is an essential requirement. Liposomes have demonstrated that they are an effective method for drug delivery; however, among a large number of liposome-based drug delivery systems annually developed, a small number have just received authorization for clinical application. The new approaches to using liposomes target their structure with various ligands to increase therapeutic efficiency and diminish undesired side effects on various body tissues. The current study describes the most recent strategies and research associated with functionalizing the liposomes' structure with different ligands as targeted drug carriers in treating TNBCs in preclinical and clinical stages.
Collapse
Affiliation(s)
- Mohammad Hajimolaali
- Department of Pharmacy, Laboratory of Pharmaceutical Technology, University of Patras, Patras, Greece
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Sophia G Antimisiaris
- Department of Pharmacy, Laboratory of Pharmaceutical Technology, University of Patras, Patras, Greece
- Institute of Chemical Engineering, Foundation for Research and Technology Hellas, FORTH/ICEHT, Patras, Greece
| |
Collapse
|
7
|
Patias NS, Maia SV, Ferreira YG, de Oliveira NLF, Ferrarini SR, Bomfim GF, Sinhorin AP, Aguiar DH, de Queiroz EAIF, Sinhorin VDG. Effects of Extended Treatment with Protium heptaphyllum Liposomes on Metabolic Parameters of Obese Rats. BIOLOGY 2024; 13:771. [PMID: 39452080 PMCID: PMC11505265 DOI: 10.3390/biology13100771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Protium heptaphyllum (P. heptaphyllum), popularly known as "almacega" or "white pitch", is widely used in folk medicine due to its antioxidant, anti-inflammatory and healing properties, attributed to its richness in flavonoids and terpenes. Therefore, this study aimed to evaluate the effects of treatment for 28 days with liposomes containing P. heptaphyllum leaf extract in obese animals. Male Wistar rats, subjected to a hypercaloric diet for 8 weeks to induce obesity (hypercaloric chow and water enriched with 30% sucrose, ad libitum), were treated with the plant formulation (1 mg kg-1day-1, via gavage) for 28 days. The study investigated morphological, metabolic, redox state, immunological and histological parameters in adipose and liver tissue. Rats were divided into four groups: control (C), liposomes with extract (H), obese (O) and obese treated with liposomes containing extract (OH). The results indicated that the obese group (O) presented weight gain, hepatic steatosis and alterations in metabolic and inflammatory parameters. However, treatment with liposomes (OH) reduced glucose, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), creatinine and the lipid profile. In adipose tissue, the OH group showed decreased superoxide dismutase (SOD) activity and increased glutathione S-transferase (GST) activity, in contrast to the effects observed in liver GST. In the analysis of thiobarbituric-acid-reactive substances (TBARS), it was possible to observe an increase in all groups in adipose tissue and in group O in liver tissue, in addition to a reduction in TBARS in group OH in the liver, indicating modulation of oxidative stress. The treatment also increased the concentration of IL-10 and IL-17 in the liver and decreased that of IL-6 in adipose tissue. After 28 days of treatment, these results point to the therapeutic potential of treatment with P. heptaphyllum, not necessarily only against obesity, but also an effect per se of the liposomes, possibly due to the high concentration of flavonoids present in the plant extract.
Collapse
Affiliation(s)
- Naiéle Sartori Patias
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade (Rede Pró-Centro-Oeste), Universidade Federal de Mato Grosso, Sinop 78550-728, MT, Brazil; (N.S.P.); (A.P.S.)
| | - Sara Vieira Maia
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Sinop 78550-728, MT, Brazil; (S.V.M.); (Y.G.F.); (N.L.F.d.O.); (S.R.F.); (G.F.B.)
| | - Yasmin Gabriele Ferreira
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Sinop 78550-728, MT, Brazil; (S.V.M.); (Y.G.F.); (N.L.F.d.O.); (S.R.F.); (G.F.B.)
| | - Natalhya Letícia Ferreira de Oliveira
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Sinop 78550-728, MT, Brazil; (S.V.M.); (Y.G.F.); (N.L.F.d.O.); (S.R.F.); (G.F.B.)
| | - Stela Regina Ferrarini
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Sinop 78550-728, MT, Brazil; (S.V.M.); (Y.G.F.); (N.L.F.d.O.); (S.R.F.); (G.F.B.)
- Programa de Pós-Graduação em Ciências em Saúde, Universidade Federal de Mato Grosso, Sinop 78550-728, MT, Brazil
| | - Gisele Facholi Bomfim
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Sinop 78550-728, MT, Brazil; (S.V.M.); (Y.G.F.); (N.L.F.d.O.); (S.R.F.); (G.F.B.)
- Programa de Pós-Graduação em Ciências em Saúde, Universidade Federal de Mato Grosso, Sinop 78550-728, MT, Brazil
| | - Adilson Paulo Sinhorin
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade (Rede Pró-Centro-Oeste), Universidade Federal de Mato Grosso, Sinop 78550-728, MT, Brazil; (N.S.P.); (A.P.S.)
- Instituto de Ciências Naturais, Humanas e Sociais, Universidade Federal de Mato Grosso, Sinop 78550-728, MT, Brazil;
| | - Danilo Henrique Aguiar
- Instituto de Ciências Naturais, Humanas e Sociais, Universidade Federal de Mato Grosso, Sinop 78550-728, MT, Brazil;
| | - Eveline Aparecida Isquierdo Fonseca de Queiroz
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Sinop 78550-728, MT, Brazil; (S.V.M.); (Y.G.F.); (N.L.F.d.O.); (S.R.F.); (G.F.B.)
- Programa de Pós-Graduação em Ciências em Saúde, Universidade Federal de Mato Grosso, Sinop 78550-728, MT, Brazil
| | - Valéria Dornelles Gindri Sinhorin
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade (Rede Pró-Centro-Oeste), Universidade Federal de Mato Grosso, Sinop 78550-728, MT, Brazil; (N.S.P.); (A.P.S.)
- Departamento de Química, Instituto de Química, Universidade Federal de Mato Grosso, Cuiabá 78060-900, MT, Brazil
| |
Collapse
|
8
|
Pandey RP, Dhiman R, Mishra V, Raj VS, Chang CM. Editorial: Co-morbidity of COVID 19 and fungal infections. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1462172. [PMID: 39351259 PMCID: PMC11439790 DOI: 10.3389/ffunb.2024.1462172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024]
Affiliation(s)
- Ramendra Pati Pandey
- School of Health Sciences and Technology (SoHST), UPES, Dehradun, Uttarakhand, India
| | - Ruby Dhiman
- School of Health Sciences and Technology (SoHST), UPES, Dehradun, Uttarakhand, India
| | - Vivek Mishra
- Amity Institute of Click-Chemistry Research and Studies (AICCRS), Amity University Uttar Pradesh, Noida, India
| | - V. Samuel Raj
- Centre for Drug Design Discovery and Development (C4D), SRM University, Sonepat, Haryana, India
| | - Chung-Ming Chang
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
9
|
Kan L, Zheng Z, Fu W, Ma Y, Wang W, Qian H, Xu L. Recent progress on engineered micro/nanomaterials mediated modulation of gut microbiota for treating inflammatory bowel disease. J Control Release 2024; 370:43-65. [PMID: 38608876 DOI: 10.1016/j.jconrel.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
Inflammatory bowel disease (IBD) is a type of chronic recurrent inflammation disease that mainly includes Crohn's disease and ulcerative colitis. Currently, the treatments for IBD remain highly challenging, with clinical treatment drugs showing limited efficacy and adverse side effects. Thus, developing drug candidates with comprehensive therapeutic effects, high efficiency, and low toxicity is urgently needed. Recently, micro/nanomaterials have attracted considerable interest because of their bioavailability, multitarget and efficient effects on IBD. In addition, gut modulation plays a substantial role in restoring intestinal homeostasis. Therefore, efficient microbiota-based strategies modulating gut microenvironment have great potential in remarkably treating IBD. With the development of micro- and nanomaterials for the treatment of IBD and more in-depth studies of their therapeutic mechanisms, it has been found that these treatments also have a tendency to positively regulate the intestinal flora, resulting in an increase in the beneficial flora and a decrease in the level of pathogenic bacteria, thus regulating the composition of the intestinal flora to a normal state. In this review, we first present the interactions among the immune system, intestinal barrier, and gut microbiome. In addition, recent advances in administration routes and methods that positively arouse the regulation of intestinal flora for IBD using probiotics, prebiotics, and redox-active micro/nanomaterials have been reviewed. Finally, the key challenges and critical perspectives of gut microbiota-based micro/nanomaterial treatment are also discussed.
Collapse
Affiliation(s)
- Lingling Kan
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Ziwen Zheng
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Wanyue Fu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Yan Ma
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Wanni Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China.
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China.
| | - Lingling Xu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China.
| |
Collapse
|
10
|
Jasim A, Albukhaty S, Sulaiman GM, Al-Karagoly H, Jabir MS, Abomughayedh AM, Mohammed HA, Abomughaid MM. Liposome Nanocarriers Based on γ Oryzanol: Preparation, Characterization, and In Vivo Assessment of Toxicity and Antioxidant Activity. ACS OMEGA 2024; 9:3554-3564. [PMID: 38284009 PMCID: PMC10809378 DOI: 10.1021/acsomega.3c07339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/09/2023] [Accepted: 12/25/2023] [Indexed: 01/30/2024]
Abstract
The present study aimed to develop and characterize liposome nanocarriers based on γ oryzanol and evaluate their potential in vitro and in vivo toxicity and antioxidant effects. The liposomes were physicochemically characterized using various techniques, including dynamic light scattering (DLS) for size and polydispersity index (PDI) measurements and ζ-potential analysis. The in vitro toxicity assessments were performed using hemolysis and MTT assays on the HS5 cell line. In vivo, acute oral toxicity was evaluated by using LD50 assays in mice. Additionally, antioxidant activity was assessed through biochemical analysis of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and liver tissue catalase, malondialdehyde (MDA), and glutathione (GSH) levels. The results revealed that the liposomes exhibited a uniform and spherical morphology with suitable physicochemical properties for drug delivery applications. The in vitro cytotoxicity and hemolysis assays and the in vivo LD50 experiment indicated the potential safety of γ oryzanol liposomes, especially at lower concentrations. In addition, the assessment of liver enzymes, i.e., ALT and AST, and the antioxidant markers further revealed the safety of the formulation, particularly for the liver as a highly sensitive soft organ. Overall, the liposome nanocarriers based on γ oryzanol were successfully formulated and expressed potential safety, supporting their application for the purposes of drug delivery and therapeutic interventions, particularly for hepatocellular and antioxidant therapies; however, further investigations for preclinical and clinical studies could be the future prospects for liposome nanocarriers based on γ oryzanol to explore the safety and efficacy of these nanocarriers in various disease models and clinical settings.
Collapse
Affiliation(s)
- Ahmed
J. Jasim
- Department
of Biomedical Engineering, University of
Technology, Baghdad 10066, Iraq
| | - Salim Albukhaty
- Department
of Chemistry, College of Science, University
of Misan, Maysan 62001, Iraq
- College
of Medicine, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
| | - Ghassan M. Sulaiman
- Division
of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
| | - Hassan Al-Karagoly
- Department
of Internal and Preventive Medicine, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Diwaniyah 58001, Iraq
| | - Majid S. Jabir
- Division
of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
| | - Ali M. Abomughayedh
- Pharmacy
Department, Aseer Central Hospital, Ministry
of Health, Asir 62523, Saudi Arabia
| | - Hamdoon A. Mohammed
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
- Department
of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Mosleh M. Abomughaid
- Department
of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, Bisha 67714, Saudi Arabia
| |
Collapse
|
11
|
Oliveira da Silva L, Assunção Ferreira MR, Lira Soares LA. Nanotechnology Formulations Designed with Herbal Extracts and Their Therapeutic Applications - A Review. Chem Biodivers 2023; 20:e202201241. [PMID: 37455394 DOI: 10.1002/cbdv.202201241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Because of the increasing demand for natural products, the development of nanoformulations containing natural active ingredients requires in-depth knowledge of the substances used, methods of obtaining, and stability profiles to ensure product quality, efficacy, and safety. Considering this, the bibliography of the last five years presented in databases (PubMed and Science Direct) was discussed in this work, discussing the study with medicinal plants to obtain active metabolites with therapeutic properties, as well as the different nano-systems responsible for carrying these molecules. Due to the wealth of biodiversity found in the world, many species are submitted to the extraction process for several purposes. However, identifying, classifying, and quantifying the constituents of herbal matrices are crucial steps to verify their therapeutic potential. In addition, knowing the techniques of production and elaboration of nanotechnology products allows the optimization of the incorporation of herbal extracts as an innovation target. For studies to be successful, it is necessary to exhaust experimental results that guarantee the efficacy, safety, and quality of natural nanosystems, with the objective of obtaining reliable answers in nanotechnology therapy.
Collapse
Affiliation(s)
- Lucas Oliveira da Silva
- Pharmacognosy Laboratory, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Luiz Alberto Lira Soares
- Pharmacognosy Laboratory, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
12
|
Kumar M, Keshwania P, Chopra S, Mahmood S, Bhatia A. Therapeutic Potential of Nanocarrier-Mediated Delivery of Phytoconstituents for Wound Healing: Their Current Status and Future Perspective. AAPS PharmSciTech 2023; 24:155. [PMID: 37468691 DOI: 10.1208/s12249-023-02616-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/01/2023] [Indexed: 07/21/2023] Open
Abstract
The treatment of wounds is a serious problem all over the world and imposes a huge financial burden on each and every nation. For a long time, researchers have explored wound dressing that speeds up wound healing. Traditional wound dressing does not respond effectively to the wound-healing process as expected. Therapeutic active derived from plant extracts and extracted bioactive components have been employed in various regions of the globe since ancient times for the purpose of illness, prevention, and therapy. About 200 years ago, most medical treatments were based on herbal remedies. Especially in the West, the usage of herbal treatments began to wane in the 1960s as a result of the rise of allopathic medicine. In recent years, however, there has been a resurgence of interest in and demand for herbal medicines for a number of reasons, including claims about their efficacy, shifting consumer preferences toward natural medicines, high costs and negative side effects of modern medicines, and advancements in herbal medicines brought about by scientific research and technological innovation. The exploration of medicinal plants and their typical uses could potentially result in advanced pharmaceuticals that exhibit reduced adverse effects. This review aims to present an overview of the utilization of nanocarriers in plant-based therapeutics, including its current status, recent advancements, challenges, and future prospects. The objective is to equip researchers with a comprehensive understanding of the historical background, current state, and potential future developments in this emerging field. In light of this, the advantages of nanocarriers based delivery of natural wound healing treatments have been discussed, with a focus on nanofibers, nanoparticles, nano-emulsion, and nanogels.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Puja Keshwania
- Department of Microbiology, Maharishi Markandeshwar Institute of Medical Sciences and Research, Mullana, Ambala, Haryana, 133207, India
| | - Shruti Chopra
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| |
Collapse
|