1
|
Kumar GGV, Sharma P, Thiruppathi G, Sundararaj P, Draksharapu A. A highly selective indole-based sensor for Zn 2+, Cu 2+, and Al 3+ ions with multifunctional applications. J Mater Chem B 2025. [PMID: 40432587 DOI: 10.1039/d5tb00333d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
A wide range of chemosensors has been developed for detecting specific metal ions at trace levels, attracting considerable research interest. However, despite the significant role of indole-based molecules in the biological domain, only a few chemosensors incorporating this moiety have been reported. In this work, a novel indole-based receptor [R = (Z)-3-((((1H-indol-4-yl)methyl)imino)methyl)benzene-1,2-diol], was synthesized and characterized using single-crystal X-ray diffraction, NMR, IR, and ESI-MS techniques. Sensing studies conducted in a CH3CN/H2O (7 : 3, v/v) solvent system demonstrated that the receptor R exhibits selectivity towards Zn2+, Cu2+, and Al3+ ions, with turn-on fluorescence and UV-Vis spectral responses while showing insensitivity to other cations and anions. Binding studies revealed the formation of 1 : 2 stoichiometric complexes between R and the respective metal ions. The interaction with Zn2+ resulted in enhanced fluorescence emission at 497 nm, whereas Al3+ and Cu2+ ions caused significant bathochromic shifts in the absorption maxima from 290 nm to 308 nm and 318 nm, respectively. The calculated detection limits were 0.056 μM for Zn2+, 0.57 μM for Cu2+, and 0.45 μM for Al3+. Density functional theory (DFT) calculations confirmed that R coordinates effectively with these metal ions, stabilizing the complexes by reducing the HOMO-LUMO energy gap. Molecular docking studies further indicated strong binding affinities of R and its metal complexes to DNA and bovine serum albumin (BSA), elucidating the potential binding sites within these biomolecules. The receptor R exhibits outstanding potential for detecting Zn2+ ions in the Caenorhabditis elegans model system. Its excellent membrane permeability and biocompatible nature enable efficient intracellular uptake, ensuring accurate and reliable detection of Zn2+ ions in living organisms. Furthermore, the receptor was employed in designing molecular logic gates and keypad lock systems, demonstrating its utility in developing functional molecular devices.
Collapse
Affiliation(s)
- Gujuluva Gangatharan Vinoth Kumar
- Department of Chemistry, Thiagarajar College of Engineering, Madurai, Tamil Nadu, 625015, India
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Parkhi Sharma
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | | | | | - Apparao Draksharapu
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| |
Collapse
|
2
|
Chavan ND, Sarveswari S, Vijayakumar V. Synthesis of novel sulphonamide derivatives from tunable quinolines with computational studies. Sci Rep 2025; 15:10972. [PMID: 40164813 PMCID: PMC11958747 DOI: 10.1038/s41598-025-94817-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025] Open
Abstract
The synthesis of new quinoline-sulphonamide derivatives was accomplished through a meticulous five-step molecular assembly utilizing Suzuki, acid-amine cross-coupling reactions and N-alkylation. The integrity of each derivative was thoroughly confirmed via comprehensive spectroscopic analyses, including 1H and 13C NMR, DEPT-135, 1H-1H COSY, HSQC NMR and HRMS techniques. Subsequently, the absorbance and emission spectra of the newly synthesized derivatives were thoroughly investigated. Absorbance spectra were determined to be restricted within the range of 337 nm to 341.73 nm, with compound 10j exhibiting the maximum wavelength of 341.73 nm; conversely, emission spectra were uniformly detected within the range of 411.70 nm to 429.90 nm upon excitation at 340 nm, with compound 10f demonstrating the highest wavelength of 429.90 nm. Notably, these fluorophores displayed impressive characteristics, with high intensity and significant molar extinction coefficients; quantum yield ranging from 0.015 to 0.558 along with the highest stokes shifts in 10h compound (0.6237 × 10-4) in acetonitrile solvent. Additionally, compound 10p showed strong binding affinity and favorable pharmacokinetic properties through molecular docking studies and ADMET calculations. The electronic structure of the molecules was elucidated using techniques such as density functional theory (DFT) and molecular electrostatic potential (MEP) mapping. Additionally, the calculated global reactivity parameters provided valuable insights. Compound 10p exhibited a distinctly low energy gap compared to other compounds, demonstrating its exceptional properties. The comparison between experimental and theoretical UV-vis spectra with major contribution transition in percentage also showcased the remarkable consistency and quality of the synthesized derivatives, highlighting the significant potential of this work in the field of fluorophore and biological application.
Collapse
Affiliation(s)
- Nagesh Dhanaji Chavan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - S Sarveswari
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - V Vijayakumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
3
|
Krinochkin A, Valieva M, Starnovskaya E, Slovesnova N, Minin A, Belousova A, Sadieva L, Taniya O, Khasanov A, Novikov A, Bruskov V, Vatolina S, Kopchuk D, Slepukhin P, Sharutin V, Zyryanov G. New Fluorescent Dye for the Detection of Zn 2+ in Living Cells and Fixed Sections of the Rat Pancreas. J Fluoresc 2025; 35:1423-1439. [PMID: 38349481 DOI: 10.1007/s10895-024-03603-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/23/2024] [Indexed: 04/04/2025]
Abstract
We report the synthesis and characterization of a new 4-methoxyphenyl-2,2'-bipyridine-based ligand, such as 12, bearing dipicolylaminomethyl core as a receptor unit, as a probe for the fluorescence "turn-on" detection of Zn2+. Thus, in the presence of Zn2+ the probe 12 exhibited a fluorescence enhancement with a Stokes shift of ~ 180 nm and photoluminescence quantum yields value of ~ 1.0. In addition, 12 exhibited higher binding constant for Zn2+ (~ 2 × 105 M-1) with the LOD reaching the nanomolar level (~ 0.1 × 10-9 M) compare to the previously reported probe 1. The stoichiometry and structure of the [Zn(12)]2+ and [Zn(1)]2+ complexes were supported by XRD analysis, DFT calculations and 1H NMR experiments. It was postulated that, as a result of binding of Zn2+, the sample exhibited a bright "on" state via the PET-ICT processes. Molecular docking studies and confocal fluorescence microscopy experiments demonstrated that the probe 12 could be used for the fluorescence detection of Zn2+ not only in artificially enriched with zinc salts live cells, but also in fixed tissues with cations are in a bound state. The high binding constant of compound 12 to Zn2+ cation allows it to be used for the accurate localization of pancreatic beta cells (islets of Langerhans).
Collapse
Affiliation(s)
- Alexey Krinochkin
- Ural Federal University, 19 Mira Street, 620002, Yekaterinburg, Russia
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Branch of the RAS, 22 S. Kovalevskoy Street, 620219, Yekaterinburg, Russia
| | - Maria Valieva
- Ural Federal University, 19 Mira Street, 620002, Yekaterinburg, Russia
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Branch of the RAS, 22 S. Kovalevskoy Street, 620219, Yekaterinburg, Russia
| | | | - Nataliya Slovesnova
- Ural Federal University, 19 Mira Street, 620002, Yekaterinburg, Russia
- Urals State Medical University, 3 Repina Street, 620028, Yekaterinburg, Russia
| | - Artem Minin
- Ural Federal University, 19 Mira Street, 620002, Yekaterinburg, Russia
- M.N. Miheev Institute of Metal Physics, Ural Branch of the RAS, 18 S. Kovalevskoy Street, 620108, Yekaterinburg, Russia
| | - Anna Belousova
- Institute of Immunology and Physiology, Ural Branch of the RAS, 106 Pervomaiskaya Street, 620049, Yekaterinburg, Russia
| | - Leila Sadieva
- Ural Federal University, 19 Mira Street, 620002, Yekaterinburg, Russia.
| | - Olga Taniya
- Ural Federal University, 19 Mira Street, 620002, Yekaterinburg, Russia
| | - Albert Khasanov
- Ural Federal University, 19 Mira Street, 620002, Yekaterinburg, Russia
| | - Alexander Novikov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034, Saint Petersburg, Russia
| | - Vitaly Bruskov
- Ural Federal University, 19 Mira Street, 620002, Yekaterinburg, Russia
| | - Svetlana Vatolina
- Ural Federal University, 19 Mira Street, 620002, Yekaterinburg, Russia
| | - Dmitry Kopchuk
- Ural Federal University, 19 Mira Street, 620002, Yekaterinburg, Russia
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Branch of the RAS, 22 S. Kovalevskoy Street, 620219, Yekaterinburg, Russia
| | - Pavel Slepukhin
- Ural Federal University, 19 Mira Street, 620002, Yekaterinburg, Russia
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Branch of the RAS, 22 S. Kovalevskoy Street, 620219, Yekaterinburg, Russia
| | - Vladimir Sharutin
- Department of Chemistry, Institute of Natural Sciences, South Ural State University (National Research University), Lenin Avenue 76, 454080, Chelyabinsk, Russia
| | - Grigory Zyryanov
- Ural Federal University, 19 Mira Street, 620002, Yekaterinburg, Russia
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Branch of the RAS, 22 S. Kovalevskoy Street, 620219, Yekaterinburg, Russia
| |
Collapse
|
4
|
Yaduvanshi PS, Palika R, Pullakhandam R. A Fluorometric Method for Zinc Estimation: Applications in the Estimation of Plasma Zinc and in Assessing Zinc Bioaccessibility from Rice. Biol Trace Elem Res 2025; 203:1701-1708. [PMID: 38922542 DOI: 10.1007/s12011-024-04277-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Sensitive and precise methods for the estimation of zinc (Zn) in biological fluids and foods are important tools in understanding the various aspects related to Zn nutrition. Estimation of serum/plasma Zn was suggested for assessing the population Zn status while assessing the bioaccessible Zn following simulated gastrointestinal digestion of crop varieties such as rice helps in ranking the crops. Atomic absorption spectrometry (AAS) or inductively coupled plasma-mass spectrometry (ICP-MS) are widely used for Zn estimation. Zinquin, a Zn fluorophore, has been used for the localization of cellular Zn and labile Zn pools in biological fluids with extremely high sensitivity. However, it was not tested for its use in Zn estimation in serum/plasma or in assessing the Zn bioaccessibility from foods. In the current study, we demonstrate a sensitive method for Zn estimation in human plasma and validate it against the reference method (AAS) by comparing the paired measurements on the same samples. The method-related bias between zinquin with AAS was negligible (0.48 µg/dL), and the precision (CV) of the assay was < 5% across different Zn concentrations. In addition, we also demonstrated the utility of zinquin assay in estimating the bioaccessibility of Zn from rice varieties and showed that the method is again comparable to AAS. The zinquin method is capable of discriminating the differences in zinc bioaccessibility between polished and unpolished rice varieties. In the context of required low plasma volume (100 µL Vs 400 µL), excellent comparability of the results with the reference method and analytical simplicity could be particularly useful.
Collapse
Affiliation(s)
| | - Ravindranadh Palika
- Drug Safety Division, National Institute of Nutrition, Jamai Osmania, Hyderabad, 500007, India
| | - Raghu Pullakhandam
- Drug Safety Division, National Institute of Nutrition, Jamai Osmania, Hyderabad, 500007, India.
| |
Collapse
|
5
|
Kumar MS, Pakrashy S, Manna S, Choudhury SM, Das B, Ghosh A, Seikh AH, Dolai M, Das AK. Fluorogenic selective detection of Zn 2+ using a pyrazole- ortho-vanillin conjugate: insights from DFT, molecular docking, bioimaging and anticancer applications. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:2125-2133. [PMID: 39950208 DOI: 10.1039/d4ay02218a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
A fluorescent sensor, (E)-N'-(2-hydroxy-3-methoxybenzylidene)-3,5-dimethyl-1H-pyrazole-1-carbohydrazide (HMPC), was designed and synthesized for the selective fluorescence recognition of Zn2+ in semi-aqueous media. Notably, HMPC exhibited a red-shifted, two-fold fluorescence "turn-on" enhancement in response to Zn2+ at 490 nm, with a detection limit of 1.68 μM, which is significantly lower than the WHO guideline (76.0 μM). The binding constant of HMPC with Zn2+ was calculated to be 5 × 104 M-1. The fluorescence enhancement of HMPC in the presence of Zn2+ is attributed to the suppression of the PET process and the enhancement of ICT, leading to fluorescence via the CHEF mechanism. The sensing mechanism was demonstrated through UV-vis, fluorescence spectroscopy, Job plots, ESI-MS, and DFT calculations. For biological applications, cytotoxicity and cell imaging studies were performed using MCF-7 cells. Molecular docking studies revealed a high binding energy of HMPC (ΔG = -7.1 kcal mol-1) with the 4,5-diaryl isoxazole HSP90 chaperone protein, suggesting its potential as an anticancer agent. Additionally, its binding energy of -6.5 kcal mol-1 with the HDAC8 protein indicates greater efficacy than suberoylanilide hydroxamic acid (SAHA) in inhibiting HDAC, as it binds more strongly to the HDAC8 protein than SAHA (-7.4 kcal mol-1). Furthermore, due to its favorable ADME profile, HMPC may be suitable for oral administration, enhancing its potential as an anticancer drug.
Collapse
Affiliation(s)
- Malavika S Kumar
- Department of Chemistry, Christ University, Hosur Road, Bangalore, Karnataka, 560029, India.
| | - Sourav Pakrashy
- Department of Chemistry, Prabhat Kumar College, Vidyasagar University, Purba Medinipur, W. B., 721404, India.
| | - Sounik Manna
- Biochemistry, Molecular Endocrinology, and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University, Midnapore 721102, W. B., India
| | - Sujata Maiti Choudhury
- Biochemistry, Molecular Endocrinology, and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University, Midnapore 721102, W. B., India
| | - Bhriguram Das
- Department of Chemistry, Vidyasagar University, Paschim Medinipur, W. B., 721102, India
| | - Abhishek Ghosh
- Department of Applied Science, University of Quebec at Chicoutimi, Saguenay, QC, G7H 2B1, Canada
| | - Asiful H Seikh
- Department of Mechanical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Malay Dolai
- Department of Chemistry, Prabhat Kumar College, Vidyasagar University, Purba Medinipur, W. B., 721404, India.
| | - Avijit Kumar Das
- Department of Chemistry, Christ University, Hosur Road, Bangalore, Karnataka, 560029, India.
| |
Collapse
|
6
|
Mancini L, Inclán M, Paderni D, Giorgi L, Formica M, García‐España E, Fusi. V. A New Biphenol-bis(polyazacyclophane) Receptor with Unusual Photophysical Properties Towards Zn 2. Chempluschem 2025; 90:e202400342. [PMID: 38940317 PMCID: PMC11734575 DOI: 10.1002/cplu.202400342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024]
Abstract
The new ligand 3,3'-bis(((2-(3,6,9-triaza-1(2,6)-pyridinacyclodecaphane-6-yl)ethyl)amino)methyl)-[1,1'-biphenyl]-2,2'-diol (L) has been synthesized and characterized. It contains two pyridinacyclophane macrocycles spaced by a 2,2'-biphenol moiety. The acid-base behaviour of L as well as its binding properties towards Zn2+ ion have been investigated. This work is inserted in the field of fluorescent ditopic receptors, formed by two polyamines spaced by a aromatic fragments. This ligand represents a new example of a peculiar case of polyamine fluorescent receptor in which the interaction with Zn2+ is translated into a deactivation of the emission. Enough data to describe and explain this unusual behaviour was obtained through potentiometric, UV-Vis, fluorescence and NMR titrations as well as theoretical calculations. This studies have shown that the metal cation is indirectly affecting the emission favouring a conformation in which the fluorophore is at stacking distance from the electron poor pyridine moieties. This gives rise to an oxidative photoinduced electron transfer from the excited state of the fluorophore to the electron-poor Zn2+ coordined pyridine.
Collapse
Affiliation(s)
- Luca Mancini
- Department of Pure and Applied SciencesUniversity of UrbinoVia Ca' Le Suore 2-461029UrbinoItaly
| | - Mario Inclán
- Department of Inorganic Chemistry, Institute of Molecular ScienceUniversity of ValenciaCatedrático José Baltrán Martínez 246980PaternaSpain
| | - Daniele Paderni
- Department of Pure and Applied SciencesUniversity of UrbinoVia Ca' Le Suore 2-461029UrbinoItaly
| | - Luca Giorgi
- Department of Pure and Applied SciencesUniversity of UrbinoVia Ca' Le Suore 2-461029UrbinoItaly
| | - Mauro Formica
- Department of Pure and Applied SciencesUniversity of UrbinoVia Ca' Le Suore 2-461029UrbinoItaly
| | - Enrique García‐España
- Department of Inorganic Chemistry, Institute of Molecular ScienceUniversity of ValenciaCatedrático José Baltrán Martínez 246980PaternaSpain
| | - Vieri Fusi.
- Department of Pure and Applied SciencesUniversity of UrbinoVia Ca' Le Suore 2-461029UrbinoItaly
| |
Collapse
|
7
|
Gao Y, Liu X, Li W, Chen Y, Zhu S, Yan Q, Geng S, Zhang J, Guan Y, Li Q, Jia S, Wang L, Li J, He W, Fan C, Guo Z, Zhu Y. Targeted imaging of lysosomal zinc ions with a tetrahedral DNA framework fluorescent reporter. Natl Sci Rev 2024; 11:nwae307. [PMID: 39440260 PMCID: PMC11493095 DOI: 10.1093/nsr/nwae307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/16/2024] [Accepted: 08/21/2024] [Indexed: 10/25/2024] Open
Abstract
Abnormal levels of zinc ions within endo-lysosomes have been implicated in the progression of Alzheimer's disease (AD), yet the detection of low-concentration zinc ions at the organelle level remains challenging. Here we report the design of an endo-lysosome-targeted fluorescent reporter, Znluorly, for imaging endogenous zinc ions. Znluorly is constructed from an amphiphilic DNA framework (DNF) with programmable size and shape, which can encapsulate zinc-responsive fluorophores within its hydrophobic nanocavity. We find that the tetrahedral DNFs of 20 bp in the edge length are effectively located within endo-lysosomes, which can detect zinc ions with a detection limit of ∼31.9 nM (a sensitivity that is ∼2.5 times that of the free fluorophore). Given the organelle-targeting ability and high zinc sensitivity of Znluorly, we employ it to detect endogenous endo-lysosomal zinc ions in neuron cells. We monitor the dynamics of zinc levels in AD model cells and zebrafish, corroborating the positive correlation between zinc levels and AD hallmarks including Aβ aggregates and learning/memory impairments. Our study provides a generalizable strategy for organelle-specific theranostic applications.
Collapse
Affiliation(s)
- Yue Gao
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Liu
- Xiangfu Laboratory, Jiaxing 314102, China
| | - Wei Li
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shitai Zhu
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Shanshan Geng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jichao Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yong Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sisi Jia
- Zhangjiang Laboratory, Shanghai 201210, China
| | - Lihua Wang
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Li
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ying Zhu
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Asthana S, Maddeshiya T, Tamrakar A, Kumar P, Garg N, Pandey MD. L-Tryptophan-based pyrene conjugate for intracellular zinc-guided excimer emission and controlled nano-assembly. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5633-5641. [PMID: 39139130 DOI: 10.1039/d4ay00979g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
This article describes intracellular zinc-induced excimer emission and tuning of self-assembly from L-tryptophan-pyrene conjugate (1). The zinc-guided excimer formation is due to the interaction of the pyrene moiety in an excited state. AFM studies show the structural modification in the supramolecular nano-assembly of 1 from dome-shaped to porous surface after complexation with zinc ions. Further, the interaction of 1 with Zn(II) ion is also studied using DFT, Job's plot, NMR titration and HRMS. The results of Zn(II) ion determination in natural water samples and RAW 264.7 cells demonstrate the practical utility of 1.
Collapse
Affiliation(s)
- Surabhi Asthana
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| | - Tarkeshwar Maddeshiya
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| | - Arpna Tamrakar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| | - Praveen Kumar
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Mrituanjay D Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
9
|
Ahamed AA, Alharbi SA, Venkatesan G. A Julolidine Aldehyde Dansyl Hydrazine Schiff Base as Fluorescence Chemosensor for Zn 2+ ions Recognition and its Application. J Fluoresc 2024:10.1007/s10895-024-03842-2. [PMID: 39042356 DOI: 10.1007/s10895-024-03842-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024]
Abstract
The Schiff base fluorescent probe (Dz-Jul), containing julolidine aldehyde and dansyl hydrazine, was derived using a simple condensation. This chemosensor showed high selectivity towards Zn2+ and quick response (170 s) in DMSO/H2O solutions (8/2, v/v, pH 7.2 buffer). A fluorometric titration determined that Dz-Jul-Zn2+ has a binding ratio of 1:1, and the association constant (Ka) is 1.03 × 105 M-1. The Dz-Jul detection limit of Zn2+ ions was 15 nM, much lower than the WHO standard (76.0 nM). DFT, ESI mass, and FTIR spectral demonstrated a plausible complexation mode between Dz-Jul and Zn2+ ions. In actual water samples, Zn2+ has been detected with good detection performance using Dz-Jul. Additionally, Dz-Jul-coated test strips allowed for rapid and qualitative monitoring of Zn2+ ions in a visible manner.
Collapse
Affiliation(s)
- A Asrar Ahamed
- PG and Research Department of Chemistry, Jamal Mohamed College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli-620020, Tamil Nadu, India
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh - 11451, Saudi Arabia
| | - Geetha Venkatesan
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, India.
| |
Collapse
|
10
|
Liu Y, Wang X, Liu J. Unexpected enrichment of DNA aptamers for Zn 2+ ions from an insulin selection. Chem Commun (Camb) 2024; 60:6280-6283. [PMID: 38809225 DOI: 10.1039/d4cc01546k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
We serendipitously discovered Zn2+-binding DNA aptamers when selecting insulin aptamers. The Zn-1 aptamer binds to Zn2+ with a dissociation constant (Kd) of ∼1 μM, and has 450-fold higher selectivity for Zn2+ over Cd2+. A strand-displacement based fluorescent sensor achieved a limit of detection of 0.2 μM Zn2+.
Collapse
Affiliation(s)
- Yibo Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Xiaoqin Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| |
Collapse
|
11
|
Anitha O, Ghorai S, Thiruppathiraja T, Amir H, Murugan A, Natarajan R, Lakshmipathi S, Viswanathan C, Jothi M, Murugesapandian B. Pyridine appended pyrimidine bis hydrazone: Zn 2+/ATP detection, bioimaging and functional properties of its dinuclear Zn(II) complex. Talanta 2024; 273:125900. [PMID: 38490021 DOI: 10.1016/j.talanta.2024.125900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024]
Abstract
A pyridine functionalized pyrimidine-based system, H2P was successfully synthesized, characterized, and evaluated for its remarkable selective characteristics towards Zn2+ and ATP ions. The chemical sensing capabilities of H2P were demonstrated through absorption, fluorescence, and NMR spectroscopic techniques. The probe exhibited outstanding sensitivity when interacting with the ions, demonstrating relatively strong association constants and impressively low detection limits. The comprehensive binding mechanism of H2P with respect to Zn2+ and ATP ions was investigated using a combination of analytical methods, including Job's plot, NMR spectroscopy, mass spectrometry, and density functional theory (DFT) experiments. The interesting sensing ability of H2P for Zn2+/ATP ions was harnessed for live cell bioimaging and other diverse on-site detection purposes, including paper strips, cotton swabs, and applications involving mung bean sprouts. Further, the fluorescent probe demonstrated its effectiveness in detecting Zn2+ and ATP within live cells, indicating its significant potential in the realm of biological imaging applications. Moreover, the molecular configuration of the zinc complex (H2P-Zn2Cl4), derived from H2P, was elucidated using X-ray crystallography. This complex exhibited intriguing multifunctional attributes, encompassing its capability for detecting picric acid and for reversible acid/base sensing responses. The enhanced conducting behavior of the complex as well as its resistance properties were investigated by performing I-V characteristics and electrochemical impedance spectroscopic (EIS) experiments respectively.
Collapse
Affiliation(s)
- Ottoor Anitha
- Department of Chemistry, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Sandipan Ghorai
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | | | - Humayun Amir
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Abinayaselvi Murugan
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Ramalingam Natarajan
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | | | - Chinnuswamy Viswanathan
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Mathivanan Jothi
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | | |
Collapse
|
12
|
Wang J, Liu Q, Li Y, Pang Y. An environmentally sensitive zinc-selective two-photon NIR fluorescent turn-on probe and zinc sensing in stroke. J Pharm Anal 2024; 14:100903. [PMID: 38655400 PMCID: PMC11035362 DOI: 10.1016/j.jpha.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/01/2023] [Accepted: 11/21/2023] [Indexed: 04/26/2024] Open
Abstract
A two-photon near infrared (NIR) fluorescence turn-on sensor with high selectivity and sensitivity for Zn2+ detection has been developed. This sensor exhibits a large Stokes' shift (∼300 nm) and can be excited from 900 to 1000 nm, with an emission wavelength of ∼785 nm, making it ideal for imaging in biological tissues. The sensor's high selectivity for Zn2+ over other structurally similar cations, such as Cd2+, makes it a promising tool for monitoring zinc ion levels in biological systems. Given the high concentration of zinc in thrombi, this sensor could provide a useful tool for in vivo thrombus imaging.
Collapse
Affiliation(s)
- Junfeng Wang
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Qibing Liu
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
- Engineering Research Center of Tropical Medicine, Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Yingbo Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yi Pang
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
- Maurice Morton Institute of Polymer Science, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
13
|
Bhattacharyya M, Hossain M. Picomolar level sensorial dual colorimetric gold nanoparticle sensor for Zn 2+ and Hg 2+ ions synthesized from bark extract of Lannea Grandis Coromandelica and its wide range applications in real sample analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123682. [PMID: 38042120 DOI: 10.1016/j.saa.2023.123682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
In this work a facile, rapid, reproducible and non-toxic approach has been demonstrated for synthesis of most stable AuNPs from bark extract of Lannea Grandis Coromandelica. UV-Visible spectroscopy, FTIR, TEM, SAED, EDX, XRD, DLS, Zeta Potential, FE-SEM, AFM and XPS techniques were employed for the characterization of synthesized LGC-AuNPs. The UV-Vis spectra of LGC-AuNPs gave SPR peak at 536 nm while the TEM analysis revealed LGC-AuNPs have 20.75 nm size with spherical in shape. DLS study showed the AuNPs have average diameter 50.18 nm. The synthesized AuNPs exhibited very high selectivity, rapid response in recognition towards Zn2+ and Hg2+ ions by changing its color within 20 sec. This proposed sensor can detect very low picomolar level of Zn2+ and Hg2+ ions (LOD value for Zn2+ and Hg2+ were found 1.36 pM and 24.60 pM respectively). Here we also studied effect of several factors such as variation of conc of gold, temperature, incubation time, pH, salt, solvent (polar protic and polar aprotic) to know in which condition AuNPs have high stability and sensitivity. The data revealed that synthesized AuNPs was stable up to two years at pH 6.5 at room temperature in water media and under this condition, it shows maximum sensitivity and reactivity. Moreover, here interference study was carried out to identify high selectivity of synthesized LGC-AuNPs probe in presence of different metal ions. The real sample analyses also revealed the great applicability of this probe. Therefore, this simple, rapid, low-cost, sensing activity appeared to hold great sensibleness for detection of heavy metal ions in real sample.
Collapse
|
14
|
Barua M, Bandyopadhyay S, Wasai A, Ghosh M, Roy I, Ghosh P, Koner S, Rizzoli C, Roy A, Saha S, Mandal S. A trinuclear Zn (II) schiff base dicyanamide complex attenuates bacterial biofilm formation by ROS generation and membrane damage and exhibits anticancer activity. Microb Pathog 2024; 188:106548. [PMID: 38262493 DOI: 10.1016/j.micpath.2024.106548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
A trinuclear Zn (II) complex, [(ZnL{N(CN)2})2Zn], termed complex 1 has been synthesized by the reaction of an aqueous solution of sodium dicyanamide to the methanolic solution of Zn (CH3COO)2, 2H2O and corresponding Schiff base (H2L) which is derived from 1:2 condensation of 1, 4 butane diamine with 3-ethoxy salicylaldehyde. Complex 1 is characterized by elemental analysis, IR, UV and Single X-ray diffraction study. Drug resistance is a growing global public health concern that has prompted researchers to look into advanced alternative treatment modalities. In this context, complex 1 has shown promising antibacterial and antibiofilm efficacy against gram-positive Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus strains. Complex 1 attenuated Staphylococcal biofilm formation by reducing several virulence factors including the formation of extracellular polysaccharide matrix, slime, haemolysin, staphyloxanthin, auto-aggregation, cell surface hydrophobicity, and motility. Notably, complex 1 mechanistically potentiated Reactive Oxygen Species (ROS) generation within the bacterial cells, leading to the damage of bacterial cell membrane followed by DNA leakage and thereby impeding the growth of Staphylococcus aureus. Furthermore, complex 1 significantly exhibited anticancer activity by reducing the growth of prostate adenocarcinoma cells. It obstructed the migration of cancer cells by potentiating apoptosis and arresting the cell cycle at the G2/M phase. In summary, complex 1 could act as a potent candidate for the generation of novel antibacterial, antibiofilm as well as anticancer treatment regimens for the management of drug-resistant biofilm-mediated Staphylococcus aureus infection and lethal prostate malignancy.
Collapse
Affiliation(s)
- Mamata Barua
- Department of Chemistry, Acharya Prafulla Chandra College, New Barrackpore, Kolkata, 700131, India
| | - Shrabasti Bandyopadhyay
- Department of Microbiology, University of Kalyani, Kalyani, Kalyani, 741235, West Bengal, India
| | - Abdul Wasai
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Noida, J3 Block, Room 111, Sector 125, Noida, 201303, UP, India
| | - Mrinmoy Ghosh
- Department of Chemistry, Acharya Prafulla Chandra College, New Barrackpore, Kolkata, 700131, India
| | - Indrani Roy
- Department of Chemistry, Acharya Prafulla Chandra College, New Barrackpore, Kolkata, 700131, India
| | - Pameli Ghosh
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Subratanath Koner
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Corrado Rizzoli
- Universita' degli Studi di Parma, Dipartimento S.C.V.S.A., Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Adhiraj Roy
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Noida, J3 Block, Room 111, Sector 125, Noida, 201303, UP, India.
| | - Sandip Saha
- Department of Chemistry, Acharya Prafulla Chandra College, New Barrackpore, Kolkata, 700131, India.
| | - Supratim Mandal
- Department of Microbiology, University of Kalyani, Kalyani, Kalyani, 741235, West Bengal, India.
| |
Collapse
|
15
|
Yang W, Yang W, Ma Y, Yan L, Ma X. A novel chromone Schiff base as Zn 2+ turn-on fluorescent chemosensor in a mixed solution. LUMINESCENCE 2024; 39:e4712. [PMID: 38481369 DOI: 10.1002/bio.4712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/04/2024] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
In this study, a novel fluorescent chemosensor 1 based on chromone-3-carboxaldehyde Schiff base was synthesized and featured through nuclear magnetic resonance (NMR) and mass spectra. Spectroscopic investigation indicated that the fluorescent sensor showed high selectivity toward Zn2+ over other metal ions and that the detection limit of 1 could reach 10-7 M. These indicated that 1 acted as a highly selective and sensitive fluorescence chemosensor for Zn2+ .
Collapse
Affiliation(s)
- Wensheng Yang
- School of Chemistry and Chemical Engineering, Yulin University, Yulin, China
| | - Wan Yang
- School of Chemistry and Chemical Engineering, Yulin University, Yulin, China
| | - Yajun Ma
- School of Chemistry and Chemical Engineering, Yulin University, Yulin, China
| | - Long Yan
- School of Chemistry and Chemical Engineering, Yulin University, Yulin, China
| | - Xiangrong Ma
- School of Chemistry and Chemical Engineering, Yulin University, Yulin, China
| |
Collapse
|
16
|
Vasconcelos Sanches de Araújo A, Borin AC. Water Solvated Zn(II)-Guanine Complex: Structural Aspects and Luminescence Properties. J Phys Chem A 2023; 127:8297-8306. [PMID: 37772405 DOI: 10.1021/acs.jpca.3c04132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Understanding the role of metal ions in living organisms and their interactions with biological compounds is fundamental for our health and for developing technological devices for bioinorganic applications. In this work, structural aspects and photophysical mechanisms involved in the luminescence of the Zn(II)-guanine complex in water were studied by using computational quantum chemical methods, providing molecular-level explanations for reported experimental findings. Structural aspects were investigated with def2-SVP basis sets, Density Functional Theory, Resolution of Identity Algebraic Diagrammatic Construction in Second-Order (RI-ADC(2)), Polarizable Continuum Model (PCM), and Conductor-like Screening Model (COSMO) methods. Spectroscopic properties and photophysical deactivation mechanisms were explored with the atomic natural orbital basis sets including relativistic and semicore correlation (ANO-RCC-VDZP) basis sets, Multistate Complete-Active-Space Second-Order Perturbation Theory (MS-CASPT2), and Polarizable Continuum Model (PCM) methods. Our results indicate that Zn(II) ions bind preferentially to the N7 position, and three water molecules in its coordination sphere are sufficient for describing the photophysical properties. The complexation with Zn(II) ions and solvation effects favor fluorescence because the minimum energy region of the S1 (La) (1ππ*) ((La)min) potential energy hypersurface is stabilized, the (La/GS) crossing region is destabilized, and a high energetic barrier along the pathway from the (La)min and (La/GS) regions hampers fast nonradiative return of the electronic population to the ground state, as observed for isolated 9H-guanine.
Collapse
Affiliation(s)
| | - Antonio Carlos Borin
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
17
|
Selvaraj K, Palanisamy P, Ramakrishna B, Pamanji R, Selvin J, Srikanth K, Nasiri S, Kment S, Nutalapati V. Fluoranthene-terminated terpyridine ensemble for fluorescence light up and ratiometric chemical sensor for multi toxic metals. Anal Chim Acta 2023; 1274:341526. [PMID: 37455068 DOI: 10.1016/j.aca.2023.341526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 07/18/2023]
Abstract
A novel π-electron rich fluoranthene embellished with a phenyl spacer and coupled with terpyridine (TS1) was developed through Diels-Alder reaction. Single crystal X-ray structure evidences the variations in dihedral angles between the fluoranthene and the phenyl unit responsible for development of non-coplanar interactions and stabilized by a wave-like molecular packing in the crystal lattice with weak π-π interaction of 4.125 Å. The peripheral terpyridine of TS1 endows an efficient binding with multiple metal ions by colorimetric and fluorometric methods. TS1 exhibits a ratiometric fluorescence response from sky blue to yellow colour upon the addition of Zn2+ ions with a limit of detection (LOD) of 0.05 ppm. The other metal ions such as Cu2+, Co2+ and Fe2+ demonstrate fluorescence quenching behaviour with LODs of 0.1, 0.3 and 0.7 ppm, respectively. The intramolecular charge transfer (ICT) shows the variation in TS1 emission behaviour upon metal ions interaction and quantitatively discriminates the metal ion concentrations. TS1 conferred a visual colorimetric change from colourless to magenta, enabling naked-eye detection of Fe2+ and showing clear discrimination between Fe2+ and Fe3+ ions for the real-time water samples. Furthermore, we have investigated the effect of TS1 in Zebrafish larvae/embryos and cytotoxicity in human urinary tract transitional cell carcinoma cells (UM-UC-3).
Collapse
Affiliation(s)
- Kasthuri Selvaraj
- Functional Materials Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, 603203, India
| | - Prasanth Palanisamy
- Functional Materials Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, 603203, India
| | - Buthanapalli Ramakrishna
- Division of Chemistry, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, 632014, India
| | - Rajesh Pamanji
- Department of Microbiology, Pondicherry University, R.V. Nagar, Chinna Kalapet, Puducherry, 605014, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, R.V. Nagar, Chinna Kalapet, Puducherry, 605014, India
| | - Koigoora Srikanth
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Vadlamudi, 522213, Guntur, Andhra Pradesh, India
| | - Sohrab Nasiri
- Faculty of Mechanical Engineering, Optical Measurement Laboratory, Kaunas University of Technology, Studentu Street 56, L-116, Kaunas, LT 51373, Lithuania
| | - Stepan Kment
- Regional Center of Advanced Technologies and Materials, Slechtitelu 27, Olomouc, 78371, Czech Republic
| | - Venkatramaiah Nutalapati
- Functional Materials Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, 603203, India.
| |
Collapse
|
18
|
Balachandran C, Hirose M, Tanaka T, Zhu JJ, Yokoi K, Hisamatsu Y, Yamada Y, Aoki S. Design and Synthesis of Poly(2,2'-Bipyridyl) Ligands for Induction of Cell Death in Cancer Cells: Control of Anticancer Activity by Complexation/Decomplexation with Biorelevant Metal Cations. Inorg Chem 2023; 62:14615-14631. [PMID: 37642721 PMCID: PMC10498496 DOI: 10.1021/acs.inorgchem.3c01738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Indexed: 08/31/2023]
Abstract
Chelation therapy is a medical procedure for removing toxic metals from human organs and tissues and for the treatment of diseases by using metal-chelating agents. For example, iron chelation therapy is designed not only for the treatment of metal poisoning but also for some diseases that are induced by iron overload, cancer chemotherapy, and related diseases. However, the use of such metal chelators needs to be generally carried out very carefully, because of the side effects possibly due to the non-specific complexation with intracellular metal cations. Herein, we report on the preparation and characterization of some new poly(bpy) ligands (bpy: 2,2'-bipyridyl) that contain one-three bpy ligand moieties and their anticancer activity against Jurkat, MOLT-4, U937, HeLa S3, and A549 cell lines. The results of MTT assays revealed that the tris(bpy) and bis(bpy) ligands exhibit potent activity for inducing the cell death in cancer cells. Mechanistic studies suggest that the main pathway responsible for the cell death by these poly(bpy) ligands is apoptotic cell death. It was also found that the anticancer activity of the poly(bpy) ligands could be controlled by the complexation (anticancer activity is turned OFF) and decomplexation (anticancer activity is turned ON) with biorelevant metal cations. In this paper, these results will be described.
Collapse
Affiliation(s)
- Chandrasekar Balachandran
- Faculty
of Pharmaceutical Sciences, Tokyo University
of Science, 2641 Yamazaki, Noda 278-8510, Japan
- Research
Institute for Biomedical Sciences, Tokyo
University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Masumi Hirose
- Faculty
of Pharmaceutical Sciences, Tokyo University
of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Tomohiro Tanaka
- Faculty
of Pharmaceutical Sciences, Tokyo University
of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Jun Jie Zhu
- Faculty
of Pharmaceutical Sciences, Tokyo University
of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Kenta Yokoi
- Faculty
of Pharmaceutical Sciences, Tokyo University
of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Yosuke Hisamatsu
- Faculty
of Pharmaceutical Sciences, Tokyo University
of Science, 2641 Yamazaki, Noda 278-8510, Japan
- Graduate
School of Pharmaceutical Sciences, Nagoya
City University, 3-1
Tanabe-dori, Nagoya, Aichi 467-8603, Japan
| | - Yasuyuki Yamada
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Research
Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Shin Aoki
- Faculty
of Pharmaceutical Sciences, Tokyo University
of Science, 2641 Yamazaki, Noda 278-8510, Japan
- Research
Institute for Biomedical Sciences, Tokyo
University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Research
Institute for Science and Technology, Tokyo
University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
19
|
Hamzi I, Touati Y, Mostefa-Kara B. Benzil Bis-Hydrazone Based Fluorescence 'Turn-on' Sensor for Highly Sensitive and Selective Detection of Zn(II) Ions. J Fluoresc 2023; 33:1683-1693. [PMID: 36809411 DOI: 10.1007/s10895-023-03178-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/11/2023] [Indexed: 02/23/2023]
Abstract
In this study, a novel Benzil Bis-Hydrazone (BBH) sensor with two C = N-N = C moieties was designed and synthesized based on the condensation reaction between benzil-dihydrazone (b) and cinnamaldehyde. The BBH probe in dimethylsulfoxide showed extremely weak fluorescence. However, the same solution exhibited an intensive fluorescence enhancement (152-fold) with the introduction of Zn(II) ions. In contrast, no or negligible fluorescence changes were observed when other ions were added. The fluorogenic behavior of BBH towards the examined cations indicated an excellent selectivity of the BBH sensor for Zn(II) cations without any interference from other cations like Fe(II), Mg(II), Cu(II), Co(II), Mn(II), Cr(III), Hg(II), Sn(II), Al(I), La(III), Ca(II), Ba(II), Na(I), K(I), and especially Cd(II). Moreover, the UV-vis spectrophotometric titrations revealed that a 1:1 stoichiometric complex BBH-Zn(II) was formed during the Zn(II) sensing and the binding constant value for this complex was calculated to be equal to 106.8. Further, in order to show the affinity of the BBH sensor for Zn(II) cations, it was deemed necessary to determine the limit of detection (LOD) which was found to equal to 2.5 10-4 M.
Collapse
Affiliation(s)
- I Hamzi
- Laboratoire de Catalyse Et Synthèse en Chimie Organique, Faculté Des Sciences, Université de Tlemcen, B.P.119, 13000, Tlemcen, Algeria.
- Faculté de Médecine, Université de Tlemcen, 12 B P 123 Hamri Ahmed, 13000, Tlemcen, Algeria.
| | - Y Touati
- Laboratoire de Catalyse Et Synthèse en Chimie Organique, Faculté Des Sciences, Université de Tlemcen, B.P.119, 13000, Tlemcen, Algeria
| | - B Mostefa-Kara
- Laboratoire de Catalyse Et Synthèse en Chimie Organique, Faculté Des Sciences, Université de Tlemcen, B.P.119, 13000, Tlemcen, Algeria
| |
Collapse
|
20
|
Kouser R, Yasir Khan H, Arjmand F, Tabassum S. A highly selective “on–off” fluorescent sensor for detection of Fe3+ ion in protein and aqueous media: Synthesis, structural characterization, and computational studies. Inorganica Chim Acta 2023; 551:121484. [DOI: 10.1016/j.ica.2023.121484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
21
|
Mumtaz Z, Rashid Z, Ali A, Arif A, Ameen F, AlTami MS, Yousaf MZ. Prospects of Microfluidic Technology in Nucleic Acid Detection Approaches. BIOSENSORS 2023; 13:584. [PMID: 37366949 DOI: 10.3390/bios13060584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 06/28/2023]
Abstract
Conventional diagnostic techniques are based on the utilization of analyte sampling, sensing and signaling on separate platforms for detection purposes, which must be integrated to a single step procedure in point of care (POC) testing devices. Due to the expeditious nature of microfluidic platforms, the trend has been shifted toward the implementation of these systems for the detection of analytes in biochemical, clinical and food technology. Microfluidic systems molded with substances such as polymers or glass offer the specific and sensitive detection of infectious and noninfectious diseases by providing innumerable benefits, including less cost, good biological affinity, strong capillary action and simple process of fabrication. In the case of nanosensors for nucleic acid detection, some challenges need to be addressed, such as cellular lysis, isolation and amplification of nucleic acid before its detection. To avoid the utilization of laborious steps for executing these processes, advances have been deployed in this perspective for on-chip sample preparation, amplification and detection by the introduction of an emerging field of modular microfluidics that has multiple advantages over integrated microfluidics. This review emphasizes the significance of microfluidic technology for the nucleic acid detection of infectious and non-infectious diseases. The implementation of isothermal amplification in conjunction with the lateral flow assay greatly increases the binding efficiency of nanoparticles and biomolecules and improves the limit of detection and sensitivity. Most importantly, the deployment of paper-based material made of cellulose reduces the overall cost. Microfluidic technology in nucleic acid testing has been discussed by explicating its applications in different fields. Next-generation diagnostic methods can be improved by using CRISPR/Cas technology in microfluidic systems. This review concludes with the comparison and future prospects of various microfluidic systems, detection methods and plasma separation techniques used in microfluidic devices.
Collapse
Affiliation(s)
- Zilwa Mumtaz
- KAM School of Life Sciences, Forman Christian College University, Ferozpur Road, Lahore 54600, Pakistan
| | - Zubia Rashid
- Pure Health Laboratory, Mafraq Hospital, Abu Dhabi 1227788, United Arab Emirates
| | - Ashaq Ali
- State Key Laboratory of Virology, Center for Biosafety MegaScience, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Afsheen Arif
- Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi 75270, Pakistan
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Suad University, Riyadh 11451, Saudi Arabia
| | - Mona S AlTami
- Biology Department, College of Science, Qassim University, Burydah 52571, Saudi Arabia
| | - Muhammad Zubair Yousaf
- KAM School of Life Sciences, Forman Christian College University, Ferozpur Road, Lahore 54600, Pakistan
| |
Collapse
|
22
|
Brandner L, Müller TJJ. Multicomponent synthesis of chromophores – The one-pot approach to functional π-systems. Front Chem 2023; 11:1124209. [PMID: 37007054 PMCID: PMC10065161 DOI: 10.3389/fchem.2023.1124209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/26/2023] [Indexed: 03/19/2023] Open
Abstract
Multicomponent reactions, conducted in a domino, sequential or consecutive fashion, have not only considerably enhanced synthetic efficiency as one-pot methodology, but they have also become an enabling tool for interdisciplinary research. The highly diversity-oriented nature of the synthetic concept allows accessing huge structural and functional space. Already some decades ago this has been recognized for life sciences, in particular, lead finding and exploration in pharma and agricultural chemistry. The quest for novel functional materials has also opened the field for diversity-oriented syntheses of functional π-systems, i.e. dyes for photonic and electronic applications based on their electronic properties. This review summarizes recent developments in MCR syntheses of functional chromophores highlighting syntheses following either the framework forming scaffold approach by establishing connectivity between chromophores or the chromogenic chromophore approach by de novo formation of chromophore of interest. Both approaches warrant rapid access to molecular functional π-systems, i.e. chromophores, fluorophores, and electrophores for various applications.
Collapse
|
23
|
Lu K, Guo H, Jiang Y, Yang J, Yu S, Yu X, Pu L. Synthesis of a BINOL-Based C 3 Symmetric Schiff Base and Its Fluorescence Response to Zn 2. Chempluschem 2023; 88:e202300036. [PMID: 36800303 DOI: 10.1002/cplu.202300036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/18/2023]
Abstract
A novel C3 symmetric 1,1'-bi-2-naphthol-based Schiff base (R,R,R)-6 has been synthesized which shows highly selective fluorescence enhancement with Zn2+ among 21 metal cations examined. Its sensitivity and selectivity are found to be greater than other related C2 (1) and C1 [(R)-9] symmetric compounds in the fluorescent recognition of Zn2+ . The mechanistic study reveals that the selective fluorescence enhancement of the probe can be attributed to the formation of a unimolecular multidentate 6-coordinated Zn2+ complex.
Collapse
Affiliation(s)
- Kai Lu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Hongyu Guo
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Yixuan Jiang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Jiaqiao Yang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Shanshan Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Xiaoqi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.,Department of Chemistr, Xihua University, Chengdu, 610039, P. R. China
| | - Lin Pu
- Department of Chemistry, University of Virginia, McCormick Rd, Charlottesville, VA 22904, USA
| |
Collapse
|
24
|
Coordination of Distal Carboxylate Anion Alters Metal Ion Specific Binding in Imidazo[1,2-a]pyridine Congeners. J Fluoresc 2023:10.1007/s10895-022-03122-x. [PMID: 36705793 DOI: 10.1007/s10895-022-03122-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/09/2022] [Indexed: 01/28/2023]
Abstract
Imidazo[1,2-a]pyridine derivatives have excellent potential for chelation with transition metal ions. Two new imidazo[1,2-a]pyridine-8-carboxylates were synthesized and characterized by 1H NMR, 13C NMR, HRMS, and single crystal-XRD techniques. Methyl carboxylate (probe 1) turns on fluorescence upon coordination with Zn2+, while sodium carboxylate (probe 2) turns off its fluorescence upon coordination with Co2+ or Cu2+ ions present in aqueous acetonitrile medium. 13C NMR study revealed that the change in metal ion specific binding was due to the involvement of carboxylate anion in complex formation with Co2+ or Cu2+ ions. The carboxylate anion at 8-position also enhanced the sensitivity of detection of probe 2 by an order of magnitude (detection limits: 3.804 × 10-7 M, probe 1/Zn2+; 0.420 × 10-7 M, probe 2/Co2+ and 0.304 × 10-7 M, probe 2/Cu2+). The detection limits of probes 1 and 2 comply well with the World Health Organization (WHO) and US Environmental Protection Agency (US-EPA) guidelines for detection of heavy metal ions present in drinking water and ground water. Both the probes form a 1:1 complex with Zn2+, Co2+ or Cu2+, and the stoichiometry was verified by Job plot and ESI-mass analysis. The sensing mechanism is explained using 13C NMR experiments, ESI-mass analytical data and theoretical DFT calculations. The suitability of probes 1 and 2 for on-site detection and quantitative determination of Zn2+, Co2+ and Cu2+ ions present in biological, environmental and industrial samples is demonstrated. In addition, both 1 and 2 are used for detection of intracellular contamination of Zn2+, Co2+ or Cu2+ ions in onion epidermal cells.
Collapse
|
25
|
Guirado-Moreno JC, González-Ceballos L, Carreira-Barral I, Ibeas S, Fernández-Muiño MA, Teresa Sancho M, García JM, Vallejos S. Smart sensory polymer for straightforward Zn(II) detection in pet food samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121820. [PMID: 36116204 DOI: 10.1016/j.saa.2022.121820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/29/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
We report on an innovative method to measure the Zn(II) concentration in commercial pet food samples, both wet and dry food. It is based on a colorimetric sensory polymer prepared from commercial monomers and 0.5 % of a synthetic monomer having a quinoline sensory core (N-(8-(2-azidoacetamido)quinolin-5-yl)methacrylamide). We obtained the sensory polymer as crosslinked films by thermally initiated bulk radical polymerization of the monomers of 100 μm thickness, which we punched into Ø6 mm sensory discs. The immersion of the discs in water solutions containing Zn(II) turned the fluorescence on, allowing for the titration of this cation using the G parameter of a digital picture taken to the discs. The limits of detection and quantification were 29 and 87 µg/L, respectively. Furthermore, we measured the concentration of Zn(II) even in the presence of other cations, detecting no significant interferences. Thus, in a further step, we obtained the concentration of Zn(II) from 15 commercial pet food samples, ranging from 19 to 198 mg/kg, following a simple extraction procedure and contacting the extractant with our sensory discs. These results were contrasted with that obtained by ICP-MS as a reference method.
Collapse
Affiliation(s)
- José Carlos Guirado-Moreno
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Lara González-Ceballos
- Departamento de Biotecnología y Ciencia de los Alimentos, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Israel Carreira-Barral
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Saturnino Ibeas
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Miguel A Fernández-Muiño
- Departamento de Biotecnología y Ciencia de los Alimentos, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - M Teresa Sancho
- Departamento de Biotecnología y Ciencia de los Alimentos, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - José M García
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Saúl Vallejos
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| |
Collapse
|
26
|
Jules Mbenga Tjegbe M, Amana Ateba B, Guy Blaise Azébazé A, Assongo Kenfack C. Mammea A/AA (MA) potency as ratiometric absorbance based molecular probe: Cations detection and quantification ability. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
27
|
Mahato M, Sarkar P, Sultana T, Tohora N, Ghanta S, Das A, Dutta P, Kumar Das S. Target Analyte Interaction with a New Julolidine Coupled Benzoxazole‐based Dyad: A combined Photophysical, Theoretical (DFT), and Bioimaging Study. ChemistrySelect 2022. [DOI: 10.1002/slct.202204033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Manas Mahato
- Department of Chemistry University of North Bengal, Raja Rammohunpur, Darjeeling West Bengal 734013 India
| | - Pallobi Sarkar
- Department of Chemistry University of North Bengal, Raja Rammohunpur, Darjeeling West Bengal 734013 India
| | - Tuhina Sultana
- Department of Chemistry University of North Bengal, Raja Rammohunpur, Darjeeling West Bengal 734013 India
| | - Najmin Tohora
- Department of Chemistry University of North Bengal, Raja Rammohunpur, Darjeeling West Bengal 734013 India
| | - Susanta Ghanta
- Department of Chemistry National Institute of Technology, Agartala, Barjala Jirania Tripura 799046 India
| | - Ankita Das
- Centre for Healthcare Science and Technology Indian Institute of Engineering Science and Technology West Bengal 711103 India
| | - Pallab Dutta
- Department of Pharmaceutics National Institute of Pharmaceutical Education and Research, Kolkata West Bengal 700054 India
| | - Sudhir Kumar Das
- Department of Chemistry University of North Bengal, Raja Rammohunpur, Darjeeling West Bengal 734013 India
| |
Collapse
|
28
|
Ratiometric Zinc Biosensor Based on Bioluminescence Resonance Energy Transfer: Trace Metal Ion Determination with Tunable Response. Int J Mol Sci 2022; 23:ijms232314936. [PMID: 36499262 PMCID: PMC9738544 DOI: 10.3390/ijms232314936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Determination of metal ions such as zinc in solution remains an important task in analytical and biological chemistry. We describe a novel zinc ion biosensing approach using a carbonic anhydrase-Oplophorus luciferase fusion protein that employs bioluminescence resonance energy transfer (BRET) to transduce the level of free zinc as a ratio of emission intensities in the blue and orange portions of the spectrum. In addition to high sensitivity (below nanomolar levels) and selectivity, this approach allows both quantitative determination of "free" zinc ion (also termed "mobile" or "labile") using bioluminescence ratios and determination of the presence of the ion above a threshold simply by the change in color of bioluminescence, without an instrument. The carbonic anhydrase metal ion sensing platform offers well-established flexibility in sensitivity, selectivity, and response kinetics. Finally, bioluminescence labeling has proven an effective approach for molecular imaging in vivo since no exciting light is required; the expressible nature of this sensor offers the prospect of imaging zinc fluxes in vivo.
Collapse
|
29
|
Mukherjee P, Chatterjee S, Mukherjee S, Das D. Dual Responsive Optical Sensor for The Detection of Zn
2+
and Al
3+
: Supportive Single‐Crystal X‐ray Structure of its Ni(II) Complex and DFT Studies. ChemistrySelect 2022. [DOI: 10.1002/slct.202203179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Pallabi Mukherjee
- Department of Chemistry The University of Burdwan Burdwan 713104, W.B. India
| | - Sudeshna Chatterjee
- Department of Chemistry The University of Burdwan Burdwan 713104, W.B. India
| | - Sukriti Mukherjee
- Department of Chemistry The University of Burdwan Burdwan 713104, W.B. India
| | - Debasis Das
- Department of Chemistry The University of Burdwan Burdwan 713104, W.B. India
| |
Collapse
|
30
|
Sen S, Singh T, Im J, Debnath D, Biswas G. Terminalia chebula: a novel natural product colorimetric sensor for Fe2+ and Fe3+ ions. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00348-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractNatural product like Terminalia chebula as Fe2+ and Fe3+ ions sensor was not reported in the literature till now. Herein, we first reported Terminalia chebula (T. chebula), a natural product used in Ayurveda, as a highly sensitive, simple, and cost-effective colorimetric sensor for the detection of Fe2+ and Fe3+ ions. Terminalia chebula showed a selective colorimetric sensing ability for iron (2+/3+) by changing color from green and pale yellow to blue, having limit of detection level of 43.7 μM and 60.8 μM for Fe2+ and Fe3+ ions, respectively. The concentration-dependent colorimetric determination of iron (2+/3+) was carried out, and the color change to distinguish between different concentrations was excellent. Using High Performance Liquid Chromatography, the fraction having sensing ability was isolated and purified. From the mass spectra of the purified fraction, it was concluded that, the major component responsible for the sensing ability was tri-O-galloyl-β-D-glucose. This chemosensor could be used to detect and quantify Fe2+ and Fe3+ in water samples, which is particularly a useful tool.
Collapse
|
31
|
Recent developments in corroles as an ion sensor. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Mohan B, Noushija MK, Shanmugaraju S. Amino-1,8-naphthalimide-based fluorescent chemosensors for Zn(II) ion. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
33
|
Das S, Das M, Laha S, Rajak K, Choudhuri I, Bhattacharyya N, Samanta BC, Maity T. Development of moderately fluorescence active salen type chemosensor for judicious recognition and quantification of Zn(II), Al(III) and SO4=: Demonstration of molecular logic gate formation and live cell images studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Kr Mandal N, Bandyopadhyay N, Arya P, Chowdhury S, Raghav N, Prakash Naskar J. Synthesis, characterization, structure, in vitro enzymatic activity and sensing aspects of a copper(II) complex stabilized from a naphthaldehyde based Schiff base ligand. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Song X, Chen X, Liang Z, Xu D, Liang Y. A dual-channel visual sensing system for recognition of multiple metal ions. Colloids Surf B Biointerfaces 2022; 216:112558. [PMID: 35567805 DOI: 10.1016/j.colsurfb.2022.112558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 11/25/2022]
Abstract
Here, we propose a simple, rapid, and effective colorimetric sensor array for discrimination of metal ions. The sensor array was constructed using two sensing channels, i.e., gold nanoparticles (AuNPs)- Tetramethylbenzidine (TMB)-H2O2 and AuNPs-O-phenylenediamine (OPD)-H2O2 reaction systems. The presence of metal ions with positive charges would lead to the corresponding surface charge change of negatively charged AuNPs, resulting in diverse catalytic performances of citrate-modified AuNPs, accompanied by a substantial colorimetric performance of oxidation products of TMB and OPD. Employing the diversity of colorimetric responses of metal ions to the two sensing channels, nine metal ions including Cr3+, Fe3+, Cu2+, Co2+, Ni2+, Pb2+, Mg2+, K+, and Cd2+ were well distinguished with a discrimination accuracy of 100% at a concentration as low as 50 nM. Further experiment showed that the sensor array was also capable of discriminating and quantifying metal ions at various concentrations, as well as the identification of metal ion mixtures. The feasibility of the sensor array was also verified by the successful identification of the nine metal ions in river water samples.
Collapse
Affiliation(s)
- Xianqiang Song
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, Guangdong, China
| | - Xin Chen
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, Guangdong, China
| | - Zhaoxiong Liang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, Guangdong, China
| | - Dan Xu
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, Guangdong, China
| | - Yong Liang
- School of Chemistry and Environment, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
36
|
Ilyas M, Ayu AR, Shehzad RA, Khan MA, Perveen M, Amin S, Muhammad S, Iqbal J. A DFT approach for finding therapeutic potential of two dimensional (2D) graphitic carbon nitride (GCN) as a drug delivery carrier for curcumin to treat cardiovascular diseases. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Sahu S, Sikdar Y, Bag R, Cerezo J, Cerón-Carrasco JP, Goswami S. Turn on Fluorescence Sensing of Zn2+ Based on Fused Isoindole-Imidazole Scaffold. Molecules 2022; 27:molecules27092859. [PMID: 35566211 PMCID: PMC9103770 DOI: 10.3390/molecules27092859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
Optical chemosensors caused a revolution in the field of sensing due to their high specificity, sensitivity, and fast detection features. Imidazole derivatives have offered promising features in the literature as they bear suitable donor/acceptor groups for the selective analytes in the skeleton. In this work, an isoindole-imidazole containing a Schiff base chemosensor (1-{3-[(2-Diethylamino-ethylimino)-methyl]-2-hydroxy-5-methyl-phenyl}-2H-imidazo[5,1-a]isoindole-3,5-dione) was designed and synthesized. The complete sensing phenomena have been investigated by means of UV-Vis, fluorescence, lifetime measurement, FT-IR, NMR and ESI-MS spectroscopic techniques. The optical properties of the synthesized ligand were investigated in 3:7 HEPES buffer:DMSO medium and found to be highly selective and sensitive toward Zn2+ ion through a fluorescence turn-on response with detection limit of 0.073 μm. Furthermore, this response is effective in gel form also. The competition studies reveal that the response of the probe for Zn2+ ion is unaffected by other relevant metal ions. The stoichiometric binding study was performed utilizing Job’s method which indicated a 1:1 sensor–Zn2+ ensemble. Computational calculations were performed to pinpoint the mechanism of sensing.
Collapse
Affiliation(s)
- Sutapa Sahu
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India; (S.S.); (R.B.)
| | - Yeasin Sikdar
- Department of Chemistry, The Bhawanipur Education Society College, 5, LalaLajpat Rai Sarani, Kolkata 700020, India;
| | - Riya Bag
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India; (S.S.); (R.B.)
| | - Javier Cerezo
- Departamento de Química, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - José P. Cerón-Carrasco
- Centro Universitario de la Defensa, Academia General del Aire, Universidad Politécnica de Cartagena, C/Coronel López Peña S/N, Santiago de La Ribera, 30720 Murcia, Spain
- Correspondence: (J.P.C.-C.); (S.G.)
| | - Sanchita Goswami
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India; (S.S.); (R.B.)
- Correspondence: (J.P.C.-C.); (S.G.)
| |
Collapse
|
38
|
A simple 4-amino-1,8-naphthalimide hydrazine based “turn-on” fluorescent chemosensor for selective and reversible detection of Zn(II) ion. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Meng Q, Wu M, Shang Z, Zhang Z, Zhang R. Responsive gadolinium(III) complex-based small molecule magnetic resonance imaging probes: Design, mechanism and application. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Singh S, Mahato R, Sharma P, Yadav N, Vodnala N, Kumar Hazra C. Development of Transition-Metal-Free Lewis Acid-Initiated Double Arylation of Aldehyde: A Facile Approach Towards the Total Synthesis of Anti-Breast-Cancer Agent. Chemistry 2022; 28:e202104545. [PMID: 35060647 DOI: 10.1002/chem.202104545] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 12/21/2022]
Abstract
This work describes a mild and robust double hydroarylation strategy for the synthesis of symmetrical /unsymmetrical diaryl- and triarylmethanes in excellent yields using Lambert salt (0.2-1.0 mol%). Despite the anticipated challenges associated with controlling selective product formation, unsymmetrical diaryl- and triarylmethanes products are obtained unprecedentedly. A highly efficient gram scale reaction has also been reported (TON for symmetrical product=475 and for unsymmetrical product=390). The synthetic utility of the methodology is demonstrated by the preparation of several unexplored diaryl- and triarylmethane-based biologically relevant molecules, such as arundine, vibrindole A, turbomycin B, and certain anti-inflammatory agents. A total synthesis of an anti-breast-cancer agent is also demonstrated. Control experiments, Hammett analysis, HRMS and GC-MS studies reveal the reaction intermediates and reaction mechanism.
Collapse
Affiliation(s)
- Sanjay Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Rina Mahato
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Pragya Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Naveen Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Nagaraju Vodnala
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Chinmoy Kumar Hazra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
41
|
Selective chemodosimetric ‘Turn-On’ fluorescence sensor for HSO3−: Comparing the reactivity of the exocyclic vs. non-exocyclic C C double bond. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Golbedaghi R, Ildiz GO, Azadbakht R, Fausto R. A new tetramine bis(2-naphthol)-derivative fluorescent chemosensor for aluminum ion (Al3+). J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Elroby SA, Banaser BA, Aziz SG, Jedidi A, Hassan WI, Osman OI. Zn 2+-Schiff's Base Complex as an "On-Off-On" Molecular Switch and a Fluorescence Probe for Cu 2+ and Ag + Ions. J Fluoresc 2022; 32:691-705. [PMID: 35040031 DOI: 10.1007/s10895-021-02864-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022]
Abstract
The present study presents a thorough theoretical analysis of the electronic structure and conformational preference of Schiff's base ligand N,N-bis(2-hydroxybenzilidene)-2,4,6-trimethyl benzene-1,3-diamine (H2L) and its metal complexes with Zn2+, Cu2+ and Ag+ ions. This study aims to investigate the behavior of H2L and the binuclear Zn2+ complex (1) as fluorescent probes for the detection of metal ions (Zn2+, Cu2+ and Ag+) using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The six conformers of the H2L ligand were optimized using the B3LYP/6-311 + + G** level of theory, while the L-2-metal complexes were optimized by applying the B3LYP functional with the LANL2DZ/6-311 + + G** mixed basis set. The gas-phase and solvated Enol-cis isomer (E-cis) was found to be the most stable species. The absorption spectra of the E-cis isomer and its metal complexes were simulated using B3LYP, CAM-B3LYP, M06-2X and ωB97X functionals with a 6-311 + + G** basis set for C, O, N and H atoms and a LANL2DZ basis set for the metal ions (Zn2+, Cu2+ and Ag+). The computational results of the B3LYP functional were in excellent agreement with the experimental results. Hence, it was adopted for performing the emission calculations. The results indicated that metal complex (1) can act as a fluorescent chemosensor for the detection of Ag+ and Cu2+ ions through the mechanism of intermolecular charge transfer (ICT) and as a molecular switch "On-Off-On" via the replacement of Cu2+ by Ag+ ions, as proved experimentally.
Collapse
Affiliation(s)
- Shaaban A Elroby
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia. .,Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | | | - Saadullah G Aziz
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdesslem Jedidi
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Walid I Hassan
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Osman I Osman
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Chemistry Department, Faculty of Science, University of Khartoum, P.O. Box 321, Khartoum, 11111, Sudan
| |
Collapse
|
44
|
Patil MM, Park SJ, Yeom GS, Bendre RS, Kuwar A, Nimse SB. Fluorescence 'turn-on' probe for nanomolar Zn (II) detection in living cells and environmental samples. NEW J CHEM 2022. [DOI: 10.1039/d2nj02012b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a Schiff base ligand FHE was synthesized by condensing 5-allyl-2-hydroxy-3-methoxybenzaldehyde, a eugenol derivative with a derivative furan-2-carbohydrazide. FHE alone showed low fluorescence signals due to the intramolecular charge transfer...
Collapse
|
45
|
Shelar DS, Malankar GS, M. M, Patra M, Butcher RJ, Manjare ST. Selective detection of hypochlorous acid in living cervical cancer cells with an organoselenium-based BOPPY probe. NEW J CHEM 2022. [DOI: 10.1039/d2nj02956a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and crystal structure of the first selenium-containing BOPPY probe. The probe is selective for exogenous and endogenous HOCl detection in HeLa cells with a “turn-on” fluorescence response.
Collapse
Affiliation(s)
- Divyesh S. Shelar
- Department of Chemistry, University of Mumbai, Mumbai, 400098, India
| | - Gauri S. Malankar
- Department of Chemistry, University of Mumbai, Mumbai, 400098, India
| | - Manikandan M.
- Department of Chemical Science, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Malay Patra
- Department of Chemical Science, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | | | - Sudesh T. Manjare
- Department of Chemistry, University of Mumbai, Mumbai, 400098, India
| |
Collapse
|
46
|
New insight into the fluorescence mechanism in a fluorescent probe for detecting Zn2+ and CN− through theoretical calculations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
47
|
Ghorui T, Hens A, Pramanik K. Synthesis, photophysical properties and theoretical studies of pyrrole-based azoaromatic Zn(II) complexes in mixed aqueous medium. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
A Novel Imidazole Bound Schiff Base as Highly Selective "Turn-on" Fluorescence Sensor for Zn 2+ and Colorimetric Kit for Co 2. J Fluoresc 2021; 32:189-202. [PMID: 34687395 DOI: 10.1007/s10895-021-02839-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/18/2021] [Indexed: 11/27/2022]
Abstract
An imidazole based Schiff base (2-[(1H-imidazole-2-ylmethylene)-amino]-4-methyl-phenol) (IMP), with an imine unit, has been designed and characterized by various standard methods. The evaluation of the probe as a fluorogenic sensor for Zn2+ and a chromogenic sensor for Co2+ has been rationalized in terms of the PET mechanism. In the presence of Zn2+, a light yellow colored solution of IMP with maximum absorption of 364 nm becomes bright yellow with maximum absorption of 410 nm and a measurable fluorescent signal at 612 nm with bathochromic enhancement. The sensitivity of the fluorescent based assay (6.78 × 10-9 M) for Zn2+ is far below the limit in the World Health Organization (WHO) guidelines for drinking water (7.6 × 10-5 M) and therefore it is capable of being a practical system for the monitoring of Zn2+ concentrations in aqueous samples. Moreover, IMP showed a highly selective colorimetric response to Co2+ by displayed an obvious pink color upon addition of metal solution immediately without any interference from other ions. These results provide a new approach for selectively recognizing the two most important trace elements in the human body simultaneously, for Zn2+ by emission spectra and Co2+ by the naked eye.
Collapse
|
49
|
Li Y, Deng B, Yang S, Tian H, Sun B. A colorimetric fluorescent probe for the detection of tyrosinase and its application for the food industry. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
50
|
Pothulapadu CAS, Jayaraj A, N S, Priyanka RN, Sivaraman G. Novel Benzothiazole-Based Highly Selective Ratiometric Fluorescent Turn-On Sensors for Zn 2+ and Colorimetric Chemosensors for Zn 2+, Cu 2+, and Ni 2+ Ions. ACS OMEGA 2021; 6:24473-24483. [PMID: 34604629 PMCID: PMC8482408 DOI: 10.1021/acsomega.1c02855] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 05/17/2023]
Abstract
Metal ions play a very important role in environmental as well as biological fields. The detection of specific metal ions at a minute level caught much attention, and hence, several probes are available in the literature. Even though benzothiazole-based molecules have a special place in the medicinal field, only very few chemosensors are reported based on this moiety. The current work describes the design and synthesis of the benzothiazole-based chemosensor for a highly selective and sensitive detection of biologically important metal ions such as Zn2+, Cu2+, and Ni2+. The sensing studies of compound-1 showed a ratiometric as well as colorimetric response toward Zn2+, Cu2+, and Ni2+ ions and color changes from colorless to yellow and is found to be insensitive toward various metal ions (Cd2+, Cr3+, Mn2+, Pb2+, Ba2+, Al3+, Ca2+, Fe2+, Fe3+, Mg2+, K+, and Na+). Further, compound-1 exhibited ratiometric as well as turn-on-enhanced fluorescence response toward Zn2+ ions and turn off response for Cu2+ and Ni2+ ions. The Job plots revealed that the binding stoichiometry of compound-1 and metal ions is 2:1. The detection limits were found to be 0.25 ppm for Zn2+, while it was 0.30 ppm and 0.34 ppm for Ni2+ and Cu2+, respectively. In addition, density functional theory results strongly support the colorimetric response of metals, and the reversibility studies suggested that compound-1 can be used as a powerful chemosensor for the detection of Zn2+, Cu2+, and Ni2+ ions. The bioimaging data illustrated that compound-1 is a very effective ratiometric sensor for Zn2+ ions in live cells.
Collapse
Affiliation(s)
- Chinna Ayya Swamy Pothulapadu
- Main
Group Organometallics Materials, Supramolecular Chemistry and Catalysis
Lab, Department of Chemistry, National Institute
of Technology, Calicut 673601, India
| | - Anjitha Jayaraj
- Main
Group Organometallics Materials, Supramolecular Chemistry and Catalysis
Lab, Department of Chemistry, National Institute
of Technology, Calicut 673601, India
| | - Swathi N
- Maharani
Lakshmi Ammanni College for Women (Autonomous), Bangalore 560012, India
| | - Ragam N. Priyanka
- School
of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, India
| | - Gandhi Sivaraman
- Department
of Chemistry, Gandhigram Rural Institute
(Deemed to be University), Gandhigram 624302, India
| |
Collapse
|