1
|
Hand LK, Taylor MK, Sullivan DK, Siengsukon CF, Morris JK, Martin LE, Hull HR. Pregnancy as a window of opportunity for dementia prevention: a narrative review. Nutr Neurosci 2025; 28:347-359. [PMID: 38970804 DOI: 10.1080/1028415x.2024.2371727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Dementia is a debilitating condition with a disproportionate impact on women. While sex differences in longevity contribute to the disparity, the role of the female sex as a biological variable in disease progression is not yet fully elucidated. Metabolic dysfunctions are drivers of dementia etiology, and cardiometabolic diseases are among the most influential modifiable risk factors. Pregnancy is a time of enhanced vulnerability for metabolic disorders. Many dementia risk factors, such as hypertension or blood glucose dysregulation, often emerge for the first time in pregnancy. While such cardiometabolic complications in pregnancy pose a risk to the health trajectory of a woman, increasing her odds of developing type 2 diabetes or chronic hypertension, it is not fully understood how this relates to her risk for dementia. Furthermore, structural and functional changes in the maternal brain have been reported during pregnancy suggesting it is a time of neuroplasticity for the mother. Therefore, pregnancy may be a window of opportunity to optimize metabolic health and support the maternal brain. Healthy dietary patterns are known to reduce the risk of cardiometabolic diseases and have been linked to dementia prevention, yet interventions targeting cognitive function in late life have largely been unsuccessful. Earlier interventions are needed to address the underlying metabolic dysfunctions and potentially reduce the risk of dementia, and pregnancy offers an ideal opportunity to intervene. This review discusses current evidence regarding maternal brain health and the potential window of opportunity in pregnancy to use diet to address neurological health disparities for women.
Collapse
Affiliation(s)
- Lauren K Hand
- Department of Dietetics and Nutrition, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, USA
| | - Matthew K Taylor
- Department of Dietetics and Nutrition, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, USA
| | - Debra K Sullivan
- Department of Dietetics and Nutrition, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, USA
| | - Catherine F Siengsukon
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jill K Morris
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Laura E Martin
- Department of Population Health, University of Kansas Medical Center, Kansas City, KS, USA
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Holly R Hull
- Department of Dietetics and Nutrition, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
2
|
Eckert M, Ostermann T, Ehlers JP, Hohenberg G. Dementia and Video Games: Systematic and Bibliographic Review. Healthcare (Basel) 2024; 12:2310. [PMID: 39595507 PMCID: PMC11593771 DOI: 10.3390/healthcare12222310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES This systematic and bibliographic review examines publications in the field of dementia and video game research from 2004 to 2023. The main objective is to assess developments and trends in video game technology for dementia care and detection. METHODS The PubMed database was the primary source for publications. PRISMA guidelines were applied to structure this review. Ten variables were defined, investigated, and split into three main categories: bibliographic, medical, and technical. RESULTS The results were synthesized using a quantitative approach to reduce bias through interpretation. Of 209 initial results, 77 publications have been included in the investigation. More studies focus on rehabilitation over assessment and detection of dementia. Clinical trials are typically conducted with limited participants. The most populated trials rarely enrol over 300 subjects. On average, around 38 subjects were enrolled in the trials. These studies are commonly supervised by a trainer or technology specialist, suggesting a technology gap in familiarity in the trial demographic. CONCLUSIONS Most interventions assessed were custom-designed applications with a specific outcome, focusing on physical activity and cognitive exercises. As the first of its kind, this publication focuses on the technical aspects of applied technologies and development methods. Using video games to treat and detect patients with cognitive impairments like dementia can benefit healthcare professionals, caretakers, and patients.
Collapse
Affiliation(s)
- Martin Eckert
- Stabsstelle für Digitalisierung und Wissensmanagement, Hochschule Hamm-Lippstadt, 59063 Hamm, Germany;
- Fakultät für Gesundheit, Universität Witten-Herdecke, 58455 Witten, Germany; (T.O.); (J.P.E.)
| | - Thomas Ostermann
- Fakultät für Gesundheit, Universität Witten-Herdecke, 58455 Witten, Germany; (T.O.); (J.P.E.)
| | - Jan P. Ehlers
- Fakultät für Gesundheit, Universität Witten-Herdecke, 58455 Witten, Germany; (T.O.); (J.P.E.)
| | - Gregor Hohenberg
- Stabsstelle für Digitalisierung und Wissensmanagement, Hochschule Hamm-Lippstadt, 59063 Hamm, Germany;
| |
Collapse
|
3
|
Singh S, Ahuja A, Pathak S. Potential Role of Oxidative Stress in the Pathophysiology of Neurodegenerative Disorders. Comb Chem High Throughput Screen 2024; 27:2043-2061. [PMID: 38243956 DOI: 10.2174/0113862073280680240101065732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/27/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024]
Abstract
Neurodegeneration causes premature death in the peripheral and central nervous system. Neurodegeneration leads to the accumulation of oxidative stress, inflammatory responses, and the generation of free radicals responsible for nervous disorders like amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, and Huntington's disorders. Therefore, focus must be diverted towards treating and managing these disorders, as it is very challenging. Furthermore, effective therapies are also lacking, so the growing interest of the global market must be inclined towards developing newer therapeutic approaches that can intercept the progression of neurodegeneration. Emerging evidences of research findings suggest that antioxidant therapy has significant potential in modulating disease phenotypes. This makes them promising candidates for further investigation. This review focuses on the role of oxidative stress and reactive oxygen species in the pathological mechanisms of various neurodegenerative diseases, amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, and Huntington's disorders and their neuroprotection. Additionally, it highlights the potential of antioxidant-based therapeutics in mitigating disease severity in humans and improving patient compliance. Ongoing extensive global research further sheds light on exploring new therapeutic targets for a deeper understanding of disease mechanisms in the field of medicine and biology targeting neurogenerative disorders.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research, GLA University Mathura, U.P, 281406, India
| | - Ashima Ahuja
- Institute of Pharmaceutical Research, GLA University Mathura, U.P, 281406, India
| | - Shilpi Pathak
- Institute of Pharmaceutical Research, GLA University Mathura, U.P, 281406, India
| |
Collapse
|
4
|
Bacanoiu MV, Danoiu M, Rusu L, Marin MI. New Directions to Approach Oxidative Stress Related to Physical Activity and Nutraceuticals in Normal Aging and Neurodegenerative Aging. Antioxidants (Basel) 2023; 12:antiox12051008. [PMID: 37237873 DOI: 10.3390/antiox12051008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Oxidative stress (OS) plays, perhaps, the most important role in the advanced aging process, cognitive impairment and pathogenesis of neurodegenerative disorders. The process generates tissue damage via specific mechanisms on proteins, lipids and nucleic acids of the cells. An imbalance between the excessive production of oxygen- and nitrogen-reactive species and antioxidants leads to a progressive decline in physiological, biological and cognitive functions. Accordingly, we need to design and develop favourable strategies for stopping the early aging process as well as the development of neurodegenerative diseases. Exercise training and natural or artificial nutraceutical intake are considered therapeutic interventions that reduce the inflammatory process, increase antioxidant capacities and promote healthy aging by decreasing the amount of reactive oxygen species (ROS). The aim of our review is to present research results in the field of oxidative stress related to physical activity and nutraceutical administration for the improvement of the aging process, but also related to reducing the neurodegeneration process based on analysing the beneficial effects of several antioxidants, such as physical activity, artificial and natural nutraceuticals, as well as the tools by which they are evaluated. In this paper, we assess the recent findings in the field of oxidative stress by analysing intervention antioxidants, anti-inflammatory markers and physical activity in healthy older adults and the elderly population with dementia and Parkinson's disease. By searching for studies from the last few years, we observed new trends for approaching the reduction in redox potential using different tools that evaluate regular physical activity, as well as antioxidant and anti-inflammatory markers preventing premature aging and the progress of disabilities in neurodegenerative diseases. The results of our review show that regular physical activity, supplemented with vitamins and oligomolecules, results in a decrease in IL-6 and an increase in IL-10, and has an influence on the oxidative metabolism capacity. In conclusion, physical activity provides an antioxidant-protective effect by decreasing free radicals and proinflammatory markers.
Collapse
Affiliation(s)
- Manuela Violeta Bacanoiu
- Sport Medicine and Physical Therapy Department, Faculty of Physical Education and Sport, University of Craiova, 200585 Craiova, Romania
| | - Mircea Danoiu
- Sport Medicine and Physical Therapy Department, Faculty of Physical Education and Sport, University of Craiova, 200585 Craiova, Romania
| | - Ligia Rusu
- Sport Medicine and Physical Therapy Department, Faculty of Physical Education and Sport, University of Craiova, 200585 Craiova, Romania
| | - Mihnea Ion Marin
- Faculty of Mechanics, University of Craiova, 200585 Craiova, Romania
| |
Collapse
|
5
|
Islam F, Bepary S, Nafady MH, Islam MR, Emran TB, Sultana S, Huq MA, Mitra S, Chopra H, Sharma R, Sweilam SH, Khandaker MU, Idris AM. Polyphenols Targeting Oxidative Stress in Spinal Cord Injury: Current Status and Future Vision. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8741787. [PMID: 36046682 PMCID: PMC9423984 DOI: 10.1155/2022/8741787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/03/2022] [Accepted: 08/03/2022] [Indexed: 02/07/2023]
Abstract
A spinal cord injury (SCI) occurs when the spinal cord is deteriorated or traumatized, leading to motor and sensory functions lost even totally or partially. An imbalance within the generation of reactive oxygen species and antioxidant defense levels results in oxidative stress (OS) and neuroinflammation. After SCI, OS and occurring pathways of inflammations are significant strenuous drivers of cross-linked dysregulated pathways. It emphasizes the significance of multitarget therapy in combating SCI consequences. Polyphenols, which are secondary metabolites originating from plants, have the promise to be used as alternative therapeutic agents to treat SCI. Secondary metabolites have activity on neuroinflammatory, neuronal OS, and extrinsic axonal dysregulated pathways during the early stages of SCI. Experimental and clinical investigations have noted the possible importance of phenolic compounds as important phytochemicals in moderating upstream dysregulated OS/inflammatory signaling mediators and axonal regeneration's extrinsic pathways after the SCI probable significance of phenolic compounds as important phytochemicals in mediating upstream dysregulated OS/inflammatory signaling mediators. Furthermore, combining polyphenols could be a way to lessen the effects of SCI.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Sristy Bepary
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohamed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza, Egypt
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Amdadul Huq
- Department of Food and Nutrition, Chung Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Rohit Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City 11829, Egypt
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|
6
|
Ghasemi-Tarie R, Kiasalari Z, Fakour M, Khorasani M, Keshtkar S, Baluchnejadmojarad T, Roghani M. Nobiletin prevents amyloid β 1-40-induced cognitive impairment via inhibition of neuroinflammation and oxidative/nitrosative stress. Metab Brain Dis 2022; 37:1337-1349. [PMID: 35294678 DOI: 10.1007/s11011-022-00949-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 03/01/2022] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) is presented as an age-related neurodegenerative disease with multiple cognitive deficits and amyloid β (Aβ) accumulation is the most important involved factor in its development. Nobiletin is a bioflavonoid isolated from citrus fruits peels with anti-inflammatory and anti-oxidative activity as well as anti-dementia property that has shown potency to ameliorate intracellular and extracellular Ab. The aim of the present study was to assess protective effect of nobiletin against Aβ1-40-induced cognitive impairment as a consistent model of AD. After bilateral intrahippocampal (CA1 subfield) injection of Aβ1-40, rats were treated with nobiletin (10 mg/kg/day; p.o.) from stereotaxic surgery day (day 0) till day + 7. Cognition function was evaluated in a battery of behavioral tasks at week 3 with final assessment of hippocampal oxidative stress and inflammation besides Nissl staining and 3-nitrotyrosine (3-NT) immunohistochemistry. Analysis of behavioral data showed notable and significant improvement of alternation in Y maze test, discrimination ratio in novel object recognition task, and step through latency in passive avoidance test in nobiletin-treated Aβ group. Additionally, nobiletin treatment was associated with lower hippocampal levels of MDA and ROS and partial reversal of SOD activity and also improvement of Nrf2 with no significant effect on GSH and catalase. Furthermore, nobiletin attenuated hippocampal neuroinflammation in Aβ group as shown by lower tissue levels of TLR4, NF-kB, and TNFa. Histochemical findings showed that nobiletin prevents CA1 neuronal loss in Nissl staining in addition to its alleviation of 3-nitrotyrosine (3-NT) immunoreactivity as a marker of nitrosative stress. Collectively, these findings indicated neuroprotective and anti-dementia potential of nobiletin that is partly attributed to its anti-oxidative, anti-nitrosative, and anti-inflammatory property associated with proper modulation of TLR4/NF-kB/Nrf2 pathways.
Collapse
Affiliation(s)
| | - Zahra Kiasalari
- Neurophysiology Research Center, Department of Physiology, Shahed University, Tehran, Iran
| | - Marzieh Fakour
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran.
| | - Maryam Khorasani
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | - Sedigheh Keshtkar
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | | | - Mehrdad Roghani
- Neurophysiology Research Center, Department of Physiology, Shahed University, Tehran, Iran.
| |
Collapse
|
7
|
Fakhri S, Abbaszadeh F, Moradi SZ, Cao H, Khan H, Xiao J. Effects of Polyphenols on Oxidative Stress, Inflammation, and Interconnected Pathways during Spinal Cord Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8100195. [PMID: 35035667 PMCID: PMC8759836 DOI: 10.1155/2022/8100195] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/11/2021] [Indexed: 02/05/2023]
Abstract
Despite the progression in targeting the complex pathophysiological mechanisms of neurodegenerative diseases (NDDs) and spinal cord injury (SCI), there is a lack of effective treatments. Moreover, conventional therapies suffer from associated side effects and low efficacy, raising the need for finding potential alternative therapies. In this regard, a comprehensive review was done regarding revealing the main neurological dysregulated pathways and providing alternative therapeutic agents following SCI. From the mechanistic point, oxidative stress and inflammatory pathways are major upstream orchestras of cross-linked dysregulated pathways (e.g., apoptosis, autophagy, and extrinsic mechanisms) following SCI. It urges the need for developing multitarget therapies against SCI complications. Polyphenols, as plant-derived secondary metabolites, have the potential of being introduced as alternative therapeutic agents to pave the way for treating SCI. Such secondary metabolites presented modulatory effects on neuronal oxidative stress, neuroinflammatory, and extrinsic axonal dysregulated pathways in the onset and progression of SCI. In the present review, the potential role of phenolic compounds as critical phytochemicals has also been revealed in regulating upstream dysregulated oxidative stress/inflammatory signaling mediators and extrinsic mechanisms of axonal regeneration after SCI in preclinical and clinical studies. Additionally, the coadministration of polyphenols and stem cells has shown a promising strategy for improving post-SCI complications.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| |
Collapse
|