1
|
Qian Y, Zhu D, Xu Q, Wang Y, Chen X, Hua W, Xi J, Lu F. PAMAM/miR-144 nanocarrier system inhibits the migration of gastric cancer by targeting mTOR signal transduction pathway. Colloids Surf B Biointerfaces 2025; 249:114492. [PMID: 39793209 DOI: 10.1016/j.colsurfb.2024.114492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025]
Abstract
Exogenous microRNA-144 (miR-144) is considered as a potential biological drug for gastric cancer because of its biological activity to inhibit the epithelial-mesenchymal transition (EMT). However, the specific molecular mechanisms have not been fully revealed. In addition, their vulnerability to degradation by RNA enzymes in the blood limits their bioavailability. In this paper, a polyamidoamine (PAMAM)-wrapped miR-144 (PAMAM/miR-144) is prepared as a nanocarrier system to protect miR-144 from nuclease degradation. The PAMAM/miR-144 nanocarrier system achieves the optimal antitumor activity against gastric cancer migration and reduce mTOR protein expression by transferring miR-144 into human gastric cancer HGC-27 cells. At the same time, the PAMAM/miR-144 nanocarrier system significantly decreases the EMT via targeting mTOR signal pathway in HGC-27 cells and noticeably inhibited the growth of subcutaneous gastric cancer xenografts in nude mice. PAMAM/miR-144 nanocarrier system has effectively improved the bioavailability of miR-144, thus providing a promising combination modality for anticancer therapy.
Collapse
Affiliation(s)
- Yayun Qian
- Institute of Traditional Chinese Medicine & Western Medicine, School of Medicine, Yangzhou University, Jiangyang North Road, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225001, China; Department of Pathology, Affiliated Hospital of Yangzhou University, Yangzhou 225001, China.
| | - Dongxu Zhu
- Institute of Traditional Chinese Medicine & Western Medicine, School of Medicine, Yangzhou University, Jiangyang North Road, Yangzhou 225009, China
| | - Qiong Xu
- Institute of Traditional Chinese Medicine & Western Medicine, School of Medicine, Yangzhou University, Jiangyang North Road, Yangzhou 225009, China
| | - Yujie Wang
- Institute of Traditional Chinese Medicine & Western Medicine, School of Medicine, Yangzhou University, Jiangyang North Road, Yangzhou 225009, China
| | - Xiwen Chen
- Institute of Traditional Chinese Medicine & Western Medicine, School of Medicine, Yangzhou University, Jiangyang North Road, Yangzhou 225009, China
| | - Weiwei Hua
- Institute of Traditional Chinese Medicine & Western Medicine, School of Medicine, Yangzhou University, Jiangyang North Road, Yangzhou 225009, China
| | - Juqun Xi
- Institute of Traditional Chinese Medicine & Western Medicine, School of Medicine, Yangzhou University, Jiangyang North Road, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225001, China
| | - Feng Lu
- Affiliated Huishan Hospital of medical College, Yangzhou University,Wuxi Huishan District People's Hospital, Wuxi, Jiangsu Province 214187, China.
| |
Collapse
|
2
|
Mira-Osuna M, Borgne RL. Assembly, dynamics and remodeling of epithelial cell junctions throughout development. Development 2024; 151:dev201086. [PMID: 38205947 DOI: 10.1242/dev.201086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Cell junctions play key roles in epithelial integrity. During development, when epithelia undergo extensive morphogenesis, these junctions must be remodeled in order to maintain mechanochemical barriers and ensure the cohesion of the tissue. In this Review, we present a comprehensive and integrated description of junctional remodeling mechanisms in epithelial cells during development, from embryonic to adult epithelia. We largely focus on Drosophila, as quantitative analyses in this organism have provided a detailed characterization of the molecular mechanisms governing cell topologies, and discuss the conservation of these mechanisms across metazoans. We consider how changes at the molecular level translate to tissue-scale irreversible deformations, exploring the composition and assembly of cellular interfaces to unveil how junctions are remodeled to preserve tissue homeostasis during cell division, intercalation, invagination, ingression and extrusion.
Collapse
Affiliation(s)
- Marta Mira-Osuna
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS UMR 6290, F-35000 Rennes, France
| | - Roland Le Borgne
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS UMR 6290, F-35000 Rennes, France
| |
Collapse
|
3
|
Bañón A, Alsina B. Pioneer statoacoustic neurons guide neuroblast behaviour during otic ganglion assembly. Development 2023; 150:dev201824. [PMID: 37938828 PMCID: PMC10651105 DOI: 10.1242/dev.201824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/07/2023] [Indexed: 11/10/2023]
Abstract
Cranial ganglia are aggregates of sensory neurons that mediate distinct types of sensation. The statoacoustic ganglion (SAG) develops into several lobes that are spatially arranged to connect appropriately with hair cells of the inner ear. To investigate the cellular behaviours involved in the 3D organization of the SAG, we use high-resolution confocal imaging of single-cell, labelled zebrafish neuroblasts (NBs), photoconversion, photoablation, and genetic perturbations. We show that otic NBs delaminate out of the otic epithelium in an epithelial-mesenchymal transition-like manner, rearranging apical polarity and primary cilia proteins. We also show that, once delaminated, NBs require RhoGTPases in order to perform active migration. Furthermore, tracking of recently delaminated NBs revealed their directed migration and coalescence around a small population of pioneer SAG neurons. These pioneer SAG neurons, not from otic placode origin, populate the coalescence region before otic neurogenesis begins and their ablation disrupts delaminated NB migratory pathways, consequentially affecting SAG shape. Altogether, this work shows for the first time the role of pioneer SAG neurons in orchestrating SAG development.
Collapse
Affiliation(s)
- Aitor Bañón
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Berta Alsina
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Dr Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|
4
|
Kim MH, Kuroda M, Ke D, Thanuthanakhun N, Kino-Oka M. An in vitro culture platform for studying the effect of collective cell migration on spatial self-organization within induced pluripotent stem cell colonies. J Biol Eng 2023; 17:25. [PMID: 36998087 PMCID: PMC10064534 DOI: 10.1186/s13036-023-00341-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/13/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Human induced pluripotent stem cells (hiPSCs) provide an in vitro system to identify the impact of cell behavior on the earliest stages of cell fate specification during human development. Here, we developed an hiPSC-based model to study the effect of collective cell migration in meso-endodermal lineage segregation and cell fate decisions through the control of space confinement using a detachable ring culture system. RESULTS The actomyosin organization of cells at the edge of undifferentiated colonies formed in a ring barrier differed from that of the cells in the center of the colony. In addition, even in the absence of exogenous supplements, ectoderm, mesoderm, endoderm, and extraembryonic cells differentiated following the induction of collective cell migration at the colony edge by removing the ring-barrier. However, when collective cell migration was inhibited by blocking E-cadherin function, this fate decision within an hiPSC colony was altered to an ectodermal fate. Furthermore, the induction of collective cell migration at the colony edge using an endodermal induction media enhanced endodermal differentiation efficiency in association with cadherin switching, which is involved in the epithelial-mesenchymal transition. CONCLUSIONS Our findings suggest that collective cell migration can be an effective way to drive the segregation of mesoderm and endoderm lineages, and cell fate decisions of hiPSCs.
Collapse
Affiliation(s)
- Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Masaki Kuroda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ding Ke
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Naruchit Thanuthanakhun
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Research Base for Cell Manufacturability, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
5
|
Zulueta-Coarasa T, Rosenblatt J. The role of tissue maturity and mechanical state in controlling cell extrusion. Curr Opin Genet Dev 2021; 72:1-7. [PMID: 34560388 PMCID: PMC8860846 DOI: 10.1016/j.gde.2021.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 11/03/2022]
Abstract
Epithelia remove dying or excess cells by extrusion, a process that seamlessly squeezes cells out of the layer without disrupting their barrier function. New studies shed light into the intricate relationship between extrusion, tissue mechanics, and development. They emphasize the importance of whole tissue-mechanics, rather than single cell-mechanics in controlling extrusion. Tissue compaction, stiffness, and cell-cell adhesion can impact the efficiency of cell extrusion and mechanisms that drive it, to adapt to different conditions during development or disease.
Collapse
Affiliation(s)
- Teresa Zulueta-Coarasa
- The Randall Centre for Cell & Molecular Biophysics, Faculty of Life Sciences & Medicine, Schools of Basic & Medical Biosciences and Cancer & Pharmaceutical Sciences, King's College London, United Kingdom
| | - Jody Rosenblatt
- The Randall Centre for Cell & Molecular Biophysics, Faculty of Life Sciences & Medicine, Schools of Basic & Medical Biosciences and Cancer & Pharmaceutical Sciences, King's College London, United Kingdom.
| |
Collapse
|