1
|
Shiraishi M, Sowa Y, Sunaga A, Yamamoto K, Okazaki M. Bioengineering strategies for regeneration of skin integrity: A literature review. Regen Ther 2025; 28:153-160. [PMID: 39790492 PMCID: PMC11713503 DOI: 10.1016/j.reth.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
Objective The skin is a complex organ that includes various stem cell populations. Current approaches for non-healing skin defects are sometimes inadequate and many attempts have been made to regenerate skin integrity. The aim of this review is to bridge the gap between basic research and clinical application of skin integrity regeneration. Methods A literature search was carried out in PubMed using combinations of the keywords "skin integrity", "tissue-engineered skin", "bioengineered skin", and "skin regeneration". Articles published from 1968 to 2023 reporting evidence from in vivo and in vitro skin regeneration experiments were included. Results These articles showed that stem cells can be differentiated into normal skin cells, including keratinocytes, and are a significant source of skin organoids, which are useful for investigating skin biology; and that emerging direct reprogramming methods have great potential to regenerate skin from the wounded skin surface. Conclusion Recent advances in skin regeneration will facilitate further advancement of both basic and clinical research in skin biology.
Collapse
Affiliation(s)
- Makoto Shiraishi
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Yoshihiro Sowa
- Department of Plastic Surgery, Jichi Medical University, Japan
| | - Ataru Sunaga
- Department of Plastic Surgery, Jichi Medical University, Japan
| | - Kenta Yamamoto
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mutsumi Okazaki
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
2
|
Nelson KA, Lenhart KF, Anllo L, DiNardo S. The Drosophila hematopoietic niche assembles through collective cell migration controlled by neighbor tissues and Slit-Robo signaling. eLife 2025; 13:RP100455. [PMID: 39750120 PMCID: PMC11698496 DOI: 10.7554/elife.100455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Niches are often found in specific positions in tissues relative to the stem cells they support. Consistency of niche position suggests that placement is important for niche function. However, the complexity of most niches has precluded a thorough understanding of how their proper placement is established. To address this, we investigated the formation of a genetically tractable niche, the Drosophila Posterior Signaling Center (PSC), the assembly of which had not been previously explored. This niche controls hematopoietic progenitors of the lymph gland (LG). PSC cells were previously shown to be specified laterally in the embryo, but ultimately reside dorsally, at the LG posterior. Here, using live-imaging, we show that PSC cells migrate as a tight collective and associate with multiple tissues during their trajectory to the LG posterior. We find that Slit emanating from two extrinsic sources, visceral mesoderm and cardioblasts, is required for the PSC to remain a collective, and for its attachment to cardioblasts during migration. Without proper Slit-Robo signaling, PSC cells disperse, form aberrant contacts, and ultimately fail to reach their stereotypical position near progenitors. Our work characterizes a novel example of niche formation and identifies an extrinsic signaling relay that controls precise niche positioning.
Collapse
Affiliation(s)
- Kara A Nelson
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Institute for Regenerative Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Kari F Lenhart
- Department of Biology, Drexel UniversityPhiladelphiaUnited States
| | - Lauren Anllo
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Institute for Regenerative Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Stephen DiNardo
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Institute for Regenerative Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
3
|
Nelson KA, Lenhart KF, Anllo L, DiNardo S. The Drosophila hematopoietic niche assembles through collective cell migration controlled by neighbor tissues and Slit-Robo signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600069. [PMID: 38979182 PMCID: PMC11230208 DOI: 10.1101/2024.06.21.600069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Niches are often found in specific positions in tissues relative to the stem cells they support. Consistency of niche position suggests that placement is important for niche function. However, the complexity of most niches has precluded a thorough understanding of how their proper placement is established. To address this, we investigated the formation of a genetically tractable niche, the Drosophila Posterior Signaling Center (PSC), the assembly of which had not been previously explored. This niche controls hematopoietic progenitors of the lymph gland (LG). PSC cells were previously shown to be specified laterally in the embryo, but ultimately reside dorsally, at the LG posterior. Here, using live-imaging, we show that PSC cells migrate as a tight collective and associate with multiple tissues during their trajectory to the LG posterior. We find that Slit emanating from two extrinsic sources, visceral mesoderm and cardioblasts, is required for the PSC to remain a collective, and for its attachment to cardioblasts during migration. Without proper Slit-Robo signaling, PSC cells disperse, form aberrant contacts, and ultimately fail to reach their stereotypical position near progenitors. Our work characterizes a novel example of niche formation and identifies an extrinsic signaling relay that controls precise niche positioning.
Collapse
Affiliation(s)
- Kara A Nelson
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 421 Curie Blvd. Philadelphia, PA 19104, United States
- Institute for Regenerative Medicine at the University of Pennsylvania, 3400 Civic Center Blvd. Philadelphia, PA 19104, United States
| | - Kari F Lenhart
- Department of Biology, Drexel University, 3245 Chestnut St. Philadelphia, PA 19104, United States
| | - Lauren Anllo
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 421 Curie Blvd. Philadelphia, PA 19104, United States
- Institute for Regenerative Medicine at the University of Pennsylvania, 3400 Civic Center Blvd. Philadelphia, PA 19104, United States
- Present address: Department of Biology, East Carolina University, 458 Science & Tech Bldg. Greenville, NC 27858, United States
| | - Stephen DiNardo
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 421 Curie Blvd. Philadelphia, PA 19104, United States
- Institute for Regenerative Medicine at the University of Pennsylvania, 3400 Civic Center Blvd. Philadelphia, PA 19104, United States
| |
Collapse
|
4
|
Hosseini M, Koehler KR, Shafiee A. Biofabrication of Human Skin with Its Appendages. Adv Healthc Mater 2022; 11:e2201626. [PMID: 36063498 PMCID: PMC11469047 DOI: 10.1002/adhm.202201626] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/30/2022] [Indexed: 01/28/2023]
Abstract
Much effort has been made to generate human skin organ in the laboratory. Yet, the current models are limited due to the lack of many critical biological and structural features of the skin. Importantly, these in vitro models lack appendages and fail to recapitulate the whole human skin construction. Thus, engineering a human skin with the capacity to generate all components, including appendages, is a major challenge. This review intends to provide an update on the recent efforts underway to regenerate appendage-bearing skin organs based on scaffold-free and scaffold-based bioengineering approaches. Although the mouse skin equivalents containing hair follicles, sebaceous glands, and sweat glands have been established in vitro, there has been limited success in humans. A combination of biofabricated matrices and cell aggregates, such as organoids, can pave the way for generating skin substitutes with human-like biological, structural, and physical features. Accordingly, the formation of human skin organoids and reconstruction of vascularized skin equipped with immune cells prompt calls for more scientific research. The generation of appendage-bearing skin substitutes can be applied in practice for wound healing, hair restoration, and scar treatment.
Collapse
Affiliation(s)
- Motaharesadat Hosseini
- School of MechanicalMedical and Process EngineeringFaculty of EngineeringQueensland University of TechnologyBrisbaneQLD4059Australia
- ARC Industrial Transformation Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D)Queensland University of TechnologyBrisbaneQLD4059Australia
| | - Karl R. Koehler
- Department of Otolaryngology‐Head and Neck SurgeryHarvard Medical SchoolBostonMA02115USA
- Department of OtolaryngologyBoston Children's HospitalBostonMA02115USA
| | - Abbas Shafiee
- Herston Biofabrication InstituteMetro North Hospital and Health ServiceBrisbaneQLD4029Australia
- Royal Brisbane and Women's HospitalMetro North Hospital and Health ServiceBrisbaneQLD4029Australia
- The University of Queensland Diamantina InstituteTranslational Research InstituteThe University of QueenslandBrisbaneQLD4102Australia
| |
Collapse
|
5
|
Xu X, Li L, Luo L, Shu L, Si X, Chen Z, Xia W, Huang J, Liu Y, Shao A, Ke Y. Opportunities and challenges of glioma organoids. Cell Commun Signal 2021; 19:102. [PMID: 34635112 PMCID: PMC8504127 DOI: 10.1186/s12964-021-00777-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/15/2021] [Indexed: 12/15/2022] Open
Abstract
Glioma is the most common primary brain tumor and its prognosis is poor. Despite surgical removal, glioma is still prone to recurrence because it grows rapidly in the brain, is resistant to chemotherapy, and is highly aggressive. Therefore, there is an urgent need for a platform to study the cell dynamics of gliomas in order to discover the characteristics of the disease and develop more effective treatments. Although 2D cell models and animal models in previous studies have provided great help for our research, they also have many defects. Recently, scientific researchers have constructed a 3D structure called Organoids, which is similar to the structure of human tissues and organs. Organoids can perfectly compensate for the shortcomings of previous glioma models and are currently the most suitable research platform for glioma research. Therefore, we review the three methods currently used to establish glioma organoids. And introduced how they play a role in the diagnosis and treatment of glioma. Finally, we also summarized the current bottlenecks and difficulties encountered by glioma organoids, and the current efforts to solve these difficulties. Video Abstract
Collapse
Affiliation(s)
- Xiangdong Xu
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Lingfei Li
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Linting Luo
- Department of Neurology, Liwan Central Hospital of GuangZhou, Guangzhou, People's Republic of China
| | - Lingling Shu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Hematological Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Xiaoli Si
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhenzhen Chen
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Wenqing Xia
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jinyu Huang
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yang Liu
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China.
| | - Anwen Shao
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China.
| | - Yiquan Ke
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
6
|
|
7
|
Hsu YC, Rendl M. Skin stem cells in health and in disease. Exp Dermatol 2021; 30:424-429. [PMID: 33792993 DOI: 10.1111/exd.14318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Ya-Chieh Hsu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Michael Rendl
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
8
|
Martino PA, Heitman N, Rendl M. The dermal sheath: An emerging component of the hair follicle stem cell niche. Exp Dermatol 2021; 30:512-521. [PMID: 33006790 PMCID: PMC8016715 DOI: 10.1111/exd.14204] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/15/2020] [Accepted: 09/20/2020] [Indexed: 12/17/2022]
Abstract
Hair follicles cyclically regenerate throughout adult mammalian life, owing to a resident population of epithelial hair follicle stem cells. Stem cell (SC) activity drives bouts of follicle growth, which are periodically interrupted by follicle regression and rest. These phases and the transitions between them are tightly spatiotemporally coordinated by signalling crosstalk between stem/progenitor cells and the various cell types of the microenvironment, or niche. The dermal papilla (DP) is a cluster of specialized mesenchymal cells that have long been recognized for important niche roles in regulating hair follicle SC activation, as well as progenitor proliferation and differentiation during follicle growth. In addition to the DP, the mesenchyme of the murine pelage follicle is also comprised of a follicle-lining smooth muscle known as the dermal sheath (DS), which has been far less studied than the DP yet may be equally specialized and important for hair cycling. In this review, we define the murine pelage DS in comparison with human DS and discuss recent work that highlights the emergent importance of the DS in the hair follicle SC niche. Last, we examine potential therapeutic applications for the DS in hair regeneration and wound healing.
Collapse
Affiliation(s)
- Pieter A. Martino
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020; 1428 Madison Ave, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020; 1428 Madison Ave, New York, NY 10029, USA
| | - Nicholas Heitman
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020; 1428 Madison Ave, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020; 1428 Madison Ave, New York, NY 10029, USA
| | - Michael Rendl
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020; 1428 Madison Ave, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020; 1428 Madison Ave, New York, NY 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020; 1428 Madison Ave, New York, NY 10029, USA
| |
Collapse
|
9
|
Lee J, Koehler KR. Skin organoids: A new human model for developmental and translational research. Exp Dermatol 2021; 30:613-620. [PMID: 33507537 DOI: 10.1111/exd.14292] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/31/2020] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
Culturing skin cells outside of the body has been a cornerstone of dermatological investigation for many years; however, human skin equivalent systems typically lack the full complexity of native skin. Notably, skin appendages, such as hair follicles and sweat glands, remain a challenge to generate or maintain in cell cultures and reconstruct in damaged skin. Recent work from our lab has demonstrated methods for generating appendage-bearing skin tissue-known as skin organoids-from pluripotent stem cells. Here, we will summarize this work and other related works, and then discuss the potential future applications of skin organoids in dermatological research.
Collapse
Affiliation(s)
- Jiyoon Lee
- Department of Otolaryngology, Boston Children's Hospital, Boston, Massachusetts, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Karl R Koehler
- Department of Otolaryngology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, Massachusetts, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Chowdhury S, Ghosh S. Next Generation Sequencing and Stem Cells. Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Spatio-temporal regulation of gene expression defines subpopulations of epidermal stem cells. Biochem Soc Trans 2020; 48:2839-2850. [PMID: 33170265 DOI: 10.1042/bst20200740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023]
Abstract
The search for epidermal stem cells has gained the momentum as they possess unique biological characteristics and a potential in regeneration therapies. Several transcription factors and miRNAs have been identified as epidermal stem cell markers. However, the separation of epidermal stem cells from their progeny remains challenging. The introduction of single-cell transcriptomics pointed to the high degree of heterogeneity in epidermal stem cells imbedded within subpopulations of keratinocytes. Pseudotime inference, RNA velocity, and cellular entropy further enhanced our knowledge of stem cells, allowing for the discovery of the epidermal stem cell plasticity. We explore the main findings that lead to the discovery of the plastic trait within the epidermal stem cells and the implications of cell plasticity in regenerative medicine.
Collapse
|
12
|
Andreatta F, Beccaceci G, Fortuna N, Celotti M, De Felice D, Lorenzoni M, Foletto V, Genovesi S, Rubert J, Alaimo A. The Organoid Era Permits the Development of New Applications to Study Glioblastoma. Cancers (Basel) 2020; 12:E3303. [PMID: 33182346 PMCID: PMC7695252 DOI: 10.3390/cancers12113303] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GB) is the most frequent and aggressive type of glioma. The lack of reliable GB models, together with its considerable clinical heterogeneity, has impaired a comprehensive investigation of the mechanisms that lead to tumorigenesis, cancer progression, and response to treatments. Recently, 3D cultures have opened the possibility to overcome these challenges and cerebral organoids are emerging as a leading-edge tool in GB research. The opportunity to easily engineer brain organoids via gene editing and to perform co-cultures with patient-derived tumor spheroids has enabled the analysis of cancer development in a context that better mimics brain tissue architecture. Moreover, the establishment of biobanks from GB patient-derived organoids represents a crucial starting point to improve precision medicine therapies. This review exemplifies relevant aspects of 3D models of glioblastoma, with a specific focus on organoids and their involvement in basic and translational research.
Collapse
Affiliation(s)
- Francesco Andreatta
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (G.B.); (N.F.); (M.C.); (D.D.F.); (M.L.); (V.F.); (S.G.); (J.R.)
| | - Giulia Beccaceci
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (G.B.); (N.F.); (M.C.); (D.D.F.); (M.L.); (V.F.); (S.G.); (J.R.)
| | - Nicolò Fortuna
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (G.B.); (N.F.); (M.C.); (D.D.F.); (M.L.); (V.F.); (S.G.); (J.R.)
| | - Martina Celotti
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (G.B.); (N.F.); (M.C.); (D.D.F.); (M.L.); (V.F.); (S.G.); (J.R.)
| | - Dario De Felice
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (G.B.); (N.F.); (M.C.); (D.D.F.); (M.L.); (V.F.); (S.G.); (J.R.)
| | - Marco Lorenzoni
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (G.B.); (N.F.); (M.C.); (D.D.F.); (M.L.); (V.F.); (S.G.); (J.R.)
| | - Veronica Foletto
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (G.B.); (N.F.); (M.C.); (D.D.F.); (M.L.); (V.F.); (S.G.); (J.R.)
| | - Sacha Genovesi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (G.B.); (N.F.); (M.C.); (D.D.F.); (M.L.); (V.F.); (S.G.); (J.R.)
| | - Josep Rubert
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (G.B.); (N.F.); (M.C.); (D.D.F.); (M.L.); (V.F.); (S.G.); (J.R.)
- Interdisciplinary Research Structure of Biotechnology and Biomedicine, Department of Biochemistry and Molecular Biology, Universitat de Valencia, 46100 Burjassot, Spain
| | - Alessandro Alaimo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (G.B.); (N.F.); (M.C.); (D.D.F.); (M.L.); (V.F.); (S.G.); (J.R.)
| |
Collapse
|
13
|
Zhang C, Jin M, Zhao J, Chen J, Jin W. Organoid models of glioblastoma: advances, applications and challenges. Am J Cancer Res 2020; 10:2242-2257. [PMID: 32905502 PMCID: PMC7471358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023] Open
Abstract
The high mortality and poor clinical prognosis of glioblastoma multiforme (GBM) are concerns for many GBM patients as well as clinicians and researchers. The lack of a preclinical model that can easily be established and accurately recapitulate tumour biology and the tumour microenvironment further complicates GBM research and its clinical translation. GBM organoids (GBOs) are promising high-fidelity models that can be applied to model the disease, develop drugs, establish a living biobank, mimic therapeutic responses and explore personalized therapy. However, GBO models face some challenges, including deficient immune responses, absent vascular system and controversial reliability. In recent years, considerable progress has been achieved in the improvement of brain tumour organoid models and research based on such models. In addition to the traditional cultivation method, these models can be cultivated via genetic engineering and co-culture of cerebral organoids and GBM. In this review, we summarize the applications of GBM organoids and related advances and provide our opinions on associated limitations and challenges.
Collapse
Affiliation(s)
- Chaocai Zhang
- Department of Neurosurgery, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical UniversityHaikou, PR China
| | - Mingzhu Jin
- Shanghai Jiao Tong University School of MedicineShanghai, PR China
| | - Jiannong Zhao
- Department of Neurosurgery, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical UniversityHaikou, PR China
| | - Juxiang Chen
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Changzheng Hospital, Second Military Medical UniversityShanghai, PR China
| | - Weilin Jin
- Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Department of Instrument Science and Engineering, Institute of Nano Biomedicine and Engineering, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong UniversityShanghai, PR China
| |
Collapse
|
14
|
Lee J, Rabbani CC, Gao H, Steinhart MR, Woodruff BM, Pflum ZE, Kim A, Heller S, Liu Y, Shipchandler TZ, Koehler KR. Hair-bearing human skin generated entirely from pluripotent stem cells. Nature 2020; 582:399-404. [PMID: 32494013 PMCID: PMC7593871 DOI: 10.1038/s41586-020-2352-3] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/29/2020] [Indexed: 12/19/2022]
Abstract
The skin is a multi-layered organ equipped with appendages (i.e. follicles and glands) critical for regulating bodily fluid retention and temperature, guarding against external stresses, and mediating touch and pain sensation1,2. Reconstruction of appendage-bearing skin in cultures and in bioengineered grafts remains an unmet biomedical challenge3–9. Here, we report an organoid culture system that generates complex skin from human pluripotent stem cells. We use step-wise modulation of the TGFβ and FGF signalling pathways to co-induce cranial epithelial cells and neural crest cells within a spherical cell aggregate. During 4–5 months incubation, we observe the emergence of a cyst-like skin organoid composed of stratified epidermis, fat-rich dermis, and pigmented hair follicles equipped with sebaceous glands. A network of sensory neurons and Schwann cells form nerve-like bundles that target Merkel cells in organoid hair follicles, mimicking human touch circuitry. Single-cell RNA-sequencing and direct comparison to foetal specimens suggest that skin organoids are equivalent to human facial skin in the second-trimester of development. Moreover, we show that skin organoids form planar hair-bearing skin when grafted on nude mice. Together, our results demonstrate that nearly complete skin can self-assemble in vitro and be used to reconstitute skin in vivo. We anticipate skin organoids will be foundational to future studies of human skin development, disease modelling, or reconstructive surgery.
Collapse
Affiliation(s)
- Jiyoon Lee
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, USA.,F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Cyrus C Rabbani
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Hongyu Gao
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Matthew R Steinhart
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Zachary E Pflum
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexander Kim
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stefan Heller
- Department of Otolaryngology, Stanford University, Palo Alto, CA, USA
| | - Yunlong Liu
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Taha Z Shipchandler
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Karl R Koehler
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, USA. .,F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA. .,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, USA. .,Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA. .,Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, USA. .,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA. .,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
15
|
Ye W, Luo C, Li C, Huang J, Liu F. Organoids to study immune functions, immunological diseases and immunotherapy. Cancer Lett 2020; 477:31-40. [PMID: 32112908 DOI: 10.1016/j.canlet.2020.02.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 12/14/2022]
Abstract
Three-dimensional organoid culture systems show great promise as innovative physiological and pathophysiological models. Their applications in immunological research have been widely explored. For instance, immune organoids allow functional studies of immune system-related conditions, in a context that closely mimics the in vivo microenvironment, enabling an in-depth understanding of the immune tissue structures and functions. The newly developed coculture organoid and the air-liquid interface (ALI) systems also provided new insights for studying epithelia-immune cell interactions based on their endogenous distribution. Additionally, organoids have enabled the innovation of immunological disease models and exploration of the link between immunity and cancer, showing potential for personalized immunotherapy. This review is an overview of recent advances in the application of organoids in immunological research. Furthermore, the potential improvements for further utilization of organoids in personalized immunotherapy are discussed.
Collapse
Affiliation(s)
- Wenrui Ye
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China; Clinical Medicine Eight-year Program, Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Cong Luo
- Clinical Medicine Eight-year Program, Xiangya Medical School of Central South University, Changsha, Hunan, China; Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chenglong Li
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China; Clinical Medicine Eight-year Program, Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Jing Huang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center on Mental Disorders (Xiangya), Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, 410011, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China.
| |
Collapse
|
16
|
Hypoxia Preconditioning of Bone Marrow Mesenchymal Stem Cells Before Implantation in Orthopaedics. J Am Acad Orthop Surg 2019; 27:e1040-e1042. [PMID: 31246643 DOI: 10.5435/jaaos-d-19-00044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
17
|
Mok KW, Saxena N, Rendl M. More Than the Sum of Its Parts: Single-Cell Transcriptomics Reveals Epidermal Cell States. Cell Rep 2019; 25:823-824. [PMID: 30355488 DOI: 10.1016/j.celrep.2018.10.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Compared to mouse models, less is known about human epidermal cell states and differentiation. In this issue of Cell Reports, Cheng et al. (2018) dissect the cell states and heterogeneity in human epidermis with large-scale transcriptomics of 92,889 single epidermal cells from normal and inflamed skin.
Collapse
Affiliation(s)
- Ka-Wai Mok
- Black Family Stem Cell Institute, Department of Cell, Developmental and Regenerative Biology, Department of Dermatology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Nivedita Saxena
- Black Family Stem Cell Institute, Department of Cell, Developmental and Regenerative Biology, Department of Dermatology, Icahn School of Medicine at Mount Sinai, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Michael Rendl
- Black Family Stem Cell Institute, Department of Cell, Developmental and Regenerative Biology, Department of Dermatology, Icahn School of Medicine at Mount Sinai, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.
| |
Collapse
|
18
|
A 3D bioprinter platform for mechanistic analysis of tumoroids and chimeric mammary organoids. Sci Rep 2019; 9:7466. [PMID: 31097753 PMCID: PMC6522494 DOI: 10.1038/s41598-019-43922-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 05/02/2019] [Indexed: 12/30/2022] Open
Abstract
The normal mammary microenvironment can suppress tumorigenesis and redirect cancer cells to adopt a normal mammary epithelial cell fate in vivo. Understanding of this phenomenon offers great promise for novel treatment and detection strategies in cancer, but current model systems make mechanistic insights into the process difficult. We have recently described a low-cost bioprinting platform designed to be accessible for basic cell biology laboratories. Here we report the use of this system for the study of tumorigenesis and microenvironmental redirection of breast cancer cells. We show our bioprinter significantly increases tumoroid formation in 3D collagen gels and allows for precise generation of tumoroid arrays. We also demonstrate that we can mimic published in vivo findings by co-printing cancer cells along with normal mammary epithelial cells to generate chimeric organoids. These chimeric organoids contain cancer cells that take part in normal luminal formation. Furthermore, we show for the first time that cancer cells within chimeric structures have a significant increase in 5-hydroxymethylcytosine levels as compared to bioprinted tumoroids. These results demonstrate the capacity of our 3D bioprinting platform to study tumorigenesis and microenvironmental control of breast cancer and highlight a novel mechanistic insight into the process of microenvironmental control of cancer.
Collapse
|
19
|
Mok KW, Saxena N, Heitman N, Grisanti L, Srivastava D, Muraro MJ, Jacob T, Sennett R, Wang Z, Su Y, Yang LM, Ma'ayan A, Ornitz DM, Kasper M, Rendl M. Dermal Condensate Niche Fate Specification Occurs Prior to Formation and Is Placode Progenitor Dependent. Dev Cell 2019; 48:32-48.e5. [PMID: 30595537 PMCID: PMC6370312 DOI: 10.1016/j.devcel.2018.11.034] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/31/2018] [Accepted: 11/27/2018] [Indexed: 12/29/2022]
Abstract
Cell fate transitions are essential for specification of stem cells and their niches, but the precise timing and sequence of molecular events during embryonic development are largely unknown. Here, we identify, with 3D and 4D microscopy, unclustered precursors of dermal condensates (DC), signaling niches for epithelial progenitors in hair placodes. With population-based and single-cell transcriptomics, we define a molecular time-lapse from pre-DC fate specification through DC niche formation and establish the developmental trajectory as the DC lineage emerges from fibroblasts. Co-expression of downregulated fibroblast and upregulated DC genes in niche precursors reveals a transitory molecular state following a proliferation shutdown. Waves of transcription factor and signaling molecule expression then coincide with DC formation. Finally, ablation of epidermal Wnt signaling and placode-derived FGF20 demonstrates their requirement for pre-DC specification. These findings uncover a progenitor-dependent niche precursor fate and the transitory molecular events controlling niche formation and function.
Collapse
Affiliation(s)
- Ka-Wai Mok
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA
| | - Nivedita Saxena
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA
| | - Nicholas Heitman
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA
| | - Laura Grisanti
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA
| | - Devika Srivastava
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA
| | - Mauro J Muraro
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), and University Medical Center Utrecht, Utrecht 3584 CT, the Netherlands
| | - Tina Jacob
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Huddinge 141 83, Sweden
| | - Rachel Sennett
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA
| | - Zichen Wang
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, BD2K-LINCS Data Coordination and Integration Center, Knowledge Management Center for Illuminating the Druggable Genome (KMC-IDG), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yutao Su
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lu M Yang
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, BD2K-LINCS Data Coordination and Integration Center, Knowledge Management Center for Illuminating the Druggable Genome (KMC-IDG), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Maria Kasper
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Huddinge 141 83, Sweden
| | - Michael Rendl
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA.
| |
Collapse
|
20
|
Anllo L, Plasschaert LW, Sui J, DiNardo S. Live imaging reveals hub cell assembly and compaction dynamics during morphogenesis of the Drosophila testis niche. Dev Biol 2018; 446:102-118. [PMID: 30553808 DOI: 10.1016/j.ydbio.2018.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/19/2018] [Accepted: 12/12/2018] [Indexed: 01/23/2023]
Abstract
Adult stem cells are often found in specialized niches, where the constituent cells direct self-renewal of their stem cell pool. The niche is therefore crucial for both normal homeostasis and tissue regeneration. In many mammalian tissues, niche cells have classically been difficult to identify, which has hampered any understanding of how tissues first construct niches during development. Fortunately, the Drosophila germline stem cell (GSC) niche is well defined, allowing for unambiguous identification of both niche cells and resident stem cells. The testis niche first forms in the early embryo, during a late stage of gonadogenesis. Here, using live-imaging both in vivo and ex vivo, we follow pro-niche cells as they assemble and assume their final form. We show that after ex vivo culture the niche appears fully functional, as judged by enrichment of adhesion proteins, the ability to activate STAT in adjacent GSCs, and to direct GSCs to divide orthogonally to the niche, just as they would in situ. Collectively, our imaging has generated several novel insights on niche morphogenesis that could not be inferred from fixed images alone. We identify dynamic processes that constitute an assembly phase and a compaction phase during morphogenesis. The compaction phase correlates with cell neighbor exchange among the assembled pro-niche cells, as well as a burst of divisions among newly recruited stem cells. Before compaction, an assembly phase involves the movement of pro-niche cells along the outer periphery of the gonad, using the extracellular matrix (ECM) to assemble at the anterior of the gonad. Finally, live-imaging in integrin mutants allows us to define the role of pro-niche cell-ECM interaction with regard to the new assembly and compaction dynamics revealed here.
Collapse
Affiliation(s)
- Lauren Anllo
- The Perelman School of Medicine at the University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA 19104, United States; The Penn Institute for Regenerative Medicine, 421 Curie Blvd, Philadelphia, PA 19104, United States.
| | - Lindsey W Plasschaert
- The Perelman School of Medicine at the University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA 19104, United States; The Penn Institute for Regenerative Medicine, 421 Curie Blvd, Philadelphia, PA 19104, United States.
| | - Justin Sui
- The Perelman School of Medicine at the University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA 19104, United States; The Penn Institute for Regenerative Medicine, 421 Curie Blvd, Philadelphia, PA 19104, United States.
| | - Stephen DiNardo
- The Perelman School of Medicine at the University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA 19104, United States; The Penn Institute for Regenerative Medicine, 421 Curie Blvd, Philadelphia, PA 19104, United States.
| |
Collapse
|
21
|
Argentati C, Morena F, Bazzucchi M, Armentano I, Emiliani C, Martino S. Adipose Stem Cell Translational Applications: From Bench-to-Bedside. Int J Mol Sci 2018; 19:E3475. [PMID: 30400641 PMCID: PMC6275042 DOI: 10.3390/ijms19113475] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/22/2018] [Accepted: 11/01/2018] [Indexed: 02/08/2023] Open
Abstract
During the last five years, there has been a significantly increasing interest in adult adipose stem cells (ASCs) as a suitable tool for translational medicine applications. The abundant and renewable source of ASCs and the relatively simple procedure for cell isolation are only some of the reasons for this success. Here, we document the advances in the biology and in the innovative biotechnological applications of ASCs. We discuss how the multipotential property boosts ASCs toward mesenchymal and non-mesenchymal differentiation cell lineages and how their character is maintained even if they are combined with gene delivery systems and/or biomaterials, both in vitro and in vivo.
Collapse
Affiliation(s)
- Chiara Argentati
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
| | - Martina Bazzucchi
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
| | - Ilaria Armentano
- Department of Ecological and Biological Sciences, Tuscia University Largo dell'Università, snc, 01100 Viterbo, Italy.
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy.
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy.
| |
Collapse
|