1
|
Hu JW, Pan YZ, Zhang XX, Li JT, Jin Y. Applications and challenges of patient-derived organoids in hepatobiliary and pancreatic cancers. World J Gastroenterol 2025; 31:106747. [DOI: 10.3748/wjg.v31.i20.106747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/12/2025] [Accepted: 05/12/2025] [Indexed: 05/28/2025] Open
Abstract
Hepatobiliary and pancreatic (HBP) cancers are among the most aggressive malignancies, with recurrence and metastasis driven by tumor heterogeneity and drug resistance, presenting considerable challenges to effective treatment. Currently, personalized and accurate treatment prediction models for these cancers are lacking. Patient-derived organoids (PDOs) tumor are three-dimensional in vitro models created from the tumor tissues of individual patients. Recent reports and our cultivation data indicate that the success rate of cultivating organoids for HBP cancers consistently exceeds 70%. The predictive accuracy of these tumor organoids has been shown to surpass 90%. However, PDOs still face notable limitations, especially in simulating the tumor microenvironment, including tumor angiogenesis and the surrounding cellular context, which require further refinement. While co-culture techniques and microfluidic platforms have been developed to mimic multi-cellular environments and functional vascular perfusion, they remain insufficient in accurately recapitulating the complexities of the in vivo environment. Additionally, PDOs are needed to fully assess their potential in predicting the efficacy of multi-drug combination therapies. This review provides an overview of the applications, challenges, and prospects for organoid models in the study of HBP cancer.
Collapse
Affiliation(s)
- Jia-Wei Hu
- Department of Hepatic-Biliary-Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Yan-Zhi Pan
- Department of Hepatic-Biliary-Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Xiao-Xiao Zhang
- Department of Hepatic-Biliary-Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Jiang-Tao Li
- Department of Hepatic-Biliary-Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Yun Jin
- Department of Hepatic-Biliary-Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| |
Collapse
|
2
|
Follert P, Große‐Segerath L, Lammert E. Blood flow-induced angiocrine signals promote organ growth and regeneration. Bioessays 2025; 47:e2400207. [PMID: 39529434 PMCID: PMC11755702 DOI: 10.1002/bies.202400207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Recently, we identified myeloid-derived growth factor (MYDGF) as a blood flow-induced angiocrine signal that promotes human and mouse hepatocyte proliferation and survival. Here, we review literature reporting changes in blood flow after partial organ resection in the liver, lung, and kidney, and we describe the angiocrine signals released by endothelial cells (ECs) upon blood flow alterations in these organs. While hepatocyte growth factor (HGF) and MYDGF are important angiocrine signals for liver regeneration, by now, angiocrine signals have also been reported to stimulate hyperplasia and/or hypertrophy during the regeneration of lungs and kidneys. In addition, angiocrine signals play a critical role in tumor growth. Understanding the mechano-elastic properties and flow-mediated alterations in the organ-specific microvasculature is crucial for therapeutic approaches to maintain organ health and initiate organ renewal.
Collapse
Affiliation(s)
- Paula Follert
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural SciencesInstitute of Metabolic PhysiologyDüsseldorfGermany
| | - Linda Große‐Segerath
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural SciencesInstitute of Metabolic PhysiologyDüsseldorfGermany
- German Diabetes Center (DDZ)Leibniz Center for Diabetes Research at Heinrich Heine University DüsseldorfDüsseldorfGermany
- German Center for Diabetes Research (DZD e.V.)NeuherbergGermany
| | - Eckhard Lammert
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural SciencesInstitute of Metabolic PhysiologyDüsseldorfGermany
- German Diabetes Center (DDZ)Leibniz Center for Diabetes Research at Heinrich Heine University DüsseldorfDüsseldorfGermany
- German Center for Diabetes Research (DZD e.V.)NeuherbergGermany
| |
Collapse
|
3
|
Mu Y, Zhang Z, Zhou H, Ma L, Wang DA. Applications of nanotechnology in remodeling the tumour microenvironment for glioblastoma treatment. Biomater Sci 2024; 12:4045-4064. [PMID: 38993162 DOI: 10.1039/d4bm00665h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
With the increasing research and deepening understanding of the glioblastoma (GBM) tumour microenvironment (TME), novel and more effective therapeutic strategies have been proposed. The GBM TME involves intricate interactions between tumour and non-tumour cells, promoting tumour progression. Key therapeutic goals for GBM treatment include improving the immunosuppressive microenvironment, enhancing the cytotoxicity of immune cells against tumours, and inhibiting tumour growth and proliferation. Consequently, remodeling the GBM TME using nanotechnology has emerged as a promising approach. Nanoparticle-based drug delivery enables targeted delivery, thereby improving treatment specificity, facilitating combination therapies, and optimizing drug metabolism. This review provides an overview of the GBM TME and discusses the methods of remodeling the GBM TME using nanotechnology. Specifically, it explores the application of nanotechnology in ameliorating immune cell immunosuppression, inducing immunogenic cell death, stimulating, and recruiting immune cells, regulating tumour metabolism, and modulating the crosstalk between tumours and other cells.
Collapse
Affiliation(s)
- Yulei Mu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China.
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR
| | - Zhen Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China.
| | - Huiqun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China.
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR
| | - Liang Ma
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China.
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China.
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR
- Centre for Neuromusculoskeletal Restorative Medicine, InnoHK, HKSTP, Sha Tin, Hong Kong SAR 999077, China
| |
Collapse
|
4
|
Cai Q, He Y, Zhou Y, Zheng J, Deng J. Nanomaterial-Based Strategies for Preventing Tumor Metastasis by Interrupting the Metastatic Biological Processes. Adv Healthc Mater 2024; 13:e2303543. [PMID: 38411537 DOI: 10.1002/adhm.202303543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/01/2024] [Indexed: 02/28/2024]
Abstract
Tumor metastasis is the primary cause of cancer-related deaths. The prevention of tumor metastasis has garnered notable interest and interrupting metastatic biological processes is considered a potential strategy for preventing tumor metastasis. The tumor microenvironment (TME), circulating tumor cells (CTCs), and premetastatic niche (PMN) play crucial roles in metastatic biological processes. These processes can be interrupted using nanomaterials due to their excellent physicochemical properties. However, most studies have focused on only one aspect of tumor metastasis. Here, the hypothesis that nanomaterials can be used to target metastatic biological processes and explore strategies to prevent tumor metastasis is highlighted. First, the metastatic biological processes and strategies involving nanomaterials acting on the TME, CTCs, and PMN to prevent tumor metastasis are briefly summarized. Further, the current challenges and prospects of nanomaterials in preventing tumor metastasis by interrupting metastatic biological processes are discussed. Nanomaterial-and multifunctional nanomaterial-based strategies for preventing tumor metastasis are advantageous for the long-term fight against tumor metastasis and their continued exploration will facilitate rapid progress in the prevention, diagnosis, and treatment of tumor metastasis. Novel perspectives are outlined for developing more effective strategies to prevent tumor metastasis, thereby improving the outcomes of patients with cancer.
Collapse
Affiliation(s)
- Qingjin Cai
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Yijia He
- School of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yang Zhou
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
5
|
Moskalenko Y. Biological mechanisms of resistance to immune checkpoint inhibitors and overcoming this resistance: Challenges in medical oncology. REGULATORY MECHANISMS IN BIOSYSTEMS 2024; 15:83-91. [DOI: 10.15421/022412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Immune checkpoint inhibitors have opened up new possibilities in clinical oncology. Monoclonal antibodies have shown their high clinical efficiency. They block CTLA-4, PD-1, and PD-L1 receptors and activate the immune response. Many patients have stable and even complete responses. However, some patients have primary or acquired resistance. Therefore, the treatment results in this category of patients are not predictable. Mechanisms of resistance to immune checkpoint inhibitors have not been definitively studied. Many theories try to explain the mechanisms of this phenomenon. Our study aimed to structure and combine the data into groups depending on the etiological factor that reduces the immune response. In addition, based on understanding the mechanisms of resistance and the results of recent clinical studies, we aimed to identify the main ways to overcome it. Therefore, mechanisms that lead to resistance may be associated with tumor properties, tumor microenvironment, or patient characteristics. Tumor properties that reduce the immune response include a) low tumor mutation burden and loss of tumor neoantigens, b) changes in the processing or presentation of neoantigens, and c) changes in signaling pathways of tumor development and epigenetic modifications in genes. The tumor microenvironment is represented by stromal and immune cells, extracellular matrix, cytokines, and blood vessels. Each structure can enhance or reduce the immune response and contribute to the acquired resistance to immune checkpoint inhibitors. The effectiveness of the treatment depends not only on the cells in the tumor microenvironment but also on the metabolic background. In addition, the basic characteristics of the patient ( gender, gut microbiota, HLA-I genotype) can modify the immune response. Based on knowledge about the mechanisms of resistance to immune checkpoint inhibitors, several therapeutic strategies aimed at activating antitumor activity have been evaluated. All of them are based on combining immune checkpoint inhibitors with other drugs. One of the most common options is a combination of PD-1/PD-L1 and CTLA-4 inhibitors. Alternative immune checkpoints are TIM-3, LAG-3, TIGIT and VISTA. Combining immunotherapy with chemotherapy, targeted therapy, neoangiogenesis inhibitors, epigenetic modifiers, PARP or TGF-β inhibitors enhances antitumor response by preventing depletion of effector T cells, enhancing T cell infiltration in the tumor, changes on the tumor microenvironment, and decreasing the accumulation of immunosuppressive cells. This review explores the biological mechanisms of resistance and potential ways of solving this problem.
Collapse
|