1
|
Wu C, Guo WB, Liu YY, Yang L, Miao AJ. Molecular mechanisms underlying the calcium-mediated uptake of hematite nanoparticles by the ciliate Tetrahymena thermophila. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117749. [PMID: 34329064 DOI: 10.1016/j.envpol.2021.117749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
In aquatic ecosystems, the calcium (Ca) concentration varies greatly. It is well known that Ca affects the aggregation of nanoparticles (NPs) and thus their bioaccumulation. Nevertheless, Ca also plays critical roles in various biological processes, whose effects on NP accumulation in aquatic organisms remain unclear. In this study, the effects of Ca on the uptake of polyacrylate-coated hematite NPs (HemNPs) by the aquatic ciliate Tetrahymena thermophila were investigated. At all of the tested Ca concentrations, HemNPs were well dispersed in the experimental medium, excluding the possibility of Ca to influence HemNP bioaccumulation by aggregating the NPs. Instead, Ca was shown to induce the clathrin-mediated endocytosis and phagocytosis of HemNPs. Manipulation of the Ca speciation in the experimental medium as well as the influx and intracellular availability of Ca in T. thermophila indicated that HemNP uptake was regulated by the intracellular Ca level. The results of the proteomics analyses further showed that the binding of intracellular Ca to calmodulin altered the activity of proteins involved in clathrin-mediated endocytosis (calcineurin and dynamin) and phagocytosis (actin). Overall, the biologically inductive effects of Ca on NP accumulation in aquatic organisms should be considered when evaluating the environmental risks of NPs.
Collapse
Affiliation(s)
- Chao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, China
| | - Wen-Bo Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, China
| | - Yue-Yue Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, China
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, China.
| |
Collapse
|
2
|
Bisio H, Soldati-Favre D. Signaling Cascades Governing Entry into and Exit from Host Cells by Toxoplasma gondii. Annu Rev Microbiol 2020; 73:579-599. [PMID: 31500539 DOI: 10.1146/annurev-micro-020518-120235] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Apicomplexa phylum includes a large group of obligate intracellular protozoan parasites responsible for important diseases in humans and animals. Toxoplasma gondii is a widespread parasite with considerable versatility, and it is capable of infecting virtually any warm-blooded animal, including humans. This outstanding success can be attributed at least in part to an efficient and continuous sensing of the environment, with a ready-to-adapt strategy. This review updates the current understanding of the signals governing the lytic cycle of T. gondii, with particular focus on egress from infected cells, a key step for balancing survival, multiplication, and spreading in the host. We cover the recent advances in the conceptual framework of regulation of microneme exocytosis that ensures egress, motility, and invasion. Particular emphasis is given to the trigger molecules and signaling cascades regulating exit from host cells.
Collapse
Affiliation(s)
- Hugo Bisio
- Département de Microbiologie et Médecine Moléculaire, Centre Médical Universitaire, Université de Genève, 1211 Geneva 4, Switzerland;
| | - Dominique Soldati-Favre
- Département de Microbiologie et Médecine Moléculaire, Centre Médical Universitaire, Université de Genève, 1211 Geneva 4, Switzerland;
| |
Collapse
|
3
|
Dubois DJ, Soldati-Favre D. Biogenesis and secretion of micronemes in Toxoplasma gondii. Cell Microbiol 2019; 21:e13018. [PMID: 30791192 DOI: 10.1111/cmi.13018] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/11/2019] [Accepted: 02/17/2019] [Indexed: 12/20/2022]
Abstract
One of the hallmarks of the parasitic phylum of Apicomplexa is the presence of highly specialised, apical secretory organelles, called the micronemes and rhoptries that play critical roles in ensuring survival and dissemination. Upon exocytosis, the micronemes release adhesin complexes, perforins, and proteases that are crucially implicated in egress from infected cells, gliding motility, migration across biological barriers, and host cell invasion. Recent studies on Toxoplasma gondii and Plasmodium species have shed more light on the signalling events and the machinery that trigger microneme secretion. Intracellular cyclic nucleotides, calcium level, and phosphatidic acid act as key mediators of microneme exocytosis, and several downstream effectors have been identified. Here, we review the key steps of microneme biogenesis and exocytosis, summarising the still fractal knowledge at the molecular level regarding the fusion event with the parasite plasma membrane.
Collapse
Affiliation(s)
- David J Dubois
- Department of Microbiology and Molecular Medicine, University of Geneva CMU, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva CMU, Geneva, Switzerland
| |
Collapse
|
4
|
Two Phosphoglucomutase Paralogs Facilitate Ionophore-Triggered Secretion of the Toxoplasma Micronemes. mSphere 2017; 2:mSphere00521-17. [PMID: 29202046 PMCID: PMC5705807 DOI: 10.1128/msphere.00521-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 11/05/2017] [Indexed: 12/28/2022] Open
Abstract
Ca2+-dependent exocytosis is essential for the life cycle of apicomplexan parasites. Toxoplasma gondii harbors a phosphoglucomutase (PGM) ortholog, PRP1, previously associated with Ca2+-dependent microneme secretion. Here it is shown that genetic deletion of either PRP1, its PGM2 ortholog, or both genes is dispensable for the parasite’s lytic cycle, including host cell egress and invasion. Depletion of the proteins abrogated high Ca2+-mediated microneme secretion induced by the ionophore A23187; however, the constitutive and phosphatidic acid-mediated release remained unaffected. Secretion mediated by the former pathway is not essential for tachyzoite survival or acute in vivo infection in the mice. Paralogs of the widely prevalent phosphoglucomutase (PGM) protein called parafusin function in calcium (Ca2+)-mediated exocytosis across eukaryotes. In Toxoplasma gondii, the parafusin-related protein 1 (PRP1) has been associated with Ca2+-dependent microneme organelle secretion required for essential processes like host cell invasion and egress. Using reverse genetics, we observed PRP1 to be dispensable for completion of the lytic cycle, including host cell invasion and egress by the parasite. However, the absence of the gene affected increased microneme release triggered by A23187, a Ca2+ ionophore used to raise the cytoplasmic Ca2+ concentration mimicking the physiological role of Ca2+ during invasion and egress. The basal levels of constitutive microneme release in extracellular parasites and phosphatidic acid-triggered microneme secretion were unaffected in the mutant. The phenotype of the deletion mutant of the second PGM-encoding gene in Toxoplasma, PGM2, was similar to the phenotype of the PRP1 deletion mutant. Furthermore, the ability of the tachyzoites to induce acute infection in the mice remained normal in the absence of both PGM paralogs. Our data thus reveal that the microneme secretion upon high Ca2+ flux is facilitated by the Toxoplasma PGM paralogs, PRP1 and PGM2. However, this protein-mediated release is neither essential for lytic cycle completion nor for acute virulence of the parasite. IMPORTANCE Ca2+-dependent exocytosis is essential for the life cycle of apicomplexan parasites. Toxoplasma gondii harbors a phosphoglucomutase (PGM) ortholog, PRP1, previously associated with Ca2+-dependent microneme secretion. Here it is shown that genetic deletion of either PRP1, its PGM2 ortholog, or both genes is dispensable for the parasite’s lytic cycle, including host cell egress and invasion. Depletion of the proteins abrogated high Ca2+-mediated microneme secretion induced by the ionophore A23187; however, the constitutive and phosphatidic acid-mediated release remained unaffected. Secretion mediated by the former pathway is not essential for tachyzoite survival or acute in vivo infection in the mice.
Collapse
|
5
|
Plattner H. Signalling in ciliates: long- and short-range signals and molecular determinants for cellular dynamics. Biol Rev Camb Philos Soc 2015; 92:60-107. [PMID: 26487631 DOI: 10.1111/brv.12218] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/28/2015] [Accepted: 08/21/2015] [Indexed: 12/30/2022]
Abstract
In ciliates, unicellular representatives of the bikont branch of evolution, inter- and intracellular signalling pathways have been analysed mainly in Paramecium tetraurelia, Paramecium multimicronucleatum and Tetrahymena thermophila and in part also in Euplotes raikovi. Electrophysiology of ciliary activity in Paramecium spp. is a most successful example. Established signalling mechanisms include plasmalemmal ion channels, recently established intracellular Ca2+ -release channels, as well as signalling by cyclic nucleotides and Ca2+ . Ca2+ -binding proteins (calmodulin, centrin) and Ca2+ -activated enzymes (kinases, phosphatases) are involved. Many organelles are endowed with specific molecules cooperating in signalling for intracellular transport and targeted delivery. Among them are recently specified soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), monomeric GTPases, H+ -ATPase/pump, actin, etc. Little specification is available for some key signal transducers including mechanosensitive Ca2+ -channels, exocyst complexes and Ca2+ -sensor proteins for vesicle-vesicle/membrane interactions. The existence of heterotrimeric G-proteins and of G-protein-coupled receptors is still under considerable debate. Serine/threonine kinases dominate by far over tyrosine kinases (some predicted by phosphoproteomic analyses). Besides short-range signalling, long-range signalling also exists, e.g. as firmly installed microtubular transport rails within epigenetically determined patterns, thus facilitating targeted vesicle delivery. By envisaging widely different phenomena of signalling and subcellular dynamics, it will be shown (i) that important pathways of signalling and cellular dynamics are established already in ciliates, (ii) that some mechanisms diverge from higher eukaryotes and (iii) that considerable uncertainties still exist about some essential aspects of signalling.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, PO Box M625, 78457, Konstanz, Germany
| |
Collapse
|
6
|
Plattner H. Calcium regulation in the protozoan model, Paramecium tetraurelia. J Eukaryot Microbiol 2013; 61:95-114. [PMID: 24001309 DOI: 10.1111/jeu.12070] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/21/2013] [Accepted: 06/28/2013] [Indexed: 01/24/2023]
Abstract
Early in eukaryotic evolution, the cell has evolved a considerable inventory of proteins engaged in the regulation of intracellular Ca(2+) concentrations, not only to avoid toxic effects but beyond that to exploit the signaling capacity of Ca(2+) by small changes in local concentration. Among protozoa, the ciliate Paramecium may now be one of the best analyzed models. Ciliary activity and exo-/endocytosis are governed by Ca(2+) , the latter by Ca(2+) mobilization from alveolar sacs and a superimposed store-operated Ca(2+) -influx. Paramecium cells possess plasma membrane- and endoplasmic reticulum-resident Ca(2+) -ATPases/pumps (PMCA, SERCA), a variety of Ca(2+) influx channels, including mechanosensitive and voltage-dependent channels in the plasma membrane, furthermore a plethora of Ca(2+) -release channels (CRC) of the inositol 1,4,5-trisphosphate and ryanodine receptor type in different compartments, notably the contractile vacuole complex and the alveolar sacs, as well as in vesicles participating in vesicular trafficking. Additional types of CRC probably also occur but they have not been identified at a molecular level as yet, as is the equivalent of synaptotagmin as a Ca(2+) sensor for exocytosis. Among established targets and sensors of Ca(2+) in Paramecium are calmodulin, calcineurin, as well as Ca(2+) /calmodulin-dependent protein kinases, all with multiple functions. Thus, basic elements of Ca(2+) signaling are available for Paramecium.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, P.O. Box 5544, 78457, Konstanz, Germany
| |
Collapse
|
7
|
Plattner H, Sehring IM, Mohamed IK, Miranda K, De Souza W, Billington R, Genazzani A, Ladenburger EM. Calcium signaling in closely related protozoan groups (Alveolata): non-parasitic ciliates (Paramecium, Tetrahymena) vs. parasitic Apicomplexa (Plasmodium, Toxoplasma). Cell Calcium 2012; 51:351-82. [PMID: 22387010 DOI: 10.1016/j.ceca.2012.01.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/10/2012] [Accepted: 01/12/2012] [Indexed: 12/20/2022]
Abstract
The importance of Ca2+-signaling for many subcellular processes is well established in higher eukaryotes, whereas information about protozoa is restricted. Recent genome analyses have stimulated such work also with Alveolates, such as ciliates (Paramecium, Tetrahymena) and their pathogenic close relatives, the Apicomplexa (Plasmodium, Toxoplasma). Here we compare Ca2+ signaling in the two closely related groups. Acidic Ca2+ stores have been characterized in detail in Apicomplexa, but hardly in ciliates. Two-pore channels engaged in Ca2+-release from acidic stores in higher eukaryotes have not been stingently characterized in either group. Both groups are endowed with plasma membrane- and endoplasmic reticulum-type Ca2+-ATPases (PMCA, SERCA), respectively. Only recently was it possible to identify in Paramecium a number of homologs of ryanodine and inositol 1,3,4-trisphosphate receptors (RyR, IP3R) and to localize them to widely different organelles participating in vesicle trafficking. For Apicomplexa, physiological experiments suggest the presence of related channels although their identity remains elusive. In Paramecium, IP3Rs are constitutively active in the contractile vacuole complex; RyR-related channels in alveolar sacs are activated during exocytosis stimulation, whereas in the parasites the homologous structure (inner membrane complex) may no longer function as a Ca2+ store. Scrutinized comparison of the two closely related protozoan phyla may stimulate further work and elucidate adaptation to parasitic life. See also "Conclusions" section.
Collapse
Affiliation(s)
- H Plattner
- Department of Biology, University of Konstanz, P.O. Box 5560, 78457 Konstanz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Protein phosphatase 2B (PP2B, calcineurin) in Paramecium: partial characterization reveals that two members of the unusually large catalytic subunit family have distinct roles in calcium-dependent processes. EUKARYOTIC CELL 2010; 9:1049-63. [PMID: 20435698 DOI: 10.1128/ec.00322-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We characterized the calcineurin (CaN) gene family, including the subunits CaNA and CaNB, based upon sequence information obtained from the Paramecium genome project. Paramecium tetraurelia has seven subfamilies of the catalytic CaNA subunit and one subfamily of the regulatory CaNB subunit, with each subfamily having two members of considerable identity on the amino acid level (>or=55% between subfamilies, >or=94% within CaNA subfamilies, and full identity in the CaNB subfamily). Within CaNA subfamily members, the catalytic domain and the CaNB binding region are highly conserved and molecular modeling revealed a three-dimensional structure almost identical to a human ortholog. At 14 members, the size of the CaNA family is unprecedented, and we hypothesized that the different CaNA subfamily members were not strictly redundant and that at least some fulfill different roles in the cell. This was tested by selecting two phylogenetically distinct members of this large family for posttranscriptional silencing by RNA interference. The two targets resulted in differing effects in exocytosis, calcium dynamics, and backward swimming behavior that supported our hypothesis that the large, highly conserved CaNA family members are not strictly redundant and that at least two members have evolved diverse but overlapping functions. In sum, the occurrence of CaN in Paramecium spp., although disputed in the past, has been established on a molecular level. Its role in exocytosis and ciliary beat regulation in a protozoan, as well as in more complex organisms, suggests that these roles for CaN were acquired early in the evolution of this protein family.
Collapse
|
9
|
Liu L, Tucker SC, Satir BH. Toxoplasma PRP1 is an ortholog of parafusin (PFUS) in vesicle scaffold assembly in Ca2+-regulated exocytosis. Eur J Cell Biol 2009; 88:301-13. [DOI: 10.1016/j.ejcb.2008.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 10/06/2008] [Accepted: 10/08/2008] [Indexed: 11/25/2022] Open
|
10
|
Sugimoto H, Endoh H. Differentially expressed genes during fruiting body development in the aggregative ciliate Sorogena stoianovitchae (Ciliophora: Colpodea). J Eukaryot Microbiol 2008; 55:110-6. [PMID: 18318864 DOI: 10.1111/j.1550-7408.2008.00312.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sorogena stoianovitchae is the only ciliate that undergoes fruiting body development. Previously, we demonstrated that the developmental process is divided into five distinct stages: aggregation, compact aggregation, secretion of a mucous matrix, stalk elongation, and completion of the fruiting body. When S. stoianovitchae is mildly starved, several hundreds of cells aggregate beneath the water surface, and the aggregate develops into an aerial fruiting body. Essential requirements for fruiting body development are high-cell density, a light-dark cycle, and a dark period of more than 8 consecutive hours. In addition, the initial aggregation begins during the night, and light stimulation at sunrise triggers subsequent development. To elucidate the genes involved in fruiting body development, we carried out a reverse transcription-polymerase chain reaction (RT-PCR) in cells before and after such development. Thirty-six sequences with stage-specific expression patterns were cloned and partially sequenced. BLASTX search revealed that sequences with high identity for extracellular proteins (mucin, proteophosphoglycan) or membrane proteins (surface protein, TM9SF) are likely candidates for aggregation material, mucous matrix, and stalk material. Other sequences showed similarities to proteins, such as the casein kinase related to exocytosis in Paramecium, suggesting that they are involved in exocytosis signaling pathways for fruiting body development.
Collapse
Affiliation(s)
- Hiroki Sugimoto
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | | |
Collapse
|
11
|
Shpakov AO, Pertseva MN. Chapter 4 Signaling Systems of Lower Eukaryotes and Their Evolution. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 269:151-282. [DOI: 10.1016/s1937-6448(08)01004-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Plattner H, Hentschel J. Sub-second cellular dynamics: time-resolved electron microscopy and functional correlation. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 255:133-76. [PMID: 17178466 DOI: 10.1016/s0074-7696(06)55003-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Subcellular processes, from molecular events to organellar responses and cell movement, cover a broad scale in time and space. Clearly the extremes, such as ion channel activation are accessible only by electrophysiology, whereas numerous routine methods exist for relatively slow processes. However, many other processes, from a millisecond time scale on, can be "caught" only by methods providing appropriate time resolution. Fast freezing (cryofixation) is the method of choice in that case. In combination with follow-up methodologies appropriate for electron microscopic (EM) analysis, with all its variations, such technologies can also provide high spatial resolution. Such analyses may include, for example, freeze-fracturing for analyzing restructuring of membrane components, scanning EM and other standard EM techniques, as well as analytical EM analyses. The latter encompass energy-dispersive x-ray microanalysis and electron spectroscopic imaging, all applicable, for instance, to the second messenger, calcium. Most importantly, when conducted in parallel, such analyses can provide a structural background to the functional analyses, such as cyclic nucleotide formation or protein de- or rephosphorylation during cell stimulation. In sum, we discuss many examples of how it is practically possible to achieve strict function-structure correlations in the sub-second time range. We complement this review by discussing alternative methods currently available to analyze fast cellular phenomena occurring in the sub-second time range.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | | |
Collapse
|
13
|
Kissmehl R, Krüger TP, Treptau T, Froissard M, Plattner H. Multigene family encoding 3',5'-cyclic-GMP-dependent protein kinases in Paramecium tetraurelia cells. EUKARYOTIC CELL 2006; 5:77-91. [PMID: 16400170 PMCID: PMC1360248 DOI: 10.1128/ec.5.1.77-91.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Accepted: 11/01/2005] [Indexed: 01/28/2023]
Abstract
In the ciliate Paramecium tetraurelia, 3',5'-cyclic GMP (cGMP) is one of the second messengers involved in several signal transduction pathways. The enzymes for its production and degradation are well established for these cells, whereas less is known about the potential effector proteins. On the basis of a current Paramecium genome project, we have identified a multigene family with at least 35 members, all of which encode cGMP-dependent protein kinases (PKGs). They can be classified into 16 subfamilies with several members each. Two of the genes, PKG1-1 and PKG2-1, were analyzed in more detail after molecular cloning. They encode monomeric enzymes of 770 and 819 amino acids, respectively, whose overall domain organization resembles that in higher eukaryotes. The enzymes contain a regulatory domain of two tandem cyclic nucleotide-binding sites flanked by an amino-terminal region for intracellular localization and a catalytic domain with highly conserved regions for ATP binding and catalysis. However, some Paramecium PKGs show a different structure. In Western blots, PKGs are detected both as cytosolic and as structure-bound forms. Immunofluorescence labeling shows enrichment in the cell cortex, notably around the dense-core secretory vesicles (trichocysts), as well as in cilia. Immunogold electron microscopy analysis reveals consistent labeling of ciliary membranes, of the membrane complex composed of cell membrane and cortical Ca2+ stores, and of regions adjacent to ciliary basal bodies, trichocysts, and trafficking vesicles. Since PKGs (re)phosphorylate the exocytosis-sensitive phosphoprotein pp63/pf upon stimulation, the role of PKGs during stimulated exocytosis is discussed, in addition to a role in ciliary beat regulation.
Collapse
Affiliation(s)
- Roland Kissmehl
- Department of Biology, University of Konstanz, P.O. Box 5560, 78457 Konstanz, Germany.
| | | | | | | | | |
Collapse
|