1
|
Zádor E. The Meeting of Micropeptides with Major Ca 2+ Pumps in Inner Membranes-Consideration of a New Player, SERCA1b. MEMBRANES 2023; 13:274. [PMID: 36984661 PMCID: PMC10058886 DOI: 10.3390/membranes13030274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Calcium is a major signalling bivalent cation within the cell. Compartmentalization is essential for regulation of calcium mediated processes. A number of players contribute to intracellular handling of calcium, among them are the sarco/endoplasmic reticulum calcium ATP-ases (SERCAs). These molecules function in the membrane of ER/SR pumping Ca2+ from cytoplasm into the lumen of the internal store. Removal of calcium from the cytoplasm is essential for signalling and for relaxation of skeletal muscle and heart. There are three genes and over a dozen isoforms of SERCA in mammals. These can be potentially influenced by small membrane peptides, also called regulins. The discovery of micropeptides has increased in recent years, mostly because of the small ORFs found in long RNAs, annotated formerly as noncoding (lncRNAs). Several excellent works have analysed the mechanism of interaction of micropeptides with each other and with the best known SERCA1a (fast muscle) and SERCA2a (heart, slow muscle) isoforms. However, the array of tissue and developmental expressions of these potential regulators raises the question of interaction with other SERCAs. For example, the most abundant calcium pump in neonatal and regenerating skeletal muscle, SERCA1b has never been looked at with scrutiny to determine whether it is influenced by micropeptides. Further details might be interesting on the interaction of these peptides with the less studied SERCA1b isoform.
Collapse
Affiliation(s)
- Ernő Zádor
- Institute of Biochemistry, Albert Szent-Györgyi Faculty of Medicine, University of Szeged, Dóm tér 9, H-6720 Szeged, Hungary
| |
Collapse
|
2
|
Rossi D, Pierantozzi E, Amadsun DO, Buonocore S, Rubino EM, Sorrentino V. The Sarcoplasmic Reticulum of Skeletal Muscle Cells: A Labyrinth of Membrane Contact Sites. Biomolecules 2022; 12:488. [PMID: 35454077 PMCID: PMC9026860 DOI: 10.3390/biom12040488] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/17/2022] Open
Abstract
The sarcoplasmic reticulum of skeletal muscle cells is a highly ordered structure consisting of an intricate network of tubules and cisternae specialized for regulating Ca2+ homeostasis in the context of muscle contraction. The sarcoplasmic reticulum contains several proteins, some of which support Ca2+ storage and release, while others regulate the formation and maintenance of this highly convoluted organelle and mediate the interaction with other components of the muscle fiber. In this review, some of the main issues concerning the biology of the sarcoplasmic reticulum will be described and discussed; particular attention will be addressed to the structure and function of the two domains of the sarcoplasmic reticulum supporting the excitation-contraction coupling and Ca2+-uptake mechanisms.
Collapse
Affiliation(s)
- Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (E.P.); (D.O.A.); (S.B.); (E.M.R.); (V.S.)
| | | | | | | | | | | |
Collapse
|
3
|
Chen J, Sitsel A, Benoy V, Sepúlveda MR, Vangheluwe P. Primary Active Ca 2+ Transport Systems in Health and Disease. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035113. [PMID: 31501194 DOI: 10.1101/cshperspect.a035113] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcium ions (Ca2+) are prominent cell signaling effectors that regulate a wide variety of cellular processes. Among the different players in Ca2+ homeostasis, primary active Ca2+ transporters are responsible for keeping low basal Ca2+ levels in the cytosol while establishing steep Ca2+ gradients across intracellular membranes or the plasma membrane. This review summarizes our current knowledge on the three types of primary active Ca2+-ATPases: the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pumps, the secretory pathway Ca2+- ATPase (SPCA) isoforms, and the plasma membrane Ca2+-ATPase (PMCA) Ca2+-transporters. We first discuss the Ca2+ transport mechanism of SERCA1a, which serves as a reference to describe the Ca2+ transport of other Ca2+ pumps. We further highlight the common and unique features of each isoform and review their structure-function relationship, expression pattern, regulatory mechanisms, and specific physiological roles. Finally, we discuss the increasing genetic and in vivo evidence that links the dysfunction of specific Ca2+-ATPase isoforms to a broad range of human pathologies, and highlight emerging therapeutic strategies that target Ca2+ pumps.
Collapse
Affiliation(s)
- Jialin Chen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Aljona Sitsel
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Veronick Benoy
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - M Rosario Sepúlveda
- Department of Cell Biology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
4
|
Genesio R, Maruotti GM, Saccone G, Mormile A, Conti A, Cicatiello R, Sarnataro V, Sirico A, Izzo A, Martinelli P, Nitsch L. Prenatally diagnosed distal 16p11.2 microdeletion with a novel association with congenital diaphragmatic hernia: a case report. Clin Case Rep 2018; 6:592-595. [PMID: 29636920 PMCID: PMC5889234 DOI: 10.1002/ccr3.1369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 09/13/2017] [Accepted: 12/06/2017] [Indexed: 12/31/2022] Open
Abstract
A prenatal case presenting with congenital diaphragmatic hernia (CDH) and distal 16p11.2 microdeletion suggests two possible causative hypotheses: (1) a functional effect of chromatin loopings between the distal and the proximal 16p11.2 microdeletion traits, associated with CHD; (2) a possible role of ATP2A1, a deleted gene involved in diaphragm development.
Collapse
Affiliation(s)
- Rita Genesio
- Department of Molecular Medicine and Medical Biotechnology School of Medicine University of Naples Federico II Naples Italy
| | - Giuseppe Maria Maruotti
- Department of Neuroscience, Reproductive Sciences and Dentistry School of Medicine University of Naples Federico II Naples Italy
| | - Gabriele Saccone
- Department of Neuroscience, Reproductive Sciences and Dentistry School of Medicine University of Naples Federico II Naples Italy
| | - Angela Mormile
- Department of Molecular Medicine and Medical Biotechnology School of Medicine University of Naples Federico II Naples Italy
| | - Anna Conti
- Department of Molecular Medicine and Medical Biotechnology School of Medicine University of Naples Federico II Naples Italy
| | - Rita Cicatiello
- Department of Molecular Medicine and Medical Biotechnology School of Medicine University of Naples Federico II Naples Italy
| | - Viviana Sarnataro
- Department of Molecular Medicine and Medical Biotechnology School of Medicine University of Naples Federico II Naples Italy
| | - Angelo Sirico
- Department of Neuroscience, Reproductive Sciences and Dentistry School of Medicine University of Naples Federico II Naples Italy
| | - Antonella Izzo
- Department of Molecular Medicine and Medical Biotechnology School of Medicine University of Naples Federico II Naples Italy
| | - Pasquale Martinelli
- Department of Neuroscience, Reproductive Sciences and Dentistry School of Medicine University of Naples Federico II Naples Italy
| | - Lucio Nitsch
- Department of Molecular Medicine and Medical Biotechnology School of Medicine University of Naples Federico II Naples Italy
| |
Collapse
|
5
|
Fodor J, Gomba-Tóth A, Oláh T, Almássy J, Zádor E, Csernoch L. Follistatin treatment suppresses SERCA1b levels independently of other players of calcium homeostasis in C2C12 myotubes. J Muscle Res Cell Motil 2017. [PMID: 28638997 DOI: 10.1007/s10974-017-9474-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Follistatin (FS) is a high affinity activin-binding protein, neutralizing the effects of the Transforming Growth Factor-beta (TGF-β) superfamily members, as myostatin (MSTN). Since MSTN emerged as a negative regulator, FS has been considered as a stimulator of skeletal muscle growth and differentiation. Here, we studied the effect of FS administration on the Ca2+-homeostasis of differentiating C2C12 skeletal muscle cells. FS-treatment increased the fusion index, the size of terminally differentiated myotubes, and transiently elevated the expression of the calcium-dependent protein phosphatase, calcineurin, at the beginning of differentiation. Functional experiments did not detect any alterations in the Ca2+ transients following the stimulation by KCl or caffeine in myotubes. On the other hand, decreased Ca2+-uptake capability was determined by calculating the maximal pump rate (332 ± 17 vs. 279 ± 11 µM/s, in control and FS-treated myotubes, respectively; p < 0.05). In the same way, the expression and ATPase activity of the neonatal sarcoplasmic/endoplasmic reticulum Ca2+ATPase (SERCA1b) were decreased (0.59 ± 0.01 vs. 0.19 ± 0.01 mM ATP/min, in control and FS-treated myotubes, respectively; p < 0.05). However, the expression level of other proteins involved in Ca2+-homeostasis and differentiation (calsequestrin, STIM1, MyoD) were not affected. Our results suggest that the FS controlled myotube growth is paralleled with the tight regulation of cytosolic calcium concentration, and the decline of SERCA1b appears to be one of the key components in this process.
Collapse
Affiliation(s)
- János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Adrienn Gomba-Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Almássy
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ernő Zádor
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
6
|
Fodor J, Gomba-Tóth A, Oláh T, Zádor E, Tóth ZC, Ioannis I, Molnár B, Kovács I, Csernoch L. Alteration of sarcoplasmic reticulum Ca 2+ ATPase expression in lower limb ischemia caused by atherosclerosis obliterans. Physiol Int 2017. [PMID: 28648117 DOI: 10.1556/2060.104.2017.2.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Atherosclerosis is a disease caused by a build-up of fatty plaques and cholesterol in the arteries. The lumen of the vessels is obliterated resulting in restricted blood supply to tissues. In ischemic conditions, the cytosolic Ca2+ level of skeletal muscle may increase, indicating the alteration of Ca2+ removal mechanisms. Ca2+ is transported from cytosol into the sarcoplasmic reticulum by Ca2+ ATPase (SERCA), with its 1a isoform expressed in adult, while its 1b isoform in neonatal and regenerating fast-twitch skeletal muscle. To investigate the role of these isoforms in ischemic skeletal muscle, biopsies from musculus biceps femoris of patients who underwent amputation due to atherosclerosis were examined. Samples were removed from the visibly healthy and hypoxia-affected tissue. Significantly increased SERCA1a expression was detected under the ischemic conditions (246 ± 69%; p < 0.05) compared with the healthy tissue. Furthermore, the ratio of SERCA1a-positive fibers was slightly increased (46 ± 4% in healthy tissue and 60 ± 5% in ischemic tissue; p > 0.05), whereas SERCA2a did not change. In addition, in primary cultures derived from hypoxia-affected tissue, the diameter and fusion index of myotubes were significantly increased (30 ± 1.6 µm vs. 41 ± 2.4 µm and 31 ± 4% vs. 45 ± 3%; p < 0.05). We propose that the increased SERCA1a expression indicates the existence and location of compensating mechanisms in ischemic muscle.
Collapse
Affiliation(s)
- J Fodor
- 1 Department of Physiology, Faculty of Medicine, University of Debrecen , Debrecen, Hungary
| | - A Gomba-Tóth
- 1 Department of Physiology, Faculty of Medicine, University of Debrecen , Debrecen, Hungary
| | - T Oláh
- 1 Department of Physiology, Faculty of Medicine, University of Debrecen , Debrecen, Hungary
| | - E Zádor
- 2 Department of Biochemistry, Faculty of Medicine, University of Szeged , Szeged, Hungary
| | - Zs Cs Tóth
- 3 Limb Surgery Ward, Kenézy Hospital and Outpatient Clinic , Debrecen, Hungary
| | - I Ioannis
- 3 Limb Surgery Ward, Kenézy Hospital and Outpatient Clinic , Debrecen, Hungary
| | - B Molnár
- 3 Limb Surgery Ward, Kenézy Hospital and Outpatient Clinic , Debrecen, Hungary
| | - I Kovács
- 4 Pathology Department, Kenézy Hospital and Outpatient Clinic , Debrecen, Hungary
| | - L Csernoch
- 1 Department of Physiology, Faculty of Medicine, University of Debrecen , Debrecen, Hungary
| |
Collapse
|
7
|
Guglielmi V, Oosterhof A, Voermans NC, Cardani R, Molenaar JP, van Kuppevelt TH, Meola G, van Engelen BG, Tomelleri G, Vattemi G. Characterization of sarcoplasmic reticulum Ca(2+) ATPase pumps in muscle of patients with myotonic dystrophy and with hypothyroid myopathy. Neuromuscul Disord 2016; 26:378-85. [PMID: 27133661 DOI: 10.1016/j.nmd.2016.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 10/22/2022]
Abstract
Sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase (SERCA) pumps play the major role in lowering cytoplasmic calcium concentration in skeletal muscle by catalyzing the ATP-dependent transport of Ca(2+) from the cytosol to the lumen of the sarcoplasmic reticulum (SR). Although SERCA abnormalities have been hypothesized to contribute to the dysregulation of intracellular Ca(2+) homeostasis and signaling in muscle of patients with myotonic dystrophy (DM) and hypothyroid myopathy, the characterization of SERCA pumps remains elusive and their impairment is still unclear. We assessed the activity of SR Ca(2+)-ATPase, expression levels and fiber distribution of SERCA1 and SERCA2, and oligomerization of SERCA1 protein in muscle of patients with DM type 1 and 2, and with hypothyroid myopathy. Our data provide evidence that SR Ca(2+) ATPase activity, protein levels and muscle fiber distribution of total SERCA1 and SERCA2, and SERCA1 oligomerization pattern are similar in patients with both DM1 and DM2, hypothyroid myopathy and in control subjects. We prove that SERCA1b, the neonatal isoform of SERCA1, is expressed at protein level in muscle of patients with DM2 and, in lower amount, of patients with DM1. Our present study demonstrates that SERCA function is not altered in muscle of patients with DM and with hypothyroid myopathy.
Collapse
Affiliation(s)
- V Guglielmi
- Department of Neurological and Movement Sciences, Section of Clinical Neurology, University of Verona, Italy
| | - A Oosterhof
- Department of Biochemistry, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - N C Voermans
- Neuromuscular Centre Nijmegen, Department of Neurology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - R Cardani
- Department of Biomedical Sciences for Health, IRCCS Policlinico San Donato, University of Milan, Italy
| | - J P Molenaar
- Neuromuscular Centre Nijmegen, Department of Neurology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - T H van Kuppevelt
- Department of Biochemistry, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - G Meola
- Department of Biomedical Sciences for Health, IRCCS Policlinico San Donato, University of Milan, Italy
| | - B G van Engelen
- Neuromuscular Centre Nijmegen, Department of Neurology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - G Tomelleri
- Department of Neurological and Movement Sciences, Section of Clinical Neurology, University of Verona, Italy
| | - G Vattemi
- Department of Neurological and Movement Sciences, Section of Clinical Neurology, University of Verona, Italy.
| |
Collapse
|
8
|
Functional analysis of SERCA1b, a highly expressed SERCA1 variant in myotonic dystrophy type 1 muscle. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2042-7. [DOI: 10.1016/j.bbadis.2015.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 06/23/2015] [Accepted: 07/06/2015] [Indexed: 01/17/2023]
|
9
|
Tóth A, Fodor J, Vincze J, Oláh T, Juhász T, Zákány R, Csernoch L, Zádor E. The Effect of SERCA1b Silencing on the Differentiation and Calcium Homeostasis of C2C12 Skeletal Muscle Cells. PLoS One 2015; 10:e0123583. [PMID: 25893964 PMCID: PMC4404259 DOI: 10.1371/journal.pone.0123583] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/04/2015] [Indexed: 12/12/2022] Open
Abstract
The sarcoplasmic/endoplasmic reticulum Ca2+ATPases (SERCAs) are the main Ca2+ pumps which decrease the intracellular Ca2+ level by reaccumulating Ca2+ into the sarcoplasmic reticulum. The neonatal SERCA1b is the major Ca2+ pump in myotubes and young muscle fibers. To understand its role during skeletal muscle differentiation its synthesis has been interfered with specific shRNA sequence. Stably transfected clones showing significantly decreased SERCA1b expression (cloneC1) were selected for experiments. The expression of the regulatory proteins of skeletal muscle differentiation was examined either by Western-blot at the protein level for MyoD, STIM1, calsequestrin (CSQ), and calcineurin (CaN) or by RT-PCR for myostatin and MCIP1.4. Quantitative analysis revealed significant alterations in CSQ, STIM1, and CaN expression in cloneC1 as compared to control cells. To examine the functional consequences of the decreased expression of SERCA1b, repeated Ca2+-transients were evoked by applications of 120 mM KCl. The significantly higher [Ca2+]i measured at the 20th and 40th seconds after the beginning of KCl application (112±3 and 110±3 nM vs. 150±7 and 135±5 nM, in control and in cloneC1 cells, respectively) indicated a decreased Ca2+-uptake capability which was quantified by extracting the maximal pump rate (454±41 μM/s vs. 144±24 μM/s, in control and in cloneC1 cells). Furthermore, the rate of calcium release from the SR (610±60 vs. 377±64 μM/s) and the amount of calcium released (843±75 μM vs. 576±80 μM) were also significantly suppressed. These changes were also accompanied by a reduced activity of CaN in cells with decreased SERCA1b. In parallel, cloneC1 cells showed inhibited cell proliferation and decreased myotube nuclear numbers. Moreover, while cyclosporineA treatment suppressed the proliferation of parental cultures it had no effect on cloneC1 cells. SERCA1b is thus considered to play an essential role in the regulation of [Ca2+]i and its ab ovo gene silencing results in decreased skeletal muscle differentiation.
Collapse
Affiliation(s)
- Adrienn Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Vincze
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Juhász
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Róza Zákány
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- * E-mail:
| | - Ernő Zádor
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
10
|
The neonatal sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA1b): a neglected pump in scope. Pflugers Arch 2014; 467:1395-1401. [DOI: 10.1007/s00424-014-1671-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 01/03/2023]
|
11
|
Kósa M, Brinyiczki K, van Damme P, Goemans N, Hancsák K, Mendler L, Zádor E. The neonatal sarcoplasmic reticulum Ca2+-ATPase gives a clue to development and pathology in human muscles. J Muscle Res Cell Motil 2014; 36:195-203. [PMID: 25487304 DOI: 10.1007/s10974-014-9403-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/03/2014] [Indexed: 01/07/2023]
Abstract
The sarcoplasmic/endoplasmic reticulum calcium ATPase 1 (SERCA1) has two muscle specific splice isoforms; SERCA1a in fast-type adult and SERCA1b in neonatal and regenerating skeletal muscles. At the protein level the only difference between these two isoforms is that SERCA1a has C-terminal glycine while SERCA1b has an octapeptide tail instead. This makes the generation of a SERCA1a specific antibody not feasible. The switch between the two isoforms is a hallmark of differentiation so we describe here a method based on the signal ratios of the SERCA1b specific and pan SERCA1 antibodies to estimate the SERCA1b/SERCA1a dominance on immunoblot of human muscles. Using this method we showed that unlike in mouse and rat, SERCA1b was only expressed in pre-matured infant leg and arm muscles; it was replaced by SERCA1a in more matured neonatal muscles and was completely absent in human foetal and neonatal diaphragms. Interestingly, only SERCA1a and no SERCA1b were detected in muscles of 7-12 years old boys with Duchenne, a degenerative-regenerative muscular dystrophy. However, in adult patients with myotonic dystrophy type 2 (DM2), the SERCA1b dominated over SERCA1a. Thus the human SERCA1b has a different expression pattern from that of rodents and it is associated with DM2.
Collapse
Affiliation(s)
- Magdolna Kósa
- Department of Biochemistry, Faculty of General Medicine, University of Szeged, Dóm tér 9, H-6720, Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
12
|
Guglielmi V, Vattemi G, Gualandi F, Voermans NC, Marini M, Scotton C, Pegoraro E, Oosterhof A, Kósa M, Zádor E, Valente EM, De Grandis D, Neri M, Codemo V, Novelli A, van Kuppevelt TH, Dallapiccola B, van Engelen BG, Ferlini A, Tomelleri G. SERCA1 protein expression in muscle of patients with Brody disease and Brody syndrome and in cultured human muscle fibers. Mol Genet Metab 2013; 110:162-9. [PMID: 23911890 DOI: 10.1016/j.ymgme.2013.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/14/2013] [Accepted: 07/15/2013] [Indexed: 10/26/2022]
Abstract
Brody disease is an inherited myopathy associated with a defective function of sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase 1 (SERCA1) protein. Mutations in the ATP2A1 gene have been reported only in some patients. Therefore it has been proposed to distinguish patients with ATP2A1 mutations, Brody disease (BD), from patients without mutations, Brody syndrome (BS). We performed a detailed study of SERCA1 protein expression in muscle of patients with BD and BS, and evaluated the alternative splicing of SERCA1 in primary cultures of normal human muscle and in infant muscle. SERCA1 reactivity was observed in type 2 muscle fibers of patients with and without ATP2A1 mutations and staining intensity was similar in patients and controls. Immunoblot analysis showed a significant reduction of SERCA1 band in muscle of BD patients. In addition we demonstrated that the wild type and mutated protein exhibits similar solubility properties and that RIPA buffer improves the recovery of the wild type and mutated SERCA1 protein. We found that SERCA1b, the SERCA1 neonatal form, is the main protein isoform expressed in cultured human muscle fibers and infant muscle. Finally, we identified two novel heterozygous mutations within exon 3 of the ATP2A1 gene from a previously described patient with BD.
Collapse
Affiliation(s)
- Valeria Guglielmi
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Clinical Neurology, University of Verona, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
RNA-Seq identifies SNP markers for growth traits in rainbow trout. PLoS One 2012; 7:e36264. [PMID: 22574143 PMCID: PMC3344853 DOI: 10.1371/journal.pone.0036264] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 04/04/2012] [Indexed: 11/24/2022] Open
Abstract
Fast growth is an important and highly desired trait, which affects the profitability of food animal production, with feed costs accounting for the largest proportion of production costs. Traditional phenotype-based selection is typically used to select for growth traits; however, genetic improvement is slow over generations. Single nucleotide polymorphisms (SNPs) explain 90% of the genetic differences between individuals; therefore, they are most suitable for genetic evaluation and strategies that employ molecular genetics for selective breeding. SNPs found within or near a coding sequence are of particular interest because they are more likely to alter the biological function of a protein. We aimed to use SNPs to identify markers and genes associated with genetic variation in growth. RNA-Seq whole-transcriptome analysis of pooled cDNA samples from a population of rainbow trout selected for improved growth versus unselected genetic cohorts (10 fish from 1 full-sib family each) identified SNP markers associated with growth-rate. The allelic imbalances (the ratio between the allele frequencies of the fast growing sample and that of the slow growing sample) were considered at scores >5.0 as an amplification and <0.2 as loss of heterozygosity. A subset of SNPs (n = 54) were validated and evaluated for association with growth traits in 778 individuals of a three-generation parent/offspring panel representing 40 families. Twenty-two SNP markers and one mitochondrial haplotype were significantly associated with growth traits. Polymorphism of 48 of the markers was confirmed in other commercially important aquaculture stocks. Many markers were clustered into genes of metabolic energy production pathways and are suitable candidates for genetic selection. The study demonstrates that RNA-Seq at low sequence coverage of divergent populations is a fast and effective means of identifying SNPs, with allelic imbalances between phenotypes. This technique is suitable for marker development in non-model species lacking complete and well-annotated genome reference sequences.
Collapse
|
14
|
Hübner S, Efthymiadis A. Recent progress in histochemistry and cell biology. Histochem Cell Biol 2012; 137:403-57. [PMID: 22366957 DOI: 10.1007/s00418-012-0933-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2012] [Indexed: 01/06/2023]
Abstract
Studies published in Histochemistry and Cell Biology in the year 2011 represent once more a manifest of established and newly sophisticated techniques being exploited to put tissue- and cell type-specific molecules into a functional context. The review is therefore the Histochemistry and Cell Biology's yearly intention to provide interested readers appropriate summaries of investigations touching the areas of tissue biology, developmental biology, the biology of the immune system, stem cell research, the biology of subcellular compartments, in order to put the message of such studies into natural scientific-/human- and also pathological-relevant correlations.
Collapse
Affiliation(s)
- Stefan Hübner
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany.
| | | |
Collapse
|
15
|
|
16
|
Vandecaetsbeek I, Vangheluwe P, Raeymaekers L, Wuytack F, Vanoevelen J. The Ca2+ pumps of the endoplasmic reticulum and Golgi apparatus. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004184. [PMID: 21441596 DOI: 10.1101/cshperspect.a004184] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The various splice variants of the three SERCA- and the two SPCA-pump genes in higher vertebrates encode P-type ATPases of the P(2A) group found respectively in the membranes of the endoplasmic reticulum and the secretory pathway. Of these, SERCA2b and SPCA1a represent the housekeeping isoforms. The SERCA2b form is characterized by a luminal carboxy terminus imposing a higher affinity for cytosolic Ca(2+) compared to the other SERCAs. This is mediated by intramembrane and luminal interactions of this extension with the pump. Other known affinity modulators like phospholamban and sarcolipin decrease the affinity for Ca(2+). The number of proteins reported to interact with SERCA is rapidly growing. Here, we limit the discussion to those for which the interaction site with the ATPase is specified: HAX-1, calumenin, histidine-rich Ca(2+)-binding protein, and indirectly calreticulin, calnexin, and ERp57. The role of the phylogenetically older and structurally simpler SPCAs as transporters of Ca(2+), but also of Mn(2+), is also addressed.
Collapse
Affiliation(s)
- Ilse Vandecaetsbeek
- Laboratory of Ca-transport ATPases, Department of Molecular Cell Biology, K.U. Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
17
|
Silencing SERCA1b in a few fibers stimulates growth in the entire regenerating soleus muscle. Histochem Cell Biol 2010; 135:11-20. [DOI: 10.1007/s00418-010-0766-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2010] [Indexed: 11/26/2022]
|
18
|
Vangheluwe P, Sepúlveda MR, Missiaen L, Raeymaekers L, Wuytack F, Vanoevelen J. Intracellular Ca2+- and Mn2+-Transport ATPases. Chem Rev 2009; 109:4733-59. [DOI: 10.1021/cr900013m] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Peter Vangheluwe
- Laboratory of Ca2+-transport ATPases and Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - M. Rosario Sepúlveda
- Laboratory of Ca2+-transport ATPases and Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ludwig Missiaen
- Laboratory of Ca2+-transport ATPases and Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Luc Raeymaekers
- Laboratory of Ca2+-transport ATPases and Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Frank Wuytack
- Laboratory of Ca2+-transport ATPases and Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jo Vanoevelen
- Laboratory of Ca2+-transport ATPases and Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Ferretti R, Marques MJ, Pertille A, Santo Neto H. Sarcoplasmic-endoplasmic-reticulum Ca2+-ATPase and calsequestrin are overexpressed in spared intrinsic laryngeal muscles of dystrophin-deficientmdxmice. Muscle Nerve 2009; 39:609-15. [DOI: 10.1002/mus.21154] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Szabó A, Wuytack F, Zádor E. The effect of passive movement on denervated soleus highlights a differential nerve control on SERCA and MyHC isoforms. J Histochem Cytochem 2008; 56:1013-22. [PMID: 18678884 DOI: 10.1369/jhc.2008.951632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The sarco-endoplasmic reticulum Ca2+ ATP-ase (SERCA) and myosin heavy chain (MyHC) levels were measured in hindlimb-denervated and selectively denervated rat soleus muscles. Selective denervation allowed passive movement of the soleus, whereas hindlimb denervation rendered it to passivity. To minimize chronic effects, we followed the changes only for 2 weeks. Selective denervation resulted in less muscle atrophy, a faster slow-to-fast transition of MyHC isoforms, and less coordinated expressions of the slow vs fast isoforms of MyHC and SERCA. Generally, expression of the slow-twitch type SERCA2a was found to be less dependent, whereas the slow-twitch type MyHC1 was the most dependent on innervation. Our study shows that passive movement is able to ameliorate denervation-induced atrophy of the soleus and that it also accentuates the dyscoordination in the expression of the corresponding slow and fast isoforms of MyHC and SERCA.
Collapse
Affiliation(s)
- András Szabó
- Institute of Biochemistry, Faculty of General Medicine, University of Szeged, Szeged, Hungary
| | | | | |
Collapse
|
21
|
Esposito A, Germinario E, Zanin M, Palade PT, Betto R, Danieli-Betto D. Isoform switching in myofibrillar and excitation-contraction coupling proteins contributes to diminished contractile function in regenerating rat soleus muscle. J Appl Physiol (1985) 2007; 102:1640-8. [PMID: 17234797 DOI: 10.1152/japplphysiol.01397.2006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Postnatal development of skeletal muscle occurs through the progressive transformation of diverse biochemical, metabolic, morphological, and functional characteristics from the embryonic to the adult phenotype. Since muscle regeneration recapitulates postnatal development of muscle fiber, it offers an appropriate experimental model to investigate the existing relationships between diverse muscle functions and the expression of key protein isoforms, particularly at the single-fiber level. This study was carried out in regenerating soleus muscle 14 days after injury. At this intermediate stage, the regenerating muscle exhibited a recovery of mass greater than its force generation capacity. The lower specific tension of regenerating muscle suggested intrinsic defective excitation-contraction coupling and/or contractility processes. The presence of developmental isoforms of both the voltage-gated Ca2+channel (α1C) and of ryanodine receptor 3, paralleled by an abnormal caffeine contracture development, confirms the immature excitation-contraction coupling of the regenerating muscle. The defective Ca2+handling could also be confirmed by the lower sarcoplasmic reticulum caffeine sensitivity of regenerating single fibers. Also, regenerating single fibers revealed a lower maximal specific tension, which was associated with the residual presence of embryonic myosin heavy chains. Moreover, the fibers showed a reduced Ca2+sensitivity of myofibrillar proteins, particularly those simultaneously expressing the slow and fast isoforms of troponin C. The present results indicate that the expression of developmental proteins determines the incomplete functional recovery of regenerating soleus.
Collapse
Affiliation(s)
- Alessandra Esposito
- Department of Human Anatomy and Physiology, University of Padova, Padova, Italy
| | | | | | | | | | | |
Collapse
|