1
|
Ravindran S, Rau CD. The multifaceted role of mitochondria in cardiac function: insights and approaches. Cell Commun Signal 2024; 22:525. [PMID: 39472951 PMCID: PMC11523909 DOI: 10.1186/s12964-024-01899-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024] Open
Abstract
Cardiovascular disease (CVD) remains a global economic burden even in the 21st century with 85% of deaths resulting from heart attacks. Despite efforts in reducing the risk factors, and enhancing pharmacotherapeutic strategies, challenges persist in early identification of disease progression and functional recovery of damaged hearts. Targeting mitochondrial dysfunction, a key player in the pathogenesis of CVD has been less successful due to its role in other coexisting diseases. Additionally, it is the only organelle with an agathokakological function that is a remedy and a poison for the cell. In this review, we describe the origins of cardiac mitochondria and the role of heteroplasmy and mitochondrial subpopulations namely the interfibrillar, subsarcolemmal, perinuclear, and intranuclear mitochondria in maintaining cardiac function and in disease-associated remodeling. The cumulative evidence of mitochondrial retrograde communication with the nucleus is addressed, highlighting the need to study the genotype-phenotype relationships of specific organelle functions with CVD by using approaches like genome-wide association study (GWAS). Finally, we discuss the practicality of computational methods combined with single-cell sequencing technologies to address the challenges of genetic screening in the identification of heteroplasmy and contributory genes towards CVD.
Collapse
Affiliation(s)
- Sriram Ravindran
- Computational Medicine Program, Department of Genetics, and McAllister Heart Institute, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC-27599, USA
| | - Christoph D Rau
- Computational Medicine Program, Department of Genetics, and McAllister Heart Institute, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC-27599, USA.
| |
Collapse
|
2
|
Gao Y, Zou Y, Wu G, Zheng L. Oxidative stress and mitochondrial dysfunction of granulosa cells in polycystic ovarian syndrome. Front Med (Lausanne) 2023; 10:1193749. [PMID: 37448805 PMCID: PMC10336225 DOI: 10.3389/fmed.2023.1193749] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is one of the leading causes of anovulatory infertility in women, affecting 5%-15% of women of reproductive age worldwide. The clinical manifestations of patients include ovulation disorders, amenorrhea, hirsutism, and obesity. Life-threatening diseases, such as endometrial cancer, type 2 diabetes, hyperlipidaemia, hypertension, and cardiovascular disease, can be distant complications of PCOS. PCOS has diverse etiologies and oxidative stress (OS) plays an important role. Mitochondria, as the core organelles of energy production, are the main source of reactive oxygen species (ROS). The process of follicular growth and development is extremely complex, and the granulosa cells (GCs) are inextricably linked to follicular development. The abnormal function of GCs may directly affect follicular development and alter many symptoms of PCOS. Significantly higher levels of OS markers and abnormal mitochondrial function in GCs have been found in patients with PCOS compared to healthy subjects, suggesting that increased OS is associated with PCOS progression. Therefore, the aim of this review was to summarize and discuss the findings suggesting that OS and mitochondrial dysfunction in GCs impair ovarian function and induce PCOS.
Collapse
|
3
|
Higashitani A, Teranishi M, Nakagawa Y, Itoh Y, Sudevan S, Szewczyk NJ, Kubota Y, Abe T, Kobayashi T. Increased mitochondrial Ca 2+ contributes to health decline with age and Duchene muscular dystrophy in C. elegans. FASEB J 2023; 37:e22851. [PMID: 36935171 PMCID: PMC10946577 DOI: 10.1096/fj.202201489rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/21/2023]
Abstract
Sarcopenia is a geriatric syndrome characterized by an age-related decline in skeletal muscle mass and strength. Here, we show that suppression of mitochondrial calcium uniporter (MCU)-mediated Ca2+ influx into mitochondria in the body wall muscles of the nematode Caenorhabditis elegans improved the sarcopenic phenotypes, blunting movement and mitochondrial structural and functional decline with age. We found that normally aged muscle cells exhibited elevated resting mitochondrial Ca2+ levels and increased mitophagy to eliminate damaged mitochondria. Similar to aging muscle, we found that suppressing MCU function in muscular dystrophy improved movement via reducing elevated resting mitochondrial Ca2+ levels. Taken together, our results reveal that elevated resting mitochondrial Ca2+ levels contribute to muscle decline with age and muscular dystrophy. Further, modulation of MCU activity may act as a potential pharmacological target in various conditions involving muscle loss.
Collapse
Affiliation(s)
| | - Mika Teranishi
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Yui Nakagawa
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Yukou Itoh
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Surabhi Sudevan
- Medical Research Council (MRC) Versus Arthritis, Centre for Musculoskeletal Ageing Research, Royal Derby HospitalUniversity of NottinghamDerbyUK
| | - Nathaniel J. Szewczyk
- Medical Research Council (MRC) Versus Arthritis, Centre for Musculoskeletal Ageing Research, Royal Derby HospitalUniversity of NottinghamDerbyUK
- Ohio Musculoskeletal and Neurologic Institute, Heritage College of Osteopathic MedicineOhio UniversityAthensOhioUSA
| | | | - Takaaki Abe
- Division of Medical ScienceTohoku University Graduate School of Biomedical EngineeringSendaiJapan
- Department of Clinical Biology and Hormonal RegulationTohoku University Graduate School of MedicineSendaiJapan
| | | |
Collapse
|
4
|
Barnstable CJ, Zhang M, Tombran-Tink J. Uncoupling Proteins as Therapeutic Targets for Neurodegenerative Diseases. Int J Mol Sci 2022; 23:5672. [PMID: 35628482 PMCID: PMC9144266 DOI: 10.3390/ijms23105672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 02/05/2023] Open
Abstract
Most of the major retinal degenerative diseases are associated with significant levels of oxidative stress. One of the major sources contributing to the overall level of stress is the reactive oxygen species (ROS) generated by mitochondria. The driving force for ROS production is the proton gradient across the inner mitochondrial membrane. This gradient can be modulated by members of the uncoupling protein family, particularly the widely expressed UCP2. The overexpression and knockout studies of UCP2 in mice have established the ability of this protein to provide neuroprotection in a number of animal models of neurological disease, including retinal diseases. The expression and activity of UCP2 are controlled at the transcriptional, translational and post-translational levels, making it an ideal candidate for therapeutic intervention. In addition to regulation by a number of growth factors, including the neuroprotective factors LIF and PEDF, small molecule activators of UCP2 have been found to reduce mitochondrial ROS production and protect against cell death both in culture and animal models of retinal degeneration. Such studies point to the development of new therapeutics to combat a range of blinding retinal degenerative diseases and possibly other diseases in which oxidative stress plays a key role.
Collapse
Affiliation(s)
- Colin J. Barnstable
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA;
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China;
| | - Mingliang Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China;
| | - Joyce Tombran-Tink
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA;
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China;
| |
Collapse
|
5
|
Kumar R, T A, Singothu S, Singh SB, Bhandari V. Uncoupling proteins as a therapeutic target for the development of new era drugs against neurodegenerative disorder. Pharmacotherapy 2022; 147:112656. [DOI: 10.1016/j.biopha.2022.112656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/21/2022]
|
6
|
Szalanczy AM, Key CCC, Woods LCS. Genetic variation in satiety signaling and hypothalamic inflammation: merging fields for the study of obesity. J Nutr Biochem 2022; 101:108928. [PMID: 34936921 PMCID: PMC8959400 DOI: 10.1016/j.jnutbio.2021.108928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/08/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
Although obesity has been a longstanding health crisis, the genetic architecture of the disease remains poorly understood. Genome-wide association studies have identified many genomic loci associated with obesity, with genes being enriched in the brain, particularly in the hypothalamus. This points to the role of the central nervous system (CNS) in predisposition to obesity, and we emphasize here several key genes along the satiety signaling pathway involved in genetic susceptibility. Interest has also risen regarding the chronic, low-grade obesity-associated inflammation, with a growing concern toward inflammation in the hypothalamus as a precursor to obesity. Recent studies have found that genetic variation in inflammatory genes play a role in obesity susceptibility, and we highlight here several key genes. Despite the interest in the genetic variants of these pathways individually, there is a lack of research that investigates the relationship between the two. Understanding the interplay between genetic variation in obesity genes enriched in the CNS and inflammation genes will advance our understanding of obesity etiology and heterogeneity, improve genetic risk prediction analyses, and highlight new drug targets for the treatment of obesity. Additionally, this increased knowledge will assist in physician's ability to develop personalized nutrition and medication strategies for combating the obesity epidemic. Though it often seems to present universally, obesity is a highly individual disease, and there remains a need in the field to develop methods to treat at the individual level.
Collapse
|
7
|
Gomes MT, Bai Y, Potje SR, Zhang L, Lockett AD, Machado RF. Signal Transduction during Metabolic and Inflammatory Reprogramming in Pulmonary Vascular Remodeling. Int J Mol Sci 2022; 23:2410. [PMID: 35269553 PMCID: PMC8910500 DOI: 10.3390/ijms23052410] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by (mal)adaptive remodeling of the pulmonary vasculature, which is associated with inflammation, fibrosis, thrombosis, and neovascularization. Vascular remodeling in PAH is associated with cellular metabolic and inflammatory reprogramming that induce profound endothelial and smooth muscle cell phenotypic changes. Multiple signaling pathways and regulatory loops act on metabolic and inflammatory mediators which influence cellular behavior and trigger pulmonary vascular remodeling in vivo. This review discusses the role of bioenergetic and inflammatory impairments in PAH development.
Collapse
Affiliation(s)
- Marta T. Gomes
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; (Y.B.); (S.R.P.); (A.D.L.)
| | - Yang Bai
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; (Y.B.); (S.R.P.); (A.D.L.)
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Simone R. Potje
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; (Y.B.); (S.R.P.); (A.D.L.)
- Department of Biological Science, Minas Gerais State University (UEMG), Passos 37900-106, Brazil
| | - Lu Zhang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Angelia D. Lockett
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; (Y.B.); (S.R.P.); (A.D.L.)
| | - Roberto F. Machado
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; (Y.B.); (S.R.P.); (A.D.L.)
| |
Collapse
|
8
|
Rodriguez-Armenta C, Reyes-Zamora O, De la Re-Vega E, Sanchez-Paz A, Mendoza-Cano F, Mendez-Romero O, Gonzalez-Rios H, Muhlia-Almazan A. Adaptive mitochondrial response of the whiteleg shrimp Litopenaeus vannamei to environmental challenges and pathogens. J Comp Physiol B 2021; 191:629-644. [PMID: 33895873 DOI: 10.1007/s00360-021-01369-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/03/2021] [Accepted: 04/13/2021] [Indexed: 01/01/2023]
Abstract
In most eukaryotic organisms, mitochondrial uncoupling mechanisms control ATP synthesis and reactive oxygen species production. One such mechanism is the permeability transition of the mitochondrial inner membrane. In mammals, ischemia-reperfusion events or viral diseases may induce ionic disturbances, such as calcium overload; this cation enters the mitochondria, thereby triggering the permeability transition. This phenomenon increases inner membrane permeability, affects transmembrane potential, promotes mitochondrial swelling, and induces apoptosis. Previous studies have found that the mitochondria of some crustaceans do not exhibit a calcium-regulated permeability transition. However, in the whiteleg shrimp Litopenaeus vannamei, contradictory evidence has prevented this phenomenon from being confirmed or rejected. Both the ability of L. vannamei mitochondria to take up large quantities of calcium through a putative mitochondrial calcium uniporter with conserved characteristics and permeability transition were investigated in this study by determining mitochondrial responses to cations overload. By measuring mitochondrial swelling and transmembrane potential, we investigated whether shrimp exposure to hypoxia-reoxygenation events or viral diseases may induce mitochondrial permeability transition. The results of this study demonstrate that shrimp mitochondria take up large quantities of calcium through a canonical mitochondrial calcium uniporter. Neither calcium nor other ions were observed to promote permeability transition. This phenomenon does not depend on the life cycle stage of shrimp, and it is not induced during hypoxia/reoxygenation events or in the presence of viral diseases. The absence of the permeability transition phenomenon and its adaptive meaning are discussed as a loss with biological advantages, possibly enabling organisms to survive under harsh environmental conditions.
Collapse
Affiliation(s)
- Chrystian Rodriguez-Armenta
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., (CIAD), Carretera Gustavo Enrique Astiazaran Rosas 46, 83304, Hermosillo, Sonora, Mexico
| | - Orlando Reyes-Zamora
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., (CIAD), Carretera Gustavo Enrique Astiazaran Rosas 46, 83304, Hermosillo, Sonora, Mexico
| | - Enrique De la Re-Vega
- Department of Scientific and Technological Research, Universidad de Sonora (DICTUS), 83000, Hermosillo, Sonora, Mexico
| | - Arturo Sanchez-Paz
- Laboratorio de Virologia. Centro de Investigaciones Biologicas del Noroeste S.C. (CIBNOR), Calle Hermosa 101, Col. Los Angeles, 83106, Hermosillo, Sonora, Mexico
| | - Fernando Mendoza-Cano
- Laboratorio de Virologia. Centro de Investigaciones Biologicas del Noroeste S.C. (CIBNOR), Calle Hermosa 101, Col. Los Angeles, 83106, Hermosillo, Sonora, Mexico
| | - Ofelia Mendez-Romero
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., (CIAD), Carretera Gustavo Enrique Astiazaran Rosas 46, 83304, Hermosillo, Sonora, Mexico
| | - Humberto Gonzalez-Rios
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., (CIAD), Carretera Gustavo Enrique Astiazaran Rosas 46, 83304, Hermosillo, Sonora, Mexico
| | - Adriana Muhlia-Almazan
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., (CIAD), Carretera Gustavo Enrique Astiazaran Rosas 46, 83304, Hermosillo, Sonora, Mexico.
| |
Collapse
|
9
|
Datta S, Jaiswal M. Mitochondrial calcium at the synapse. Mitochondrion 2021; 59:135-153. [PMID: 33895346 DOI: 10.1016/j.mito.2021.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/28/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022]
Abstract
Mitochondria are dynamic organelles, which serve various purposes, including but not limited to the production of ATP and various metabolites, buffering ions, acting as a signaling hub, etc. In recent years, mitochondria are being seen as the central regulators of cellular growth, development, and death. Since neurons are highly specialized cells with a heavy metabolic demand, it is not surprising that neurons are one of the most mitochondria-rich cells in an animal. At synapses, mitochondrial function and dynamics is tightly regulated by synaptic calcium. Calcium influx during synaptic activity causes increased mitochondrial calcium influx leading to an increased ATP production as well as buffering of synaptic calcium. While increased ATP production is required during synaptic transmission, calcium buffering by mitochondria is crucial to prevent faulty neurotransmission and excitotoxicity. Interestingly, mitochondrial calcium also regulates the mobility of mitochondria within synapses causing mitochondria to halt at the synapse during synaptic transmission. In this review, we summarize the various roles of mitochondrial calcium at the synapse.
Collapse
Affiliation(s)
- Sayantan Datta
- Tata Institute of Fundamental Research, Hyderabad, India
| | - Manish Jaiswal
- Tata Institute of Fundamental Research, Hyderabad, India.
| |
Collapse
|
10
|
Gibhardt CS, Ezeriņa D, Sung HM, Messens J, Bogeski I. Redox regulation of the mitochondrial calcium transport machinery. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
De Miguel C, Hamrick WC, Sedaka R, Jagarlamudi S, Asico LD, Jose PA, Cuevas S. Uncoupling Protein 2 Increases Blood Pressure in DJ -1 Knockout Mice. J Am Heart Assoc 2020; 8:e011856. [PMID: 30995881 PMCID: PMC6512091 DOI: 10.1161/jaha.118.011856] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background The redox-sensitive chaperone DJ -1 and uncoupling protein 2 are protective against mitochondrial oxidative stress. We previously reported that renal-selective depletion and germline deletion of DJ -1 increases blood pressure in mice. This study aimed to determine the mechanisms involved in the oxidative stress-mediated hypertension in DJ -1 -/- mice. Methods and Results There were no differences in sodium excretion, renal renin expression, renal NADPH oxidase activity, and serum creatinine levels between DJ -1 -/- and wild-type mice. Renal expression of nitro-tyrosine, malondialdehyde, and urinary kidney injury marker-1 were increased in DJ -1 -/- mice relative to wild-type littermates. mRNA expression of mitochondrial heat shock protein 60 was also elevated in kidneys from DJ -1 -/- mice, indicating the presence of oxidative stress. Tempol-treated DJ -1 -/- mice presented higher serum nitrite/nitrate levels than vehicle-treated DJ -1 -/- mice, suggesting a role of the NO system in the high blood pressure of this model. Tempol treatment normalized renal kidney injury marker-1 and malondialdehyde expression as well as blood pressure in DJ -1 -/- mice, but had no effect in wild-type mice. The renal Ucp2 mRNA expression was increased in DJ -1 -/- mice versus wild-type and was also normalized by tempol. The renal-selective silencing of Ucp2 led to normalization of blood pressure and serum nitrite/nitrate ratio in DJ -1 -/- mice. Conclusions The deletion of DJ -1 leads to oxidative stress-induced hypertension associated with downregulation of NO function, and overexpression of Ucp2 in the kidney increases blood pressure in DJ -1 -/- mice. To our knowledge, this is the first report providing evidence of the role of uncoupling protein 2 in blood pressure regulation.
Collapse
Affiliation(s)
- Carmen De Miguel
- 1 Section of Cardio-Renal Physiology and Medicine Division of Nephrology Department of Medicine University of Alabama at Birmingham AL
| | - William C Hamrick
- 1 Section of Cardio-Renal Physiology and Medicine Division of Nephrology Department of Medicine University of Alabama at Birmingham AL
| | - Randee Sedaka
- 1 Section of Cardio-Renal Physiology and Medicine Division of Nephrology Department of Medicine University of Alabama at Birmingham AL
| | - Sudha Jagarlamudi
- 2 Division of Renal Diseases & Hypertension Department of Medicine The George Washington University School of Medicine and Health Sciences Washington DC
| | - Laureano D Asico
- 2 Division of Renal Diseases & Hypertension Department of Medicine The George Washington University School of Medicine and Health Sciences Washington DC
| | - Pedro A Jose
- 2 Division of Renal Diseases & Hypertension Department of Medicine The George Washington University School of Medicine and Health Sciences Washington DC
| | - Santiago Cuevas
- 3 Research Center for Genetic Medicine Children's National Health System Washington DC
| |
Collapse
|
12
|
Guvatova Z, Dalina A, Marusich E, Pudova E, Snezhkina A, Krasnov G, Kudryavtseva A, Leonov S, Moskalev A. Protective effects of carotenoid fucoxanthin in fibroblasts cellular senescence. Mech Ageing Dev 2020; 189:111260. [DOI: 10.1016/j.mad.2020.111260] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/27/2022]
|
13
|
Vultur A, Gibhardt CS, Stanisz H, Bogeski I. The role of the mitochondrial calcium uniporter (MCU) complex in cancer. Pflugers Arch 2018; 470:1149-1163. [PMID: 29926229 DOI: 10.1007/s00424-018-2162-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/14/2018] [Accepted: 05/30/2018] [Indexed: 01/07/2023]
Abstract
The important role of mitochondria in cancer biology is gaining momentum. With their regulation of cell survival, metabolism, basic cell building blocks, and immunity, among other functions, mitochondria affect not only cancer progression but also the response and resistance to current treatments. Calcium ions are constantly shuttled in and out of mitochondria; thus, playing an important role in the regulation of various cellular processes. The mitochondrial calcium uniporter (MCU) channel and its associated regulators transport calcium across the inner mitochondrial membrane to the mitochondrial matrix. Due to this central role and the capacity to affect cell behavior and fate, the MCU complex is being investigated in different cancers and cancer-related conditions. Here, we review current knowledge on the role of the MCU complex in multiple cancer types and models; we also provide a perspective for future research and clinical considerations.
Collapse
Affiliation(s)
- Adina Vultur
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Humboldtallee 23, 37073, Göttingen, Germany
| | - Christine S Gibhardt
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Humboldtallee 23, 37073, Göttingen, Germany
| | - Hedwig Stanisz
- Department of Dermatology, Venereology and Allergology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Humboldtallee 23, 37073, Göttingen, Germany.
| |
Collapse
|
14
|
Bayat G, Javan M, Khalili A, Safari F, Shokri S, Hajizadeh S. Chronic endurance exercise antagonizes the cardiac UCP2 and UCP3 protein up-regulation induced by nandrolone decanoate. J Basic Clin Physiol Pharmacol 2017; 28:609-614. [PMID: 28902623 DOI: 10.1515/jbcpp-2017-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/13/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND Several lines of evidence revealed that chronic treatment of anabolic androgenic steroids (AASs) is accompanied with some cardiovascular side effects and in addition they also negatively mask the beneficial effects of exercise training on cardiac performance. METHODS The present study examined whether the nandrolone decanoate (ND)-induced cardiac effects were mediated by changing the cardiac uncoupling protein 2 (UCP2) and 3 (UCP3) expression. Five groups of male wistar-albino rats including sedentary control (SC), sedentary vehicle (SV), sedentary nandrolone decanoate (SND), exercise control (EC), and exercise nandrolone decanoate (END) were used. ND was injected (10 mg/kg/week, intramuscular) to the animals in the SND and END groups and endurance exercise training was performed on a treadmill five times per week. RESULTS The protein expressions of cardiac UCP2 and UCP3 have significantly increased in both the SND and EC groups compared to the SC ones. In contrast to UCP3, no significant differences were found between UCP2 protein expressions of the END and SC groups. Compared with the SND group, the exercise training significantly decreased the UCP2 and UCP3 protein expressions in the END group. CONCLUSIONS The study has indicated that endurance exercise in combination with ND can result in that the exercise effectively antagonizes the effects of ND treatment on UCP2 and UCP3 up-regulation.
Collapse
|
15
|
Nowack J, Giroud S, Arnold W, Ruf T. Muscle Non-shivering Thermogenesis and Its Role in the Evolution of Endothermy. Front Physiol 2017; 8:889. [PMID: 29170642 PMCID: PMC5684175 DOI: 10.3389/fphys.2017.00889] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 10/20/2017] [Indexed: 01/20/2023] Open
Abstract
The development of sustained, long-term endothermy was one of the major transitions in the evolution of vertebrates. Thermogenesis in endotherms does not only occur via shivering or activity, but also via non-shivering thermogenesis (NST). Mammalian NST is mediated by the uncoupling protein 1 in the brown adipose tissue (BAT) and possibly involves an additional mechanism of NST in skeletal muscle. This alternative mechanism is based on Ca2+-slippage by a sarcoplasmatic reticulum Ca2+-ATPase (SERCA) and is controlled by the protein sarcolipin. The existence of muscle based NST has been discussed for a long time and is likely present in all mammals. However, its importance for thermoregulation was demonstrated only recently in mice. Interestingly, birds, which have evolved from a different reptilian lineage than mammals and lack UCP1-mediated NST, also exhibit muscle based NST under the involvement of SERCA, though likely without the participation of sarcolipin. In this review we summarize the current knowledge on muscle NST and discuss the efficiency of muscle NST and BAT in the context of the hypothesis that muscle NST could have been the earliest mechanism of heat generation during cold exposure in vertebrates that ultimately enabled the evolution of endothermy. We suggest that the evolution of BAT in addition to muscle NST was related to heterothermy being predominant among early endothermic mammals. Furthermore, we argue that, in contrast to small mammals, muscle NST is sufficient to maintain high body temperature in birds, which have enhanced capacities to fuel muscle NST by high rates of fatty acid import.
Collapse
Affiliation(s)
- Julia Nowack
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | - Sylvain Giroud
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | - Walter Arnold
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | - Thomas Ruf
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
16
|
Javadov S, Chapa-Dubocq X, Makarov V. Different approaches to modeling analysis of mitochondrial swelling. Mitochondrion 2017; 38:58-70. [PMID: 28802667 DOI: 10.1016/j.mito.2017.08.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/21/2017] [Accepted: 08/08/2017] [Indexed: 12/11/2022]
Abstract
Mitochondria are critical players involved in both cell life and death through multiple pathways. Structural integrity, metabolism and function of mitochondria are regulated by matrix volume due to physiological changes of ion homeostasis in cellular cytoplasm and mitochondria. Ca2+ and K+ presumably play a critical role in physiological and pathological swelling of mitochondria when increased uptake (influx)/decreased release (efflux) of these ions enhances osmotic pressure accompanied by high water accumulation in the matrix. Changes in the matrix volume in the physiological range have a stimulatory effect on electron transfer chain and oxidative phosphorylation to satisfy metabolic requirements of the cell. However, excessive matrix swelling associated with the sustained opening of mitochondrial permeability transition pores (PTP) and other PTP-independent mechanisms compromises mitochondrial function and integrity leading to cell death. The mechanisms of transition from reversible (physiological) to irreversible (pathological) swelling of mitochondria remain unknown. Mitochondrial swelling is involved in the pathogenesis of many human diseases such as neurodegenerative and cardiovascular diseases. Therefore, modeling analysis of the swelling process is important for understanding the mechanisms of cell dysfunction. This review attempts to describe the role of mitochondrial swelling in cell life and death and the main mechanisms involved in the maintenance of ion homeostasis and swelling. The review also summarizes and discusses different kinetic models and approaches that can be useful for the development of new models for better simulation and prediction of in vivo mitochondrial swelling.
Collapse
Affiliation(s)
- Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR, USA.
| | - Xavier Chapa-Dubocq
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR, USA
| | - Vladimir Makarov
- Department of Physics, Rio Piedras Campus, University of Puerto Rico, San Juan, PR, USA
| |
Collapse
|
17
|
Malli R, Graier WF. The Role of Mitochondria in the Activation/Maintenance of SOCE: The Contribution of Mitochondrial Ca 2+ Uptake, Mitochondrial Motility, and Location to Store-Operated Ca 2+ Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:297-319. [PMID: 28900921 DOI: 10.1007/978-3-319-57732-6_16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In most cell types, the depletion of internal Ca2+ stores triggers the activation of Ca2+ entry. This crucial phenomenon is known since the 1980s and referred to as store-operated Ca2+ entry (SOCE). With the discoveries of the stromal-interacting molecules (STIMs) and the Ca2+-permeable Orai channels as the long-awaited molecular constituents of SOCE, the role of mitochondria in controlling the activity of this particular Ca2+ entry pathway is kind of buried in oblivion. However, the capability of mitochondria to locally sequester Ca2+ at sites of Ca2+ release and entry was initially supposed to rule SOCE by facilitating the Ca2+ depletion of the endoplasmic reticulum and removing entering Ca2+ from the Ca2+-inhibitable channels, respectively. Moreover, the central role of these organelles in controlling the cellular energy metabolism has been linked to the activity of SOCE. Nevertheless, the exact molecular mechanisms by which mitochondria actually determine SOCE are still pretty obscure. In this essay we describe the complexity of the mitochondrial Ca2+ uptake machinery and its regulation, molecular components, and properties, which open new ways for scrutinizing the contribution of mitochondria to SOCE. Moreover, data concerning the variability of the morphology and cellular distribution of mitochondria as putative determinants of SOCE activation, maintenance, and termination are summarized.
Collapse
Affiliation(s)
- Roland Malli
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/6, 8010, Graz, Austria
| | - Wolfgang F Graier
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/6, 8010, Graz, Austria.
| |
Collapse
|
18
|
Nabben M, van Bree BWJ, Lenaers E, Hoeks J, Hesselink MKC, Schaart G, Gijbels MJJ, Glatz JFC, da Silva GJJ, de Windt LJ, Tian R, Mike E, Skapura DG, Wehrens XHT, Schrauwen P. Lack of UCP3 does not affect skeletal muscle mitochondrial function under lipid-challenged conditions, but leads to sudden cardiac death. Basic Res Cardiol 2014; 109:447. [PMID: 25344084 DOI: 10.1007/s00395-014-0447-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 10/07/2014] [Accepted: 10/15/2014] [Indexed: 12/29/2022]
Abstract
UCP3's exact physiological function in lipid handling in skeletal and cardiac muscle remains unknown. Interestingly, etomoxir, a fat oxidation inhibitor and strong inducer of UCP3, is proposed for treating both diabetes and heart failure. We hypothesize that the upregulation of UCP3 upon etomoxir serves to protect mitochondria against lipotoxicity. To evaluate UCP3's role in skeletal muscle (skm) and heart under lipid-challenged conditions, the effect of UCP3 ablation was examined in a state of dysbalance between fat availability and oxidative capacity. Wild type (WT) and UCP3(-/-) mice were subjected to high-fat feeding for 14 days. From day 6 onwards, they were given either saline or etomoxir. Etomoxir treatment induced an increase in markers of lipotoxicity in skm compared to saline. This increase upon etomoxir was similar for both, WT and UCP3(-/-) mice, suggesting that UCP3 does not play a role in protection against lipotoxicity. Interestingly, we observed 25 % mortality in UCP3(-/-)s upon etomoxir administration vs. 11 % in WTs. This increased mortality in UCP3(-/-) compared to WT mice could not be explained by differences in cardiac lipotoxicity, apoptosis, fibrosis (histology, immunohistochemistry), oxidative capacity (respirometry) or function (echocardiography). Electrophysiology demonstrated, however, prolonged QRS and QTc intervals and greater susceptibility to ventricular tachycardia upon programmed electrical stimulation in etomoxir-treated UCP3(-/-)s versus WTs. Isoproterenol administration after pacing resulted in 75 % mortality in UCP3(-/-)s vs. 14 % in WTs. Our results argue against a protective role for UCP3 on skm metabolism under lipid overload, but suggest UCP3 to be crucial in prevention of arrhythmias upon lipid-challenged conditions.
Collapse
Affiliation(s)
- Miranda Nabben
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Bianca W J van Bree
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Ellen Lenaers
- Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Joris Hoeks
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Matthijs K C Hesselink
- Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Gert Schaart
- Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marion J J Gijbels
- Department of Molecular Genetics, CARIM School for Cardiovascular Research, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jan F C Glatz
- Department of Molecular Genetics, CARIM School for Cardiovascular Research, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Gustavo J J da Silva
- Department of Cardiology, CARIM School for Cardiovascular Research, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Leon J de Windt
- Department of Cardiology, CARIM School for Cardiovascular Research, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Rong Tian
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, WA, USA
| | - Elise Mike
- Department of Molecular Physiology and Biophysics and Medicine (Cardiology), Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Darlene G Skapura
- Department of Molecular Physiology and Biophysics and Medicine (Cardiology), Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Xander H T Wehrens
- Department of Molecular Physiology and Biophysics and Medicine (Cardiology), Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Patrick Schrauwen
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
19
|
Docampo R, Vercesi AE, Huang G. Mitochondrial calcium transport in trypanosomes. Mol Biochem Parasitol 2014; 196:108-16. [PMID: 25218432 DOI: 10.1016/j.molbiopara.2014.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/22/2014] [Accepted: 09/02/2014] [Indexed: 01/26/2023]
Abstract
The biochemical peculiarities of trypanosomes were fundamental for the recent molecular identification of the long-sought channel involved in mitochondrial Ca(2+) uptake, the mitochondrial Ca(2+) uniporter or MCU. This discovery led to the finding of numerous regulators of the channel, which form a high molecular weight complex with MCU. Some of these regulators have been bioinformatically identified in trypanosomes, which are the first eukaryotic organisms described for which MCU is essential. In trypanosomes MCU is important for buffering cytosolic Ca(2+) changes and for activation of the bioenergetics of the cells. Future work on this pathway in trypanosomes promises further insight into the biology of these fascinating eukaryotes, as well as the potential for novel target discovery.
Collapse
Affiliation(s)
- Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA; Departamento de Patologia Clínica, State University of Campinas, Campinas 13083, SP, Brazil.
| | - Anibal E Vercesi
- Departamento de Patologia Clínica, State University of Campinas, Campinas 13083, SP, Brazil
| | - Guozhong Huang
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
20
|
Walrand S, Short KR, Heemstra LA, Novak CM, Levine JA, Coenen-Schimke JM, Nair KS. Altered regulation of energy homeostasis in older rats in response to thyroid hormone administration. FASEB J 2014; 28:1499-510. [PMID: 24344330 PMCID: PMC3929673 DOI: 10.1096/fj.13-239806] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/26/2013] [Indexed: 01/11/2023]
Abstract
Hyperthyroidism causes increased energy intake and expenditure, although anorexia and higher weight loss have been reported in elderly individuals with hyperthyroidism. To determine the effect of age on energy homeostasis in response to experimental hyperthyroidism, we administered 200 μg tri-iodothyronine (T3) in 7- and 27-mo-old rats for 14 d. T3 increased energy expenditure (EE) in both the young and the old rats, although the old rats lost more weight (147 g) than the young rats (58 g) because of the discordant effect of T3 on food intake, with a 40% increase in the young rats, but a 40% decrease in the old ones. The increased food intake in the young rats corresponded with a T3-mediated increase in the appetite-regulating proteins agouti-related peptide, neuropeptide Y, and uncoupling protein 2 in the hypothalamus, but no increase occurred in the old rats. Evidence of mitochondrial biogenesis in response to T3 was similar in the soleus muscle and heart of the young and old animals, but less consistent in old plantaris muscle and liver. Despite the comparable increase in EE, T3's effect on mitochondrial function was modulated by age in a tissue-specific manner. We conclude that older rats lack compensatory mechanisms to increase caloric intake in response to a T3-induced increase in EE, demonstrating a detrimental effect of age on energy homeostasis.
Collapse
Affiliation(s)
- Stephane Walrand
- 1Endocrinology Research Unit, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Fukumori R, Takarada T, Nakazato R, Fujikawa K, Kou M, Hinoi E, Yoneda Y. Selective inhibition by ethanol of mitochondrial calcium influx mediated by uncoupling protein-2 in relation to N-methyl-D-aspartate cytotoxicity in cultured neurons. PLoS One 2013; 8:e69718. [PMID: 23874988 PMCID: PMC3713054 DOI: 10.1371/journal.pone.0069718] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 06/11/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND We have shown the involvement of mitochondrial uncoupling protein-2 (UCP2) in the cytotoxicity by N-methyl-D-aspartate receptor (NMDAR) through a mechanism relevant to the increased mitochondrial Ca(2+) levels in HEK293 cells with acquired NMDAR channels. Here, we evaluated pharmacological profiles of ethanol on the NMDA-induced increase in mitochondrial Ca(2+) levels in cultured murine neocortical neurons. METHODOLOGY/PRINCIPAL FINDINGS In neurons exposed to glutamate or NMDA, a significant increase was seen in mitochondrial Ca(2+) levels determined by Rhod-2 at concentrations of 0.1 to 100 µM. Further addition of 250 mM ethanol significantly inhibited the increase by glutamate and NMDA in Rhod-2 fluorescence, while similarly potent inhibition of the NMDA-induced increase was seen after exposure to ethanol at 50 to 250 mM in cultured neurons. Lentiviral overexpression of UCP2 significantly accelerated the increase by NMDA in Rhod-2 fluorescence in neurons, without affecting Fluo-3 fluorescence for intracellular Ca(2+) levels. In neurons overexpressing UCP2, exposure to ethanol resulted in significantly more effective inhibition of the NMDA-induced increase in mitochondrial free Ca(2+) levels than in those without UCP2 overexpression, despite a similarly efficient increase in intracellular Ca(2+) levels irrespective of UCP2 overexpression. Overexpression of UCP2 significantly increased the number of dead cells in a manner prevented by ethanol in neurons exposed to glutamate. In HEK293 cells with NMDAR containing GluN2B subunit, more efficient inhibition was similarly induced by ethanol at 50 and 250 mM on the NMDA-induced increase in mitochondrial Ca(2+) levels than in those with GluN2A subunit. Decreased protein levels of GluN2B, but not GluN2A, subunit were seen in immunoprecipitates with UCP2 from neurons with brief exposure to ethanol at concentrations over 50 mM. CONCLUSIONS/SIGNIFICANCE Ethanol could inhibit the interaction between UCP2 and NMDAR channels to prevent the mitochondrial Ca(2+) incorporation and cell death after NMDAR activation in neurons.
Collapse
Affiliation(s)
- Ryo Fukumori
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
| | - Takeshi Takarada
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
| | - Ryota Nakazato
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
| | - Koichi Fujikawa
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
| | - Miki Kou
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
| | - Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
| | - Yukio Yoneda
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
- * E-mail:
| |
Collapse
|
22
|
Takarada T, Fukumori R, Yoneda Y. [Mitochondrial uncoupling protein-2 in glutamate neurotoxicity]. Nihon Yakurigaku Zasshi 2013; 142:13-16. [PMID: 23842222 DOI: 10.1254/fpj.142.13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|
23
|
Boyman L, Williams GSB, Khananshvili D, Sekler I, Lederer WJ. NCLX: the mitochondrial sodium calcium exchanger. J Mol Cell Cardiol 2013; 59:205-13. [PMID: 23538132 PMCID: PMC3951392 DOI: 10.1016/j.yjmcc.2013.03.012] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/15/2013] [Indexed: 11/18/2022]
Abstract
The free Ca(2+) concentration within the mitochondrial matrix ([Ca(2+)]m) regulates the rate of ATP production and other [Ca(2+)]m sensitive processes. It is set by the balance between total Ca(2+) influx (through the mitochondrial Ca(2+) uniporter (MCU) and any other influx pathways) and the total Ca(2+) efflux (by the mitochondrial Na(+)/Ca(2+) exchanger and any other efflux pathways). Here we review and analyze the experimental evidence reported over the past 40years which suggest that in the heart and many other mammalian tissues a putative Na(+)/Ca(2+) exchanger is the major pathway for Ca(2+) efflux from the mitochondrial matrix. We discuss those reports with respect to a recent discovery that the protein product of the human FLJ22233 gene mediates such Na(+)/Ca(2+) exchange across the mitochondrial inner membrane. Among its many functional similarities to other Na(+)/Ca(2+) exchanger proteins is a unique feature: it efficiently mediates Li(+)/Ca(2+) exchange (as well as Na(+)/Ca(2+) exchange) and was therefore named NCLX. The discovery of NCLX provides both the identity of a novel protein and new molecular means of studying various unresolved quantitative aspects of mitochondrial Ca(2+) movement out of the matrix. Quantitative and qualitative features of NCLX are discussed as is the controversy regarding the stoichiometry of the NCLX Na(+)/Ca(2+) exchange, the electrogenicity of NCLX, the [Na(+)]i dependency of NCLX and the magnitude of NCLX Ca(2+) efflux. Metabolic features attributable to NCLX and the physiological implication of the Ca(2+) efflux rate via NCLX during systole and diastole are also briefly discussed.
Collapse
Affiliation(s)
- Liron Boyman
- Center for Biomedical Engineering and Technology and Dept. Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - George S. B. Williams
- Center for Biomedical Engineering and Technology and Dept. Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
- School of Systems Biology, College of Science, George Mason University, Manassas, VA 20110
| | - Daniel Khananshvili
- Sackler School of Medicine, Department of Physiology and Pharmacology, Tel-Aviv University, Ramat-Aviv 69978, Israel
| | - Israel Sekler
- Goldman Medical School, Dept. Biology & Neurobiology, Ben Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
| | - W. J. Lederer
- Center for Biomedical Engineering and Technology and Dept. Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
24
|
Dromparis P, Paulin R, Sutendra G, Qi AC, Bonnet S, Michelakis ED. Uncoupling protein 2 deficiency mimics the effects of hypoxia and endoplasmic reticulum stress on mitochondria and triggers pseudohypoxic pulmonary vascular remodeling and pulmonary hypertension. Circ Res 2013; 113:126-36. [PMID: 23652801 DOI: 10.1161/circresaha.112.300699] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
RATIONALE Mitochondrial signaling regulates both the acute and the chronic response of the pulmonary circulation to hypoxia, and suppressed mitochondrial glucose oxidation contributes to the apoptosis-resistance and proliferative diathesis in the vascular remodeling in pulmonary hypertension. Hypoxia directly inhibits glucose oxidation, whereas endoplasmic reticulum (ER)-stress can indirectly inhibit glucose oxidation by decreasing mitochondrial calcium (Ca²⁺m levels). Both hypoxia and ER stress promote proliferative pulmonary vascular remodeling. Uncoupling protein 2 (UCP2) has been shown to conduct calcium from the ER to mitochondria and suppress mitochondrial function. OBJECTIVE We hypothesized that UCP2 deficiency reduces Ca²⁺m in pulmonary artery smooth muscle cells (PASMCs), mimicking the effects of hypoxia and ER stress on mitochondria in vitro and in vivo, promoting normoxic hypoxia inducible factor-1α activation and pulmonary hypertension. METHODS AND RESULTS Ucp2 knockout (KO)-PASMCs had lower mitochondrial calcium than Ucp2 wildtype (WT)-PASMCs at baseline and during histamine-stimulated ER-Ca²⁺ release. Normoxic Ucp2KO-PASMCs had mitochondrial hyperpolarization, lower Ca²⁺-sensitive mitochondrial enzyme activity, reduced levels of mitochondrial reactive oxygen species and Krebs' cycle intermediates, and increased resistance to apoptosis, mimicking the hypoxia-induced changes in Ucp2WT-PASMC. Ucp2KO mice spontaneously developed pulmonary vascular remodeling and pulmonary hypertension and exhibited a pseudohypoxic state with pulmonary vascular and systemic hypoxia inducible factor-1α activation (increased hematocrit), not exacerbated further by chronic hypoxia. CONCLUSIONS This first description of the role of UCP2 in oxygen sensing and in pulmonary hypertension vascular remodeling may open a new window in biomarker and therapeutic strategies.
Collapse
Affiliation(s)
- Peter Dromparis
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Mailloux RJ, Xuan JY, Beauchamp B, Jui L, Lou M, Harper ME. Glutaredoxin-2 is required to control proton leak through uncoupling protein-3. J Biol Chem 2013; 288:8365-8379. [PMID: 23335511 DOI: 10.1074/jbc.m112.442905] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Glutathionylation has emerged as a key modification required for controlling protein function in response to changes in cell redox status. Recently, we showed that the glutathionylation state of uncoupling protein-3 (UCP3) modulates the leak of protons back into the mitochondrial matrix, thus controlling reactive oxygen species production. However, whether or not UCP3 glutathionylation is mediated enzymatically has remained unknown because previous work relied on the use of pharmacological agents, such as diamide, to alter the UCP3 glutathionylation state. Here, we demonstrate that glutaredoxin-2 (Grx2), a matrix oxidoreductase, is required to glutathionylate and inhibit UCP3. Analysis of bioenergetics in skeletal muscle mitochondria revealed that knock-out of Grx2 (Grx2(-/-)) increased proton leak in a UCP3-dependent manner. These effects were reversed using diamide, a glutathionylation catalyst. Importantly, the increased leak did not compromise coupled respiration. Knockdown of Grx2 augmented proton leak-dependent respiration in primary myotubes from wild type mice, an effect that was absent in UCP3(-/-) cells. These results confirm that Grx2 deactivates UCP3 by glutathionylation. To our knowledge, this is the first enzyme identified to regulate UCP3 by glutathionylation and is the first study on the role of Grx2 in the regulation of energy metabolism.
Collapse
Affiliation(s)
- Ryan J Mailloux
- Department of Biochemistry, Immunology, and Microbiology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Jian Ying Xuan
- Department of Biochemistry, Immunology, and Microbiology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Brittany Beauchamp
- Department of Biochemistry, Immunology, and Microbiology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Linda Jui
- Department of Biochemistry, Immunology, and Microbiology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Marjorie Lou
- Center of Redox Biology and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska 68583
| | - Mary-Ellen Harper
- Department of Biochemistry, Immunology, and Microbiology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
26
|
Koshiba T. Mitochondrial-mediated antiviral immunity. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:225-32. [PMID: 22440325 DOI: 10.1016/j.bbamcr.2012.03.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/02/2012] [Accepted: 03/06/2012] [Indexed: 12/28/2022]
Abstract
Mitochondria, cellular powerhouses of eukaryotes, are known to act as central hubs for multiple signal transductions. Recent research reveals that mitochondria are involved in cellular innate antiviral immunity in vertebrates, particularly mammals. Mitochondrial-mediated antiviral immunity depends on the activation of the retinoic acid-inducible gene I (RIG-I)-like receptors signal transduction pathway and on the participation of a mitochondrial outer membrane adaptor protein, called the "mitochondrial antiviral signaling (MAVS)". In this review, we discuss unexpected discoveries that are revealing how the organelles contribute to the innate immune response against RNA viruses. This article is part of a Special Issue entitled: Mitochondrial dynamics and physiology.
Collapse
Affiliation(s)
- Takumi Koshiba
- Department of Biology, Kyushu University, Higashi-ku, Fukuoka, Japan.
| |
Collapse
|
27
|
Guo QY, Robson-Doucette CA, Allister EM, Wheeler MB. Inducible Deletion of UCP2 in Pancreatic β-Cells Enhances Insulin Secretion. Can J Diabetes 2012. [DOI: 10.1016/j.jcjd.2012.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Possible involvement of mitochondrial uncoupling protein-2 in cytotoxicity mediated by acquired N-methyl-d-aspartate receptor channels. Neurochem Int 2012; 61:498-505. [DOI: 10.1016/j.neuint.2012.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/22/2012] [Accepted: 03/24/2012] [Indexed: 01/08/2023]
|
29
|
Groschner LN, Waldeck-Weiermair M, Malli R, Graier WF. Endothelial mitochondria--less respiration, more integration. Pflugers Arch 2012; 464:63-76. [PMID: 22382745 PMCID: PMC3387498 DOI: 10.1007/s00424-012-1085-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 02/11/2012] [Indexed: 12/21/2022]
Abstract
Lining the inner surface of the circulatory system, the vascular endothelium accomplishes a vast variety of specialized functions. Even slight alterations of these functions are implicated in the development of certain cardiovascular diseases that represent major causes of morbidity and mortality in developed countries. Endothelial mitochondria are essential to the functional integrity of the endothelial cell as they integrate a wide range of cellular processes including Ca²⁺ handling, redox signaling and apoptosis, all of which are closely interrelated. Growing evidence supports the notion that impairment of mitochondrial signaling in the endothelium is an early event and a causative factor in the development of diseases such as atherosclerosis or diabetic complications. In this review, we want to outline the significance of mitochondria in both physiology and pathology of the vascular endothelium.
Collapse
Affiliation(s)
- Lukas N. Groschner
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Markus Waldeck-Weiermair
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Roland Malli
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Wolfgang F. Graier
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| |
Collapse
|
30
|
Orhan N, Kucukali CI, Cakir U, Seker N, Aydin M. Genetic variants in nuclear-encoded mitochondrial proteins are associated with oxidative stress in obsessive compulsive disorders. J Psychiatr Res 2012; 46:212-8. [PMID: 22070905 DOI: 10.1016/j.jpsychires.2011.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 08/04/2011] [Accepted: 09/27/2011] [Indexed: 10/15/2022]
Abstract
Obsessive compulsive disorder is a common psychiatric disorder defined by the presence of obsessive thoughts and repetitive compulsive actions. The mutations or polymorphic variants in mitochondrial DNA-encoded genes or nuclear genes result in oxidative stress, which has recently been associated with various psychiatric disorders. In order to understand the association of mitochondrial disorders with oxidative stress in obsessive compulsive disorder, we examined genetic variants of manganese superoxide dismutase and uncouple-2 antioxidant genes and malondialdehyde and glutathione, markers of oxidative stress. The study sample comprised 104 patients with OCD and 110 healthy controls. For manganese superoxide dismutase, the frequencies of CT (Ala/Val) genotype (p < 0.01) in patients were significantly lower than those of controls. In contrast, CC (Ala/Ala) genotype was significantly more frequent in patients than controls (p < 0.05). For uncouple-2 I/D, the frequencies of ID genotype (p < 0.01) and I allele (p < 0.05) were lower in patients as compared with controls. In contrast, DD genotype was more prevalent in patients than controls (p < 0.01). While whole blood glutathione was significantly diminished (p < 0.0001), serum malondialdehyde was significantly elevated in patients compared with controls (p < 0.0001). Malondialdehyde levels were significantly elevated in subjects with DD genotype of UCP-2 I/D (p < 0.05) and CC genotype of manganese superoxide dismutase (p < 0.05) as compared with II or ID and TT or CT genotype, respectively. Malondialdehyde levels in patients carrying CC (p < 0.05) or CT (p < 0.05) genotype were significantly higher than those of carrying TT genotype. In conclusion, CC genotype of manganese superoxide dismutase or DD genotype of UCP-2 might result in mitochondrial disorders by increasing oxidative stress in obsessive compulsive disorders.
Collapse
Affiliation(s)
- Nurcan Orhan
- Department of Neuroscience, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | | | | | | | | |
Collapse
|
31
|
Nukitrangsan N, Okabe T, Toda T, Inafuku M, Iwasaki H, Oku H. Effect of Peucedanum japonicum Thunb Extract on High-fat Diet-induced Obesity and Gene Expression in Mice. J Oleo Sci 2012; 61:89-101. [DOI: 10.5650/jos.61.89] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Chikando AC, Kettlewell S, Williams GS, Smith G, Lederer WJ. Ca2+ dynamics in the mitochondria - state of the art. J Mol Cell Cardiol 2011; 51:627-31. [PMID: 21864537 PMCID: PMC3814218 DOI: 10.1016/j.yjmcc.2011.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/05/2011] [Accepted: 08/06/2011] [Indexed: 01/24/2023]
Abstract
The importance of [Ca2+] in the mitochondrial matrix, [Ca2+]mito, had been proposed by early work of Carafoli and others [1 ], [2 ] and [3 ]. The key suggestion in the 1970s [4 ] was that regulatory [Ca2+]mito played a role in controlling the rate of activation of tricarboxylic acid cycle dehydrogenases, important in the regulation of ATP production by the electron transport chain (ETC) during oxidative phosphorylation. This view is now established [5 ] and [6 ] and the key questions currently debated are to what extent do the mitochondria acquire and release Ca2+, and what impact do mitochondria have on the dynamic Ca2+ signal in the cardiac ventricular myocyte [7 ]. Although investigations of Ca2+ dynamics in mitochondria have been problematic, disparate and inconclusive, they have also been both provocative and exciting. A recent special issue of this journal presented contrasting perspectives on the speed, extent and mechanisms of changes in [Ca2+]mito, and how these changes may influence cellular spatio-temporal [Ca2+]i dynamics [8 ]. An audio discussion is also available online [9 ]. The uncertain nature of the signaling pathways is noted in Table 1 (see below) which shows mitochondrial proteins and processes that are of current focus and which remain contentious. Each of the “items” listed is largely unsettled, or is a “work in progress”. There may be advocates for opposing positions noted or recent discoveries that must still be tested at multiple levels by diverse laboratories. Currently, the first item, the mitochondrial sodium/calcium exchanger (NCLX) [10 ], appears the most solid with respect to the molecular identification and physiological function, whereas, the recently described candidates of the mitochondrial Ca2+ uniporter (MCU) [11 ] and [12 ] still need to be verified and broadly examined by the scientific community.
Collapse
|
33
|
Kambe Y, Nakamichi N, Takarada T, Fukumori R, Nakazato R, Hinoi E, Yoneda Y. A possible pivotal role of mitochondrial free calcium in neurotoxicity mediated by N-methyl-d-aspartate receptors in cultured rat hippocampal neurons. Neurochem Int 2011; 59:10-20. [PMID: 21669242 DOI: 10.1016/j.neuint.2011.03.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 03/11/2011] [Accepted: 03/23/2011] [Indexed: 01/03/2023]
Abstract
We have previously shown that mitochondrial membrane potential disruption is involved in mechanisms underlying differential vulnerabilities to the excitotoxicity mediated by N-methyl-d-aspartate (NMDA) receptors between primary cultured neurons prepared from rat cortex and hippocampus. To further elucidate the role of mitochondria in the excitotoxicity after activation of NMDA receptors, neurons were loaded with the fluorescent dye calcein diffusible in the cytoplasm and organelles for determination of the activity of mitochondrial permeability transition pore (mPTP) responsible for the leakage of different mitochondrial molecules. The addition of CoCl(2) similarly quenched the intracellular fluorescence except mitochondria in both cultured neurons, while further addition of NMDA led to a leakage of the dye into the cytoplasm in hippocampal neurons only. An mPTP inhibitor prevented the NMDA-induced loss of viability in hippocampal neurons, while an activator of mPTP induced a similarly potent loss of viability in cortical and hippocampal neurons. Although NMDA was more effective in increasing rhodamine-2 fluorescence as a mitochondrial calcium indicator in hippocampal than cortical neurons, a mitochondrial calcium uniporter inhibitor significantly prevented the NMDA-induced loss of viability in hippocampal neurons. Expression of mRNA was significantly higher for the putative uniporter uncoupling protein-2 in hippocampal than cortical neurons. These results suggest that mitochondrial calcium uniporter would be at least in part responsible for the NMDA neurotoxicity through a mechanism relevant to promotion of mPTP orchestration in hippocampal neurons.
Collapse
Affiliation(s)
- Yuki Kambe
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa 920-1192, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Waldeck-Weiermair M, Jean-Quartier C, Rost R, Khan MJ, Vishnu N, Bondarenko AI, Imamura H, Malli R, Graier WF. Leucine zipper EF hand-containing transmembrane protein 1 (Letm1) and uncoupling proteins 2 and 3 (UCP2/3) contribute to two distinct mitochondrial Ca2+ uptake pathways. J Biol Chem 2011; 286:28444-55. [PMID: 21613221 PMCID: PMC3151087 DOI: 10.1074/jbc.m111.244517] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cytosolic Ca2+ signals are transferred into mitochondria over a huge concentration range. In our recent work we described uncoupling proteins 2 and 3 (UCP2/3) to be fundamental for mitochondrial uptake of high Ca2+ domains in mitochondria-ER junctions. On the other hand, the leucine zipper EF hand-containing transmembrane protein 1 (Letm1) was identified as a mitochondrial Ca2+/H+ antiporter that achieved mitochondrial Ca2+ sequestration at small Ca2+ increases. Thus, the contributions of Letm1 and UCP2/3 to mitochondrial Ca2+ uptake were compared in endothelial cells. Knock-down of Letm1 did not affect the UCP2/3-dependent mitochondrial uptake of intracellularly released Ca2+ but strongly diminished the transfer of entering Ca2+ into mitochondria, subsequently, resulting in a reduction of store-operated Ca2+ entry (SOCE). Knock-down of Letm1 and UCP2/3 did neither impact on cellular ATP levels nor the membrane potential. The enhanced mitochondrial Ca2+ signals in cells overexpressing UCP2/3 rescued SOCE upon Letm1 knock-down. In digitonin-permeabilized cells, Letm1 exclusively contributed to mitochondrial Ca2+ uptake at low Ca2+ conditions. Neither the Letm1- nor the UCP2/3-dependent mitochondrial Ca2+ uptake was affected by a knock-down of mRNA levels of mitochondrial calcium uptake 1 (MICU1), a protein that triggers mitochondrial Ca2+ uptake in HeLa cells. Our data indicate that Letm1 and UCP2/3 independently contribute to two distinct, mitochondrial Ca2+ uptake pathways in intact endothelial cells.
Collapse
Affiliation(s)
- Markus Waldeck-Weiermair
- Institute of Molecular Biology and Biochemistry, Molecular and Cellular Physiology Research Unit, Center of Molecular Medicine, Medical University Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Joubert R, Métayer-Coustard S, Crochet S, Cailleau-Audouin E, Dupont J, Duclos MJ, Tesseraud S, Collin A. Regulation of the expression of the avian uncoupling protein 3 by isoproterenol and fatty acids in chick myoblasts: possible involvement of AMPK and PPARalpha? Am J Physiol Regul Integr Comp Physiol 2011; 301:R201-8. [PMID: 21508290 DOI: 10.1152/ajpregu.00087.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The avian uncoupling protein 3 (UCP3), mainly expressed in muscle tissue, could be involved in fatty acid (FA) metabolism, limitation of reactive oxygen species production, and/or nonshivering thermogenesis. We recently demonstrated that UCP3 mRNA expression was increased by isoproterenol (Iso), a β-agonist, in chicken Pectoralis major. This upregulation was associated with changes in FA metabolism and variations in the activation of AMP-activated protein kinase (AMPK) and in the expression of the transcription factors peroxisome proliferator-activated receptor (PPAR)α, PPARβ/δ, and PPARγ coactivator-1α (PGC-1α). The aim of the present study was to elucidate the mechanisms involving AMPK and PPARα in UCP3 regulation in primary cultures of chick myoblasts. Avian UCP3 mRNA expression, associated with p38 mitogen-activated protein kinase (p38 MAPK) activation, was increased by Iso and/or FAs. The PKA pathway mediated the effects of Iso on UCP3 expression. FA stimulation also led to AMPK activation. Furthermore, the direct involvement of AMPK on UCP3 regulation was shown by using 5-aminoimidazole-4-carboxyamide ribonucleoside and Compound C. The use of the p38 MAPK inhibitor SB202190, which was associated with AMPK activation, also dramatically enhanced UCP3 mRNA expression. Finally the PPARα agonist WY-14643 strongly increased UCP3 mRNA expression. This study highlights the control of UCP3 expression by the β-adrenergic system and FA in chick myoblasts and demonstrates that its expression is directly regulated by AMPK and by PPARα. Overexpression of avian UCP3 might modulate energy utilization or limit oxidative stress when mitochondrial metabolism of FA is triggered by catecholamines.
Collapse
Affiliation(s)
- Romain Joubert
- INRA, UR83 Recherches Avicoles, F-37380 Nouzilly, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Waldeck-Weiermair M, Duan X, Naghdi S, Khan MJ, Trenker M, Malli R, Graier WF. Uncoupling protein 3 adjusts mitochondrial Ca(2+) uptake to high and low Ca(2+) signals. Cell Calcium 2010; 48:288-301. [PMID: 21047682 PMCID: PMC2998676 DOI: 10.1016/j.ceca.2010.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 10/07/2010] [Indexed: 12/12/2022]
Abstract
Uncoupling proteins 2 and 3 (UCP2/3) are essential for mitochondrial Ca2+ uptake but both proteins exhibit distinct activities in regard to the source and mode of Ca2+ mobilization. In the present work, structural determinants of their contribution to mitochondrial Ca2+ uptake were explored. Previous findings indicate the importance of the intermembrane loop 2 (IML2) for the contribution of UCP2/3. Thus, the IML2 of UCP2/3 was substituted by that of UCP1. These chimeras had no activity in mitochondrial uptake of intracellularly released Ca2+, while they mimicked the wild-type proteins by potentiating mitochondrial sequestration of entering Ca2+. Alignment of the IML2 sequences revealed that UCP1, UCP2 and UCP3 share a basic amino acid in positions 163, 164 and 167, while only UCP2 and UCP3 contain a second basic residue in positions 168 and 171, respectively. Accordingly, mutants of UCP3 in positions 167 and 171/172 were made. In permeabilized cells, these mutants exhibited distinct Ca2+ sensitivities in regard to mitochondrial Ca2+ sequestration. In intact cells, these mutants established different activities in mitochondrial uptake of either intracellularly released (UCP3R171,E172) or entering (UCP3R167) Ca2+. Our data demonstrate that distinct sites in the IML2 of UCP3 effect mitochondrial uptake of high and low Ca2+ signals.
Collapse
|
37
|
Naghdi S, Waldeck-Weiermair M, Fertschai I, Poteser M, Graier WF, Malli R. Mitochondrial Ca2+ uptake and not mitochondrial motility is required for STIM1-Orai1-dependent store-operated Ca2+ entry. J Cell Sci 2010; 123:2553-64. [DOI: 10.1242/jcs.070151] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Store-operated Ca2+ entry (SOCE) is established by formation of subplasmalemmal clusters of the endoplasmic reticulum (ER) protein, stromal interacting molecule 1 (STIM1) upon ER Ca2+ depletion. Thereby, STIM1 couples to plasma membrane channels such as Orai1. Thus, a close proximity of ER domains to the plasma membrane is a prerequisite for SOCE activation, challenging the concept of local Ca2+ buffering by mitochondria as being essential for SOCE. This study assesses the impact of mitochondrial Ca2+ handling and motility on STIM1–Orai1-dependent SOCE. High-resolution microscopy showed only 10% of subplasmalemmal STIM1 clusters to be colocalized with mitochondria. Impairments of mitochondrial Ca2+ handling by inhibition of mitochondrial Na+-Ca2+ exchanger (NCXmito) or depolarization only partially suppressed Ca2+ entry in cells overexpressing STIM1-Orai1. However, SOCE was completely abolished when both NCXmito was inhibited and the inner mitochondrial membrane was depolarized, in STIM1- and Orai1-overexpressing cells. Immobilization of mitochondria by expression of mAKAP-RFP-CAAX, a construct that physically links mitochondria to the plasma membrane, affected the Ca2+ handling of the organelles but not the activity of SOCE. Our observations indicate that mitochondrial Ca2+ uptake, including reversal of NCXmito, is fundamental for STIM1–Orai1-dependent SOCE, whereas the proximity of mitochondria to STIM1-Orai1 SOCE units and their motility is not required.
Collapse
Affiliation(s)
- Shamim Naghdi
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Markus Waldeck-Weiermair
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Ismene Fertschai
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Michael Poteser
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Wolfgang F. Graier
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Roland Malli
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
38
|
Peixoto PM, Ryu SY, Kinnally KW. Mitochondrial ion channels as therapeutic targets. FEBS Lett 2010; 584:2142-52. [PMID: 20178788 PMCID: PMC2872129 DOI: 10.1016/j.febslet.2010.02.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/12/2010] [Accepted: 02/16/2010] [Indexed: 12/31/2022]
Abstract
The study of mitochondrial ion channels changed our perception of these double-wrapped organelles from being just the power house of a cell to the guardian of a cell's fate. Mitochondria communicate with the cell through these special channels. Most of the time, the message is encoded by ion flow across the mitochondrial outer and inner membranes. Potassium, sodium, calcium, protons, nucleotides, and proteins traverse the mitochondrial membranes in an exquisitely regulated manner to control a myriad of processes, from respiration and mitochondrial morphology to cell proliferation and cell death. This review is an update on both well established and putative mitochondrial channels regarding their composition, function, regulation, and therapeutic potential.
Collapse
Affiliation(s)
| | - Shin-Young Ryu
- New York University College of Dentistry, New York, NY, 10002
| | | |
Collapse
|
39
|
The contribution of UCP2 and UCP3 to mitochondrial Ca(2+) uptake is differentially determined by the source of supplied Ca(2+). Cell Calcium 2010; 47:433-40. [PMID: 20403634 DOI: 10.1016/j.ceca.2010.03.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 03/08/2010] [Accepted: 03/15/2010] [Indexed: 11/21/2022]
Abstract
The transmission of Ca(2+) signals to mitochondria is an important phenomenon in cell signaling. We have recently reported that the novel uncoupling proteins UCP2 and UCP3 (UCP2/3) are fundamental for mitochondrial Ca(2+) uniport (MCU). In the present study we investigate the contribution of UCP2/3 to mitochondrial accumulation of Ca(2+) either exclusively released from the ER or entering the cell via the store-operated Ca(2+) entry (SOCE) pathway. Using siRNA we demonstrate that constitutively expressed UCP2/3 are essentially involved in mitochondrial sequestration of intracellularly released Ca(2+) but not of that entering the cells via SOCE. However, overexpression of UCP2/3 yielded elevated mitochondrial Ca(2+) uptake from both sources, though it was more pronounced in case of entering Ca(2+), indicating that the expression levels of UCP2/3 are crucial for the capacity of mitochondria to sequester entering Ca(2+). Our data point to distinct UCP2/3-dependent and UCP2/3-independent modes of mitochondrial Ca(2+) sequestration, which may meet the various demands necessary for an adequate organelle Ca(2+) loading from different Ca(2+) sources in intact cells.
Collapse
|
40
|
Joubert R, Métayer Coustard S, Swennen Q, Sibut V, Crochet S, Cailleau-Audouin E, Buyse J, Decuypere E, Wrutniak-Cabello C, Cabello G, Tesseraud S, Collin A. The beta-adrenergic system is involved in the regulation of the expression of avian uncoupling protein in the chicken. Domest Anim Endocrinol 2010; 38:115-25. [PMID: 19782502 DOI: 10.1016/j.domaniend.2009.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/16/2009] [Accepted: 08/05/2009] [Indexed: 12/31/2022]
Abstract
Avian uncoupling protein (avUCP) is orthologous to UCP3, which is suggested to be involved in fatty acid metabolism and to limit the mitochondrial production of reactive oxygen species in mammals. In the chicken, the role and regulation of avUCP remain to be clarified. The aim of this study was to explore the control of avUCP expression by the beta-adrenergic system, known to be involved in avian thermoregulation and lipid utilization, and in UCP expression in mammals. Therefore, we measured the expression of avUCP mRNA and protein in the Pectoralis major muscle of chickens injected with the beta(2) agonist isoproterenol, and we investigated the potential pathways involved in the regulation of avUCP mRNA expression. Avian UCP mRNA expression was increased 7-fold 4h after isoproterenol injection, leading to a tendency to a 40% increase in avUCP protein 24h post-injection. This increase was preceded, 30 min after isoproterenol injection, by changes in the chicken thyroid status and in the muscular expression of PPARalpha, PPARbeta/delta, and PPARgamma coactivator-1alpha (PGC-1alpha). Moreover, the analysis of the avUCP promoter sequence suggested potential binding sites for PPARs and for thyroid hormone receptors. We also detected the activation of AMP-activated protein kinase, which has recently been reported to be involved in UCP3 regulation in mammals. This study presents for the first time evidence of beta-adrenergic control on avUCP messenger expression in chicken muscle and suggests the potential involvement of AMPK and several transcription factors in this regulation.
Collapse
Affiliation(s)
- R Joubert
- INRA, UR83 Recherches Avicoles, 37380 Nouzilly, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ryu SY, Beutner G, Dirksen RT, Kinnally KW, Sheu SS. Mitochondrial ryanodine receptors and other mitochondrial Ca2+ permeable channels. FEBS Lett 2010; 584:1948-55. [PMID: 20096690 DOI: 10.1016/j.febslet.2010.01.032] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Revised: 01/11/2010] [Accepted: 01/18/2010] [Indexed: 01/06/2023]
Abstract
Ca(2+) channels that underlie mitochondrial Ca(2+) transport first reported decades ago have now just recently been precisely characterized electrophysiologically. Numerous data indicate that mitochondrial Ca(2+) uptake via these channels regulates multiple intracellular processes by shaping cytosolic and mitochondrial Ca(2+) transients, as well as altering the cellular metabolic and redox state. On the other hand, mitochondrial Ca(2+) overload also initiates a cascade of events that leads to cell death. Thus, characterization of mitochondrial Ca(2+) channels is central to a comprehensive understanding of cell signaling. Here, we discuss recent progresses in the biophysical and electrophysiological characterization of several distinct mitochondrial Ca(2+) channels.
Collapse
Affiliation(s)
- Shin-Young Ryu
- Department of Pharmacology and Physiology, and Mitochondrial Research Innovation Group, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
42
|
Mitochondrial Ca2+ channels: Great unknowns with important functions. FEBS Lett 2010; 584:1942-7. [PMID: 20074570 DOI: 10.1016/j.febslet.2010.01.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 12/30/2009] [Accepted: 01/05/2010] [Indexed: 01/31/2023]
Abstract
Mitochondria process local and global Ca(2+) signals. Thereby the spatiotemporal patterns of mitochondrial Ca(2+) signals determine whether the metabolism of these organelles is adjusted or cell death is executed. Mitochondrial Ca(2+) channels of the inner mitochondrial membrane (IMM) actually implement mitochondrial uptake from cytosolic Ca(2+) rises. Despite great efforts in the past, the identity of mitochondrial Ca(2+) channels is still elusive. Numerous studies aimed to characterize mitochondrial Ca(2+) uniport channels and provided a detailed profile of these great unknowns with important functions. This mini-review revisits previous research on the mechanisms of mitochondrial Ca(2+) uptake and aligns them with most recent findings.
Collapse
|
43
|
Abstract
Myocardial ischemia/reperfusion (IR) injury leads to structural changes in the heart muscle later followed by functional decline due to progressive fibrous replacement. Hence approaches to minimize IR injury are devised, including ischemic pre-and postconditioning. Mild uncoupling of oxidative phosphorylation is one of the mechanisms suggested to be cardioprotective as chemical uncoupling mimics ischemic preconditioning. Uncoupling protein 2 is proposed to be the physiological counterpart of chemical uncouplers and is thought to be a part of the protective machinery of cardiomyocytes. Morphological changes in the mitochondrial network likely accompany the uncoupling with mitochondrial fission dampening the signals leading to cardiomyocyte death. Here we review recent data on the role of uncoupling in cardioprotection and propose that low concentrations of dietary polyphenols may elicit the same cardioprotective effect as dinitrophenol and FCCP, perhaps accounting for the famed "French paradox".
Collapse
Affiliation(s)
- Martin Modrianský
- Institute of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hnevotinska 3, 775 15, Olomouc, Czech Republic.
| | | |
Collapse
|
44
|
Mitochondrial calcium transport in the heart: Physiological and pathological roles. J Mol Cell Cardiol 2009; 46:789-803. [DOI: 10.1016/j.yjmcc.2009.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 02/28/2009] [Accepted: 03/03/2009] [Indexed: 12/20/2022]
|
45
|
Michels G, Khan IF, Endres-Becker J, Rottlaender D, Herzig S, Ruhparwar A, Wahlers T, Hoppe UC. Regulation of the Human Cardiac Mitochondrial Ca
2+
Uptake by 2 Different Voltage-Gated Ca
2+
Channels. Circulation 2009; 119:2435-43. [DOI: 10.1161/circulationaha.108.835389] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background—
Impairment of intracellular Ca
2+
homeostasis and mitochondrial function has been implicated in the development of cardiomyopathy. Mitochondrial Ca
2+
uptake is thought to be mediated by the Ca
2+
uniporter (MCU) and a thus far speculative non-MCU pathway. However, the identity and properties of these pathways are a matter of intense debate, and possible functional alterations in diseased states have remained elusive.
Methods and Results—
By patch clamping the inner membrane of mitochondria from nonfailing and failing human hearts, we have identified 2 previously unknown Ca
2+
-selective channels, referred to as mCa1 and mCa2. Both channels are voltage dependent but differ significantly in gating parameters. Compared with mCa2 channels, mCa1 channels exhibit a higher single-channel amplitude, shorter openings, a lower open probability, and 3 to 5 subconductance states. Similar to the MCU, mCa1 is inhibited by 200 nmol/L ruthenium 360, whereas mCa2 is insensitive to 200 nmol/L ruthenium 360 and reduced only by very high concentrations (10 μmol/L). Both mitochondrial Ca
2+
channels are unaffected by blockers of other possibly Ca
2+
-conducting mitochondrial pores but were activated by spermine (1 mmol/L). Notably, activity of mCa1 and mCa2 channels is decreased in failing compared with nonfailing heart conditions, making them less effective for Ca
2+
uptake and likely Ca
2+
-induced metabolism.
Conclusions—
Thus, we conclude that the human mitochondrial Ca
2+
uptake is mediated by these 2 distinct Ca
2+
channels, which are functionally impaired in heart failure. Current properties reveal that the mCa1 channel underlies the human MCU and that the mCa2 channel is responsible for the ruthenium red–insensitive/low-sensitivity non-MCU–type mitochondrial Ca
2+
uptake.
Collapse
Affiliation(s)
- Guido Michels
- From the Department of Internal Medicine III (G.M., I.F.K., J.E.-B., D.R., U.C.H.), Center for Molecular Medicine (S.H., U.C.H.), Institute of Pharmacology (S.H.), and Department of Cardiothoracic Surgery (T.W.), University of Cologne, Cologne, and Department of Cardiac Surgery, University of Heidelberg, Heidelberg (A.R.), Germany
| | - Ismail F. Khan
- From the Department of Internal Medicine III (G.M., I.F.K., J.E.-B., D.R., U.C.H.), Center for Molecular Medicine (S.H., U.C.H.), Institute of Pharmacology (S.H.), and Department of Cardiothoracic Surgery (T.W.), University of Cologne, Cologne, and Department of Cardiac Surgery, University of Heidelberg, Heidelberg (A.R.), Germany
| | - Jeannette Endres-Becker
- From the Department of Internal Medicine III (G.M., I.F.K., J.E.-B., D.R., U.C.H.), Center for Molecular Medicine (S.H., U.C.H.), Institute of Pharmacology (S.H.), and Department of Cardiothoracic Surgery (T.W.), University of Cologne, Cologne, and Department of Cardiac Surgery, University of Heidelberg, Heidelberg (A.R.), Germany
| | - Dennis Rottlaender
- From the Department of Internal Medicine III (G.M., I.F.K., J.E.-B., D.R., U.C.H.), Center for Molecular Medicine (S.H., U.C.H.), Institute of Pharmacology (S.H.), and Department of Cardiothoracic Surgery (T.W.), University of Cologne, Cologne, and Department of Cardiac Surgery, University of Heidelberg, Heidelberg (A.R.), Germany
| | - Stefan Herzig
- From the Department of Internal Medicine III (G.M., I.F.K., J.E.-B., D.R., U.C.H.), Center for Molecular Medicine (S.H., U.C.H.), Institute of Pharmacology (S.H.), and Department of Cardiothoracic Surgery (T.W.), University of Cologne, Cologne, and Department of Cardiac Surgery, University of Heidelberg, Heidelberg (A.R.), Germany
| | - Arjang Ruhparwar
- From the Department of Internal Medicine III (G.M., I.F.K., J.E.-B., D.R., U.C.H.), Center for Molecular Medicine (S.H., U.C.H.), Institute of Pharmacology (S.H.), and Department of Cardiothoracic Surgery (T.W.), University of Cologne, Cologne, and Department of Cardiac Surgery, University of Heidelberg, Heidelberg (A.R.), Germany
| | - Thorsten Wahlers
- From the Department of Internal Medicine III (G.M., I.F.K., J.E.-B., D.R., U.C.H.), Center for Molecular Medicine (S.H., U.C.H.), Institute of Pharmacology (S.H.), and Department of Cardiothoracic Surgery (T.W.), University of Cologne, Cologne, and Department of Cardiac Surgery, University of Heidelberg, Heidelberg (A.R.), Germany
| | - Uta C. Hoppe
- From the Department of Internal Medicine III (G.M., I.F.K., J.E.-B., D.R., U.C.H.), Center for Molecular Medicine (S.H., U.C.H.), Institute of Pharmacology (S.H.), and Department of Cardiothoracic Surgery (T.W.), University of Cologne, Cologne, and Department of Cardiac Surgery, University of Heidelberg, Heidelberg (A.R.), Germany
| |
Collapse
|
46
|
Graier WF, Malli R, Kostner GM. Mitochondrial protein phosphorylation: instigator or target of lipotoxicity? Trends Endocrinol Metab 2009; 20:186-93. [PMID: 19356948 PMCID: PMC4861235 DOI: 10.1016/j.tem.2009.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/21/2009] [Accepted: 01/21/2009] [Indexed: 01/28/2023]
Abstract
Lipotoxicity occurs as a consequence of chronic exposure of non-adipose tissue and cells to elevated concentrations of fatty acids, triglycerides and/or cholesterol. The contribution of mitochondria to lipotoxic cell dysfunction, damage and death is associated with elevated production of reactive oxygen species and initiation of apoptosis. Although there is a broad consensus on the involvement of these phenomena with lipotoxicity, the molecular mechanisms that initiate, mediate and trigger mitochondrial dysfunction in response to substrate overload remain unclear. Here, we focus on protein phosphorylation as an important phenomenon in lipotoxicity that harms mitochondria-related signal transduction and integration in cellular metabolism. Moreover, the degradation of mitochondria by mitophagy is discussed as an important landmark that leads to cellular apoptosis in lipotoxicity.
Collapse
Affiliation(s)
- Wolfgang F Graier
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz, Graz, Austria.
| | | | | |
Collapse
|
47
|
He L, Vasiliou K, Nebert DW. Analysis and update of the human solute carrier (SLC) gene superfamily. Hum Genomics 2009; 3:195-206. [PMID: 19164095 PMCID: PMC2752037 DOI: 10.1186/1479-7364-3-2-195] [Citation(s) in RCA: 241] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The solute-carrier gene (SLC) superfamily encodes membrane-bound transporters. The SLC superfamily comprises 55 gene families having at least 362 putatively functional protein-coding genes. The gene products include passive transporters, symporters and antiporters, located in all cellular and organelle membranes, except, perhaps, the nuclear membrane. Transport substrates include amino acids and oligopeptides, glucose and other sugars, inorganic cations and anions (H+, HCO3-, Cl-, Na+, K+, Ca2+, Mg2+, PO43-, HPO42-, H2PO4-, SO42-, C2O42-, OH-,CO32-), bile salts, carboxylate and other organic anions, acetyl coenzyme A, essential metals, biogenic amines, neurotransmitters, vitamins, fatty acids and lipids, nucleosides, ammonium, choline, thyroid hormone and urea. Contrary to gene nomenclature commonly assigned on the basis of evolutionary divergence http://www.genenames.org/, the SLC gene superfamily has been named based largely on transporter function by proteins having multiple transmembrane domains. Whereas all the transporters exist for endogenous substrates, it is likely that drugs, non-essential metals and many other environmental toxicants are able to 'hitch-hike' on one or another of these transporters, thereby enabling these moieties to enter (or leave) the cell. Understanding and characterising the functions of these transporters is relevant to medicine, genetics, developmental biology, pharmacology and cancer chemotherapy.
Collapse
Affiliation(s)
- Lei He
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
48
|
Jun HS, Kim IK, Lee HJ, Lee HJ, Kang JH, Kim JR, Shin HD, Song J. Effects of UCP2 and UCP3 variants on the manifestation of overweight in Korean children. Obesity (Silver Spring) 2009; 17:355-62. [PMID: 19039313 DOI: 10.1038/oby.2008.531] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To investigate the associations of uncoupling protein (UCP)2 and UCP3 gene variants with overweight and related traits, we genotyped UCP2-866G>A, UCP2Ala55Val, and UCP3-55C>T in 737 Korean children and 732 adults and collected data regarding anthropometric status and blood biochemistry. Information concerning the children's lifestyles and dietary habits was collected. The UCP2-866G>A and UCP3-55C>T gene variants showed significant associations with BMI level, waist circumference, and body weight in the children but not in the adults. Compared with -866GG carriers, the -866GA and AA carriers showed a strong decreasing trend in the risk for overweight (odds ratio (OR), 0.67; 95% confidence interval (CI), 0.45-1.01; P = 0.053). In comparison with UCP3-55CC carriers, children carrying -55CT and TT showed a significant reduction in the risk of overweight (OR, 0.67; 95% CI, 0.46-0.98; P = 0.039). There was also evidence of interactions between the effects of the combined UCP2-UCP3 genotype and obesity-related metabolic traits. The greatest protective effect against overweight was seen in those with the combined genotype non-UCP2-866GG and non-UCP3-55CC, as compared with those carrying both UCP2-866GG and UCP3-55CC (OR,0.60; 95% CI, 0.38-0.95; P = 0.030). In the subgroup with a low level of physical activity, UCP3-55CC carriers had higher BMI values than UCP3-55T carriers (16.6 +/- 2.3 kg/m(2) vs. 16.1 +/- 1.9 kg/m(2), P = 0.016). Low physical activity may aggravate the susceptibility to overweight in UCP2-866GG and UCP3-55CC carriers.
Collapse
Affiliation(s)
- H S Jun
- Division of Metabolic Diseases, Center for Biomedical Sciences, Korean National Institute of Health, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Mutations in UCP2 in congenital hyperinsulinism reveal a role for regulation of insulin secretion. PLoS One 2008; 3:e3850. [PMID: 19065272 PMCID: PMC2588657 DOI: 10.1371/journal.pone.0003850] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 11/10/2008] [Indexed: 12/21/2022] Open
Abstract
Although the most common mechanism underlying congenital hyperinsulinism is dysfunction of the pancreatic ATP-sensitive potassium channel, the pathogenesis and genetic origins of this disease remains largely unexplained in more than half of all patients. UCP2 knockout mice exhibit an hyperinsulinemic hypoglycemia, suggesting an involment of UCP2 in insulin secretion. However, a possible pathogenic role for UCP2 protein in the development of human congenital hyperinsulinism or of any human disease has not yet been investigated. We studied ten children exhibiting congenital hyperinsulinism, without detectable mutations in the known congenital hyperinsulinism-causing genes. Parental-inherited heterozygous UCP2 variants encoding amino-acid changes were found in two unrelated children with congenital hyperinsulinism. Functional assays in yeast and in insulin-secreting cells revealed an impaired activity of UCP2 mutants. Therefore, we report the finding of UCP2 coding variants in human congenital hyperinsulinism, which reveals a role for this gene in the regulation of insulin secretion and glucose metabolism in humans. Our results show for the first time a direct association between UCP2 amino acid alteration and human disease and highlight a role for mitochondria in hormone secretion.
Collapse
|
50
|
Asami DK, McDonald RB, Hagopian K, Horwitz BA, Warman D, Hsiao A, Warden C, Ramsey JJ. Effect of aging, caloric restriction, and uncoupling protein 3 (UCP3) on mitochondrial proton leak in mice. Exp Gerontol 2008; 43:1069-76. [PMID: 18852040 DOI: 10.1016/j.exger.2008.09.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 08/21/2008] [Accepted: 09/19/2008] [Indexed: 01/29/2023]
Abstract
Mitochondrial proton leak may modulate reactive oxygen species (ROS) production and play a role in aging. The purpose of this study was to determine proton leak across the life span in skeletal mitochondria from calorie-restricted and UCP2/3 overexpressing mice. Proton leak in isolated mitochondria and markers of oxidative stress in whole tissue were measured in female C57BL/6J mice fed ad-libitum (WT-Control) or a 30% calorie-restricted (WT-CR) diet, and in mice overexpressing UCP2 and UCP3 (Positive-TG), their non-overexpressing littermates (Negative-TG) and UCP3 knockout mice (UCP3KO). Proton leak in WT-CR mice was lower than that of control mice at 8 and 26 months of age. The Positive-TG mice had greater proton leak than the Negative-TG and UCP3KO mice at 8 months of age, but this difference disappeared by 19 and 26 months. Lipid peroxidation was generally lower in WT-CR vs. WT-Control mice and UCP3KO mice had greater concentrations of T-BARS (thiobarbituric acid reactive substances, a measure of lipid peroxidation) than did Positive-TG and Negative-TG. The results of this study indicate that sustained increases in muscle mitochondrial proton leak are not responsible for alterations in life span with calorie restriction or UCP3 overexpression in mice. However, UCP3 may contribute to the actions of CR through mechanisms distinct from increasing basal proton leak.
Collapse
Affiliation(s)
- Danny K Asami
- Department of Nutrition, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|