1
|
Nayak AK, Das SL, Misbah C. Endothelial calcium dynamics elicited by ATP release from red blood cells. Sci Rep 2024; 14:13550. [PMID: 38866785 PMCID: PMC11637182 DOI: 10.1038/s41598-024-63306-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
Red blood cells (RBCs) exhibit an interesting response to hydrodynamic flow, releasing adenosine triphosphate (ATP). Subsequently, these liberated ATP molecules initiate a crucial interaction with endothelial cells (ECs), thereby setting off a cascade involving the release of calcium ions (Ca2 + ). Ca2 + exerts control over a plethora of cellular functions, and acts as a mediator for dilation and contraction of blood vessel walls. This study focuses on the relationship between RBC dynamics and Ca2 + dynamics, based on numerical simulations under Poiseuille flow within a linear two-dimensional channel. It is found that the concentration of ATP depends upon a variety of factors, including RBC density, channel width, and the vigor of the flow. The results of our investigation reveals several features. Firstly, the peak amplitude of Ca2 + per EC escalates in direct proportion to the augmentation of RBC concentration. Secondly, increasing the flow strength induces a reduction in the time taken to reach the peak of Ca2 + concentration, under the condition of a constant channel width. Additionally, when flow strength remains constant, an increase in channel width corresponds to an elevation in calcium peak amplitude, coupled with a decrease in peak time. This implies that Ca2 + signals should transition from relatively unconstrained channels to more confined pathways within real vascular networks. This notion gains support from our examination of calcium propagation in a linear channel. In this scenario, the localized Ca2 + release initiates a propagating wave that gradually encompasses the entire channel. Notably, our computed propagation speed agrees with observations.
Collapse
Affiliation(s)
| | - Sovan Lal Das
- Physical and Chemical Biology Laboratory, and Department of Mechanical Engineering, Indian Institute of Technology Palakkad, Palakkad, 678623, India
| | - Chaouqi Misbah
- CNRS, LIPhy, Université Grenoble Alpes, 38000, Grenoble, France.
| |
Collapse
|
2
|
Taghadosi H, Ghomsheh FT, Dabanloo NJ, Farajidavar A. Electrophysiological modeling of the effect of potassium channel blockers on the distribution of stimulation wave in the human gastric wall cells. J Biomech 2021; 127:110662. [PMID: 34391129 DOI: 10.1016/j.jbiomech.2021.110662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 11/19/2022]
Abstract
The purpose of this study is to model the electrophysiological behavior of excitable membrane and wavefront propagation in the Stomach Wall in physiological and pharmacological states. The propagation of this wave is based on cellular electrophysiological activity and ionic channel properties. In this study, we arranged the stomach wall cells together using the Gap Junctions approach. Slow wave is generated by gastric pacemaker cells. This wave propagates via the interaction of cells with each other throughout the stomach wall. Potassium currents are one of the main factors in regulating the pattern of wavefront propagation. To investigate the effect of limiting the exchange of potassium currents from cell membranes, 10%, 50%, 90%, and complete blockade were applied on both non-inactivating potassium current (IKni) and fast-inactivating potassium current (IKfi). The results show that IKniion channel blockage has a considerable effect on the plateau phase in the propagation of the excitation wave. The maximum value of the action potential in the plateau phase in the excitation wave with complete obstruction from -40.92 mV in the physiological state reached -18.97 mV, which is about 54% higher than the physiological state. Also, compared to the physiological state, complete blockage of the I_Kfi causes a 15% increase in the slow-wave spike phase (from -36.72 mV to -31.36 mV). Using this model, the effect of ions in different phases of slow-wave can be investigated. In addition, by blocking ion channels, functional disorders and smooth muscle contraction can be improved.
Collapse
Affiliation(s)
- Hossein Taghadosi
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Farhad Tabatabai Ghomsheh
- Pediatric Neurorehabilitation Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| | - Nader Jafarnia Dabanloo
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Aydin Farajidavar
- New York Institute of Technology, Department of Electrical and Computer Engineering, Old Westbury, NY, USA.
| |
Collapse
|
3
|
Edel KH, Marchadier E, Brownlee C, Kudla J, Hetherington AM. The Evolution of Calcium-Based Signalling in Plants. Curr Biol 2018; 27:R667-R679. [PMID: 28697370 DOI: 10.1016/j.cub.2017.05.020] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The calcium-based intracellular signalling system is used ubiquitously to couple extracellular stimuli to their characteristic intracellular responses. It is becoming clear from genomic and physiological investigations that while the basic elements in the toolkit are common between plants and animals, evolution has acted in such a way that, in plants, some components have diversified with respect to their animal counterparts, while others have either been lost or have never evolved in the plant lineages. In comparison with animals, in plants there appears to have been a loss of diversity in calcium-influx mechanisms at the plasma membrane. However, the evolution of the calcium-storing vacuole may provide plants with additional possibilities for regulating calcium influx into the cytosol. Among the proteins that are involved in sensing and responding to increases in calcium, plants possess specific decoder proteins that are absent from the animal lineage. In seeking to understand the selection pressures that shaped the plant calcium-signalling toolkit, we consider the evolution of fast electrical signalling. We also note that, in contrast to animals, plants apparently do not make extensive use of cyclic-nucleotide-based signalling. It is possible that reliance on a single intracellular second-messenger-based system, coupled with the requirement to adapt to changing environmental conditions, has helped to define the diversity of components found in the extant plant calcium-signalling toolkit.
Collapse
Affiliation(s)
- Kai H Edel
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Elodie Marchadier
- School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK; Génétique Quantitative et Evolution - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Colin Brownlee
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK; School of Ocean and Earth Sciences, University of Southampton, Southampton, SO14 3ZH, UK
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Alistair M Hetherington
- School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
4
|
Quijano JC, Raynaud F, Nguyen D, Piacentini N, Meister JJ. Intercellular ultrafast Ca(2+) wave in vascular smooth muscle cells: numerical and experimental study. Sci Rep 2016; 6:31271. [PMID: 27507785 PMCID: PMC4978975 DOI: 10.1038/srep31271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/06/2016] [Indexed: 01/08/2023] Open
Abstract
Vascular smooth muscle cells exhibit intercellular Ca2+ waves in response to local mechanical or KCl stimulation. Recently, a new type of intercellular Ca2+ wave was observed in vitro in a linear arrangement of smooth muscle cells. The intercellular wave was denominated ultrafast Ca2+ wave and it was suggested to be the result of the interplay between membrane potential and Ca2+ dynamics which depended on influx of extracellular Ca2+, cell membrane depolarization and its intercel- lular propagation. In the present study we measured experimentally the conduction velocity of the membrane depolarization and performed simulations of the ultrafast Ca2+ wave along coupled smooth muscle cells. Numerical results reproduced a wide spectrum of experimental observations, including Ca2+ wave velocity, electrotonic membrane depolarization along the network, effects of inhibitors and independence of the Ca2+ wave speed on the intracellular stores. The numerical data also provided new physiological insights suggesting ranges of crucial model parameters that may be altered experimentally and that could significantly affect wave kinetics allowing the modulation of the wave characteristics experimentally. Numerical and experimental results supported the hypothesis that the propagation of membrane depolarization acts as an intercellular messenger mediating intercellular ultrafast Ca2+ waves in smooth muscle cells.
Collapse
Affiliation(s)
- J C Quijano
- Laboratory of Cell Biophysics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Facultad de Ciencias Básicas, Politécnico Colombiano JIC, Medellín, Colombia
| | - F Raynaud
- Laboratory of Cell Biophysics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Computational Systems Oncology, Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - D Nguyen
- Laboratory of Cell Biophysics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - N Piacentini
- Laboratory of Cell Biophysics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - J J Meister
- Laboratory of Cell Biophysics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Yasotharan S, Pinto S, Sled JG, Bolz SS, Günther A. Artery-on-a-chip platform for automated, multimodal assessment of cerebral blood vessel structure and function. LAB ON A CHIP 2015; 15:2660-9. [PMID: 25990299 DOI: 10.1039/c5lc00021a] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We present a compact microfluidic platform for the automated, multimodal assessment of intact small blood vessels. Mouse olfactory artery segments were reversibly loaded onto a microfluidic device and kept under physiological (i.e., close to in vivo) environmental conditions. For immunohistochemical endpoint protein analysis, automated on chip fixation and staining of the artery eliminated the need for any subsequent tissue sectioning or processing outside the chip. In a first case study, we demonstrate the blood vessel abluminal structure based on the positions of smooth muscle cell nuclei, actin filaments and voltage gated calcium channels. In a second case study we incubated smooth muscle cells (SMCs) with a calcium-sensitive dye to simultaneously assess time-dependent, agonist-induced calcium and diameter changes of pressurized resistance arteries. We expect the presented microfluidic platform to promote routine on-chip staining and quantitative fluorescence imaging of intact blood vessels from different vascular beds, tissue engineered vascular constructs and vascularized microtissues. The at least tenfold reduction in required aliquot volumes for functional assessment and staining was achieved by on-board fluid manipulation of the syringe-pump free platform and may promote its applications for screening of newly synthesized compounds.
Collapse
Affiliation(s)
- Sanjesh Yasotharan
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S3G8, Canada.
| | | | | | | | | |
Collapse
|
6
|
Quijano JC, Vianay B, Bény JL, Meister JJ. Ultrafast Ca2+ wave in cultured vascular smooth muscle cells aligned on a micropatterned surface. Cell Calcium 2013; 54:436-45. [PMID: 24183802 DOI: 10.1016/j.ceca.2013.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/08/2013] [Accepted: 10/09/2013] [Indexed: 11/29/2022]
Abstract
Communication between vascular smooth muscle cells (SMCs) allows control of their contraction and so regulation of blood flow. The contractile state of SMCs is regulated by cytosolic Ca2+ concentration ([Ca2+]i) which propagates as Ca2+ waves over a significant distance along the vessel. We have characterized an intercellular ultrafast Ca2+ wave observed in cultured A7r5 cell line and in primary cultured SMCs (pSMCs) from rat mesenteric arteries. This wave, induced by local mechanical or local KCl stimulation, had a velocity around 15 mm/s. Combining of precise alignment of cells with fast Ca2+ imaging and intracellular membrane potential recording, allowed us to analyze rapid [Ca2+]i dynamics and membrane potential events along the network of cells. The rate of [Ca2+]i increase along the network decreased with distance from the stimulation site. Gap junctions or voltage-operated Ca2+ channels (VOCCs) inhibition suppressed the ultrafast Ca2+ wave. Mechanical stimulation induced a membrane depolarization that propagated and that decayed exponentially with distance. Our results demonstrate that an electrotonic spread of membrane depolarization drives a rapid Ca2+ entry from the external medium through VOCCs, modeled as an ultrafast Ca2+ wave. This wave may trigger and drive slower Ca2+ waves observed ex vivo and in vivo.
Collapse
Affiliation(s)
- Jairo C Quijano
- Laboratory of Cell Biophysics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Facultad de Ciencias Básicas, Politécnico Colombiano JIC, Medellín, Colombia.
| | | | | | | |
Collapse
|
7
|
Nagaraja S, Kapela A, Tsoukias NM. Intercellular communication in the vascular wall: a modeling perspective. Microcirculation 2012; 19:391-402. [PMID: 22340204 DOI: 10.1111/j.1549-8719.2012.00171.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Movement of ions (Ca(2+) , K(+) , Na(+) , and Cl(-) ) and second messenger molecules like inositol 1, 4, 5-trisphosphate inside and in between different cells is the basis of many signaling mechanisms in the microcirculation. In spite of the vast experimental efforts directed toward evaluation of these fluxes, it has been a challenge to establish their roles in many essential microcirculatory phenomena. Recently, detailed theoretical models of calcium dynamics and plasma membrane electrophysiology have emerged to assist in the quantification of these intra and intercellular fluxes and enhance understanding of their physiological importance. This perspective reviews selected models relevant to estimation of such intra and intercellular ionic and second messenger fluxes and prediction of their relative significance to a variety of vascular phenomena, such as myoendothelial feedback, conducted responses, and vasomotion.
Collapse
Affiliation(s)
- Sridevi Nagaraja
- Department of Biomedical Engineering, Florida International University, Miami, Florida 33174, USA
| | | | | |
Collapse
|
8
|
Abstract
Intercellular calcium (Ca(2+)) waves (ICWs) represent the propagation of increases in intracellular Ca(2+) through a syncytium of cells and appear to be a fundamental mechanism for coordinating multicellular responses. ICWs occur in a wide diversity of cells and have been extensively studied in vitro. More recent studies focus on ICWs in vivo. ICWs are triggered by a variety of stimuli and involve the release of Ca(2+) from internal stores. The propagation of ICWs predominately involves cell communication with internal messengers moving via gap junctions or extracellular messengers mediating paracrine signaling. ICWs appear to be important in both normal physiology as well as pathophysiological processes in a variety of organs and tissues including brain, liver, retina, cochlea, and vascular tissue. We review here the mechanisms of initiation and propagation of ICWs, the key intra- and extracellular messengers (inositol 1,4,5-trisphosphate and ATP) mediating ICWs, and the proposed physiological functions of ICWs.
Collapse
Affiliation(s)
- Luc Leybaert
- Department of Basic Medical Sciences, Physiology Group, Faculty of Medicine & Health Sciences, Ghent University, Ghent, Belgium.
| | | |
Collapse
|
9
|
Halidi N, Alonso F, Burt JM, Bény JL, Haefliger JA, Meister JJ. Intercellular calcium waves in primary cultured rat mesenteric smooth muscle cells are mediated by connexin43. CELL COMMUNICATION & ADHESION 2012; 19:25-37. [PMID: 22642233 PMCID: PMC3804248 DOI: 10.3109/15419061.2012.690792] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Intercellular Ca(2+) wave propagation between vascular smooth muscle cells (SMCs) is associated with the propagation of contraction along the vessel. Here, we characterize the involvement of gap junctions (GJs) in Ca(2+) wave propagation between SMCs at the cellular level. Gap junctional communication was assessed by the propagation of intercellular Ca(2+) waves and the transfer of Lucifer Yellow in A7r5 cells, primary rat mesenteric SMCs (pSMCs), and 6B5N cells, a clone of A7r5 cells expressing higher connexin43 (Cx43) to Cx40 ratio. Mechanical stimulation induced an intracellular Ca(2+) wave in pSMC and 6B5N cells that propagated to neighboring cells, whereas Ca(2+) waves in A7r5 cells failed to progress to neighboring cells. We demonstrate that Cx43 forms the functional GJs that are involved in mediating intercellular Ca(2+) waves and that co-expression of Cx40 with Cx43, depending on their expression ratio, may interfere with Cx43 GJ formation, thus altering junctional communication.
Collapse
Affiliation(s)
- Nadia Halidi
- Laboratory of Cell Biophysics, Ecole Polytechnique Fédérale de Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
10
|
Sun J, Zheng Y, Feng X, Du W, Liu BF. Analysis of intercellular calcium signaling using microfluidic adjustable laminar flow for localized chemical stimulation. Anal Chim Acta 2012; 721:104-9. [PMID: 22405307 DOI: 10.1016/j.aca.2012.01.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 01/20/2012] [Accepted: 01/26/2012] [Indexed: 01/09/2023]
Abstract
The propagation of intercellular calcium signals provides a mechanism to coordinate cell population activity, which is essential for regulating cell behavior and organ development. However, existing analytical methods are difficult to realize localized chemical stimulation of a single cell among a population of cells that are in close contact with one another for studying the propagation of calcium wave. In this work, a microfluidic method is presented for the analysis of contact-dependent propagation of intercellular calcium wave induced by extracellular ATP using multiple laminar flows. Adjacent cells were seeded ∼300 μm downstream the intersection of a Y-shaped microchannel with negative pressure pulses. Consequently, the lateral diffusion distance of the chemical at cell locations was limited to ∼26 μm with a total flow rate of 20 μL min(-1), which prevented the interference of diffusion-induced cellular responses. Localized stimulation of the target cell with ATP induced the propagation of intercellular calcium wave among the cell population. In addition, studies on the spread of intercellular calcium wave under octanol inhibition allowed us to characterize the gap junction mediated cell-cell communication. Thus, this novel device will provide a versatile platform for intercellular signal transduction studies and high throughput drug screening.
Collapse
Affiliation(s)
- Jian Sun
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics, Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, People's Republic of China
| | | | | | | | | |
Collapse
|