1
|
He H, Li X, Guzman GA, Bungert-Plümke S, Franzen A, Lin X, Zhu H, Peng G, Zhang H, Yu Y, Sun S, Huang Z, Zhai Q, Chen Z, Peng J, Guzman RE. Expanding the genetic and phenotypic relevance of CLCN4 variants in neurodevelopmental condition: 13 new patients. J Neurol 2024; 271:4933-4948. [PMID: 38758281 DOI: 10.1007/s00415-024-12383-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVES CLCN4 variations have recently been identified as a genetic cause of X-linked neurodevelopmental disorders. This study aims to broaden the phenotypic spectrum of CLCN4-related condition and correlate it with functional consequences of CLCN4 variants. METHODS We described 13 individuals with CLCN4-related neurodevelopmental disorder. We analyzed the functional consequence of the unreported variants using heterologous expression, biochemistry, confocal fluorescent microscopy, patch-clamp electrophysiology, and minigene splicing assay. RESULTS We identified five novel (p.R41W, p.L348V, p.G480R, p.R603W, c.1576 + 5G > A) and three known (p.T203I, p.V275M, p.A555V) pathogenic CLCN4 variants in 13 Chinese patients. The p.V275M variant is found at high frequency and seen in four unrelated individuals. All had global developmental delay (GDD)/intellectual disability (ID). Seizures were present in eight individuals, and 62.5% of them developed refractory epilepsy. Five individuals without seizures showed moderate to severe GDD/ID. Developmental delay precedes seizure onset in most patients. The variants p.R41W, p.L348V, and p.R603W compromise the anion/exchange function of ClC-4. p.R41W partially impairs ClC-3/ClC-4 association. p.G480R reduces ClC-4 expression levels and impairs the heterodimerization with ClC-3. The c.1576 + 5G > A variant causes 22 bp deletion of exon 10. CONCLUSIONS We further define and broaden the clinical and mutational spectrum of CLCN4-related neurodevelopmental conditions. The p.V275M variant may be a potential hotspot CLCN4 variant in Chinese patients. The five novel variants cause loss of function of ClC-4. Transport dysfunction, protein instability, intracellular trafficking defect, or failure of ClC-4 to oligomerize may contribute to the pathophysiological events leading to CLCN4-related neurodevelopmental disorder.
Collapse
Affiliation(s)
- Hailan He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Xinyi Li
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - G A Guzman
- Institute of Biological Information Processing (IBI-7), Structural Biochemistry, Jülich Research Center, Jülich, Germany
| | - Stefanie Bungert-Plümke
- Institute of Biological Information Processing (IBI-1), Molecular and Cell Physiology, Jülich Research Center, Jülich, Germany
| | - Arne Franzen
- Institute of Biological Information Processing (IBI-1), Molecular and Cell Physiology, Jülich Research Center, Jülich, Germany
| | - XueQin Lin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Hongmin Zhu
- Department of Rehabilitation, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Guilan Peng
- Department of Neurology, Xiamen Maternal and Child Health Care Hospital, Xiamen, China
| | - Hongwei Zhang
- Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan, China
| | - Yonglin Yu
- Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Suzhen Sun
- Department of Pediatric Neurology, Hebei Children's Hospital, Hebei Medical University, Shijiazhuang, China
| | - Zhongqin Huang
- Department of Neurology, Xiamen Maternal and Child Health Care Hospital, Xiamen, China
| | - Qiongxiang Zhai
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Zheng Chen
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.
| | - Raul E Guzman
- Institute of Biological Information Processing (IBI-1), Molecular and Cell Physiology, Jülich Research Center, Jülich, Germany.
| |
Collapse
|
2
|
Hoogstraten CA, Hoenderop JG, de Baaij JHF. Mitochondrial Dysfunction in Kidney Tubulopathies. Annu Rev Physiol 2024; 86:379-403. [PMID: 38012047 DOI: 10.1146/annurev-physiol-042222-025000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Mitochondria play a key role in kidney physiology and pathology. They produce ATP to fuel energy-demanding water and solute reabsorption processes along the nephron. Moreover, mitochondria contribute to cellular health by the regulation of autophagy, (oxidative) stress responses, and apoptosis. Mitochondrial abundance is particularly high in cortical segments, including proximal and distal convoluted tubules. Dysfunction of the mitochondria has been described for tubulopathies such as Fanconi, Gitelman, and Bartter-like syndromes and renal tubular acidosis. In addition, mitochondrial cytopathies often affect renal (tubular) tissues, such as in Kearns-Sayre and Leigh syndromes. Nevertheless, the mechanisms by which mitochondrial dysfunction results in renal tubular diseases are only scarcely being explored. This review provides an overview of mitochondrial dysfunction in the development and progression of kidney tubulopathies. Furthermore, it emphasizes the need for further mechanistic investigations to identify links between mitochondrial function and renal electrolyte reabsorption.
Collapse
Affiliation(s)
- Charlotte A Hoogstraten
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands;
| | - Joost G Hoenderop
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands;
| | - Jeroen H F de Baaij
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands;
| |
Collapse
|
3
|
Arnous MG, Arroyo J, Cogal AG, Anglani F, Kang HG, Sas D, Harris PC, Lieske JC. The Site and Type of CLCN5 Genetic Variation Impact the Resulting Dent Disease-1 Phenotype. Kidney Int Rep 2023; 8:1220-1230. [PMID: 37284679 PMCID: PMC10239918 DOI: 10.1016/j.ekir.2023.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Dent disease is an X-linked recessive disorder associated with low molecular weight proteinuria (LMWP), nephrocalcinosis, kidney stones, and kidney failure in the third to fifth decade of life. It consists of Dent disease 1 (DD1) (60% of patients) because of pathogenic variants in the CLCN5 gene and Dent disease 2 (DD2) with changes in OCRL. Methods Retrospective review of 162 patients from 121 different families with genetically confirmed DD1 (82 different pathogenic variants validated using American College of Medical Genetics [ACMG] guidelines). Clinical and genetic factors were compared using observational statistics. Results A total of 110 patients had 51 different truncating (nonsense, frameshifting, large deletions, and canonical splicing) variants, whereas 52 patients had 31 different nontruncating (missense, in-frame, noncanonical splicing, and stop-loss) changes. Sixteen newly described pathogenic variants were found in our cohort. Among patients with truncating variants, lifetime stone events positively correlated with chronic kidney disease (CKD) evolution. Patients with truncating changes also experienced stone events earlier in life and manifested a higher albumin excretion rate than the nontruncating group. Nevertheless, neither age of nephrocalcinosis nor CKD progression varied between the truncating versus nontruncating patients. A large majority of nontruncating changes (26/31; 84%) were clustered in the middle exons that encode the voltage ClC domain whereas truncating changes were spread across the protein. Variants associated with kidney failure were restricted to truncating (11/13 cases), plus a single missense variant previously shown to markedly reduce ClC-5 functional activity that was found in the other 2 individuals. Conclusion DD1 manifestations, including the risk of kidney stones and progression to kidney failure, may relate to the degree of residual ClC-5 function.
Collapse
Affiliation(s)
- Muhammad G. Arnous
- Divison of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Jennifer Arroyo
- Divison of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrea G. Cogal
- Divison of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Franca Anglani
- Laboratory of Histomorphology and Molecular Biology of the Kidney, Department of Medicine, University of Padua, Italy
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - David Sas
- Division of Pediatric Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Peter C. Harris
- Divison of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - John C. Lieske
- Divison of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Chen Q, Li Y, Wu X. Dent disease manifesting as nephrotic syndrome. Intractable Rare Dis Res 2023; 12:67-70. [PMID: 36873671 PMCID: PMC9976091 DOI: 10.5582/irdr.2022.01125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/05/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Dent disease is an X-linked recessive renal tubular disorder, which is mainly caused by mutations of the CLCN5 gene and OCRL gene. It is characterized by low molecular weight proteinuria, hypercalciuria, nephrocalcinosis or nephrolithiasis, and progressive renal failure. Nephrotic syndrome is a glomerular disorder characterized by massive proteinuria, hypoalbuminemia, edema, and hyperlipidemia. In this study, we report two cases of Dent disease manifesting as nephrotic syndrome. Two patients were initially diagnosed with nephrotic syndrome due to edema, nephrotic range proteinuria, hypoalbuminemia, and hyperlipidemia, and responded to prednisone and tacrolimus therapy. Genetic testing revealed mutations in the OCRL and CLCN5 genes. They were eventually diagnosed with Dent disease. Nephrotic syndrome is a rare and insidious phenotype of Dent disease, and its pathogenesis is not fully understood. Patients with nephrotic syndrome are recommended to routinely undergo urinary protein classification and urinary calcium testing, especially those with frequently recurrent nephrotic syndrome and poor response to steroid and immunosuppressive therapy. To date, there is no effective drug treatment for Dent disease. About 30% to 80% of patients progress to end-stage renal disease at the age of 30-50.
Collapse
Affiliation(s)
| | | | - Xiaochuan Wu
- Address correspondence to:Xiaochuan Wu, Department of Pediatrics, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China. E-mail:
| |
Collapse
|
5
|
Zhai P, Lv W, Yang X, Huang Y, Zhai W, Ren X, Zhang X, Yang M, Zhang J, Guo T, Bai M, Yang Y, Ding Y, Huang Y. Renal Expression of CLC-5 and Megalin/Cubilin in Dent-1 Disease With Nonsense Mutations of CLCN5 Gene. Pediatr Dev Pathol 2022; 25:397-403. [PMID: 35100899 DOI: 10.1177/10935266211065554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The study aims to explore the clinicopathological features and whether the nonsense mutations of CLCN5 gene have effect on the renal expression of CLC-5 protein and megalin/cubilin complex in children with Dent-1 disease. The clinicopathological features and genetic examination of three patients with Dent-1 disease were investigated. The expression of CLC-5 and megalin/cubilin complex in renal tissues was detected by using immunohistochemistry method. Urinary albumin, α1-microglobulin, β2-microglobulin, retinol binding protein, and calcium levels were measured by immunonephelometry. Urinary calcium and low molecular weight proteinuria (LMWP) were enhanced in three patients, and two presented with nephrotic range proteinuria. Focal glomerular obsolescence, minor tubulointerstitial injury, and focal calcification in corticomedullary junction were found in one patient. Nonsense mutations of CLCN5 gene from their mothers were identified in all three patients with Dent-1 disease; however, the expression of CLC-5 protein was not decreased in renal tubular cells. As the receptor complex of albumin and LMWP reabsorption, the expression of megalin/cubilin in the brush border of proximal tubules was decreased in Dent-1 patients. Even if the renal CLC-5 protein is expressed normally, the reduced expression of megalin/cubilin in the brush border of renal proximal tubules may be helpful to understand the physiopathology of Dent-1 disease with nonsense mutations of CLCN5 gene.
Collapse
Affiliation(s)
- Panpan Zhai
- Department of Pediatrics, 232830Henan University of Chinese Medicine, Henan, China
| | - Weigang Lv
- Department of Pediatrics, 232830Henan University of Chinese Medicine, Henan, China
| | - Xiaoqing Yang
- Department of Pediatrics, 232830The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Yanjie Huang
- Department of Pediatrics, 232830Henan University of Chinese Medicine, Henan, China.,Department of Pediatrics, 232830The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Wensheng Zhai
- Department of Pediatrics, 232830Henan University of Chinese Medicine, Henan, China
| | - Xianqing Ren
- Department of Pediatrics, 232830Henan University of Chinese Medicine, Henan, China
| | - Xia Zhang
- Department of Pediatrics, 232830The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Meng Yang
- Department of Pediatrics, 232830The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Jian Zhang
- Department of Pediatrics, 232830Henan University of Chinese Medicine, Henan, China
| | - Ting Guo
- Department of Pediatrics, 232830The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Minghui Bai
- Department of Pediatrics, 232830The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Yueli Yang
- Department of Pediatrics, 232830The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Ying Ding
- Department of Pediatrics, 232830Henan University of Chinese Medicine, Henan, China
| | - Yanshi Huang
- Pain Medicine, Nanyang Second General Hospital, Henan, China
| |
Collapse
|
6
|
Singh P, Harris PC, Sas DJ, Lieske JC. The genetics of kidney stone disease and nephrocalcinosis. Nat Rev Nephrol 2022; 18:224-240. [PMID: 34907378 DOI: 10.1038/s41581-021-00513-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 12/15/2022]
Abstract
Kidney stones (also known as urinary stones or nephrolithiasis) are highly prevalent, affecting approximately 10% of adults worldwide, and the incidence of stone disease is increasing. Kidney stone formation results from an imbalance of inhibitors and promoters of crystallization, and calcium-containing calculi account for over 80% of stones. In most patients, the underlying aetiology is thought to be multifactorial, with environmental, dietary, hormonal and genetic components. The advent of high-throughput sequencing techniques has enabled a monogenic cause of kidney stones to be identified in up to 30% of children and 10% of adults who form stones, with ~35 different genes implicated. In addition, genome-wide association studies have implicated a series of genes involved in renal tubular handling of lithogenic substrates and of inhibitors of crystallization in stone disease in the general population. Such findings will likely lead to the identification of additional treatment targets involving underlying enzymatic or protein defects, including but not limited to those that alter urinary biochemistry.
Collapse
Affiliation(s)
- Prince Singh
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.,Division of Molecular Biology and Biochemistry, Mayo Clinic, Rochester, MN, USA
| | - David J Sas
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.,Division of Pediatric Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - John C Lieske
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA. .,Division of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
7
|
Sidt2 is a key protein in the autophagy-lysosomal degradation pathway and is essential for the maintenance of kidney structure and filtration function. Cell Death Dis 2021; 13:7. [PMID: 34923568 PMCID: PMC8684554 DOI: 10.1038/s41419-021-04453-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/18/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022]
Abstract
The regulation and homeostasis of autophagy are essential for maintaining organ morphology and function. As a lysosomal membrane protein, the effect of Sidt2 on kidney structure and renal autophagy is still unknown. In this study, we found that the kidneys of Sidt2-/- mice showed changes in basement membrane thickening, foot process fusion, and mitochondrial swelling, suggesting that the structure of the kidney was damaged. Increased urine protein at 24 h indicated that the kidney function was also damaged. At the same time, the absence of Sidt2 caused a decrease in the number of acidic lysosomes, a decrease in acid hydrolase activity and expression in the lysosome, and an increase of pH in the lysosome, suggesting that lysosomal function was impaired after Sidt2 deletion. The accumulation of autophagolysosomes, increased LC3-II and P62 protein levels, and decreased P62 mRNA levels indicated that the absence of the Sidt2 gene caused abnormal autophagy pathway flow. Chloroquine experiment, immunofluorescence autophagosome, and lysosome fusion assay, and Ad-mcherry-GFP-LC3B further indicated that, after Sidt2 deletion, the production of autophagosomes did not increase, but the fusion of autophagosomes and lysosomes and the degradation of autophagolysosomes were impaired. When incubating Sidt2-/- cells with the autophagy activator rapamycin, we found that it could activate autophagy, which manifested as an increase in autophagosomes, but it could not improve autophagolysosome degradation. Meanwhile, it further illustrated that the Sidt2 gene plays an important role in the smooth progress of autophagolysosome processes. In summary, the absence of the Sidt2 gene caused impaired lysosome function and a decreased number of acidic lysosomes, leading to formation and degradation disorders of the autophagolysosomes, which eventually manifested as abnormal kidney structure and function. Sidt2 is essential in maintaining the normal function of the lysosomes and the physiological stability of the kidneys.
Collapse
|
8
|
Gianesello L, Del Prete D, Ceol M, Priante G, Calò LA, Anglani F. From protein uptake to Dent disease: An overview of the CLCN5 gene. Gene 2020; 747:144662. [PMID: 32289351 DOI: 10.1016/j.gene.2020.144662] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Proteinuria is a well-known risk factor, not only for renal disorders, but also for several other problems such as cardiovascular diseases and overall mortality. In the kidney, the chloride channel Cl-/H+ exchanger ClC-5 encoded by the CLCN5 gene is actively involved in preventing protein loss. This action becomes evident in patients suffering from the rare proximal tubulopathy Dent disease because they carry a defective ClC-5 due to CLCN5 mutations. In fact, proteinuria is the distinctive clinical sign of Dent disease, and mainly involves the loss of low-molecular-weight proteins. The identification of CLCN5 disease-causing mutations has greatly improved our understanding of ClC-5 function and of the ClC-5-related physiological processes in the kidney. This review outlines current knowledge regarding the CLCN5 gene and its protein product, providing an update on ClC-5 function in tubular and glomerular cells, and focusing on its relationship with proteinuria and Dent disease.
Collapse
Affiliation(s)
- Lisa Gianesello
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Dorella Del Prete
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Monica Ceol
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Giovanna Priante
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Lorenzo Arcangelo Calò
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Franca Anglani
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| |
Collapse
|
9
|
Chang MH, Brown MR, Liu Y, Gainullin VG, Harris PC, Romero MF, Lieske JC. Cl - and H + coupling properties and subcellular localizations of wildtype and disease-associated variants of the voltage-gated Cl -/H + exchanger ClC-5. J Biol Chem 2020; 295:1464-1473. [PMID: 31852738 PMCID: PMC7008381 DOI: 10.1074/jbc.ra119.011366] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/09/2019] [Indexed: 02/06/2023] Open
Abstract
Dent disease 1 (DD1) is caused by mutations in the CLCN5 gene encoding a voltage-gated electrogenic nCl-/H+ exchanger ClC-5. Using ion-selective microelectrodes and Xenopus oocytes, here we studied Cl-/H+ coupling properties of WT ClC-5 and four DD1-associated variants (S244L, R345W, Q629*, and T657S), along with trafficking and localization of ClC-5. WT ClC-5 had a 2Cl-/H+ exchange ratio at a Vh of +40 mV with a [Cl-]out of 104 mm, but the transport direction did not reverse with a [Cl-]out of 5 mm, indicating that ClC-5-mediated exchange of two Cl- out for one H+ in is not permissible. We hypothesized that ClC-5 and H+-ATPase are functionally coupled during H+-ATPase-mediated endosomal acidification, crucial for ClC-5 activation by depolarizing endosomes. ClC-5 transport that provides three net negative charges appeared self-inhibitory because of ClC-5's voltage-gated properties, but shunt conductance facilitated further H+-ATPase-mediated endosomal acidification. Thus, an on-and-off "burst" of ClC-5 activity was crucial for preventing Cl- exit from endosomes. The subcellular distribution of the ClC-5:S244L variant was comparable with that of WT ClC-5, but the variant had a much slower Cl- and H+ transport and displayed an altered stoichiometry of 1.6:1. The ClC-5:R345W variant exhibited slightly higher Cl-/H+ transport than ClC-5:S244L, but co-localized with early endosomes, suggesting decreased ClC-5:R345W membrane trafficking is perhaps in a fully functional form. The truncated ClC-5:Q629* variant displayed the lowest Cl-/H+ exchange and was retained in the endoplasmic reticulum and cis-Golgi, but not in early endosomes, suggesting the nonsense mutation affects ClC-5 maturation and trafficking.
Collapse
Affiliation(s)
- Min-Hwang Chang
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota 55905; O'Brien Urology Research Center, Mayo Clinic College of Medicine, Rochester, Minnesota 55905.
| | - Matthew R Brown
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota 55905; Wayne State University, Detroit, Michigan 48202
| | - Yiran Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905; University of Michigan, Ann Arbor, Michigan 48109
| | - Vladimir G Gainullin
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905; Department of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Peter C Harris
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905; Department of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota 55905; O'Brien Urology Research Center, Mayo Clinic College of Medicine, Rochester, Minnesota 55905; Department of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - John C Lieske
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota 55905; O'Brien Urology Research Center, Mayo Clinic College of Medicine, Rochester, Minnesota 55905; Department of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| |
Collapse
|
10
|
Anglani F, Gianesello L, Beara-Lasic L, Lieske J. Dent disease: A window into calcium and phosphate transport. J Cell Mol Med 2019; 23:7132-7142. [PMID: 31472005 PMCID: PMC6815805 DOI: 10.1111/jcmm.14590] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 12/19/2022] Open
Abstract
This review examines calcium and phosphate transport in the kidney through the lens of the rare X-linked genetic disorder Dent disease. Dent disease type 1 (DD1) is caused by mutations in the CLCN5 gene encoding ClC-5, a Cl- /H+ antiporter localized to early endosomes of the proximal tubule (PT). Phenotypic features commonly include low molecular weight proteinuria (LMWP), hypercalciuria, focal global sclerosis and chronic kidney disease; calcium nephrolithiasis, nephrocalcinosis and hypophosphatemic rickets are less commonly observed. Although it is not surprising that abnormal endosomal function and recycling in the PT could result in LMWP, it is less clear how ClC-5 dysfunction disturbs calcium and phosphate metabolism. It is known that the majority of calcium and phosphate transport occurs in PT cells, and PT endocytosis is essential for calcium and phosphorus reabsorption in this nephron segment. Evidence from ClC-5 KO models suggests that ClC-5 mediates parathormone endocytosis from tubular fluid. In addition, ClC-5 dysfunction alters expression of the sodium/proton exchanger NHE3 on the PT apical surface thus altering transcellular sodium movement and hence paracellular calcium reabsorption. A potential role for NHE3 dysfunction in the DD1 phenotype has never been investigated, either in DD models or in patients with DD1, even though patients with DD1 exhibit renal sodium and potassium wasting, especially when exposed to even a low dose of thiazide diuretic. Thus, insights from the rare disease DD1 may inform possible underlying mechanisms for the phenotype of hypercalciuria and idiopathic calcium stones.
Collapse
Affiliation(s)
- Franca Anglani
- Division of Nephrology, Department of Medicine, Laboratory of Histomorphology and Molecular Biology of the Kidney, University of Padua, Padua, Italy
| | - Lisa Gianesello
- Division of Nephrology, Department of Medicine, Laboratory of Histomorphology and Molecular Biology of the Kidney, University of Padua, Padua, Italy
| | - Lada Beara-Lasic
- Division of Nephrology, New York University School of Medicine, New York, NY, USA
| | - John Lieske
- Division of Nephrology and Hypertension, Department of Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
11
|
Deng Z, Li W, Xu J, Yu M, Li D, Tan Q, Wang D, Chen L, Wang L. ClC-3 chloride channels are involved in estradiol regulation of bone formation by MC3T3-E1 osteoblasts. J Cell Biochem 2019; 120:8366-8375. [PMID: 30506861 DOI: 10.1002/jcb.28121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/31/2018] [Indexed: 01/24/2023]
Abstract
Evidence has been reported by us and others supporting the important roles of chloride channels in a number of osteoblast cell functions. The ClC-3 chloride channel is activated by estradiol binding to estrogen receptor alpha on the cell membranes of osteoblasts. However, the functions of these chloride channels in estrogen regulation of osteoblast metabolism remain unclear. In the present study, the roles of chloride channels in estrogen regulation of osteoblasts were investigated in the osteoblastic cell line MC3T3-E1. Estrogen 17β-estradiol enhanced collagen I protein expression, alkaline phosphatase activity, and mineralization were inhibited, by chloride channel blockers. Estradiol promoted ClC-3 chloride channel protein expression. Silencing of ClC-3 chloride channel expression prevented the elevation of osteodifferentiation in osteoblasts, which were regulated by estrogen. These data suggest that estrogen can regulate bone formation by activating ClC-3 chloride channels and the activation of ClC-3 chloride channels can enhance the osteodifferentiation in osteoblasts.
Collapse
Affiliation(s)
- Zhiqin Deng
- Hand and Foot Surgery Department, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, China.,Department of Pharmacology, Medical College, Jinan University, Guangzhou, China
| | - Wencui Li
- Hand and Foot Surgery Department, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, China
| | - Jianying Xu
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Meishen Yu
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, China
| | - Duan Li
- Hand and Foot Surgery Department, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, China
| | - Qiuchan Tan
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Daping Wang
- Hand and Foot Surgery Department, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, China
| | - Lixin Chen
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, China
| | - Liwei Wang
- Department of Physiology, Medical College, Jinan University, Guangzhou, China.,International School, Jinan University, Guangzhou, China
| |
Collapse
|
12
|
Abstract
Dent disease is an X-linked form of chronic kidney disease characterized by hypercalciuria, low molecular weight proteinuria, nephrocalcinosis, and proximal tubular dysfunction. Clinical presentation is highly variable. Male patients may present with early-onset rickets, recurrent nephrolithiasis, or insidiously with asymptomatic proteinuria or chronic kidney disease. Mutations in both the CLCN5 and OCRL1 genes have been associated with the Dent phenotype and are now classified as Dent-1 and Dent-2, respectively. This article describes the clinical presentation, laboratory evaluation, genetics, pathophysiology, management, and future therapies of Dent disease.
Collapse
Affiliation(s)
- Abdulla M Ehlayel
- Division of Nephrology, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Lawrence Copelovitch
- Division of Nephrology, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Rohrbough J, Nguyen H, Lamb FS. Modulation of ClC-3 gating and proton/anion exchange by internal and external protons and the anion selectivity filter. J Physiol 2018; 596:4091-4119. [PMID: 29917234 PMCID: PMC6117567 DOI: 10.1113/jp276332] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/07/2018] [Indexed: 01/13/2023] Open
Abstract
KEY POINTS The ClC-3 2Cl- /1H+ exchanger modulates endosome pH and Cl- concentration. We investigated the relationships between ClC-3-mediated ion transport (steady-state transport current, ISS ), gating charge (Q) and cytoplasmic alkalization. ClC-3 transport is functionally unidirectional. ClC-5 and ClC-3 display indistinguishable exchange ratios, but ClC-3 cycling is less "efficient", as reflected by a large Q/ISS . An M531A mutation predicted to increase water-wire stability and cytoplasmic proton supply improves efficiency. Protonation (pH 5.0) of the outer glutamate gate (Gluext ; E224) reduces Q, inhibits transport, and weakens coupling. Removal of the central tyrosine anion gate (Y572S) greatly increases uncoupled anion current. Tyrosine -OH removal (Y572F) alters anion selectivity and impairs coupling. E224 and Y572 act as anion barriers, and contribute to gating. The Y572 side chain and -OH regulate Q movement kinetics and voltage dependence. E224 and Y572 interact to create a "closed" inner gate conformation that maintains coupling during cycling. ABSTRACT We utilized plasma membrane-localized ClC-3 to investigate relationships between steady-state transport current (ISS ), gating charge (Q) movement, and cytoplasmic alkalization rate. ClC-3 exhibited lower transport efficiency than ClC-5, as reflected by a larger Q/ISS ratio, but an indistinguishable Cl- /H+ coupling ratio. External SCN- reduced H+ transport rate and uncoupled anion/H+ exchange by 80-90%. Removal of the external gating glutamate ("Gluext ") (E224A mutation) reduced Q and abolished H+ transport. We hypothesized that Methionine 531 (M531) impedes "water wire" H+ transfer from the cytoplasm to E224. Accordingly, an M531A mutation decreased the Q/ISS ratio by 50% and enhanced H+ transport. External protons (pH 5.0) inhibited ISS and markedly reduced Q while shifting the Q-voltage (V) relationship positively. The Cl- /H+ coupling ratio at pH 5.0 was significantly increased, consistent with externally protonated Gluext adopting an outward/open position. Internal "anion gate" removal (Y572S) dramatically increased ISS and impaired coupling, without slowing H+ transport rate. Loss of both gates (Y572S/E224A) resulted in a large "open pore" conductance. Y572F (removing only the phenolic hydroxide) and Y572S shortened Q duration similarly, resulting in faster Q kinetics at all voltages. These data reveal a complex relationship between Q and ion transport. Q/ISS must be assessed together with coupling ratio to properly interpret efficiency. Coupling and transport rate are influenced by the anion, internal proton supply and external protons. Y572 regulates H+ coupling as well as anion selectivity, and interacts directly with E224. Disruption of this "closed gate" conformation by internal protons may represent a critical step in the ClC-3 transport cycle.
Collapse
Affiliation(s)
- Jeffrey Rohrbough
- Departments of Pediatrics and Molecular Physiology & BiophysicsMonroe Carell Children's Hospital at Vanderbilt UniversityNashvilleTNUSA
| | - Hong‐Ngan Nguyen
- Departments of Pediatrics and Molecular Physiology & BiophysicsMonroe Carell Children's Hospital at Vanderbilt UniversityNashvilleTNUSA
| | - Fred S. Lamb
- Departments of Pediatrics and Molecular Physiology & BiophysicsMonroe Carell Children's Hospital at Vanderbilt UniversityNashvilleTNUSA
| |
Collapse
|
14
|
Jentsch TJ, Pusch M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol Rev 2018; 98:1493-1590. [DOI: 10.1152/physrev.00047.2017] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CLC anion transporters are found in all phyla and form a gene family of eight members in mammals. Two CLC proteins, each of which completely contains an ion translocation parthway, assemble to homo- or heteromeric dimers that sometimes require accessory β-subunits for function. CLC proteins come in two flavors: anion channels and anion/proton exchangers. Structures of these two CLC protein classes are surprisingly similar. Extensive structure-function analysis identified residues involved in ion permeation, anion-proton coupling and gating and led to attractive biophysical models. In mammals, ClC-1, -2, -Ka/-Kb are plasma membrane Cl−channels, whereas ClC-3 through ClC-7 are 2Cl−/H+-exchangers in endolysosomal membranes. Biological roles of CLCs were mostly studied in mammals, but also in plants and model organisms like yeast and Caenorhabditis elegans. CLC Cl−channels have roles in the control of electrical excitability, extra- and intracellular ion homeostasis, and transepithelial transport, whereas anion/proton exchangers influence vesicular ion composition and impinge on endocytosis and lysosomal function. The surprisingly diverse roles of CLCs are highlighted by human and mouse disorders elicited by mutations in their genes. These pathologies include neurodegeneration, leukodystrophy, mental retardation, deafness, blindness, myotonia, hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and osteopetrosis. In this review, emphasis is laid on biophysical structure-function analysis and on the cell biological and organismal roles of mammalian CLCs and their role in disease.
Collapse
Affiliation(s)
- Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Michael Pusch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| |
Collapse
|
15
|
Zhang Y, Fang X, Xu H, Shen Q. Genetic Analysis of Dent's Disease and Functional Research of CLCN5 Mutations. DNA Cell Biol 2017; 36:1151-1158. [PMID: 29058463 DOI: 10.1089/dna.2017.3731] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Dent's disease is an X-linked inherited renal disease. Patients with Dent's disease often carry mutations in genes encoding the Cl-/H+ exchanger ClC-5 and/or inositol polyphosphate 5-phosphatase (OCRL1). However, the mutations involved and the biochemical effects of these mutations are not fully understood. To characterize genetic changes in Dent's disease patients, in this study, samples from nine Chinese patients were subjected to genetic analysis. Among the nine patients, six were classified as having Dent-1 disease, one had Dent-2 disease, and two could not be classified. Expression of ClC-5 carrying Dent's disease-associated mutations in HEK293 cells had varying effects: (1) no detectable expression of mutant protein; (2) retention of a truncated protein in the endoplasmic reticulum; or (3) diminished protein expression with normal distribution in early endosomes. Dent's disease patients showed genetic heterogeneity and over 20% of patients did not have CLCN5 or OCRL1 mutations, suggesting the existence of other genetic factors. Using next-generation sequencing, we identified possible modifier genes that have not been previously reported in Dent's disease patients. Heterozygous variants in CFTR, SCNN1A, and SCNN1B genes associated with cystic fibrosis (CF) or CF-like disease were detected in four of our nine patients. These results may form the basis for future characterization of Dent's disease and genetic counseling approaches.
Collapse
Affiliation(s)
- Ya Zhang
- 1 Department of Nephrology, Children's Hospital of Fudan University , Shanghai, China .,2 Shanghai Kidney Development and Pediatric Kidney Disease Research Center , Shanghai, China
| | - Xiaoyan Fang
- 1 Department of Nephrology, Children's Hospital of Fudan University , Shanghai, China .,2 Shanghai Kidney Development and Pediatric Kidney Disease Research Center , Shanghai, China
| | - Hong Xu
- 1 Department of Nephrology, Children's Hospital of Fudan University , Shanghai, China .,2 Shanghai Kidney Development and Pediatric Kidney Disease Research Center , Shanghai, China
| | - Qian Shen
- 1 Department of Nephrology, Children's Hospital of Fudan University , Shanghai, China .,2 Shanghai Kidney Development and Pediatric Kidney Disease Research Center , Shanghai, China
| |
Collapse
|
16
|
Poroca DR, Pelis RM, Chappe VM. ClC Channels and Transporters: Structure, Physiological Functions, and Implications in Human Chloride Channelopathies. Front Pharmacol 2017; 8:151. [PMID: 28386229 PMCID: PMC5362633 DOI: 10.3389/fphar.2017.00151] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/09/2017] [Indexed: 02/04/2023] Open
Abstract
The discovery of ClC proteins at the beginning of the 1990s was important for the development of the Cl- transport research field. ClCs form a large family of proteins that mediate voltage-dependent transport of Cl- ions across cell membranes. They are expressed in both plasma and intracellular membranes of cells from almost all living organisms. ClC proteins form transmembrane dimers, in which each monomer displays independent ion conductance. Eukaryotic members also possess a large cytoplasmic domain containing two CBS domains, which are involved in transport modulation. ClC proteins function as either Cl- channels or Cl-/H+ exchangers, although all ClC proteins share the same basic architecture. ClC channels have two gating mechanisms: a relatively well-studied fast gating mechanism, and a slow gating mechanism, which is poorly defined. ClCs are involved in a wide range of physiological processes, including regulation of resting membrane potential in skeletal muscle, facilitation of transepithelial Cl- reabsorption in kidneys, and control of pH and Cl- concentration in intracellular compartments through coupled Cl-/H+ exchange mechanisms. Several inherited diseases result from C1C gene mutations, including myotonia congenita, Bartter's syndrome (types 3 and 4), Dent's disease, osteopetrosis, retinal degeneration, and lysosomal storage diseases. This review summarizes general features, known or suspected, of ClC structure, gating and physiological functions. We also discuss biophysical properties of mammalian ClCs that are directly involved in the pathophysiology of several human inherited disorders, or that induce interesting phenotypes in animal models.
Collapse
Affiliation(s)
- Diogo R Poroca
- Department of Physiology and Biophysics, Dalhousie University, Halifax NS, Canada
| | - Ryan M Pelis
- Department of Pharmacology, Dalhousie University, Halifax NS, Canada
| | - Valérie M Chappe
- Department of Physiology and Biophysics, Dalhousie University, Halifax NS, Canada
| |
Collapse
|
17
|
Satoh N, Suzuki M, Nakamura M, Suzuki A, Horita S, Seki G, Moriya K. Functional coupling of V-ATPase and CLC-5. World J Nephrol 2017; 6:14-20. [PMID: 28101447 PMCID: PMC5215204 DOI: 10.5527/wjn.v6.i1.14] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/04/2016] [Accepted: 11/02/2016] [Indexed: 02/06/2023] Open
Abstract
Dent’s disease is an X-linked renal tubulopathy characterized by low molecular weight proteinuria, hypercalciuria and progressive renal failure. Disease aetiology is associated with mutations in the CLCN5 gene coding for the electrogenic 2Cl-/H+ antiporter chloride channel 5 (CLC-5), which is expressed in the apical endosomes of renal proximal tubules with the vacuolar type H+-ATPase (V-ATPase). Initially identified as a member of the CLC family of Cl- channels, CLC-5 was presumed to provide Cl- shunt into the endosomal lumen to dissipate H+ accumulation by V-ATPase, thereby facilitating efficient endosomal acidification. However, recent findings showing that CLC-5 is in fact not a Cl- channel but a 2Cl-/H+ antiporter challenged this classical shunt model, leading to a renewed and intense debate on its physiological roles. Cl- accumulation via CLC-5 is predicted to play a critical role in endocytosis, as illustrated in mice carrying an artificial Cl- channel mutation E211A that developed defective endocytosis but normal endosomal acidification. Conversely, a recent functional analysis of a newly identified disease-causing Cl- channel mutation E211Q in a patient with typical Dent’s disease confirmed the functional coupling between V-ATPase and CLC-5 in endosomal acidification, lending support to the classical shunt model. In this editorial, we will address the current recognition of the physiological role of CLC-5 with a specific focus on the functional coupling of V-ATPase and CLC-5.
Collapse
|
18
|
Tang X, Brown MR, Cogal AG, Gauvin D, Harris PC, Lieske JC, Romero MF, Chang MH. Functional and transport analyses of CLCN5 genetic changes identified in Dent disease patients. Physiol Rep 2016; 4:4/8/e12776. [PMID: 27117801 PMCID: PMC4848727 DOI: 10.14814/phy2.12776] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 03/29/2016] [Indexed: 12/18/2022] Open
Abstract
Dent disease type 1, an X‐linked inherited kidney disease is caused by mutations in electrogenic Cl−/H+ exchanger, ClC‐5. We functionally studied the most frequent mutation (S244L) and two mutations recently identified in RKSC patients, Q629X and R345W. We also studied T657S, which has a high minor‐allele frequency (0.23%) in the African‐American population, was published previously as pathogenic to cause Dent disease. The transport properties of CLC‐5 were electrophysiologically characterized. WT and ClC‐5 mutant currents were inhibited by pH 5.5, but not affected by an alkaline extracellular solution (pH 8.5). The T657S and R345W mutations showed the same anion selectivity sequence as WT ClC‐5 (SCN−>NO3−≈Cl−>Br−>I−). However, the S244L and Q629X mutations abolished this anion conductance sequence. Cell surface CLC‐5 expression was quantified using extracellular HA‐tagged CLC‐5 and a chemiluminescent immunoassay. Cellular localization of eGFP‐tagged CLC‐5 proteins was also examined in HEK293 cells with organelle‐specific fluorescent probes. Functional defects of R345W and Q629X mutations were caused by the trafficking of the protein to the plasma membrane since proteins were mostly retained in the endoplasmic reticulum, and mutations showed positive correlations between surface expression and transport function. In contrast, although the S244L transport function was significantly lower than WT, cell surface, early endosome, and endoplasmic reticulum expression was equal to that of WT CLC‐5. Function and trafficking of T657S was equivalent to the WT CLC‐5 suggesting this is a benign variant rather than pathogenic. These studies demonstrate the useful information that can be gained by detailed functional studies of mutations predicted to be pathogenic.
Collapse
Affiliation(s)
- Xiaojing Tang
- O'Brien Urology Research Center, Mayo Clinic College of Medicine, Rochester, Minnesota Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota Division of Nephrology, Shanghai Changzheng Hospital Second Military Medical University, Shanghai, China
| | - Matthew R Brown
- O'Brien Urology Research Center, Mayo Clinic College of Medicine, Rochester, Minnesota Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota Wayne State University, Detroit, Michigan
| | - Andrea G Cogal
- Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Daniel Gauvin
- O'Brien Urology Research Center, Mayo Clinic College of Medicine, Rochester, Minnesota Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Peter C Harris
- Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - John C Lieske
- O'Brien Urology Research Center, Mayo Clinic College of Medicine, Rochester, Minnesota Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Michael F Romero
- O'Brien Urology Research Center, Mayo Clinic College of Medicine, Rochester, Minnesota Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Min-Hwang Chang
- O'Brien Urology Research Center, Mayo Clinic College of Medicine, Rochester, Minnesota Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
19
|
Imbrici P, Liantonio A, Camerino GM, De Bellis M, Camerino C, Mele A, Giustino A, Pierno S, De Luca A, Tricarico D, Desaphy JF, Conte D. Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery. Front Pharmacol 2016; 7:121. [PMID: 27242528 PMCID: PMC4861771 DOI: 10.3389/fphar.2016.00121] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/25/2016] [Indexed: 12/21/2022] Open
Abstract
In the human genome more than 400 genes encode ion channels, which are transmembrane proteins mediating ion fluxes across membranes. Being expressed in all cell types, they are involved in almost all physiological processes, including sense perception, neurotransmission, muscle contraction, secretion, immune response, cell proliferation, and differentiation. Due to the widespread tissue distribution of ion channels and their physiological functions, mutations in genes encoding ion channel subunits, or their interacting proteins, are responsible for inherited ion channelopathies. These diseases can range from common to very rare disorders and their severity can be mild, disabling, or life-threatening. In spite of this, ion channels are the primary target of only about 5% of the marketed drugs suggesting their potential in drug discovery. The current review summarizes the therapeutic management of the principal ion channelopathies of central and peripheral nervous system, heart, kidney, bone, skeletal muscle and pancreas, resulting from mutations in calcium, sodium, potassium, and chloride ion channels. For most channelopathies the therapy is mainly empirical and symptomatic, often limited by lack of efficacy and tolerability for a significant number of patients. Other channelopathies can exploit ion channel targeted drugs, such as marketed sodium channel blockers. Developing new and more specific therapeutic approaches is therefore required. To this aim, a major advancement in the pharmacotherapy of channelopathies has been the discovery that ion channel mutations lead to change in biophysics that can in turn specifically modify the sensitivity to drugs: this opens the way to a pharmacogenetics strategy, allowing the development of a personalized therapy with increased efficacy and reduced side effects. In addition, the identification of disease modifiers in ion channelopathies appears an alternative strategy to discover novel druggable targets.
Collapse
Affiliation(s)
- Paola Imbrici
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Antonella Liantonio
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Giulia M Camerino
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Michela De Bellis
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Claudia Camerino
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro" Bari, Italy
| | - Antonietta Mele
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Arcangela Giustino
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro" Bari, Italy
| | - Sabata Pierno
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Annamaria De Luca
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Domenico Tricarico
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Jean-Francois Desaphy
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro" Bari, Italy
| | - Diana Conte
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| |
Collapse
|
20
|
Khantwal CM, Abraham SJ, Han W, Jiang T, Chavan TS, Cheng RC, Elvington SM, Liu CW, Mathews II, Stein RA, Mchaourab HS, Tajkhorshid E, Maduke M. Revealing an outward-facing open conformational state in a CLC Cl(-)/H(+) exchange transporter. eLife 2016; 5. [PMID: 26799336 PMCID: PMC4769167 DOI: 10.7554/elife.11189] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/14/2016] [Indexed: 11/22/2022] Open
Abstract
CLC secondary active transporters exchange Cl- for H+. Crystal structures have suggested that the conformational change from occluded to outward-facing states is unusually simple, involving only the rotation of a conserved glutamate (Gluex) upon its protonation. Using 19F NMR, we show that as [H+] is increased to protonate Gluex and enrich the outward-facing state, a residue ~20 Å away from Gluex, near the subunit interface, moves from buried to solvent-exposed. Consistent with functional relevance of this motion, constriction via inter-subunit cross-linking reduces transport. Molecular dynamics simulations indicate that the cross-link dampens extracellular gate-opening motions. In support of this model, mutations that decrease steric contact between Helix N (part of the extracellular gate) and Helix P (at the subunit interface) remove the inhibitory effect of the cross-link. Together, these results demonstrate the formation of a previously uncharacterized 'outward-facing open' state, and highlight the relevance of global structural changes in CLC function. DOI:http://dx.doi.org/10.7554/eLife.11189.001 Cells have transporter proteins on their surface to carry molecules in and out of the cell. For example, the CLC family of transporters move two chloride ions in one direction at the same time as moving one hydrogen ion in the opposite direction. To be able to move these ions in opposite directions, transporters have to cycle through a series of shapes in which the ions can only access alternate sides of the membrane. First, the transporter adopts an 'outward-facing' shape when the ions first bind to the transporter, then it switches into the 'occluded' shape to move the ions through the membrane. Finally, the transporter takes on the 'inward-facing' shape to release the ions on the other side of the membrane. However, structural studies of CLCs suggest that the structures of these proteins do not change much while they are moving ions, which suggests that they might work in a different way. Khantwal, Abraham et al. have now used techniques called “nuclear magnetic resonance” and "double electron-electron resonance" to investigate how a CLC from a bacterium moves ions. The experiments suggest that when the transporter adopts the outward-facing shape, points on the protein known as Y419 and D417 shift their positions. Chemically linking two regions of the CLC prevented this movement and inhibited the transport of chloride ions across the membrane. Khantwal, Abraham et al. then used a computer simulation to model how the protein changes shape in more detail. This model predicts that two regions of the transporter undergo major rearrangements resulting in a gate-opening motion that widens a passage to allow the chloride ions to bind to the protein. Khantwal, Abraham et al.’s findings will prompt future studies to reveal the other shapes and how CLCs transition between them. DOI:http://dx.doi.org/10.7554/eLife.11189.002
Collapse
Affiliation(s)
- Chandra M Khantwal
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Sherwin J Abraham
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Wei Han
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States.,College of Medicine, University of Illinois at Urbana-Champaign, Urbana, United States.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Tao Jiang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States.,College of Medicine, University of Illinois at Urbana-Champaign, Urbana, United States.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Tanmay S Chavan
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Ricky C Cheng
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Shelley M Elvington
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Corey W Liu
- Stanford Magnetic Resonance Laboratory, Stanford University School of Medicine, Stanford, United States
| | - Irimpan I Mathews
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, United States
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States.,College of Medicine, University of Illinois at Urbana-Champaign, Urbana, United States.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Merritt Maduke
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
21
|
Zifarelli G. A tale of two CLCs: biophysical insights toward understanding ClC-5 and ClC-7 function in endosomes and lysosomes. J Physiol 2015; 593:4139-50. [PMID: 26036722 DOI: 10.1113/jp270604] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 05/22/2015] [Indexed: 11/08/2022] Open
Abstract
The CLC protein family comprises both Cl(-) channels and H(+) -coupled anion transporters. The understanding of the critical role of CLC proteins in a number of physiological functions has greatly contributed to a revision of the classical paradigm that attributed to Cl(-) ions only a marginal role in human physiology. The endosomal ClC-5 and the lysosomal ClC-7 are the best characterized human CLC transporters. Their dysfunction causes Dent's disease and osteopetrosis, respectively. It had been originally proposed that they would provide a Cl(-) shunt conductance allowing efficient acidification of intracellular compartments. However, this model seems to conflict with the transport properties of these proteins and with recent physiological evidence. Currently, there is no consensus on their specific physiological role. CLC proteins present also a number of peculiar biophysical properties, such as the dimeric architecture, the co-existence of intrinsically different thermodynamic modes of transport based on similar structural principles, and the gating mechanism recently emerging for the transporters, just to name a few. This review focuses on the biophysical properties and physiological roles of ClC-5 and ClC-7.
Collapse
Affiliation(s)
- Giovanni Zifarelli
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
22
|
Xu H, Martinoia E, Szabo I. Organellar channels and transporters. Cell Calcium 2015; 58:1-10. [PMID: 25795199 DOI: 10.1016/j.ceca.2015.02.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 02/20/2015] [Indexed: 12/22/2022]
Abstract
Decades of intensive research have led to the discovery of most plasma membrane ion channels and transporters and the characterization of their physiological functions. In contrast, although over 80% of transport processes occur inside the cells, the ion flux mechanisms across intracellular membranes (the endoplasmic reticulum, Golgi apparatus, endosomes, lysosomes, mitochondria, chloroplasts, and vacuoles) are difficult to investigate and remain poorly understood. Recent technical advances in super-resolution microscopy, organellar electrophysiology, organelle-targeted fluorescence imaging, and organelle proteomics have pushed a large step forward in the research of intracellular ion transport. Many new organellar channels are molecularly identified and electrophysiologically characterized. Additionally, molecular identification of many of these ion channels/transporters has made it possible to study their physiological functions by genetic and pharmacological means. For example, organellar channels have been shown to regulate important cellular processes such as programmed cell death and photosynthesis, and are involved in many different pathologies. This special issue (SI) on organellar channels and transporters aims to provide a forum to discuss the recent advances and to define the standard and open questions in this exciting and rapidly developing field. Along this line, a new Gordon Research Conference dedicated to the multidisciplinary study of intracellular membrane transport proteins will be launched this coming summer.
Collapse
Affiliation(s)
- Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University Avenue, Ann Arbor, MI 48109-1048, USA.
| | - Enrico Martinoia
- Institute of Plant Biology, University of Zürich, Zollikerstr. 107, CH-8008 Zürich, Switzerland.
| | - Ildiko Szabo
- Department of Biology, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy; CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy.
| |
Collapse
|