1
|
García-Castro P, Giambó-Falian I, Carvacho I, Fuentes R. Phenogenetics of cortical granule dynamics during zebrafish oocyte-to-embryo transition. Front Cell Dev Biol 2025; 13:1514461. [PMID: 39949602 PMCID: PMC11821946 DOI: 10.3389/fcell.2025.1514461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/09/2025] [Indexed: 02/16/2025] Open
Abstract
Fertilization is a critical process in sexual reproduction that involves the fusion of a capacitated sperm with a mature oocyte to form a zygote. Polyspermy, the fertilization of an oocyte by multiple sperm, leads to polyploidy and embryo lethality. Mammalian and non-mammalian oocytes have evolved mechanisms to prevent polyspermy, including fast and slow blocks. The fast block comprises membrane depolarization post-sperm fusion, temporarily preventing additional sperm fusion. The slow block, triggered by cortical granule (CG) exocytosis, involves the release of proteins that modify the zona pellucida to form a permanent barrier, avoiding the fertilization by additional sperm. The evidence shows that immature oocytes often fail to prevent polyspermy due to ineffective CG exocytosis, attributed to impaired intracellular calcium increases, lower content of this ion, and incomplete CG migration. The study of how genetic variations lead to observable phenotypes (phenogenetics) during the oocyte-to-embryo transition, have identified several maternal-effect genes in zebrafish involved in CG behavior. These genes regulate various stages of CG biology, including biosynthesis, maturation, and exocytosis. Mutations in these genes disrupt these processes, highlighting the maternal genetic control over CG properties. Zebrafish has emerged as a pivotal model for understanding the evolving genetic regulation and molecular mechanisms underlying CG biology, providing valuable insights into fertility and early embryonic development.
Collapse
Affiliation(s)
- Priscila García-Castro
- Laboratorio de Fenómica y Embriogénesis Temprana (LAFET), Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Isabella Giambó-Falian
- Laboratorio de Fenómica y Embriogénesis Temprana (LAFET), Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ingrid Carvacho
- Laboratorio de Canales Iónicos y Reproducción (CIR), Departamento de Medicina Translacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Ricardo Fuentes
- Laboratorio de Fenómica y Embriogénesis Temprana (LAFET), Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
2
|
Chen C, Huang Z, Dong S, Ding M, Li J, Wang M, Zeng X, Zhang X, Sun X. Calcium signaling in oocyte quality and functionality and its application. Front Endocrinol (Lausanne) 2024; 15:1411000. [PMID: 39220364 PMCID: PMC11361953 DOI: 10.3389/fendo.2024.1411000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Calcium (Ca2+) is a second messenger for many signal pathways, and changes in intracellular Ca2+ concentration ([Ca2+]i) are an important signaling mechanism in the oocyte maturation, activation, fertilization, function regulation of granulosa and cumulus cells and offspring development. Ca2+ oscillations occur during oocyte maturation and fertilization, which are maintained by Ca2+ stores and extracellular Ca2+ ([Ca2+]e). Abnormalities in Ca2+ signaling can affect the release of the first polar body, the first meiotic division, and chromosome and spindle morphology. Well-studied aspects of Ca2+ signaling in the oocyte are oocyte activation and fertilization. Oocyte activation, driven by sperm-specific phospholipase PLCζ, is initiated by concerted intracellular patterns of Ca2+ release, termed Ca2+ oscillations. Ca2+ oscillations persist for a long time during fertilization and are coordinately engaged by a variety of Ca2+ channels, pumps, regulatory proteins and their partners. Calcium signaling also regulates granulosa and cumulus cells' function, which further affects oocyte maturation and fertilization outcome. Clinically, there are several physical and chemical options for treating fertilization failure through oocyte activation. Additionally, various exogenous compounds or drugs can cause ovarian dysfunction and female infertility by inducing abnormal Ca2+ signaling or Ca2+ dyshomeostasis in oocytes and granulosa cells. Therefore, the reproductive health risks caused by adverse stresses should arouse our attention. This review will systematically summarize the latest research progress on the aforementioned aspects and propose further research directions on calcium signaling in female reproduction.
Collapse
Affiliation(s)
- Chen Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Zefan Huang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Shijue Dong
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Mengqian Ding
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Jinran Li
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Miaomiao Wang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xuhui Zeng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xiaoli Sun
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| |
Collapse
|
3
|
Rojas J, Hinostroza F, Vergara S, Pinto-Borguero I, Aguilera F, Fuentes R, Carvacho I. Knockin' on Egg's Door: Maternal Control of Egg Activation That Influences Cortical Granule Exocytosis in Animal Species. Front Cell Dev Biol 2021; 9:704867. [PMID: 34540828 PMCID: PMC8446563 DOI: 10.3389/fcell.2021.704867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022] Open
Abstract
Fertilization by multiple sperm leads to lethal chromosomal number abnormalities, failed embryo development, and miscarriage. In some vertebrate and invertebrate eggs, the so-called cortical reaction contributes to their activation and prevents polyspermy during fertilization. This process involves biogenesis, redistribution, and subsequent accumulation of cortical granules (CGs) at the female gamete cortex during oogenesis. CGs are oocyte- and egg-specific secretory vesicles whose content is discharged during fertilization to block polyspermy. Here, we summarize the molecular mechanisms controlling critical aspects of CG biology prior to and after the gametes interaction. This allows to block polyspermy and provide protection to the developing embryo. We also examine how CGs form and are spatially redistributed during oogenesis. During egg activation, CG exocytosis (CGE) and content release are triggered by increases in intracellular calcium and relies on the function of maternally-loaded proteins. We also discuss how mutations in these factors impact CG dynamics, providing unprecedented models to investigate the genetic program executing fertilization. We further explore the phylogenetic distribution of maternal proteins and signaling pathways contributing to CGE and egg activation. We conclude that many important biological questions and genotype–phenotype relationships during fertilization remain unresolved, and therefore, novel molecular players of CG biology need to be discovered. Future functional and image-based studies are expected to elucidate the identity of genetic candidates and components of the molecular machinery involved in the egg activation. This, will open new therapeutic avenues for treating infertility in humans.
Collapse
Affiliation(s)
- Japhet Rojas
- Laboratorio Fisiología de la Reproducción, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile.,Escuela de Ingeniería en Biotecnología, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Fernando Hinostroza
- Laboratorio Fisiología de la Reproducción, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile.,Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile.,Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca, Chile
| | - Sebastián Vergara
- Laboratorio Fisiología de la Reproducción, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile.,Escuela de Ingeniería en Biotecnología, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Ingrid Pinto-Borguero
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Felipe Aguilera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ricardo Fuentes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ingrid Carvacho
- Laboratorio Fisiología de la Reproducción, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
4
|
York-Andersen AH, Wood BW, Wilby EL, Berry AS, Weil TT. Osmolarity-regulated swelling initiates egg activation in Drosophila. Open Biol 2021; 11:210067. [PMID: 34343463 PMCID: PMC8331238 DOI: 10.1098/rsob.210067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Egg activation is a series of highly coordinated processes that prepare the mature oocyte for embryogenesis. Typically associated with fertilization, egg activation results in many downstream outcomes, including the resumption of the meiotic cell cycle, translation of maternal mRNAs and cross-linking of the vitelline membrane. While some aspects of egg activation, such as initiation factors in mammals and environmental cues in sea animals, have been well-documented, the mechanics of egg activation in insects are less well-understood. For many insects, egg activation can be triggered independently of fertilization. In Drosophila melanogaster, egg activation occurs in the oviduct resulting in a single calcium wave propagating from the posterior pole of the oocyte. Here we use physical manipulations, genetics and live imaging to demonstrate the requirement of a volume increase for calcium entry at egg activation in ex vivo mature Drosophila oocytes. The addition of water, modified with sucrose to a specific osmolarity, is sufficient to trigger the calcium wave in the mature oocyte and the downstream events associated with egg activation. We show that the swelling process is regulated by the conserved osmoregulatory channels, aquaporins and DEGenerin/Epithelial Na+ channels. Furthermore, through pharmacological and genetic disruption, we reveal a concentration-dependent requirement of transient receptor potential M channels to transport calcium, most probably from the perivitelline space, across the plasma membrane into the mature oocyte. Our data establish osmotic pressure as a mechanism that initiates egg activation in Drosophila and are consistent with previous work from evolutionarily distant insects, including dragonflies and mosquitos, and show remarkable similarities to the mechanism of egg activation in some plants.
Collapse
Affiliation(s)
- Anna H York-Andersen
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Benjamin W Wood
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Elise L Wilby
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Alexander S Berry
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Timothy T Weil
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
5
|
Mehregan A, Ardestani G, Akizawa H, Carvacho I, Fissore R. Deletion of TRPV3 and CaV3.2 T-type channels in mice undermines fertility and Ca2+ homeostasis in oocytes and eggs. J Cell Sci 2021; 134:jcs257956. [PMID: 34313315 PMCID: PMC8313860 DOI: 10.1242/jcs.257956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
Ca2+ influx during oocyte maturation and after sperm entry is necessary to fill the internal Ca2+ stores and for complete egg activation. We knocked out the transient receptor potential vanilloid member 3 (TRPV3) and the T-type channel, CaV3.2, to determine their necessity for maintaining these functions in mammalian oocytes/eggs. Double-knockout (dKO) females were subfertile, their oocytes and eggs showed reduced internal Ca2+ stores, and, following sperm entry or Plcz (also known as Plcz1) cRNA injection, fewer dKO eggs displayed Ca2+ responses compared to wild-type eggs, which were also of lower frequency. These parameters were rescued and/or enhanced by removing extracellular Mg2+, suggesting that the residual Ca2+ influx could be mediated by the TRPM7 channel, consistent with the termination of divalent-cation oscillations in dKO eggs by a TRPM7 inhibitor. In total, we demonstrated that TRPV3 and CaV3.2 mediate the complete filling of the Ca2+ stores in mouse oocytes and eggs. We also showed that they are required for initiating and maintaining regularly spaced-out oscillations, suggesting that Ca2+ influx through PM ion channels dictates the periodicity and persistence of Ca2+ oscillations during mammalian fertilization.
Collapse
Affiliation(s)
- Aujan Mehregan
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, MA 01003, USA
| | - Goli Ardestani
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, MA 01003, USA
| | - Hiroki Akizawa
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, MA 01003, USA
| | - Ingrid Carvacho
- Department of Biology and Chemistry, Faculty of Basic Sciences, Universidad Católica del Maule, 3480112 Talca, Chile
| | - Rafael Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
6
|
Lee HC, Edmonds ME, Duncan FE, O'Halloran TV, Woodruff TK. Zinc exocytosis is sensitive to myosin light chain kinase inhibition in mouse and human eggs. Mol Hum Reprod 2021; 26:228-239. [PMID: 32119740 DOI: 10.1093/molehr/gaaa017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/07/2020] [Indexed: 12/20/2022] Open
Abstract
Zinc dynamics are essential for oocyte meiotic maturation, egg activation, and preimplantation embryo development. During fertilisation and egg activation, the egg releases billions of zinc atoms (Zn2+) in an exocytotic event termed the 'zinc spark'. We hypothesised that this zinc transport and exocytosis is dependent upon the intracellular trafficking of cortical granules (CG) which requires myosin-actin-dependent motors. Treatment of mature mouse and human eggs with ML-7, a myosin light chain kinase inhibitor (MLCK), resulted in an 80% reduction in zinc spark intensity compared to untreated controls when activated with ionomycin. Moreover, CG migration towards the plasma membrane was significantly decreased in ML-7-treated eggs compared with controls when activated parthenogenetically with ionomycin. In sperm-induced fertilisation via intracytoplasmic sperm injection (ICSI), ML-7-treated mouse eggs exhibited decreased labile zinc intensity and cortical CG staining. Collectively, these data demonstrate that ML-7 treatment impairs zinc release from both murine and human eggs after activation, demonstrating that zinc exocytosis requires myosin light chain kinase activity. Further, these results provide additional support that zinc is likely stored and released from CGs. These data underscore the importance of intracellular zinc trafficking as a crucial component of egg maturation necessary for egg activation and early embryo development.
Collapse
Affiliation(s)
- Hoi Chang Lee
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Maxwell E Edmonds
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Thomas V O'Halloran
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.,Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| |
Collapse
|
7
|
Neuberger A, Nadezhdin KD, Sobolevsky AI. TRPV3 expression and purification for structure determination by Cryo-EM. Methods Enzymol 2021; 652:31-48. [PMID: 34059288 DOI: 10.1016/bs.mie.2021.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The transient receptor potential vanilloid-superfamily member 3 (TRPV3) channel is implicated in a variety of physiological processes, including temperature sensing, nociception and itch, maintenance of the skin barrier, wound healing, hair growth, and embryonic development. TRPV3 is also associated with various skin diseases, including Olmsted syndrome, atopic dermatitis, and rosacea. Studies of TRPV3 are of fundamental importance for structural pharmacology aimed at the design of drugs targeting this channel and for understanding the molecular basis of temperature sensing. Here we describe a detailed protocol for expression and purification of chemically pure and stable TRPV3 protein that is suitable for structural and functional characterization of this channel, in particular for cryo-EM sample preparation and high-resolution 3D reconstruction.
Collapse
Affiliation(s)
- Arthur Neuberger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
| | - Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States.
| |
Collapse
|
8
|
Lee HC, Balough JL, Roth EW, Vaccari S, Duncan FE. A decellularized oocyte-derived scaffold provides a "sperm safe" to preserve mammalian spermatozoa. Andrology 2021; 9:922-932. [PMID: 33565255 DOI: 10.1111/andr.12986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/14/2021] [Accepted: 02/07/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Although only one spermatozoon is needed to create a zygote, a significant challenge is the storage and recovery of germ cells when sperm counts are extremely low. OBJECTIVES We engineered an oocyte-derived biomaterial-the zona pellucida (ZP)-as a "sperm safe" for storing spermatozoon. The ZP is a glycoprotein matrix that surrounds the mammalian oocyte. MATERIALS AND METHODS We made a hole in the ZPs using a Piezo drill and mechanically separated them from the oocyte cytoplasm. A subset of ZPs were further purified through decellularization. Using a modified ICSI approach, we injected sperm heads into purified ZPs and tested the efficacy of cryopreservation and recovery of spermatozoon as well as function. RESULTS Between 1-6 sperm heads were injected into purified ZPs (average 2.7 ± 1.7 sperm heads/ZP), which were then cryopreserved. Upon thawing, an average of 2.5 ± 1.4 sperm heads/ZP were observed, and in 11 of 12 thawed "sperm safes," we recovered all spermatozoa. Decellularized "sperm safes" maintained their three-dimensional structure and had a denser matrix relative to untreated controls as assessed by scanning and transmitted electron microscopy. The efficacy of "sperm safe" derived spermatozoon was evaluated by ICSI. Spermatozoon stored in either untreated or decellularized "sperm safes" elicited egg activation-associated calcium transients and zinc sparks when injected into eggs. Of the resulting zygotes, >80% of them formed pronuclei irrespective of the sperm source. 26.8 ± 4.6% and 18.1 ± 7.0% of the pre-implantation embryos generated from spermatozoon recovered from untreated or decellularized "sperm safes" developed to the blastocyst stage, respectively. Although this development was lower than that using fresh spermatozoon (59.3 ± 19.3%) or conventionally frozen-thawed spermatozoon (28.4 ± 1.7%), these differences were not significant. DISCUSSION AND CONCLUSION Purified ZPs represent a natural biomaterial for the efficient preservation and recovery of small sperm numbers.
Collapse
Affiliation(s)
- Hoi Chang Lee
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Julia L Balough
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Eric W Roth
- NUANCE, Northwestern University, Evanston, IL, USA
| | - Sergio Vaccari
- Spring Fertility, San Francisco/Silicon Valley, East Bay, CA, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
9
|
Eum JH, Park M, Yoon JA, Yoon SY. Voltage Dependent N Type Calcium Channel in Mouse Egg Fertilization. Dev Reprod 2021; 24:297-306. [PMID: 33537516 PMCID: PMC7837419 DOI: 10.12717/dr.2020.24.4.297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Repetitive changes in the intracellular calcium concentration
([Ca2+]i) triggers egg activation, including cortical
granule exocytosis, resumption of second meiosis, block to polyspermy, and
initiating embryonic development. [Ca2+]i oscillations that
continue for several hours, are required for the early events of egg activation
and possibly connected to further development to the blastocyst stage. The
sources of Ca2+ ion elevation during [Ca2+]i
oscillations are Ca2+ release from endoplasmic reticulum
through inositol 1,4,5 tri-phosphate receptor and Ca2+ ion
influx through Ca2+ channel on the plasma membrane.
Ca2+ channels have been characterized into
voltage-dependent Ca2+ channels (VDCCs), ligand-gated
Ca2+ channel, and leak-channel. VDCCs expressed on muscle
cell or neuron is specified into L, T, N, P, Q, and R type VDCs by their
activation threshold or their sensitivity to peptide toxins isolated from cone
snails and spiders. The present study was aimed to investigate the localization
pattern of N and P/Q type voltage-dependent calcium channels in mouse eggs and
the role in fertilization. [Ca2+]i oscillation was observed in
a Ca2+ contained medium with sperm factor or adenophostin A
injection but disappeared in Ca2+ free medium.
Ca2+ influx was decreased by Lat A. N-VDCC specific
inhibitor, ω-Conotoxin CVIIA induced abnormal [Ca2+]i
oscillation profiles in SrCl2 treatment. N or P/Q type VDC were
distributed on the plasma membrane in cortical cluster form, not in the
cytoplasm. Ca2+ influx is essential for
[Ca2+]i oscillation during mammalian fertilization. This
Ca2+ influx might be controlled through the N or P/Q type
VDCCs. Abnormal VDCCs expression of eggs could be tested in fertilization
failure or low fertilization eggs in subfertility women.
Collapse
Affiliation(s)
- Jin Hee Eum
- Fertility Center of CHA Gangnam Medical Center, Seoul 06125, Korea
| | - Miseon Park
- Fertility Center of CHA Gangnam Medical Center, Seoul 06125, Korea
| | - Jung Ah Yoon
- Fertility Center of CHA Gangnam Medical Center, Seoul 06125, Korea
| | - Sook Young Yoon
- Fertility Center of CHA Gangnam Medical Center, Seoul 06125, Korea
| |
Collapse
|
10
|
Limatola N, Chun JT, Santella L. Effects of Salinity and pH of Seawater on the Reproduction of the Sea Urchin Paracentrotus lividus. THE BIOLOGICAL BULLETIN 2020; 239:13-23. [PMID: 32812816 DOI: 10.1086/710126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
AbstractFertilization and early development are usually the most vulnerable stages in the life of marine animals, and the biological processes during this period are highly sensitive to the environment. In nature, sea urchin gametes are shed in seawater, where they undergo external fertilization and embryonic development. In a laboratory, it is possible to follow the exact morphological and biochemical changes taking place in the fertilized eggs and the developing embryos. Thus, observation of successful fertilization and the subsequent embryonic development of sea urchin eggs can be used as a convenient biosensor to assess the quality of the marine environment. In this paper, we have examined how salinity and pH changes affect the normal fertilization process and the following development of Paracentrotus lividus. The results of our studies using confocal microscopy, scanning and transmission electron microscopy, and time-lapse Ca2+ image recording indicated that both dilution and acidification of seawater have subtle but detrimental effects on many aspects of the fertilization process. They include Ca2+ signaling and coordinated actin cytoskeletal changes, leading to a significantly reduced rate of successful fertilization and, eventually, to abnormal or delayed embryonic development.
Collapse
|
11
|
Ardestani G, Mehregan A, Fleig A, Horgen FD, Carvacho I, Fissore RA. Divalent cation influx and calcium homeostasis in germinal vesicle mouse oocytes. Cell Calcium 2020; 87:102181. [PMID: 32097818 DOI: 10.1016/j.ceca.2020.102181] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 11/30/2022]
Abstract
Prior to maturation, mouse oocytes are arrested at the germinal vesicle (GV) stage during which they experience constitutive calcium (Ca2+) influx and spontaneous Ca2+ oscillations. The oscillations cease during maturation but Ca2+ influx continues, as the oocytes' internal stores attain maximal content at the culmination of maturation, the metaphase II stage. The identity of the channel(s) that underlie this Ca2+ influx has not been completely determined. GV and matured oocytes are known to express three Ca2+ channels, CaV3.2, TRPV3 and TRPM7, but females null for each of these channels are fertile and their oocytes display minor modifications in Ca2+ homeostasis, suggesting a complex regulation of Ca2+ influx. To define the contribution of these channels at the GV stage, we used different divalent cations, pharmacological inhibitors and genetic models. We found that the three channels are active at this stage. CaV3.2 and TRPM7 channels contributed the majority of Ca2+ influx, as inhibitors and oocytes from homologous knockout (KO) lines showed severely reduced Ca2+ entry. Sr2+ influx was promoted by CaV3.2 channels, as Sr2+ oscillations were negligible in CaV3.2-KO oocytes but robust in control and Trpv3-KO GV oocytes. Mn2+ entry relied on expression of CaV3.2 and TRPM7 channels, but Ni2+ entry depended on the latter. CaV3.2 and TRPV3 channels combined to fill the Ca2+ stores, although CaV3.2 was the most impactful. Studies with pharmacological inhibitors effectively blocked the influx of divalent cations, but displayed off-target effects, and occasionally agonist-like properties. In conclusion, GV oocytes express channels mediating Ca2+ and other divalent cation influx that are pivotal for fertilization and early development. These channels may serve as targets for intervention to improve the success of assisted reproductive technologies.
Collapse
Affiliation(s)
- Goli Ardestani
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, MA, 01003, USA
| | - Aujan Mehregan
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, MA, 01003, USA
| | - Andrea Fleig
- Center for Biomedical Research at The Queen's Medical Center and University of Hawaii Cancer Center and John A. Burns School of Medicine at the University of Hawaii, Honolulu, HI, 96813, USA
| | - F David Horgen
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, HI, 96744, USA
| | - Ingrid Carvacho
- Department of Biology and Chemistry, Faculty of Basic Sciences, Universidad Católica del Maule, 3480112, Talca, Chile
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, MA, 01003, USA.
| |
Collapse
|
12
|
Liu H, Dilger JP, Lin J. The Role of Transient Receptor Potential Melastatin 7 (TRPM7) in Cell Viability: A Potential Target to Suppress Breast Cancer Cell Cycle. Cancers (Basel) 2020; 12:131. [PMID: 31947967 PMCID: PMC7016641 DOI: 10.3390/cancers12010131] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/27/2019] [Accepted: 01/01/2020] [Indexed: 12/14/2022] Open
Abstract
The divalent cation-selective channel transient receptor potential melastatin 7 (TRPM7) channel was shown to affect the proliferation of some types of cancer cell. However, the function of TRPM7 in the viability of breast cancer cells remains unclear. Here we show that TRPM inhibitors suppressed the viability of TRPM7-expressing breast cancer cells. We first demonstrated that the TRPM7 inhibitors 2-aminoethyl diphenylborinate (2-APB), ginsenoside Rd (Gin Rd), and waixenicin A preferentially suppressed the viability of human embryonic kidney HEK293 overexpressing TRPM7 (HEK-M7) cells over wildtype HEK293 (WT-HEK). Next, we confirmed the effects of 2-APB on the TRPM7 channel functions by whole-cell currents and divalent cation influx. The inhibition of the viability of HEK-M7 cells by 2-APB was not mediated by the increase in cell death but by the interruption of the cell cycle. Similar to HEK-M7 cells, the viability of TRPM7-expressing human breast cancer MDA-MB-231, AU565, and T47D cells were also suppressed by 2-APB by arresting the cell cycle in the S phase. Furthermore, in a novel TRPM7 knock-out MDA-MB-231 (KO-231) cell line, decreased divalent influx and reduced proliferation were observed compared to the wildtype MDA-MB-231 cells. 2-APB and Gin Rd preferentially suppressed the viability of wildtype MDA-MB-231 cells over KO-231 by affecting the cell cycle in wildtype but not KO-231 cells. Our results suggest that TRPM7 regulates the cell cycle of breast cancers and is a potential therapeutic target.
Collapse
Affiliation(s)
| | | | - Jun Lin
- Department of Anesthesiology, Health Science Center, Stony Brook University, Stony Brook, NY 11794, USA; (H.L.); (J.P.D.)
| |
Collapse
|
13
|
York-Andersen AH, Hu Q, Wood BW, Wolfner MF, Weil TT. A calcium-mediated actin redistribution at egg activation in Drosophila. Mol Reprod Dev 2019; 87:293-304. [PMID: 31880382 PMCID: PMC7044060 DOI: 10.1002/mrd.23311] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/12/2019] [Indexed: 12/24/2022]
Abstract
Egg activation is the essential process in which mature oocytes gain the competency to proceed into embryonic development. Many events of egg activation are conserved, including an initial rise of intracellular calcium. In some species, such as echinoderms and mammals, changes in the actin cytoskeleton occur around the time of fertilization and egg activation. However, the interplay between calcium and actin during egg activation remains unclear. Here, we use imaging, genetics, pharmacological treatment, and physical manipulation to elucidate the relationship between calcium and actin in living Drosophila eggs. We show that, before egg activation, actin is smoothly distributed between ridges in the cortex of the dehydrated mature oocytes. At the onset of egg activation, we observe actin spreading out as the egg swells though the intake of fluid. We show that a relaxed actin cytoskeleton is required for the intracellular rise of calcium to initiate and propagate. Once the swelling is complete and the calcium wave is traversing the egg, it leads to a reorganization of actin in a wavelike manner. After the calcium wave, the actin cytoskeleton has an even distribution of foci at the cortex. Together, our data show that calcium resets the actin cytoskeleton at egg activation, a model that we propose to be likely conserved in other species.
Collapse
Affiliation(s)
| | - Qinan Hu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Benjamin W Wood
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Timothy T Weil
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
Cheng H, Li J, Wu Q, Zheng X, Gao Y, Yang Q, Sun N, He M, Zhou Y. Effect of SKF‑96365 on cardiomyocyte hypertrophy induced by angiotensin II. Mol Med Rep 2019; 21:806-814. [PMID: 31974621 PMCID: PMC6947876 DOI: 10.3892/mmr.2019.10877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/06/2019] [Indexed: 02/02/2023] Open
Abstract
Angiotensin II (Ang II) is an important bioactive peptide in the renin-angiotensin system, and it can contribute to cell proliferation and cardiac hypertrophy. Dysfunctions in transient receptor potential canonical (TRPC) channels are involved in many types of cardiovascular diseases. The aim of the present study was to investigate the role of the TRPC channel inhibitor SKF-96365 in cardiomyocyte hypertrophy induced by Ang II and the potential mechanisms of SKF-96365. H9c2 cells were treated with different concentrations of Ang II. The expression levels of cardiomyocyte hypertrophy markers and TRPC channel-related proteins were also determined. The morphology and surface area of the H9c2 cells, the expression of hypertrophic markers and TRPC channel-related proteins and the [3H] leucine incorporation rate were detected in the Ang II-treated H9c2 cells following treatment with the TRPC channel inhibitor SKF-96365. The intracellular Ca2+ concentration was tested by flow cytometry. The present results suggested that the surface area of H9c2 cells treated with Ang II was significantly increased compared with untreated H9c2 cells. The fluorescence intensity of α-actinin, the expression of hypertrophic markers and TRPC-related proteins, the [3H] leucine incorporation rate and the intracellular Ca2+ concentration were all markedly increased in the Ang II-treated H9c2 cells but decreased following SKF-96365 treatment. The present results suggested that Ang II induced cardiomyocyte hypertrophy in H9c2 cells and that the TRPC pathway may be involved in this process. Therefore, SKF-96365 can inhibit cardiomyocyte hypertrophy induced by Ang II by suppressing the TRPC pathway. The present results indicated that TRPC may be a therapeutic target for the development of novel drugs to treat cardiac hypertrophy.
Collapse
Affiliation(s)
- Huijun Cheng
- Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Jiaoxia Li
- Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Qiyan Wu
- Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Xiaodong Zheng
- Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Yongqiang Gao
- Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Qiaofen Yang
- Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Ningxi Sun
- Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Meiqiong He
- Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Youjun Zhou
- Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| |
Collapse
|
15
|
Que EL, Duncan FE, Lee HC, Hornick JE, Vogt S, Fissore RA, O'Halloran TV, Woodruff TK. Bovine eggs release zinc in response to parthenogenetic and sperm-induced egg activation. Theriogenology 2018; 127:41-48. [PMID: 30639695 DOI: 10.1016/j.theriogenology.2018.12.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022]
Abstract
Upon fertilization or parthenogenesis, zinc is released into the extracellular space through a series of exocytic events termed zinc sparks, which are tightly coordinated with intracellular calcium transients. The zinc spark reduces the total amount of intracellular zinc, and this reduction is necessary and sufficient to induce egg activation even in the absence of calcium transients. In addition, this zinc release contributes to the block to polyspermy through modification of the zona pellucida. The zinc spark has been documented in all organisms examined to date including the mouse, two species of nonhuman primates, and human. Here we determined whether zinc sparks occur in the bovine, an important model of gamete development in mono-ovulatory mammalian species. We obtained metaphase II-arrested (MII) bovine eggs following in vitro maturation. Total zinc, assessed in single cells using X-Ray Fluorescence Microscopy, was significantly more abundant in the bovine egg compared to iron and copper. Studies with intracellular fluorescent probes revealed that labile zinc pools are localized to discrete cytoplasmic punctae enriched at the cortex. To determine whether zinc undergoes dynamic fluxes during egg activation, we parthenogenetically activated bovine eggs using two approaches: ionomycin or bovine phospholipase C zeta (bPlcζ). Both these methods induced zinc sparks coordinately with intracellular calcium transients. The zinc spark was also observed in bovine eggs following intracytoplasmic sperm injection. These results establish that zinc is the most abundant transition metal in the bovine egg, and zinc flux during egg activation - induced by chemical activation or sperm - is a highly conserved event across mammalian species.
Collapse
Affiliation(s)
- Emily L Que
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Hoi Chang Lee
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jessica E Hornick
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Stefan Vogt
- X-ray Sciences Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Thomas V O'Halloran
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA; Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.
| | - Teresa K Woodruff
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA; Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
16
|
Carvacho I, Piesche M, Maier TJ, Machaca K. Ion Channel Function During Oocyte Maturation and Fertilization. Front Cell Dev Biol 2018; 6:63. [PMID: 29998105 PMCID: PMC6028574 DOI: 10.3389/fcell.2018.00063] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/04/2018] [Indexed: 12/20/2022] Open
Abstract
The proper maturation of both male and female gametes is essential for supporting fertilization and the early embryonic divisions. In the ovary, immature fully-grown oocytes that are arrested in prophase I of meiosis I are not able to support fertilization. Acquiring fertilization competence requires resumption of meiosis which encompasses the remodeling of multiple signaling pathways and the reorganization of cellular organelles. Collectively, this differentiation endows the egg with the ability to activate at fertilization and to promote the egg-to-embryo transition. Oocyte maturation is associated with changes in the electrical properties of the plasma membrane and alterations in the function and distribution of ion channels. Therefore, variations on the pattern of expression, distribution, and function of ion channels and transporters during oocyte maturation are fundamental to reproductive success. Ion channels and transporters are important in regulating membrane potential, but also in the case of calcium (Ca2+), they play a critical role in modulating intracellular signaling pathways. In the context of fertilization, Ca2+ has been shown to be the universal activator of development at fertilization, playing a central role in early events associated with egg activation and the egg-to-embryo transition. These early events include the block of polyspermy, the completion of meiosis and the transition to the embryonic mitotic divisions. In this review, we discuss the role of ion channels during oocyte maturation, fertilization and early embryonic development. We will describe how ion channel studies in Xenopus oocytes, an extensively studied model of oocyte maturation, translate into a greater understanding of the role of ion channels in mammalian oocyte physiology.
Collapse
Affiliation(s)
- Ingrid Carvacho
- Department of Biology and Chemistry, Faculty of Basic Sciences, Universidad Católica del Maule, Talca, Chile
| | - Matthias Piesche
- Biomedical Research Laboratories, Medicine Faculty, Universidad Católica del Maule, Talca, Chile
| | - Thorsten J. Maier
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Goethe-University Hospital, Frankfurt, Germany
| | - Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell-Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| |
Collapse
|
17
|
Águila L, Felmer R, Arias ME, Navarrete F, Martin-Hidalgo D, Lee HC, Visconti P, Fissore R. Defective sperm head decondensation undermines the success of ICSI in the bovine. Reproduction 2018; 154:307-318. [PMID: 28751536 DOI: 10.1530/rep-17-0270] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/20/2017] [Accepted: 06/30/2017] [Indexed: 12/25/2022]
Abstract
The efficiency of intracytoplasmic sperm injection (ICSI) in the bovine is low compared to other species. It is unknown whether defective oocyte activation and/or sperm head decondensation limit the success of this technique in this species. To elucidate where the main obstacle lies, we used homologous and heterologous ICSI and parthenogenetic activation procedures. We also evaluated whether in vitro maturation negatively impacted the early stages of activation after ICSI. Here we showed that injected bovine sperm are resistant to nuclear decondensation by bovine oocytes and this is only partly overcome by exogenous activation. Remarkably, when we used heterologous ICSI, in vivo-matured mouse eggs were capable of mounting calcium oscillations and displaying normal PN formation following injection of bovine sperm, although in vitro-matured mouse oocytes were unable to do so. Together, our data demonstrate that bovine sperm are especially resistant to nuclear decondensation by in vitro-matured oocytes and this deficiency cannot be simply overcome by exogenous activation protocols, even by inducing physiological calcium oscillations. Therefore, the inability of a suboptimal ooplasmic environment to induce sperm head decondensation limits the success of ICSI in the bovine. Studies aimed to improve the cytoplasmic milieu of in vitro-matured oocytes and to replicate the molecular changes associated with in vivo capacitation and acrosome reaction will deepen our understanding of the mechanism of fertilization and improve the success of ICSI in this species.
Collapse
Affiliation(s)
- Luis Águila
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile.,Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Forestry, Universidad de La Frontera, Temuco, Chile.,School of Veterinary Medicine, Faculty of Sciences, Universidad Mayor Sede Temuco, Temuco, Chile
| | - Ricardo Felmer
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile.,Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Forestry, Universidad de La Frontera, Temuco, Chile
| | - María Elena Arias
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile.,Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Forestry, Universidad de La Frontera, Temuco, Chile
| | - Felipe Navarrete
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts, USA
| | - David Martin-Hidalgo
- Research Group of Intracellular Signaling and Technology of Reproduction, Research Institute INBIO G+C, University of Extremadura, Caceres, Spain.,Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts, USA
| | - Hoi Chang Lee
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts, USA
| | - Pablo Visconti
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts, USA
| | - Rafael Fissore
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
18
|
Lu Y, Reddy R, Ferrer Buitrago M, Vander Jeught M, Neupane J, De Vos WH, Van den Abbeel E, Lierman S, De Sutter P, Heindryckx B. Strontium fails to induce Ca 2+ release and activation in human oocytes despite the presence of functional TRPV3 channels. Hum Reprod Open 2018; 2018:hoy005. [PMID: 30895246 PMCID: PMC6276696 DOI: 10.1093/hropen/hoy005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/31/2018] [Accepted: 03/15/2018] [Indexed: 01/27/2023] Open
Abstract
STUDY QUESTION Are the transient receptor potential cation channels vanilloid 3 (TRPV3) present and able to mediate strontium (Sr2+) induced artificial activation in human oocytes? SUMMARY ANSWER Sr2+ did not induce Ca2+ rises or provoke activation in human oocytes, however, mRNA for the TRPV3 channel was present in metaphase II (MII) human oocytes after IVM and TRPV3 agonists induced Ca2+ rises and oocyte activation, demonstrating the channels were functional. WHAT IS KNOWN ALREADY Selective activation of TRPV3 by agonists induces Ca2+ entry and promotes mouse oocyte activation, and the absence of TRPV3 channels in mouse oocytes prevents Sr2+ mediated artificial activation. Sr2+ is sometimes used to overcome fertilization failure after ICSI in the clinic, but its efficiency is still controversial and the mechanism(s) of how it mediates the Ca2+ flux has not been studied yet in human. STUDY DESIGN, SIZE, DURATION The protein distribution (n = 10) and mRNA expression level (n = 19) of the TRPV3 channels was investigated in human MII oocytes after IVM. The Sr2+ (10 mM) and TRPV3 agonists (200 μM 2-aminoethoxydiphenyl borate [2-APB] and 200 μM carvacrol)-induced Ca2+ response was analyzed in human (n = 15, n = 16 and n = 16, respectively) and mouse oocytes (n = 15, n = 19 and n = 26, respectively). The subsequent embryonic developmental potential following the parthenogenetic activation using these three agents was recorded in human (n = 10, n = 9 and n = 9, respectively) and mouse (n = 20 per agent) oocytes, by determining pronucleus, or 2-cell and blastocyst formation rates. PARTICIPANTS/MATERIALS, SETTING, METHODS MII oocytes from B6D2F1 mice (6–10 weeks old) as well as human IVM oocytes and IVO oocytes (from patients aged 25–38 years old) with aggregates of smooth endoplasmic reticulum clusters were used. The expression of TRPV3 channels was determined by immunofluorescence staining with confocal microscopy and RT-PCR, and the temporal evolution of intracellular Ca2+ concentration was measured by time-lapse imaging after exposure to Sr2+ and TRPV3 agonists (2-APB and carvacrol). Artificial activation efficiency was assessed using these agents. MAIN RESULTS AND THE ROLE OF CHANCE Sr2+ did not promote Ca2+ oscillations or provoke activation in human oocytes. Transcripts of TRPV3 channels were present in IVM MII human oocytes. TRPV3 protein was expressed and distributed throughout the ooplasm of human oocytes, rather than particularly concentrated in plasma membrane as observed in mouse MII oocytes. Both agonists of TRPV3 (2-APB and carvacrol), promoted a single Ca2+ transient and activated a comparable percentage of more than half of the exposed human oocytes (P > 0.05). The agonist 2-APB was also efficient in activating mouse oocytes, however, significantly fewer mouse oocytes responded to carvacrol than 2-APB in both the Ca2+ analysis and activation test (P < 0.001). LIMITATIONS REASONS FOR CAUTION The availability of fresh IVO matured oocytes in human was limited. Data from TRPV3 knockout model are not included. WIDER IMPLICATIONS OF THE FINDINGS The benefit of clinical application using Sr2+ to overcome fertilization failure after ICSI requires further validation. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by FWO-Vlaanderen, China Scholarship Council and Special Research Fund from Ghent University (Bijzonder Onderzoeksfonds, BOF). No competing interests are declared.
Collapse
Affiliation(s)
- Y Lu
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.,Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Renmin South Road 20, 610041 Chengdu, China
| | - R Reddy
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - M Ferrer Buitrago
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - M Vander Jeught
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - J Neupane
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - W H De Vos
- Cell Systems and Imaging research Group (CSI), Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.,Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium
| | - E Van den Abbeel
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - S Lierman
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - P De Sutter
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - B Heindryckx
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
19
|
Activation of TRPV3 Regulates Inflammatory Actions of Human Epidermal Keratinocytes. J Invest Dermatol 2017; 138:365-374. [PMID: 28964718 DOI: 10.1016/j.jid.2017.07.852] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/07/2017] [Accepted: 07/19/2017] [Indexed: 01/19/2023]
Abstract
Transient receptor potential (TRP) ion channels were first characterized on neurons, where they are classically implicated in sensory functions; however, research in recent decades has shown that many of these channels are also expressed on nonneuronal cell types. Emerging findings have highlighted the role of TRP channels in the skin, where they have been shown to be important in numerous cutaneous functions. Of particular interest is TRPV3, which was first described on keratinocytes. Its functional importance was supported when its gain-of-function mutation was linked to Olmsted syndrome, which is characterized by palmoplantar keratoderma, periorifacial hyperkeratosis, diffuse hypotrichosis and alopecia, and itch. Despite these exciting results, we have no information about the role and functionality of TRPV3 on keratinocytes at the cellular level. In this study, we identified TRPV3 expression both on human skin and cultured epidermal keratinocytes. TRPV3 stimulation was found to function as a Ca2+-permeable ion channel that suppresses proliferation of epidermal keratinocytes and induces cell death. Stimulation of the channel also triggers a strong proinflammatory response via the NF-κB pathway. Collectively, our data show that TRPV3 is functionally expressed on human epidermal keratinocytes and that it plays a role in cutaneous inflammatory processes.
Collapse
|
20
|
Xu YR, Yang WX. Calcium influx and sperm-evoked calcium responses during oocyte maturation and egg activation. Oncotarget 2017; 8:89375-89390. [PMID: 29179526 PMCID: PMC5687696 DOI: 10.18632/oncotarget.19679] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/19/2017] [Indexed: 12/18/2022] Open
Abstract
Under the guidance and regulation of hormone signaling, large majority of mammalian oocytes go through twice cell cycle arrest-resumption prior to the fertilized egg splits: oocyte maturation and egg activation. Cytosolic free calcium elevations and endoplasmic reticulum calcium store alternations are actively involved in triggering the complex machineries and events during oogenesis. Among these, calcium influx had been implicated in the replenishment of endoplasmic reticulum store during oocyte maturation and calcium oscillation during egg activation. This process also drove successful fertilization and early embryo development. Store-operated Ca2+ entry, acts as the principal force of calcium influx, is composed of STIM1 and Orai1 on the plasma membrane. Besides, transient receptor potential channels also participate in the process of calcium inwards. In this review, we summarize the recent researches on the spatial-temporal distribution of store-operated calcium entry components and transient receptor potential channels. Questions about how these channels play function for calcium influx and what impacts these channels have on oocytes are discussed. At the time of sperm-egg fusion, sperm-specific factor(s) diffuse and enable eggs to mount intracellular calcium oscillations. In this review, we also focus on the basic knowledge and the modes of action of the potential sperm factor phospholipase C zeta, as well as the downstream receptor, type 1 inositol 1,4,5-trisphosphate receptor. From the achievement in the previous several decades, it is easy to find that there are too many doubtful points in the field that need researchers take into consideration and take action in the future.
Collapse
Affiliation(s)
- Ya-Ru Xu
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Hachem A, Godwin J, Ruas M, Lee HC, Ferrer Buitrago M, Ardestani G, Bassett A, Fox S, Navarrete F, de Sutter P, Heindryckx B, Fissore R, Parrington J. PLCζ is the physiological trigger of the Ca 2+ oscillations that induce embryogenesis in mammals but conception can occur in its absence. Development 2017; 144:2914-2924. [PMID: 28694258 DOI: 10.1242/dev.150227] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/01/2017] [Indexed: 12/21/2022]
Abstract
Activation of the egg by the sperm is the first, vital stage of embryogenesis. The sperm protein PLCζ has been proposed as the physiological agent that triggers the Ca2+ oscillations that normally initiate embryogenesis. Consistent with this, recombinant PLCζ induces Ca2+ oscillations in eggs and debilitating mutations in the PLCZ1 gene are associated with infertility in men. However, there has been no evidence that knockout of the gene encoding PLCζ abolishes the ability of sperm to induce Ca2+ oscillations in eggs. Here, we show that sperm derived from Plcz1-/- male mice fail to trigger Ca2+ oscillations in eggs, cause polyspermy and thus demonstrate that PLCζ is the physiological trigger of these Ca2+ oscillations. Remarkably, some eggs fertilized by PLCζ-null sperm can develop, albeit at greatly reduced efficiency, and after a significant time-delay. In addition, Plcz1-/- males are subfertile but not sterile, suggesting that in the absence of PLCζ, spontaneous egg activation can eventually occur via an alternative route. This is the first demonstration that in vivo fertilization without the normal physiological trigger of egg activation can result in offspring. PLCζ-null sperm now make it possible to resolve long-standing questions in fertilization biology, and to test the efficacy and safety of procedures used to treat human infertility.
Collapse
Affiliation(s)
- Alaa Hachem
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Jonathan Godwin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Margarida Ruas
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Hoi Chang Lee
- Department of Veterinary and Animal Sciences, University of Massachusetts, 661 North Pleasant Street, Amherst, MA 01003-9286, USA
| | - Minerva Ferrer Buitrago
- Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Goli Ardestani
- Department of Veterinary and Animal Sciences, University of Massachusetts, 661 North Pleasant Street, Amherst, MA 01003-9286, USA
| | - Andrew Bassett
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Sebastian Fox
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Felipe Navarrete
- Department of Veterinary and Animal Sciences, University of Massachusetts, 661 North Pleasant Street, Amherst, MA 01003-9286, USA
| | - Petra de Sutter
- Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Björn Heindryckx
- Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Rafael Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts, 661 North Pleasant Street, Amherst, MA 01003-9286, USA
| | - John Parrington
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
22
|
Xie Q, Su J, Jiao B, Shen L, Ma L, Qu X, Yu C, Jiang X, Xu Y, Sun L. ABT737 reverses cisplatin resistance by regulating ER-mitochondria Ca2+ signal transduction in human ovarian cancer cells. Int J Oncol 2016; 49:2507-2519. [DOI: 10.3892/ijo.2016.3733] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 10/07/2016] [Indexed: 11/05/2022] Open
|
23
|
Carvacho I, Ardestani G, Lee HC, McGarvey K, Fissore RA, Lykke-Hartmann K. TRPM7-like channels are functionally expressed in oocytes and modulate post-fertilization embryo development in mouse. Sci Rep 2016; 6:34236. [PMID: 27681336 PMCID: PMC5041074 DOI: 10.1038/srep34236] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/05/2016] [Indexed: 01/16/2023] Open
Abstract
The Transient Receptor Potential (TRP) channels are a family of cationic ion channels widely distributed in mammalian tissues. In general, the global genetic disruption of individual TRP channels result in phenotypes associated with impairment of a particular tissue and/or organ function. An exception is the genetic ablation of the TRP channel TRPM7, which results in early embryonic lethality. Nevertheless, the function of TRPM7 in oocytes, eggs and pre-implantation embryos remains unknown. Here, we described an outward rectifying non-selective current mediated by a TRP ion channel in immature oocytes (germinal vesicle stage), matured oocytes (metaphase II eggs) and 2-cell stage embryos. The current is activated by specific agonists and inhibited by distinct blockers consistent with the functional expression of TRPM7 channels. We demonstrated that the TRPM7-like channels are homo-tetramers and their activation mediates calcium influx in oocytes and eggs, which is fundamental to support fertilization and egg activation. Lastly, we showed that pharmacological inhibition of the channel function delays pre-implantation embryo development and reduces progression to the blastocyst stage. Our data demonstrate functional expression of TRPM7-like channels in mouse oocytes, eggs and embryos that may play an essential role in the initiation of embryo development.
Collapse
Affiliation(s)
- Ingrid Carvacho
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark.,Department of Biology and Chemistry, Faculty of Basic Sciences, Universidad Católica del Maule, 3480112 Talca, Chile
| | - Goli Ardestani
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Hoi Chang Lee
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Kaitlyn McGarvey
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark.,Aarhus Institute of Advanced Studies (AIAS), Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
24
|
Mackenzie ACL, Kyle DD, McGinnis LA, Lee HJ, Aldana N, Robinson DN, Evans JP. Cortical mechanics and myosin-II abnormalities associated with post-ovulatory aging: implications for functional defects in aged eggs. Mol Hum Reprod 2016; 22:397-409. [PMID: 26921397 PMCID: PMC4884917 DOI: 10.1093/molehr/gaw019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 02/12/2016] [Accepted: 02/24/2016] [Indexed: 12/20/2022] Open
Abstract
STUDY HYPOTHESIS Cellular aging of the egg following ovulation, also known as post-ovulatory aging, is associated with aberrant cortical mechanics and actomyosin cytoskeleton functions. STUDY FINDING Post-ovulatory aging is associated with dysfunction of non-muscle myosin-II, and pharmacologically induced myosin-II dysfunction produces some of the same deficiencies observed in aged eggs. WHAT IS KNOWN ALREADY Reproductive success is reduced with delayed fertilization and when copulation or insemination occurs at increased times after ovulation. Post-ovulatory aged eggs have several abnormalities in the plasma membrane and cortex, including reduced egg membrane receptivity to sperm, aberrant sperm-induced cortical remodeling and formation of fertilization cones at the site of sperm entry, and reduced ability to establish a membrane block to prevent polyspermic fertilization. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Ovulated mouse eggs were collected at 21-22 h post-human chorionic gonadotrophin (hCG) (aged eggs) or at 13-14 h post-hCG (young eggs), or young eggs were treated with the myosin light chain kinase (MLCK) inhibitor ML-7, to test the hypothesis that disruption of myosin-II function could mimic some of the effects of post-ovulatory aging. Eggs were subjected to various analyses. Cytoskeletal proteins in eggs and parthenogenesis were assessed using fluorescence microscopy, with further analysis of cytoskeletal proteins in immunoblotting experiments. Cortical tension was measured through micropipette aspiration assays. Egg membrane receptivity to sperm was assessed in in vitro fertilization (IVF) assays. Membrane topography was examined by low-vacuum scanning electron microscopy (SEM). MAIN RESULTS AND THE ROLE OF CHANCE Aged eggs have decreased levels and abnormal localizations of phosphorylated myosin-II regulatory light chain (pMRLC; P = 0.0062). Cortical tension, which is mediated in part by myosin-II, is reduced in aged mouse eggs when compared with young eggs, by ∼40% in the cortical region where the metaphase II spindle is sequestered and by ∼50% in the domain to which sperm bind and fuse (P < 0.0001). Aging-associated parthenogenesis is partly rescued by treating eggs with a zinc ionophore (P = 0.003), as is parthenogenesis induced by inhibition of mitogen-activated kinase (MAPK) 3/1 [also known as extracellular signal-regulated kinase (ERK)1/2] or MLCK. Inhibition of MLCK with ML-7 also results in effects that mimic those of post-ovulatory aging: fertilized ML-7-treated eggs show both impaired fertilization and increased extents of polyspermy, and ML-7-treated young eggs have several membrane abnormalities that are shared by post-ovulatory aged eggs. LIMITATIONS, REASONS FOR CAUTION These studies were done with mouse oocytes, and it remains to be fully determined how these findings from mouse oocytes would compare with other species. For studies using methods not amenable to analysis of large sample sizes and data are limited to what images one can capture (e.g. SEM), data should be interpreted conservatively. WIDER IMPLICATIONS OF THE FINDINGS These data provide insights into causes of reproductive failures at later post-copulatory times. LARGE SCALE DATA Not applicable. STUDY FUNDING AND COMPETING INTERESTS This project was supported by R01 HD037696 and R01 HD045671 from the NIH to J.P.E. Cortical tension studies were supported by R01 GM66817 to D.N.R. The authors declare there are no financial conflicts of interest.
Collapse
Affiliation(s)
- Amelia C L Mackenzie
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St, Baltimore, MD 21205, USA
| | - Diane D Kyle
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St, Baltimore, MD 21205, USA
| | - Lauren A McGinnis
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St, Baltimore, MD 21205, USA
| | - Hyo J Lee
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St, Baltimore, MD 21205, USA
| | - Nathalia Aldana
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St, Baltimore, MD 21205, USA
| | - Douglas N Robinson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Janice P Evans
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St, Baltimore, MD 21205, USA
| |
Collapse
|
25
|
Sanders JR, Swann K. Molecular triggers of egg activation at fertilization in mammals. Reproduction 2016; 152:R41-50. [PMID: 27165049 DOI: 10.1530/rep-16-0123] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/09/2016] [Indexed: 01/15/2023]
Abstract
In mammals, the sperm activates the development of the egg by triggering a series of oscillations in the cytosolic-free Ca(2+) concentration (Ca(2+) i). The sperm triggers these cytosolic Ca(2+i) oscillations after sperm-egg membrane fusion, as well as after intracytoplasmic sperm injection (ICSI). These Ca(2+) i oscillations are triggered by a protein located inside the sperm. The identity of the sperm protein has been debated over many years, but all the repeatable data now suggest that it is phospholipase Czeta (PLCζ). The main downstream target of Ca(2+) i oscillations is calmodulin-dependent protein kinase II (CAMKII (CAMK2A)), which phosphorylates EMI2 and WEE1B to inactivate the M-phase promoting factor protein kinase activity (MPF) and this ultimately triggers meiotic resumption. A later decline in the activity of mitogen-activated protein kinase (MAPK) then leads to the completion of activation which is marked by the formation of pronuclei and entry into interphase of the first cell cycle. The early cytosolic Ca(2+) increases also trigger exocytosis via a mechanism that does not involve CAMKII. We discuss some recent developments in our understanding of these triggers for egg activation within the framework of cytosolic Ca(2+) signaling.
Collapse
Affiliation(s)
| | - Karl Swann
- School of BiosciencesCardiff University, Cardiff, UK
| |
Collapse
|