1
|
Zhao N, Michelucci A, Pietrangelo L, Malik S, Groom L, Leigh J, O'Connor TN, Takano T, Kingsley PD, Palis J, Boncompagni S, Protasi F, Dirksen RT. An Orai1 gain-of-function tubular aggregate myopathy mouse model phenocopies key features of the human disease. EMBO J 2024; 43:5941-5971. [PMID: 39420094 PMCID: PMC11612304 DOI: 10.1038/s44318-024-00273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Tubular aggregate myopathy (TAM) is a heritable myopathy primarily characterized by progressive muscle weakness, elevated levels of creatine kinase (CK), hypocalcemia, exercise intolerance, and the presence of tubular aggregates (TAs). Here, we generated a knock-in mouse model based on a human gain-of-function mutation which results in a severe, early-onset form of TAM, by inducing a glycine-to-serine point mutation in the ORAI1 pore (Orai1G100S/+ or GS mice). By 8 months of age, GS mice exhibited significant muscle weakness, exercise intolerance, elevated CK levels, hypocalcemia, and robust TA presence. Unexpectedly, constitutive Ca2+ entry in mutant mice was observed in muscle only during early development and was abolished in adult skeletal muscle, partly due to reduced ORAI1 expression. Consistent with proteomic results, significant mitochondrial damage and dysfunction was observed in skeletal muscle of GS mice. Thus, GS mice represent a powerful model for investigation of the pathophysiological mechanisms that underlie key TAM symptoms, as well as those compensatory responses that limit the damaging effects of uncontrolled ORAI1-mediated Ca2+ influx.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Antonio Michelucci
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy
| | - Laura Pietrangelo
- CAST, Center for Advanced Studies and Technology & DMSI, Department of Medicine and Aging Sciences, University Gabriele d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Linda Groom
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jennifer Leigh
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Thomas N O'Connor
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Takahiro Takano
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Paul D Kingsley
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - James Palis
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Simona Boncompagni
- CAST, Center for Advanced Studies and Technology & DNICS, Department of Neuroscience and Clinical Sciences, University Gabriele d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Feliciano Protasi
- CAST, Center for Advanced Studies and Technology & DMSI, Department of Medicine and Aging Sciences, University Gabriele d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
2
|
Pérez-Guàrdia L, Lafabrie E, Diedhiou N, Spiegelhalter C, Laporte J, Böhm J. A Gain-of-Function Mutation in the Ca 2+ Channel ORAI1 Causes Stormorken Syndrome with Tubular Aggregates in Mice. Cells 2024; 13:1829. [PMID: 39594579 PMCID: PMC11592465 DOI: 10.3390/cells13221829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Store-operated Ca2+ entry (SOCE) controls Ca2+ homeostasis and mediates multiple Ca2+-dependent signaling pathways and cellular processes. It relies on the concerted activity of the reticular Ca2+ sensor STIM1 and the plasma membrane Ca2+ channel ORAI1. STIM1 and ORAI1 gain-of-function (GoF) mutations induce SOCE overactivity and excessive Ca2+ influx, leading to tubular aggregate myopathy (TAM) and Stormorken syndrome (STRMK), two overlapping disorders characterized by muscle weakness and a variable occurrence of multi-systemic anomalies affecting spleen, skin, and platelets. To date, different STIM1 mouse models exist, but only a single ORAI1 mouse model with muscle-specific TAM/STRMK phenotype has been described, precluding a comparative analysis of the physiopathology in all affected tissues. Here, we generated and characterized mice harboring a prevalent ORAI1 TAM/STRMK mutation and we provide phenotypic, physiological, biochemical, and functional data. Examination of Orai1V109M/+ mice revealed smaller size, spleen enlargement, reduced muscle force, and decreased platelet numbers. Morphological analyses of muscle sections evidenced the presence of tubular aggregates, the histopathological hallmark on biopsies from TAM/STRMK patients absent in all reported STIM1 models. Overall, Orai1V109M/+ mice reliably recapitulate the human disorder and highlight the primary physiological defects caused by ORAI1 gain-of-function mutations. They also provide the possibility to investigate the formation of tubular aggregates and to develop a common therapy for different TAM/STRMK forms.
Collapse
MESH Headings
- Animals
- ORAI1 Protein/metabolism
- ORAI1 Protein/genetics
- Gain of Function Mutation/genetics
- Mice
- Blood Platelet Disorders/genetics
- Blood Platelet Disorders/pathology
- Blood Platelet Disorders/metabolism
- Stromal Interaction Molecule 1/genetics
- Stromal Interaction Molecule 1/metabolism
- Erythrocytes, Abnormal/metabolism
- Erythrocytes, Abnormal/pathology
- Ichthyosis/genetics
- Ichthyosis/pathology
- Ichthyosis/metabolism
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/pathology
- Myopathies, Structural, Congenital/metabolism
- Dyslexia/genetics
- Dyslexia/metabolism
- Dyslexia/pathology
- Disease Models, Animal
- Spleen/pathology
- Spleen/metabolism
- Spleen/abnormalities
- Syndactyly/genetics
- Syndactyly/pathology
- Syndactyly/metabolism
- Miosis/genetics
- Miosis/metabolism
- Miosis/pathology
- Muscle Weakness/genetics
- Muscle Weakness/pathology
- Muscle Weakness/metabolism
- Calcium/metabolism
- Humans
- Phenotype
- Mice, Inbred C57BL
- Migraine Disorders
- Muscle Fatigue
Collapse
Affiliation(s)
| | | | | | | | | | - Johann Böhm
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR7104, Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
3
|
Pessolano E, Sosic ZA, Genazzani AA. STIM1: A new player in nuclear dynamics? Lessons learnt from tubular aggregate myopathy. Cell Calcium 2024; 123:102926. [PMID: 38959763 DOI: 10.1016/j.ceca.2024.102926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024]
Abstract
Two recent papers have highlighted that STIM1, a key component of Store-operated Ca2+-entry, is able to translocate to the nucleus and participate in nuclear Ca2+-handling and in DNA repair. These finding opens new avenues on the role that this Ca2+-sensing protein may have in health and disease.
Collapse
Affiliation(s)
- Emanuela Pessolano
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Zlata A Sosic
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Armando A Genazzani
- Department of Drug Science and Technology, University of Turin, Turin, Italy.
| |
Collapse
|
4
|
Sallinger M, Grabmayr H, Humer C, Bonhenry D, Romanin C, Schindl R, Derler I. Activation mechanisms and structural dynamics of STIM proteins. J Physiol 2024; 602:1475-1507. [PMID: 36651592 DOI: 10.1113/jp283828] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
The family of stromal interaction molecules (STIM) includes two widely expressed single-pass endoplasmic reticulum (ER) transmembrane proteins and additional splice variants that act as precise ER-luminal Ca2+ sensors. STIM proteins mainly function as one of the two essential components of the so-called Ca2+ release-activated Ca2+ (CRAC) channel. The second CRAC channel component is constituted by pore-forming Orai proteins in the plasma membrane. STIM and Orai physically interact with each other to enable CRAC channel opening, which is a critical prerequisite for various downstream signalling pathways such as gene transcription or proliferation. Their activation commonly requires the emptying of the intracellular ER Ca2+ store. Using their Ca2+ sensing capabilities, STIM proteins confer this Ca2+ content-dependent signal to Orai, thereby linking Ca2+ store depletion to CRAC channel opening. Here we review the conformational dynamics occurring along the entire STIM protein upon store depletion, involving the transition from the quiescent, compactly folded structure into an active, extended state, modulation by a variety of accessory components in the cell as well as the impairment of individual steps of the STIM activation cascade associated with disease.
Collapse
Affiliation(s)
- Matthias Sallinger
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Herwig Grabmayr
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Christina Humer
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Daniel Bonhenry
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic
| | - Christoph Romanin
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Rainer Schindl
- Gottfried Schatz Research Centre, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
5
|
Silva-Rojas R, Pérez-Guàrdia L, Simon A, Djeddi S, Treves S, Ribes A, Silva-Hernández L, Tard C, Laporte J, Böhm J. ORAI1 inhibition as an efficient preclinical therapy for tubular aggregate myopathy and Stormorken syndrome. JCI Insight 2024; 9:e174866. [PMID: 38516893 PMCID: PMC11063934 DOI: 10.1172/jci.insight.174866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Tubular aggregate myopathy (TAM) and Stormorken syndrome (STRMK) are clinically overlapping disorders characterized by childhood-onset muscle weakness and a variable occurrence of multisystemic signs, including short stature, thrombocytopenia, and hyposplenism. TAM/STRMK is caused by gain-of-function mutations in the Ca2+ sensor STIM1 or the Ca2+ channel ORAI1, both of which regulate Ca2+ homeostasis through the ubiquitous store-operated Ca2+ entry (SOCE) mechanism. Functional experiments in cells have demonstrated that the TAM/STRMK mutations induce SOCE overactivation, resulting in excessive influx of extracellular Ca2+. There is currently no treatment for TAM/STRMK, but SOCE is amenable to manipulation. Here, we crossed Stim1R304W/+ mice harboring the most common TAM/STRMK mutation with Orai1R93W/+ mice carrying an ORAI1 mutation partially obstructing Ca2+ influx. Compared with Stim1R304W/+ littermates, Stim1R304W/+Orai1R93W/+ offspring showed a normalization of bone architecture, spleen histology, and muscle morphology; an increase of thrombocytes; and improved muscle contraction and relaxation kinetics. Accordingly, comparative RNA-Seq detected more than 1,200 dysregulated genes in Stim1R304W/+ muscle and revealed a major restoration of gene expression in Stim1R304W/+Orai1R93W/+ mice. Altogether, we provide physiological, morphological, functional, and molecular data highlighting the therapeutic potential of ORAI1 inhibition to rescue the multisystemic TAM/STRMK signs, and we identified myostatin as a promising biomarker for TAM/STRMK in humans and mice.
Collapse
Affiliation(s)
- Roberto Silva-Rojas
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR7104, University of Strasbourg, Illkirch, France
| | - Laura Pérez-Guàrdia
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR7104, University of Strasbourg, Illkirch, France
| | - Alix Simon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR7104, University of Strasbourg, Illkirch, France
| | - Sarah Djeddi
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR7104, University of Strasbourg, Illkirch, France
| | - Susan Treves
- Departments of Neurology and Biomedicine, Basel University Hospital, Basel, Switzerland
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Agnès Ribes
- Institute of Metabolic and Cardiovascular Disease, Inserm UMR1297 and University of Toulouse 3, Toulouse, France
- Laboratory of Hematology, University Hospital of Toulouse, Toulouse, France
| | - Lorenzo Silva-Hernández
- Neurology Service, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, Spain
| | - Céline Tard
- University Lille, Inserm, CHU Lille, U1172 Lille Neuroscience & Cognition, Center for Rare Neuromuscular Diseases Nord/Est/Ile-de-France, Lille, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR7104, University of Strasbourg, Illkirch, France
| | - Johann Böhm
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR7104, University of Strasbourg, Illkirch, France
| |
Collapse
|
6
|
Berna-Erro A, Sanchez-Collado J, Nieto-Felipe J, Macias-Diaz A, Redondo PC, Smani T, Lopez JJ, Jardin I, Rosado JA. The Ca 2+ Sensor STIM in Human Diseases. Biomolecules 2023; 13:1284. [PMID: 37759684 PMCID: PMC10526185 DOI: 10.3390/biom13091284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
The STIM family of proteins plays a crucial role in a plethora of cellular functions through the regulation of store-operated Ca2+ entry (SOCE) and, thus, intracellular calcium homeostasis. The two members of the mammalian STIM family, STIM1 and STIM2, are transmembrane proteins that act as Ca2+ sensors in the endoplasmic reticulum (ER) and, upon Ca2+ store discharge, interact with and activate the Orai/CRACs in the plasma membrane. Dysregulation of Ca2+ signaling leads to the pathogenesis of a variety of human diseases, including neurodegenerative disorders, cardiovascular diseases, cancer, and immune disorders. Therefore, understanding the mechanisms underlying Ca2+ signaling pathways is crucial for developing therapeutic strategies targeting these diseases. This review focuses on several rare conditions associated with STIM1 mutations that lead to either gain- or loss-of-function, characterized by myopathy, hematological and immunological disorders, among others, and due to abnormal activation of CRACs. In addition, we summarize the current evidence concerning STIM2 allele duplication and deletion associated with language, intellectual, and developmental delay, recurrent pulmonary infections, microcephaly, facial dimorphism, limb anomalies, hypogonadism, and congenital heart defects.
Collapse
Affiliation(s)
- Alejandro Berna-Erro
- Department of Physiology, Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10003 Caceres, Spain; (A.B.-E.); (J.N.-F.); (A.M.-D.); (P.C.R.); (J.J.L.)
| | - Jose Sanchez-Collado
- Department of Medical Physiology and Biophysics, University of Seville, 41004 Seville, Spain; (J.S.-C.); (T.S.)
| | - Joel Nieto-Felipe
- Department of Physiology, Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10003 Caceres, Spain; (A.B.-E.); (J.N.-F.); (A.M.-D.); (P.C.R.); (J.J.L.)
| | - Alvaro Macias-Diaz
- Department of Physiology, Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10003 Caceres, Spain; (A.B.-E.); (J.N.-F.); (A.M.-D.); (P.C.R.); (J.J.L.)
| | - Pedro C. Redondo
- Department of Physiology, Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10003 Caceres, Spain; (A.B.-E.); (J.N.-F.); (A.M.-D.); (P.C.R.); (J.J.L.)
| | - Tarik Smani
- Department of Medical Physiology and Biophysics, University of Seville, 41004 Seville, Spain; (J.S.-C.); (T.S.)
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocio, University of Seville, Spanish National Research Council (CSIC), 41004 Seville, Spain
| | - Jose J. Lopez
- Department of Physiology, Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10003 Caceres, Spain; (A.B.-E.); (J.N.-F.); (A.M.-D.); (P.C.R.); (J.J.L.)
| | - Isaac Jardin
- Department of Physiology, Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10003 Caceres, Spain; (A.B.-E.); (J.N.-F.); (A.M.-D.); (P.C.R.); (J.J.L.)
| | - Juan A. Rosado
- Department of Physiology, Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10003 Caceres, Spain; (A.B.-E.); (J.N.-F.); (A.M.-D.); (P.C.R.); (J.J.L.)
| |
Collapse
|
7
|
Gamage TH, Grabmayr H, Horvath F, Fahrner M, Misceo D, Louch WE, Gunnes G, Pullisaar H, Reseland JE, Lyngstadaas SP, Holmgren A, Amundsen SS, Rathner P, Cerofolini L, Ravera E, Krobath H, Luchinat C, Renger T, Müller N, Romanin C, Frengen E. A single amino acid deletion in the ER Ca 2+ sensor STIM1 reverses the in vitro and in vivo effects of the Stormorken syndrome-causing R304W mutation. Sci Signal 2023; 16:eadd0509. [PMID: 36749824 DOI: 10.1126/scisignal.add0509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023]
Abstract
Stormorken syndrome is a multiorgan hereditary disease caused by dysfunction of the endoplasmic reticulum (ER) Ca2+ sensor protein STIM1, which forms the Ca2+ release-activated Ca2+ (CRAC) channel together with the plasma membrane channel Orai1. ER Ca2+ store depletion activates STIM1 by releasing the intramolecular "clamp" formed between the coiled coil 1 (CC1) and CC3 domains of the protein, enabling the C terminus to extend and interact with Orai1. The most frequently occurring mutation in patients with Stormorken syndrome is R304W, which destabilizes and extends the STIM1 C terminus independently of ER Ca2+ store depletion, causing constitutive binding to Orai1 and CRAC channel activation. We found that in cis deletion of one amino acid residue, Glu296 (which we called E296del) reversed the pathological effects of R304W. Homozygous Stim1 E296del+R304W mice were viable and phenotypically indistinguishable from wild-type mice. NMR spectroscopy, molecular dynamics simulations, and cellular experiments revealed that although the R304W mutation prevented CC1 from interacting with CC3, the additional deletion of Glu296 opposed this effect by enabling CC1-CC3 binding and restoring the CC domain interactions within STIM1 that are critical for proper CRAC channel function. Our results provide insight into the activation mechanism of STIM1 by clarifying the molecular basis of mutation-elicited protein dysfunction and pathophysiology.
Collapse
Affiliation(s)
- Thilini H Gamage
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Herwig Grabmayr
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Ferdinand Horvath
- Institute of Theoretical Physics, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Marc Fahrner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Doriana Misceo
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - William Edward Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Gjermund Gunnes
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1430 Ås, Norway
| | - Helen Pullisaar
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0455 Oslo, Norway
| | - Janne Elin Reseland
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0455 Oslo, Norway
| | | | - Asbjørn Holmgren
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Silja S Amundsen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Petr Rathner
- Institute of Organic Chemistry and Institute of Inorganic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
- Institut für Analytische Chemie, University of Vienna, Währinger Straße 38, 1090 Wien, Austria
| | - Linda Cerofolini
- Magnetic Resonance Center, University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, 50019 Sesto Fiorentino, Italy
| | - Enrico Ravera
- Magnetic Resonance Center, University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, 50019 Sesto Fiorentino, Italy
- Department of Chemistry, Ugo Schiff, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Heinrich Krobath
- Institute of Theoretical Physics, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Claudio Luchinat
- Department of Chemistry, Ugo Schiff, University of Florence, 50019 Sesto Fiorentino, Italy
- CERM, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Thomas Renger
- Institute of Theoretical Physics, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Norbert Müller
- Institute of Organic Chemistry and Institute of Inorganic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
- Department of Chemistry, Faculty of Science, University of South Bohemia, Branišovská 1645/31A, 370 05 České Budějovice, Czech Republic
- Institute of Biochemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Christoph Romanin
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Eirik Frengen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| |
Collapse
|
8
|
Rossi D, Catallo MR, Pierantozzi E, Sorrentino V. Mutations in proteins involved in E-C coupling and SOCE and congenital myopathies. J Gen Physiol 2022; 154:e202213115. [PMID: 35980353 PMCID: PMC9391951 DOI: 10.1085/jgp.202213115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
In skeletal muscle, Ca2+ necessary for muscle contraction is stored and released from the sarcoplasmic reticulum (SR), a specialized form of endoplasmic reticulum through the mechanism known as excitation-contraction (E-C) coupling. Following activation of skeletal muscle contraction by the E-C coupling mechanism, replenishment of intracellular stores requires reuptake of cytosolic Ca2+ into the SR by the activity of SR Ca2+-ATPases, but also Ca2+ entry from the extracellular space, through a mechanism called store-operated calcium entry (SOCE). The fine orchestration of these processes requires several proteins, including Ca2+ channels, Ca2+ sensors, and Ca2+ buffers, as well as the active involvement of mitochondria. Mutations in genes coding for proteins participating in E-C coupling and SOCE are causative of several myopathies characterized by a wide spectrum of clinical phenotypes, a variety of histological features, and alterations in intracellular Ca2+ balance. This review summarizes current knowledge on these myopathies and discusses available knowledge on the pathogenic mechanisms of disease.
Collapse
Affiliation(s)
- Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| | - Maria Rosaria Catallo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| |
Collapse
|
9
|
Silencing of the Ca2+ Channel ORAI1 Improves the Multi-Systemic Phenotype of Tubular Aggregate Myopathy (TAM) and Stormorken Syndrome (STRMK) in Mice. Int J Mol Sci 2022; 23:ijms23136968. [PMID: 35805973 PMCID: PMC9266658 DOI: 10.3390/ijms23136968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
Tubular aggregate myopathy (TAM) and Stormorken syndrome (STRMK) form a clinical continuum associating progressive muscle weakness with additional multi-systemic anomalies of the bones, skin, spleen, and platelets. TAM/STRMK arises from excessive extracellular Ca2+ entry due to gain-of-function mutations in the Ca2+ sensor STIM1 or the Ca2+ channel ORAI1. Currently, no treatment is available. Here we assessed the therapeutic potential of ORAI1 downregulation to anticipate and reverse disease development in a faithful mouse model carrying the most common TAM/STRMK mutation and recapitulating the main signs of the human disorder. To this aim, we crossed Stim1R304W/+ mice with Orai1+/− mice expressing 50% of ORAI1. Systematic phenotyping of the offspring revealed that the Stim1R304W/+Orai1+/− mice were born with a normalized ratio and showed improved postnatal growth, bone architecture, and partly ameliorated muscle function and structure compared with their Stim1R304W/+ littermates. We also produced AAV particles containing Orai1-specific shRNAs, and intramuscular injections of Stim1R304W/+ mice improved the skeletal muscle contraction and relaxation properties, while muscle histology remained unchanged. Altogether, we provide the proof-of-concept that Orai1 silencing partially prevents the development of the multi-systemic TAM/STRMK phenotype in mice, and we also established an approach to target Orai1 expression in postnatal tissues.
Collapse
|
10
|
CIC-39Na reverses the thrombocytopenia that characterizes tubular aggregate myopathy. Blood Adv 2022; 6:4471-4484. [PMID: 35696753 DOI: 10.1182/bloodadvances.2021006378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 06/05/2022] [Indexed: 11/20/2022] Open
Abstract
Store-Operated Ca2+-Entry is a cellular mechanism that governs the replenishment of intracellular stores of Ca2+ upon depletion caused by the opening of intracellular Ca2+-channels. Gain-of-function mutations of the two key proteins of Store-Operated Ca2+-Entry, STIM1 and ORAI1, are associated with several ultra-rare diseases clustered as tubular aggregate myopathies. Our group has previously demonstrated that a mouse model bearing the STIM1 p.I115F mutation recapitulates the main features of the STIM1 gain-of-function disorders: muscle weakness and thrombocytopenia. Similar findings have been found in other mice bearing different mutations on STIM1. At present, no valid treatment is available for these patients. In the present contribution, we report that CIC-39Na, a Store-Operated Ca2+-Entry inhibitor, restores platelet number and counteracts the abnormal bleeding that characterizes these mice. Subtle differences in thrombopoiesis were observed in STIM1 p.I115F mice, but the main difference between wild-type and STIM1 p.I115F mice was in platelet clearance and in the levels of platelet cytosolic basal Ca2+. Both were restored upon treatment of animals with CIC-39Na. This finding paves the way to a pharmacological treatment strategy for thrombocytopenia in tubular aggregate myopathy patients.
Collapse
|
11
|
Riva B, Pessolano E, Quaglia E, Cordero-Sanchez C, Bhela IP, Topf A, Serafini M, Cox D, Harris E, Garibaldi M, Barresi R, Pirali T, Genazzani AA. STIM1 and ORAI1 mutations leading to tubular aggregate myopathies are sensitive to the Store-operated Ca2+-entry modulators CIC-37 and CIC-39. Cell Calcium 2022; 105:102605. [DOI: 10.1016/j.ceca.2022.102605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/09/2022] [Accepted: 05/16/2022] [Indexed: 12/29/2022]
|
12
|
Abstract
Store-operated Ca2+ entry (SOCE) is a ubiquitous Ca2+ signaling pathway that is evolutionarily conserved across eukaryotes. SOCE is triggered physiologically when the endoplasmic reticulum (ER) Ca2+ stores are emptied through activation of inositol 1,4,5-trisphosphate receptors. SOCE is mediated by the Ca2+ release-activated Ca2+ (CRAC) channels, which are highly Ca2+ selective. Upon store depletion, the ER Ca2+-sensing STIM proteins aggregate and gain extended conformations spanning the ER-plasma membrane junctional space to bind and activate Orai, the pore-forming proteins of hexameric CRAC channels. In recent years, studies on STIM and Orai tissue-specific knockout mice and gain- and loss-of-function mutations in humans have shed light on the physiological functions of SOCE in various tissues. Here, we describe recent findings on the composition of native CRAC channels and their physiological functions in immune, muscle, secretory, and neuronal systems to draw lessons from transgenic mice and human diseases caused by altered CRAC channel activity.
Collapse
Affiliation(s)
- Scott M Emrich
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA;
| | - Ryan E Yoast
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA;
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA;
- Department of Pharmacology and Chemical Biology and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Park JH, Jeong SY, Choi JH, Lee EH. Pathological Mechanism of a Constitutively Active Form of Stromal Interaction Molecule 1 in Skeletal Muscle. Biomolecules 2021; 11:biom11081064. [PMID: 34439731 PMCID: PMC8394508 DOI: 10.3390/biom11081064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 11/30/2022] Open
Abstract
Stromal interaction molecule 1 (STIM1) is the main protein that, along with Orai1, mediates store-operated Ca2+ entry (SOCE) in skeletal muscle. Abnormal SOCE due to mutations in STIM1 is one of the causes of human skeletal muscle diseases. STIM1-R304Q (a constitutively active form of STIM1) has been found in human patients with skeletal muscle phenotypes such as muscle weakness, myalgia, muscle stiffness, and contracture. However, the pathological mechanism(s) of STIM1-R304Q in skeletal muscle have not been well studied. To examine the pathological mechanism(s) of STIM1-R304Q in skeletal muscle, STIM1-R304Q was expressed in mouse primary skeletal myotubes, and the properties of the skeletal myotubes were examined using single-myotube Ca2+ imaging, transmission electron microscopy (TEM), and biochemical approaches. STIM1-R304Q did not interfere with the terminal differentiation of skeletal myoblasts to myotubes and retained the ability of STIM1 to attenuate dihydropyridine receptor (DHPR) activity. STIM1-R304Q induced hyper-SOCE (that exceeded the SOCE by wild-type STIM1) by affecting both the amplitude and the onset rate of SOCE. Unlike that by wild-type STIM1, hyper-SOCE by STIM1-R304Q contributed to a disturbance in Ca2+ distribution between the cytosol and the sarcoplasmic reticulum (SR) (high Ca2+ in the cytosol and low Ca2+ in the SR). Moreover, the hyper-SOCE and the high cytosolic Ca2+ level induced by STIM1-R304Q involve changes in mitochondrial shape. Therefore, a series of these cellular defects induced by STIM1-R304Q could induce deleterious skeletal muscle phenotypes in human patients carrying STIM1-R304Q.
Collapse
Affiliation(s)
- Ji Hee Park
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.H.P.); (S.Y.J.); (J.H.C.)
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Seung Yeon Jeong
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.H.P.); (S.Y.J.); (J.H.C.)
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Jun Hee Choi
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.H.P.); (S.Y.J.); (J.H.C.)
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.H.P.); (S.Y.J.); (J.H.C.)
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence:
| |
Collapse
|
14
|
Pathophysiological Effects of Overactive STIM1 on Murine Muscle Function and Structure. Cells 2021; 10:cells10071730. [PMID: 34359900 PMCID: PMC8304505 DOI: 10.3390/cells10071730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) is a ubiquitous mechanism regulating extracellular Ca2+ entry to control a multitude of Ca2+-dependent signaling pathways and cellular processes. SOCE relies on the concerted activity of the reticular Ca2+ sensor STIM1 and the plasma membrane Ca2+ channel ORAI1, and dysfunctions of these key factors result in human pathologies. STIM1 and ORAI1 gain-of-function (GoF) mutations induce excessive Ca2+ influx through SOCE over-activation, and cause tubular aggregate myopathy (TAM) and Stormorken syndrome (STRMK), two overlapping disorders characterized by muscle weakness and additional multi-systemic signs affecting growth, platelets, spleen, skin, and intellectual abilities. In order to investigate the pathophysiological effect of overactive SOCE on muscle function and structure, we combined transcriptomics with morphological and functional studies on a TAM/STRMK mouse model. Muscles from Stim1R304W/+ mice displayed aberrant expression profiles of genes implicated in Ca2+ handling and excitation-contraction coupling (ECC), and in vivo investigations evidenced delayed muscle contraction and relaxation kinetics. We also identified signs of reticular stress and abnormal mitochondrial activity, and histological and respirometric analyses on muscle samples revealed enhanced myofiber degeneration associated with reduced mitochondrial respiration. Taken together, we uncovered a molecular disease signature and deciphered the pathomechanism underlying the functional and structural muscle anomalies characterizing TAM/STRMK.
Collapse
|
15
|
Conte E, Pannunzio A, Imbrici P, Camerino GM, Maggi L, Mora M, Gibertini S, Cappellari O, De Luca A, Coluccia M, Liantonio A. Gain-of-Function STIM1 L96V Mutation Causes Myogenesis Alteration in Muscle Cells From a Patient Affected by Tubular Aggregate Myopathy. Front Cell Dev Biol 2021; 9:635063. [PMID: 33718371 PMCID: PMC7952532 DOI: 10.3389/fcell.2021.635063] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Tubular Aggregate Myopathy (TAM) is a hereditary ultra-rare muscle disorder characterized by muscle weakness and cramps or myasthenic features. Biopsies from TAM patients show the presence of tubular aggregates originated from sarcoplasmic reticulum due to altered Ca2+ homeostasis. TAM is caused by gain-of-function mutations in STIM1 or ORAI1, proteins responsible for Store-Operated-Calcium-Entry (SOCE), a pivotal mechanism in Ca2+ signaling. So far there is no cure for TAM and the mechanisms through which STIM1 or ORAI1 gene mutation lead to muscle dysfunction remain to be clarified. It has been established that post-natal myogenesis critically relies on Ca2+ influx through SOCE. To explore how Ca2+ homeostasis dysregulation associated with TAM impacts on muscle differentiation cascade, we here performed a functional characterization of myoblasts and myotubes deriving from patients carrying STIM1 L96V mutation by using fura-2 cytofluorimetry, high content imaging and real-time PCR. We demonstrated a higher resting Ca2+ concentration and an increased SOCE in STIM1 mutant compared with control, together with a compensatory down-regulation of genes involved in Ca2+ handling (RyR1, Atp2a1, Trpc1). Differentiating STIM1 L96V myoblasts persisted in a mononuclear state and the fewer multinucleated myotubes had distinct morphology and geometry of mitochondrial network compared to controls, indicating a defect in the late differentiation phase. The alteration in myogenic pathway was confirmed by gene expression analysis regarding early (Myf5, Mef2D) and late (DMD, Tnnt3) differentiation markers together with mitochondrial markers (IDH3A, OGDH). We provided evidences of mechanisms responsible for a defective myogenesis associated to TAM mutant and validated a reliable cellular model usefull for TAM preclinical studies.
Collapse
Affiliation(s)
- Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | | | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | | | - Lorenzo Maggi
- Neuromuscular Diseases and Neuroimmunology Unit, Foundation IRCCS Neurological Institute C. Besta, Milan, Italy
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, Foundation IRCCS Neurological Institute C. Besta, Milan, Italy
| | - Sara Gibertini
- Neuromuscular Diseases and Neuroimmunology Unit, Foundation IRCCS Neurological Institute C. Besta, Milan, Italy
| | | | - Annamaria De Luca
- Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Mauro Coluccia
- Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | | |
Collapse
|
16
|
Abstract
Platelets are the major cellular contributor to arterial thrombosis. However, activated platelets form two distinct subpopulations during thrombosis. Pro-aggregatory platelets aggregate to form the main body of the thrombus. In contrast, procoagulant platelets expose phosphatidylserine on their outer surface and promote thrombin generation. This apparently all-or-nothing segregation into subpopulations indicates that, during activation, platelets commit to becoming procoagulant or pro-aggregatory. Although the signaling pathways that control this commitment are not understood, distinct cytosolic and mitochondrial Ca2+ signals in different subpopulations are likely to be central. In this review, we discuss how these Ca2+ signals control procoagulant platelet formation and whether this process can be targeted pharmacologically to prevent arterial thrombosis.
Collapse
Affiliation(s)
| | - Matthew T Harper
- Department of Pharmacology, University of Cambridge Cambridge, UK
| |
Collapse
|
17
|
Liu X, Pan Z. Store-Operated Calcium Entry in the Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:303-333. [DOI: 10.1007/978-981-16-4254-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Silva-Rojas R, Laporte J, Böhm J. STIM1/ ORAI1 Loss-of-Function and Gain-of-Function Mutations Inversely Impact on SOCE and Calcium Homeostasis and Cause Multi-Systemic Mirror Diseases. Front Physiol 2020; 11:604941. [PMID: 33250786 PMCID: PMC7672041 DOI: 10.3389/fphys.2020.604941] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) is a ubiquitous and essential mechanism regulating Ca2+ homeostasis in all tissues, and controls a wide range of cellular functions including keratinocyte differentiation, osteoblastogenesis and osteoclastogenesis, T cell proliferation, platelet activation, and muscle contraction. The main SOCE actors are STIM1 and ORAI1. Depletion of the reticular Ca2+ stores induces oligomerization of the luminal Ca2+ sensor STIM1, and the oligomers activate the plasma membrane Ca2+ channel ORAI1 to trigger extracellular Ca2+ entry. Mutations in STIM1 and ORAI1 result in abnormal SOCE and lead to multi-systemic disorders. Recessive loss-of-function mutations are associated with CRAC (Ca2+ release-activated Ca2+) channelopathy, involving immunodeficiency and autoimmunity, muscular hypotonia, ectodermal dysplasia, and mydriasis. In contrast, dominant STIM1 and ORAI1 gain-of-function mutations give rise to tubular aggregate myopathy and Stormorken syndrome (TAM/STRMK), forming a clinical spectrum encompassing muscle weakness, thrombocytopenia, ichthyosis, hyposplenism, short stature, and miosis. Functional studies on patient-derived cells revealed that CRAC channelopathy mutations impair SOCE and extracellular Ca2+ influx, while TAM/STRMK mutations induce excessive Ca2+ entry through SOCE over-activation. In accordance with the opposite pathomechanisms underlying both disorders, CRAC channelopathy and TAM/STRMK patients show mirror phenotypes at the clinical and molecular levels, and the respective animal models recapitulate the skin, bones, immune system, platelet, and muscle anomalies. Here we review and compare the clinical presentations of CRAC channelopathy and TAM/STRMK patients and the histological and molecular findings obtained on human samples and murine models to highlight the mirror phenotypes in different tissues, and to point out potentially undiagnosed anomalies in patients, which may be relevant for disease management and prospective therapeutic approaches.
Collapse
Affiliation(s)
- Roberto Silva-Rojas
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Johann Böhm
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| |
Collapse
|
19
|
Cordero-Sanchez C, Riva B, Reano S, Clemente N, Zaggia I, Ruffinatti FA, Potenzieri A, Pirali T, Raffa S, Sangaletti S, Colombo MP, Bertoni A, Garibaldi M, Filigheddu N, Genazzani AA. A luminal EF-hand mutation in STIM1 in mice causes the clinical hallmarks of tubular aggregate myopathy. Dis Model Mech 2019; 13:dmm.041111. [PMID: 31666234 PMCID: PMC6906633 DOI: 10.1242/dmm.041111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/24/2019] [Indexed: 12/25/2022] Open
Abstract
STIM and ORAI proteins play a fundamental role in calcium signaling, allowing for calcium influx through the plasma membrane upon depletion of intracellular stores, in a process known as store-operated Ca2+ entry. Point mutations that lead to gain-of-function activity of either STIM1 or ORAI1 are responsible for a cluster of ultra-rare syndromes characterized by motor disturbances and platelet dysfunction. The prevalence of these disorders is at present unknown. In this study, we describe the generation and characterization of a knock-in mouse model (KI-STIM1I115F) that bears a clinically relevant mutation located in one of the two calcium-sensing EF-hand motifs of STIM1. The mouse colony is viable and fertile. Myotubes from these mice show an increased store-operated Ca2+ entry, as predicted. This most likely causes the dystrophic muscle phenotype observed, which worsens with age. Such histological features are not accompanied by a significant increase in creatine kinase. However, animals have significantly worse performance in rotarod and treadmill tests, showing increased susceptibility to fatigue, in analogy to the human disease. The mice also show increased bleeding time and thrombocytopenia, as well as an unexpected defect in the myeloid lineage and in natural killer cells. The present model, together with recently described models bearing the R304W mutation (located on the coiled-coil domain in the cytosolic side of STIM1), represents an ideal platform to characterize the disorder and test therapeutic strategies for patients with STIM1 mutations, currently without therapeutic solutions. This article has an associated First Person interview with Celia Cordero-Sanchez, co-first author of the paper. Summary: We describe a mouse model (KI-STIM1I115F) that displays the clinical hallmarks of tubular aggregate myopathy. This model provides a new opportunity to characterize the disorder and test novel therapeutic strategies.
Collapse
Affiliation(s)
- Celia Cordero-Sanchez
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via Bovio 6, Novara 28100, Italy
| | - Beatrice Riva
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via Bovio 6, Novara 28100, Italy
| | - Simone Reano
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, Novara 28100, Italy
| | - Nausicaa Clemente
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, Novara 28100, Italy
| | - Ivan Zaggia
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, Novara 28100, Italy
| | - Federico A Ruffinatti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via Bovio 6, Novara 28100, Italy
| | - Alberto Potenzieri
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via Bovio 6, Novara 28100, Italy
| | - Tracey Pirali
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via Bovio 6, Novara 28100, Italy
| | - Salvatore Raffa
- Laboratory of Ultrastructural Pathology, Department of Clinical and Molecular Medicine, SAPIENZA University of Rome, Sant'Andrea Hospital, Rome 00189, Italy
| | - Sabina Sangaletti
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milan 20133, Italy
| | - Mario P Colombo
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milan 20133, Italy
| | - Alessandra Bertoni
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, Novara 28100, Italy
| | - Matteo Garibaldi
- Unit of Neuromuscular Disorders, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Sant'Andrea Hospital, Rome 00189, Italy
| | - Nicoletta Filigheddu
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, Novara 28100, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via Bovio 6, Novara 28100, Italy
| |
Collapse
|
20
|
Gamage TH, Lengle E, Gunnes G, Pullisaar H, Holmgren A, Reseland JE, Merckoll E, Corti S, Mizobuchi M, Morales RJ, Tsiokas L, Tjønnfjord GE, Lacruz RS, Lyngstadaas SP, Misceo D, Frengen E. STIM1 R304W in mice causes subgingival hair growth and an increased fraction of trabecular bone. Cell Calcium 2019; 85:102110. [PMID: 31785581 DOI: 10.1016/j.ceca.2019.102110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023]
Abstract
Calcium signaling plays a central role in bone development and homeostasis. Store operated calcium entry (SOCE) is an important calcium influx pathway mediated by calcium release activated calcium (CRAC) channels in the plasma membrane. Stromal interaction molecule 1 (STIM1) is an endoplasmic reticulum calcium sensing protein important for SOCE. We generated a mouse model expressing the STIM1 R304W mutation, causing Stormorken syndrome in humans. Stim1R304W/R304W mice showed perinatal lethality, and the only three animals that survived into adulthood presented with reduced growth, low body weight, and thoracic kyphosis. Radiographs revealed a reduced number of ribs in the Stim1R304W/R304W mice. Microcomputed tomography data revealed decreased cortical bone thickness and increased trabecular bone volume fraction in Stim1R304W/R304W mice, which had thinner and more compact bone compared to wild type mice. The Stim1R304W/+ mice showed an intermediate phenotype. Histological analyses showed that the Stim1R304W/R304W mice had abnormal bone architecture, with markedly increased number of trabeculae and reduced bone marrow cavity. Homozygous mice showed STIM1 positive osteocytes and osteoblasts. These findings highlight the critical role of the gain-of-function (GoF) STIM1 R304W protein in skeletal development and homeostasis in mice. Furthermore, the novel feature of bilateral subgingival hair growth on the lower incisors in the Stim1R304W/R304W mice and 25 % of the heterozygous mice indicate that the GoF STIM1 R304W protein also induces an abnormal epithelial cell fate.
Collapse
Affiliation(s)
- Thilini H Gamage
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Emma Lengle
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Gjermund Gunnes
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Norway
| | - Helen Pullisaar
- Department of Orthodontics, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Asbjørn Holmgren
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Janne E Reseland
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Else Merckoll
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Stefania Corti
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, University of Milan, Milan, Italy
| | | | | | - Leonidas Tsiokas
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, USA
| | - Geir E Tjønnfjord
- Department of Haematology, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, USA
| | - Staale P Lyngstadaas
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Doriana Misceo
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Eirik Frengen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway.
| |
Collapse
|
21
|
Morin G, Biancalana V, Echaniz-Laguna A, Noury JB, Lornage X, Moggio M, Ripolone M, Violano R, Marcorelles P, Maréchal D, Renaud F, Maurage CA, Tard C, Cuisset JM, Laporte J, Böhm J. Tubular aggregate myopathy and Stormorken syndrome: Mutation spectrum and genotype/phenotype correlation. Hum Mutat 2019; 41:17-37. [PMID: 31448844 DOI: 10.1002/humu.23899] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/29/2019] [Accepted: 08/21/2019] [Indexed: 11/06/2022]
Abstract
Calcium (Ca2+ ) acts as a ubiquitous second messenger, and normal cell and tissue physiology strictly depends on the precise regulation of Ca2+ entry, storage, and release. Store-operated Ca2+ entry (SOCE) is a major mechanism controlling extracellular Ca2+ entry, and mainly relies on the accurate interplay between the Ca2+ sensor STIM1 and the Ca2+ channel ORAI1. Mutations in STIM1 or ORAI1 result in abnormal Ca2+ homeostasis and are associated with severe human disorders. Recessive loss-of-function mutations impair SOCE and cause combined immunodeficiency, while dominant gain-of-function mutations induce excessive extracellular Ca2+ entry and cause tubular aggregate myopathy (TAM) and Stormorken syndrome (STRMK). TAM and STRMK are spectra of the same multisystemic disease characterized by muscle weakness, miosis, thrombocytopenia, hyposplenism, ichthyosis, dyslexia, and short stature. To date, 42 TAM/STRMK families have been described, and here we report five additional families for which we provide clinical, histological, ultrastructural, and genetic data. In this study, we list and review all new and previously reported STIM1 and ORAI1 cases, discuss the pathomechanisms of the mutations based on the known functions and the protein structure of STIM1 and ORAI1, draw a genotype/phenotype correlation, and delineate an efficient screening strategy for the molecular diagnosis of TAM/STRMK.
Collapse
Affiliation(s)
- Gilles Morin
- Clinical Genetics, Amiens University Hospital, Amiens, France.,University of Picardy Jules Verne, EA 4666, Amiens, France.,Department of translational medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Valérie Biancalana
- Department of translational medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Inserm U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France.,Laboratoire Diagnostic Génétique, CHRU, Strasbourg, France
| | - Andoni Echaniz-Laguna
- Department of Neurology, APHP, CHU de Bicêtre, Le Kremlin Bicêtre, France.,French National Reference Center for Rare Neuropathies (NNERF), Le Kremlin Bicêtre, France.,Inserm U1195 & Paris-Sud University, Le Kremlin Bicêtre, France
| | | | - Xavière Lornage
- Department of translational medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Inserm U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| | - Maurizio Moggio
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Michela Ripolone
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Raffaella Violano
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Denis Maréchal
- Department of Neurology, CHRU Cavale Blanche, Brest, France
| | - Florence Renaud
- Department of Pathology, Lille University Hospital, Lille, France
| | | | - Céline Tard
- CHU Lille, Inserm U1171, Service de neurologie, Centre de Référence des Maladies Neuromusculaires Nord Est Ile-de-France, Lille University, Lille, France
| | | | - Jocelyn Laporte
- Department of translational medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Inserm U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| | - Johann Böhm
- Department of translational medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Inserm U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| |
Collapse
|
22
|
Li A, Kang X, Edelman F, Waclawik AJ. Stormorken Syndrome: A Rare Cause of Myopathy With Tubular Aggregates and Dystrophic Features. J Child Neurol 2019; 34:321-324. [PMID: 30761937 DOI: 10.1177/0883073819829389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Stormorken syndrome is a rare genetic disorder (MIM 185070) first reported in 1983 with thrombocytopenia, muscle weakness, asplenia, and miosis caused by a mutation of the stromal interaction molecule 1 ( STIM1) gene.1 The muscle weakness is caused by a myopathy with tubular aggregate formation. We report a family in which both child and mother presented with proximal muscle weakness and thrombocytopenia. Histologic, histochemical, and electron microscopy studies were performed on the muscle specimen. It documented accumulation of tubular aggregates and chronic myopathic changes with dystrophic features. Genetic testing revealed that both mother and son carried a missense mutation of c.326A>G in exon 3 of the STIM1 gene, which is novel for Stormorken syndrome. We suggest that patients with unexplained chronic idiopathic thrombocytopenia and proximal weakness have genetic testing for Stormorken syndrome.
Collapse
Affiliation(s)
- Ang Li
- 1 Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Xuan Kang
- 1 Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Frederick Edelman
- 1 Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Andrew J Waclawik
- 1 Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
23
|
Johnson M, Trebak M. ORAI channels in cellular remodeling of cardiorespiratory disease. Cell Calcium 2019; 79:1-10. [PMID: 30772685 DOI: 10.1016/j.ceca.2019.01.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 01/08/2023]
Abstract
Cardiorespiratory disease, which includes systemic arterial hypertension, restenosis, atherosclerosis, pulmonary arterial hypertension, asthma, and chronic obstructive pulmonary disease (COPD) are highly prevalent and devastating diseases with limited therapeutic modalities. A common pathophysiological theme to these diseases is cellular remodeling, which is contributed by changes in expression and activation of ion channels critical for either excitability or growth. Calcium (Ca2+) signaling and specifically ORAI Ca2+ channels have emerged as significant regulators of smooth muscle, endothelial, epithelial, platelet, and immune cell remodeling. This review details the dysregulation of ORAI in cardiorespiratory diseases, and how this dysregulation of ORAI contributes to cellular remodeling.
Collapse
Affiliation(s)
- Martin Johnson
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States.
| |
Collapse
|
24
|
Silva-Rojas R, Treves S, Jacobs H, Kessler P, Messaddeq N, Laporte J, Böhm J. STIM1 over-activation generates a multi-systemic phenotype affecting the skeletal muscle, spleen, eye, skin, bones and immune system in mice. Hum Mol Genet 2018; 28:1579-1593. [DOI: 10.1093/hmg/ddy446] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Roberto Silva-Rojas
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm, CNRS, Université de Strasbourg, Illkirch, France
| | - Susan Treves
- Departments of Biomedicine and Anaesthesia, Basel University Hospital, Basel University, Basel, Switzerland
- Department of Life Sciences, General Pathology section, University of Ferrara, Ferrara, Italy
| | - Hugues Jacobs
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm, CNRS, Université de Strasbourg, Illkirch, France
- Institut Clinique de la Souris (ICS), Illkirch, France
| | - Pascal Kessler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm, CNRS, Université de Strasbourg, Illkirch, France
| | - Nadia Messaddeq
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm, CNRS, Université de Strasbourg, Illkirch, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm, CNRS, Université de Strasbourg, Illkirch, France
| | - Johann Böhm
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm, CNRS, Université de Strasbourg, Illkirch, France
| |
Collapse
|
25
|
Role of STIM1/ORAI1-mediated store-operated Ca 2+ entry in skeletal muscle physiology and disease. Cell Calcium 2018; 76:101-115. [PMID: 30414508 DOI: 10.1016/j.ceca.2018.10.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 11/23/2022]
Abstract
Store-operated Ca2+ entry (SOCE) is a Ca2+ entry mechanism activated by depletion of intracellular Ca2+ stores. In skeletal muscle, SOCE is mediated by an interaction between stromal-interacting molecule-1 (STIM1), the Ca2+ sensor of the sarcoplasmic reticulum, and ORAI1, the Ca2+-release-activated-Ca2+ (CRAC) channel located in the transverse tubule membrane. This review focuses on the molecular mechanisms and physiological role of SOCE in skeletal muscle, as well as how alterations in STIM1/ORAI1-mediated SOCE contribute to muscle disease. Recent evidence indicates that SOCE plays an important role in both muscle development/growth and fatigue. The importance of SOCE in muscle is further underscored by the discovery that loss- and gain-of-function mutations in STIM1 and ORAI1 result in an eclectic array of disorders with clinical myopathy as central defining component. Despite differences in clinical phenotype, all STIM1/ORAI1 gain-of-function mutations-linked myopathies are characterized by the abnormal accumulation of intracellular membranes, known as tubular aggregates. Finally, dysfunctional STIM1/ORAI1-mediated SOCE also contributes to the pathogenesis of muscular dystrophy, malignant hyperthermia, and sarcopenia. The picture to emerge is that tight regulation of STIM1/ORAI1-dependent Ca2+ signaling is critical for optimal skeletal muscle development/function such that either aberrant increases or decreases in SOCE activity result in muscle dysfunction.
Collapse
|