1
|
Xu X, Zhao S, Xie Y, Zhang L, Shao Y, Lin J, Wu A. Advances in SERS detection method combined with microfluidic technology for bio-analytical applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 332:125797. [PMID: 39899965 DOI: 10.1016/j.saa.2025.125797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 02/05/2025]
Abstract
With the advancement of research on life systems and disease mechanisms, the precision of analysis tends to be at a single molecule or single gene level. The surface-enhanced Raman scattering (SERS) method is highly anticipated because of its sensitive detection ability down to a single molecule level. The SERS-based microfluidic platforms retain both advantages of SERS and microfluidics, working in a complementary way. The combination of microfluidics and SERS can provide rapid, non-destructive, high-sensitive, and high-throughput analysis for biological samples, which is of great significance to developing potential biomedical applications, thus occupying an outstanding position among the current research hot topics. This review briefly summarized the recent developments and applications of SERS-based microfluidic platforms in biological analysis. This paper first introduced the SERS-based microfluidic platforms and gave a classification of this method including continuous flow-based method, microarrays-based method, droplet-based method, lateral flow assay (LFA)-based method, and digital-based method. In particular, the bioanalytical applications of SERS-based microfluidic platforms in recent years, including biomolecule detection, cell analysis, and disease diagnosis, have been reviewed. It illustrated that SERS-based microfluidic platforms have great potential in bioanalysis.
Collapse
Affiliation(s)
- Xiawei Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, PR China
| | - Songchen Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Yujiao Xie
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Lei Zhang
- Zhejiang Key Laboratory of Digital Technology in Medical Diagnostics, Hangzhou 310030, PR China; The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, PR China.
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Jie Lin
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China.
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China.
| |
Collapse
|
2
|
Joung Y, Kim K, An JE, Park S, Yu Q, Lu M, Chen J, Joo SW, Choo J. Rapid point-of-care pathogen sensing in the post-pandemic era. Trends Biotechnol 2025; 43:1048-1061. [PMID: 39521626 DOI: 10.1016/j.tibtech.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
In the post-pandemic era, interest in on-site technologies capable of rapidly and accurately diagnosing viral or bacterial pathogens has significantly increased. Advances in functional nanomaterials and bioengineering have propelled the progress of point-of-care (POC) sensors, enhancing their speed, specificity, sensitivity, affordability, ease of use, and accuracy. Notably, biosensors that utilize surface-enhanced Raman scattering (SERS) technology have revolutionized the rapid and sensitive diagnosis of biomarkers in pathogenic infections. This review of current POC diagnostics highlights the growing emphasis on immunoassays for swift pathogen analysis, augmented by the integration of deep learning for swift interpretation of complex signals through tailored algorithms.
Collapse
Affiliation(s)
- Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Kihyun Kim
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Ji Eun An
- Department of Chemistry, Soongsil University, Seoul 06978, South Korea
| | - Sohyun Park
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Qian Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Mengdan Lu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Jiadong Chen
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul 06978, South Korea.
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
3
|
Yu X, Park S, Joung Y, Lu M, Qi J, Choo J. Dual-Function SERS Microdroplet Sensor for Rapid Differentiation of Influenza a and SARS-CoV-2. Anal Chem 2025; 97:8476-8483. [PMID: 40202102 DOI: 10.1021/acs.analchem.5c00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
This study presents the development of a dual-function microdroplet sensor utilizing surface-enhanced Raman scattering (SERS) technology to identify and quantify Influenza A and COVID-19 viruses. The proposed microfluidic device incorporates compartments for two-phase segmented droplet generation, merging, splitting, and detection. Both viral strains were identified by isolating magnetic antibody-antigen complexes from the liquid medium using a magnetized bar embedded in the microfluidic channel. Concurrent Raman spectroscopic readings were obtained as suspended droplets containing residual SERS-active nanoparticles traversed the interrogation zone of the focused laser beam. Precise quantitative analysis was accomplished by correcting characteristic Raman peak intensities for both viruses with internal standards, while ensemble averaging Raman signals from multiple droplets ensured high reproducibility. This dual-function SERS microdroplet sensor represents a novel in vitro diagnostic approach capable of rapidly distinguishing between COVID-19 and Influenza A with high sensitivity and reproducibility. When coupled with a portable Raman spectrophotometer, the device shows significant potential as a diagnostic tool for swift and in situ detection of both viral pathogens.
Collapse
Affiliation(s)
- Xiangdong Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Sohyun Park
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Mengdan Lu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Ji Qi
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| |
Collapse
|
4
|
Li D, Wu X, Chen Z, Liu T, Mu X. Surface-enhanced spectroscopy technology based on metamaterials. MICROSYSTEMS & NANOENGINEERING 2025; 11:60. [PMID: 40180920 PMCID: PMC11969004 DOI: 10.1038/s41378-025-00905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/23/2025] [Accepted: 02/21/2025] [Indexed: 04/05/2025]
Abstract
Surface-enhanced spectroscopy technology based on metamaterials has flourished in recent years, and the use of artificially designed subwavelength structures can effectively regulate light waves and electromagnetic fields, making it a valuable platform for sensing applications. With the continuous improvement of theory, several effective universal modes of metamaterials have gradually formed, including localized surface plasmon resonance (LSPR), Mie resonance, bound states in the continuum (BIC), and Fano resonance. This review begins by summarizing these core resonance mechanisms, followed by a comprehensive overview of six main surface-enhanced spectroscopy techniques across the electromagnetic spectrum: surface-enhanced fluorescence (SEF), surface-enhanced Raman scattering (SERS), surface-enhanced infrared absorption (SEIRA), terahertz (THz) sensing, refractive index (RI) sensing, and chiral sensing. These techniques cover a wide spectral range and address various optical characteristics, enabling the detection of molecular fingerprints, structural chirality, and refractive index changes. Additionally, this review summarized the combined use of different enhanced spectra, the integration with other advanced technologies, and the status of miniaturized metamaterial systems. Finally, we assess current challenges and future directions. Looking to the future, we anticipate that metamaterial-based surface-enhanced spectroscopy will play a transformative role in real-time, on-site detection across scientific, environmental, and biomedical fields.
Collapse
Affiliation(s)
- Dongxiao Li
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Xueyuan Wu
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Ziwei Chen
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Tao Liu
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Xiaojing Mu
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
5
|
Laing S, Sloan-Dennison S, Faulds K, Graham D. Surface Enhanced Raman Scattering for Biomolecular Sensing in Human Healthcare Monitoring. ACS NANO 2025; 19:8381-8400. [PMID: 40014676 PMCID: PMC11912579 DOI: 10.1021/acsnano.4c15877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 03/01/2025]
Abstract
Since the 1980s, surface enhanced Raman scattering (SERS) has been used for the rapid and sensitive detection of biomolecules. Whether a label-free or labeled assay is adopted, SERS has demonstrated low limits of detection in a variety of biological matrices. However, SERS analysis has been confined to the laboratory due to several reasons such as reproducibility and scalability, both of which have been discussed at length in the literature. Another possible issue with the lack of widespread adoption of SERS is that its application in point of use (POU) testing is only now being fully explored due to the advent of portable Raman spectrometers. Researchers are now investigating how SERS can be used as the output on several POU platforms such as lateral flow assays, wearable sensors, and in volatile organic compound (VOC) detection for human healthcare monitoring, with favorable results that rival the gold standard approaches. Another obstacle that SERS faces is the interpretation of the wealth of information obtained from the platform. To combat this, machine learning is being explored and has been shown to provide quick and accurate analysis of the generated data, leading to sensitive detection and discrimination of many clinically relevant biomolecules. This review will discuss the advancements of SERS combined with POU testing and the strength that machine learning can bring to the analysis to produce a powerful combined platform for human healthcare monitoring.
Collapse
Affiliation(s)
| | | | - Karen Faulds
- Department of Pure and Applied Chemistry,
Technology and Innovation Centre, University
of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K.
| | - Duncan Graham
- Department of Pure and Applied Chemistry,
Technology and Innovation Centre, University
of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K.
| |
Collapse
|
6
|
Park S, Kim K, Go A, Lee MH, Chen L, Choo J. Rapid and Sensitive Escherichia coli Detection: Integration of SERS and Acoustofluidics in a Lysis-Free Microfluidic Platform. ACS Sens 2025; 10:1217-1227. [PMID: 39885690 DOI: 10.1021/acssensors.4c03118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Bacterial infections, such as sepsis, require prompt and precise identification of the causative bacteria for appropriate antibiotics treatment. Traditional methods such as culturing take 2-5 days, while newer techniques such as reverse transcription-polymerase chain reaction and mass spectrometry are hindered by blood impurities. Consequently, this study developed a surface-enhanced Raman scattering (SERS)-based acoustofluidic technique for rapid bacterial detection without culturing or lysing. Target bacteria are first tagged with SERS nanotags in a microtube. The solution with tagged bacteria and unbound SERS nanotags is passed through a silicon microfluidic channel. A piezoelectric transducer generates acoustic waves within the channel, concentrating larger tagged bacteria in the center and pushing smaller unbound nanotags toward the channel walls. A laser beam is focused at the center of the channel, and the Raman signals of bacteria passing through the focal volume are measured for quantitative analysis. As a proof of concept, this study detected various concentrations of Escherichia coli at a limit of detection of 1.75 × 105 CFU/mL within 1 h. This method offers significant clinical potential, enabling rapid and accurate bacterial identification without genetic material extraction, cultivation, or lysis.
Collapse
Affiliation(s)
- Sohyun Park
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Kihyun Kim
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Anna Go
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, South Korea
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, South Korea
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| |
Collapse
|
7
|
Ly NH, Choo J, Gnanasekaran L, Aminabhavi TM, Vasseghian Y, Joo SW. Recent Plasmonic Gold- and Silver-Assisted Raman Spectra for Advanced SARS-CoV-2 Detection. ACS APPLIED BIO MATERIALS 2025; 8:88-107. [PMID: 39665205 DOI: 10.1021/acsabm.4c01457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
COVID-19 has become one of the deadliest epidemics in the past years. In efforts to combat the deadly disease besides vaccines, drug therapies, and facemasks, significant focus has been on designing specific methods for the sensitive and accurate detection of SARS-CoV-2. Of these, surface-enhanced Raman scattering (SERS) is an attractive analytical tool for the identification of SARS-CoV-2. SERS is the phenomenon of enhancement of Raman intensity signals from molecular analytes anchored onto the surfaces of roughened plasmonic nanomaterials. This work gives an updated summary of plasmonic gold nanomaterials (AuNMs) and silver nanomaterials (AgNMs)-based SERS technologies to identify SARS-CoV-2. Due to extreme "hot spots" promoting higher electromagnetic fields on their surfaces, different shapes of AuNMs and AgNMs combined with Raman probes have been reviewed for enhancing Raman signals of probe molecules for quantifying the virus. It also reviews progress made recently in the design of certain specific Raman probe molecules capable of imparting characteristic SERS response/tags for SARS-CoV-2 detection.
Collapse
Affiliation(s)
- Nguyễn Hoàng Ly
- Department of Chemistry, Gachon University, Seongnam 13120, South Korea
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | | | - Tejraj Malleshappa Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka 580031, India
- Korea University, Seoul 02841, South Korea
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul 06978, South Korea
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul 06978, South Korea
| |
Collapse
|
8
|
Dang H, Joung Y, Yang JY, Lee SH, Lee S, Joo SW, Park SG, Choo J. Advancing COVID-19 Diagnosis: Enhancement in SERS-PCR with 30-nm Au Nanoparticle-Internalized Nanodimpled Substrates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403672. [PMID: 38970560 DOI: 10.1002/smll.202403672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/16/2024] [Indexed: 07/08/2024]
Abstract
Real-time polymerase chain reaction (RT-PCR) with fluorescence detection is the gold standard for diagnosing coronavirus disease 2019 (COVID-19) However, the fluorescence detection in RT-PCR requires multiple amplification steps when the initial deoxyribonucleic acid (DNA) concentration is low. Therefore, this study has developed a highly sensitive surface-enhanced Raman scattering-based PCR (SERS-PCR) assay platform using the gold nanoparticle (AuNP)-internalized gold nanodimpled substrate (AuNDS) plasmonic platform. By comparing different sizes of AuNPs, it is observed that using 30 nm AuNPs improves the detection limit by approximately ten times compared to 70 nm AuNPs. Finite-difference time-domain (FDTD) simulations show that multiple hotspots are formed between AuNPs and the cavity surface and between AuNPs when 30 nm AuNPs are internalized in the cavity, generating a strong electric field. With this 30 nm AuNPs-AuNDS SERS platform, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ribonucleic acid (RNA)-dependent RNA polymerase (RdRp) can be detected in only six amplification cycles, significantly improving over the 25 cycles required for RT-PCR. These findings pave the way for an amplification-free molecular diagnostic system based on SERS.
Collapse
Affiliation(s)
- Hajun Dang
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Jun-Yeong Yang
- Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Soo Hyun Lee
- Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Seunghun Lee
- Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea
| | - Sung-Gyu Park
- Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| |
Collapse
|
9
|
Ho KHW, Lai H, Zhang R, Chen H, Yin W, Yan X, Xiao S, Lam CYK, Gu Y, Yan J, Hu K, Shi J, Yang M. SERS-Based Droplet Microfluidic Platform for Sensitive and High-Throughput Detection of Cancer Exosomes. ACS Sens 2024; 9:4860-4869. [PMID: 39233482 DOI: 10.1021/acssensors.4c01357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Exosomes, nanosized extracellular vesicles containing biomolecular cargo, are increasingly recognized as promising noninvasive biomarkers for cancer diagnosis, particularly for their role in carrying tumor-specific molecular information. Traditional methods for exosome detection face challenges such as complexity, time consumption, and the need for sophisticated equipment. This study addresses these challenges by introducing a novel droplet microfluidic platform integrated with a surface-enhanced Raman spectroscopy (SERS)-based aptasensor for the rapid and sensitive detection of HER2-positive exosomes from breast cancer cells. Our approach utilized an on-chip salt-induced gold nanoparticles (GNPs) aggregation process in the presence of HER2 aptamers and HER2-positive exosomes, enhancing the hot spot-based SERS signal amplification. This platform achieved a limit of detection of 4.5 log10 particles/mL with a sample-to-result time of 5 min per sample. Moreover, this platform has been successfully applied for HER2 status testing in clinical samples to distinguish HER2-positive breast cancer patients from HER2-negative breast cancer patients. High sensitivity, specificity, and the potential for high-throughput screening of specific tumor exosomes make this SERS-based droplet system a potential liquid biopsy technology for early cancer diagnosis.
Collapse
Affiliation(s)
- Kwun Hei Willis Ho
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Huang Lai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Ruolin Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Haitian Chen
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou 510630, China
| | - Wen Yin
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Xijing Yan
- Department of Breast and Thyroid Surgery, Lingnan Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Shu Xiao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Ching Ying Katherine Lam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Yutian Gu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - JiaXiang Yan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Kunpeng Hu
- Department of Breast and Thyroid Surgery, Lingnan Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Jingyu Shi
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Joint Research Center of Biosensing and Precision Theranostics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- Research Centre for Nanoscience and Nanotechnology, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| |
Collapse
|
10
|
Lee S, Dang H, Moon JI, Kim K, Joung Y, Park S, Yu Q, Chen J, Lu M, Chen L, Joo SW, Choo J. SERS-based microdevices for use as in vitro diagnostic biosensors. Chem Soc Rev 2024; 53:5394-5427. [PMID: 38597213 DOI: 10.1039/d3cs01055d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Advances in surface-enhanced Raman scattering (SERS) detection have helped to overcome the limitations of traditional in vitro diagnostic methods, such as fluorescence and chemiluminescence, owing to its high sensitivity and multiplex detection capability. However, for the implementation of SERS detection technology in disease diagnosis, a SERS-based assay platform capable of analyzing clinical samples is essential. Moreover, infectious diseases like COVID-19 require the development of point-of-care (POC) diagnostic technologies that can rapidly and accurately determine infection status. As an effective assay platform, SERS-based bioassays utilize SERS nanotags labeled with protein or DNA receptors on Au or Ag nanoparticles, serving as highly sensitive optical probes. Additionally, a microdevice is necessary as an interface between the target biomolecules and SERS nanotags. This review aims to introduce various microdevices developed for SERS detection, available for POC diagnostics, including LFA strips, microfluidic chips, and microarray chips. Furthermore, the article presents research findings reported in the last 20 years for the SERS-based bioassay of various diseases, such as cancer, cardiovascular diseases, and infectious diseases. Finally, the prospects of SERS bioassays are discussed concerning the integration of SERS-based microdevices and portable Raman readers into POC systems, along with the utilization of artificial intelligence technology.
Collapse
Affiliation(s)
- Sungwoon Lee
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Hajun Dang
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Joung-Il Moon
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Kihyun Kim
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Sohyun Park
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Qian Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Jiadong Chen
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Mengdan Lu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Lingxin Chen
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Yantai 264003, China.
| | - Sang-Woo Joo
- Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 06978, South Korea.
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
11
|
Yu X, Park S, Lee S, Joo SW, Choo J. Microfluidics for disease diagnostics based on surface-enhanced raman scattering detection. NANO CONVERGENCE 2024; 11:17. [PMID: 38687445 PMCID: PMC11061072 DOI: 10.1186/s40580-024-00424-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/08/2024] [Indexed: 05/02/2024]
Abstract
This review reports diverse microfluidic systems utilizing surface-enhanced Raman scattering (SERS) detection for disease diagnosis. Integrating SERS detection technology, providing high-sensitivity detection, and microfluidic technology for manipulating small liquid samples in microdevices has expanded the analytical capabilities previously confined to larger settings. This study explores the principles and uses of various SERS-based microfluidic devices developed over the last two decades. Specifically, we investigate the operational principles of documented SERS-based microfluidic devices, including continuous-flow channels, microarray-embedded microfluidic channels, droplet microfluidic channels, digital droplet channels, and gradient microfluidic channels. We also examine their applications in biomedical diagnostics. In conclusion, we summarize the areas requiring further development to translate these SERS-based microfluidic technologies into practical applications in clinical diagnostics.
Collapse
Affiliation(s)
- Xiangdong Yu
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Sohyun Park
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Sungwoon Lee
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea.
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
12
|
Lei Y, Xu D. Rapid Nucleic Acid Diagnostic Technology for Pandemic Diseases. Molecules 2024; 29:1527. [PMID: 38611806 PMCID: PMC11013254 DOI: 10.3390/molecules29071527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
The recent global pandemic of coronavirus disease 2019 (COVID-19) has enormously promoted the development of diagnostic technology. To control the spread of pandemic diseases and achieve rapid screening of the population, ensuring that patients receive timely treatment, rapid diagnosis has become the top priority in the development of clinical technology. This review article aims to summarize the current rapid nucleic acid diagnostic technologies applied to pandemic disease diagnosis, from rapid extraction and rapid amplification to rapid detection. We also discuss future prospects in the development of rapid nucleic acid diagnostic technologies.
Collapse
Affiliation(s)
- Yu Lei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Chinese Academy of Sciences (CAS), Beijing 100190, China;
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Dawei Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Chinese Academy of Sciences (CAS), Beijing 100190, China;
| |
Collapse
|
13
|
Qin J, Tian X, Liu S, Yang Z, Shi D, Xu S, Zhang Y. Rapid classification of SARS-CoV-2 variant strains using machine learning-based label-free SERS strategy. Talanta 2024; 267:125080. [PMID: 37678002 DOI: 10.1016/j.talanta.2023.125080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/05/2023] [Accepted: 08/13/2023] [Indexed: 09/09/2023]
Abstract
The spread of COVID-19 over the past three years is largely due to the continuous mutation of the virus, which has significantly impeded global efforts to prevent and control this epidemic. Specifically, mutations in the amino acid sequence of the surface spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have directly impacted its biological functions, leading to enhanced transmission and triggering an immune escape effect. Therefore, prompt identification of these mutations is crucial for formulating targeted treatment plans and implementing precise prevention and control measures. In this study, the label-free surface-enhanced Raman scattering (SERS) technology combined with machine learning (ML) algorithms provide a potential solution for accurate identification of SARS-CoV-2 variants. We establish a SERS spectral database of SARS-CoV-2 variants and demonstrate that a diagnostic classifier using a logistic regression (LR) algorithm can provide accurate results within 10 min. Our classifier achieves 100% accuracy for Beta (B.1.351/501Y.V2), Delta (B.1.617), Wuhan (COVID-19) and Omicron (BA.1) variants. In addition, our method achieves 100% accuracy in blind tests of positive and negative human nasal swabs based on the LR model. This method enables detection and classification of variants in complex biological samples. Therefore, ML-based SERS technology is expected to accurately discriminate various SARS-CoV-2 variants and may be used for rapid diagnosis and therapeutic decision-making.
Collapse
Affiliation(s)
- Jingwang Qin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Xiangdong Tian
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Siying Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengxia Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Dawei Shi
- National Institutes for Food and Drug Control, Beijing, 100050, China.
| | - Sihong Xu
- National Institutes for Food and Drug Control, Beijing, 100050, China.
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
14
|
Lee S, Bi L, Chen H, Lin D, Mei R, Wu Y, Chen L, Joo SW, Choo J. Recent advances in point-of-care testing of COVID-19. Chem Soc Rev 2023; 52:8500-8530. [PMID: 37999922 DOI: 10.1039/d3cs00709j] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Advances in microfluidic device miniaturization and system integration contribute to the development of portable, handheld, and smartphone-compatible devices. These advancements in diagnostics have the potential to revolutionize the approach to detect and respond to future pandemics. Accordingly, herein, recent advances in point-of-care testing (POCT) of coronavirus disease 2019 (COVID-19) using various microdevices, including lateral flow assay strips, vertical flow assay strips, microfluidic channels, and paper-based microfluidic devices, are reviewed. However, visual determination of the diagnostic results using only microdevices leads to many false-negative results due to the limited detection sensitivities of these devices. Several POCT systems comprising microdevices integrated with portable optical readers have been developed to address this issue. Since the outbreak of COVID-19, effective POCT strategies for COVID-19 based on optical detection methods have been established. They can be categorized into fluorescence, surface-enhanced Raman scattering, surface plasmon resonance spectroscopy, and wearable sensing. We introduced next-generation pandemic sensing methods incorporating artificial intelligence that can be used to meet global health needs in the future. Additionally, we have discussed appropriate responses of various testing devices to emerging infectious diseases and prospective preventive measures for the post-pandemic era. We believe that this review will be helpful for preparing for future infectious disease outbreaks.
Collapse
Affiliation(s)
- Sungwoon Lee
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Liyan Bi
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, 264003, China
| | - Hao Chen
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Dong Lin
- School of Pharmacy, Bianzhou Medical University, Yantai, 264003, China
| | - Rongchao Mei
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Yantai 264003, China
| | - Yixuan Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Yantai 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Yantai 264003, China
- School of Pharmacy, Bianzhou Medical University, Yantai, 264003, China
| | - Sang-Woo Joo
- Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 06978, South Korea
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
15
|
Wu Y, Yu Q, Joung Y, Jeon CS, Lee S, Pyun SH, Joo SW, Chen L, Choo J. Highly Uniform Self-Assembly of Gold Nanoparticles by Butanol-Induced Dehydration and Its SERS Applications in SARS-CoV-2 Detection. Anal Chem 2023; 95:12710-12718. [PMID: 37594054 DOI: 10.1021/acs.analchem.3c01348] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
We report the development of a reproducible and highly sensitive surface-enhanced Raman scattering (SERS) substrate using a butanol-induced self-assembly of gold nanoparticles (AuNPs) and its application as a rapid diagnostic platform for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The butanol-induced self-assembly process was used to generate a uniform assembly of AuNPs, with multiple hotspots, to achieve high reproducibility. When an aqueous droplet containing AuNPs and target DNAs was dropped onto a butanol droplet, butanol-induced dehydration occurred, enriching the target DNAs around the AuNPs and increasing the loading density of the DNAs on the AuNP surface. The SERS substrate was evaluated by using Raman spectroscopy, which showed strong electromagnetic enhancement of the Raman signals. The substrate was then tested for the detection of SARS-CoV-2 using SERS, and a very low limit of detection (LoD) of 3.1 × 10-15 M was obtained. This provides sufficient sensitivity for the SARS-CoV-2 screening assay, and the diagnostic time is significantly reduced as no thermocycling steps are required. This study demonstrates a method for the butanol-induced self-assembly of AuNPs and its application as a highly sensitive and reproducible SERS substrate for the rapid detection of SARS-CoV-2. The results suggest the potential of this approach for developing rapid diagnostic platforms for other biomolecules and infectious diseases.
Collapse
Affiliation(s)
- Yixuan Wu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Qian Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Chang Su Jeon
- R&D Center, Speclipse Inc., Seongnam 13461, South Korea
| | - Seunghyun Lee
- Department of Chemical and Molecular Engineering, Hanyang University ERICA, Ansan 15588, South Korea
| | | | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul 06978, South Korea
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| |
Collapse
|
16
|
Li T, Chen Y, Chen Z, Hao Y, Liang M, Liu Y, Ou G, Zhang H, Tang Y, Hao Y, Wageh S, Al-Hartomy OA, Kalam A, Zhang B, Shi X, Li X, Zhang H. Early and Sensitive Detection of Pathogens for Public Health and Biosafety: An Example of Surveillance and Genotyping of SARS-CoV-2 in Sewage Water by Cas12a-Facilitated Portable Plasmonic Biosensor. RESEARCH (WASHINGTON, D.C.) 2023; 6:0205. [PMID: 37521328 PMCID: PMC10380551 DOI: 10.34133/research.0205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
Infectious diseases severely threaten public health and global biosafety. In addition to transmission through the air, pathogenic microorganisms have also been detected in environmental liquid samples, such as sewage water. Conventional biochemical detection methodologies are time-consuming and cost-ineffective, and their detection limits hinder early diagnosis. In the present study, ultrafine plasmonic fiber probes with a diameter of 125 μm are fabricated for clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas)-12a-mediated sensing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Single-stranded DNA exposed on the fiber surface is trans-cleaved by the Cas12a enzyme to release gold nanoparticles that are immobilized onto the fiber surface, causing a sharp reduction in the surface plasmon resonance (SPR) wavelength. The proposed fiber probe is virus-specific with the limit of detection of ~2,300 copies/ml, and genomic copy numbers can be reflected as shifts in wavelengths. A total of 21 sewage water samples have been examined, and the data obtained are consistent with those of quantitative polymerase chain reaction (qPCR). In addition, the Omicron variant and its mutation sites have been fast detected using S gene-specific Cas12a. This study provides an accurate and convenient approach for the real-time surveillance of microbial contamination in sewage water.
Collapse
Affiliation(s)
- Tianzhong Li
- College of Physics and Optoelectronic Engineering, Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People’s Hospital,
First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yuzhi Chen
- College of Physics and Optoelectronic Engineering, Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People’s Hospital,
First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Sensor Technology, Shenzhen 518060, China
| | - Zhi Chen
- College of Physics and Optoelectronic Engineering, Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People’s Hospital,
First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, Shenzhen 518060, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
| | - Yuan Hao
- College of Physics and Optoelectronic Engineering, Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People’s Hospital,
First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Sensor Technology, Shenzhen 518060, China
| | - Minyi Liang
- College of Physics and Optoelectronic Engineering, Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People’s Hospital,
First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Sensor Technology, Shenzhen 518060, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital,
Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Guanyong Ou
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital,
Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
- School of Medicine,
Southern University of Science and Technology, Shenzhen 518055, China
| | - Huanian Zhang
- School of Physics and Optoelectronic Engineering,
Shandong University of Technology, Zibo 255049, China
| | - Yuxuan Tang
- College of Physics and Optoelectronic Engineering, Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People’s Hospital,
First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yabing Hao
- College of Physics and Optoelectronic Engineering, Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People’s Hospital,
First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Swelm Wageh
- Department of Physics, Faculty of Science,
King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Omar A. Al-Hartomy
- Department of Physics, Faculty of Science,
King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abul Kalam
- Research Center for Advanced Materials Science (RCAMS),
King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department of Chemistry,
College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Bin Zhang
- College of Physics and Optoelectronic Engineering, Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People’s Hospital,
First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Xin Shi
- Health Sciences Institute,
China Medical University, Shenyang 110000, China
| | - Xuejin Li
- College of Physics and Optoelectronic Engineering, Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People’s Hospital,
First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Sensor Technology, Shenzhen 518060, China
- The Chinese University of Hong Kong, Shenzhen 518060, China
| | - Han Zhang
- College of Physics and Optoelectronic Engineering, Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People’s Hospital,
First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
17
|
Lin C, Li Y, Peng Y, Zhao S, Xu M, Zhang L, Huang Z, Shi J, Yang Y. Recent development of surface-enhanced Raman scattering for biosensing. J Nanobiotechnology 2023; 21:149. [PMID: 37149605 PMCID: PMC10163864 DOI: 10.1186/s12951-023-01890-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/10/2023] [Indexed: 05/08/2023] Open
Abstract
Surface-Enhanced Raman Scattering (SERS) technology, as a powerful tool to identify molecular species by collecting molecular spectral signals at the single-molecule level, has achieved substantial progresses in the fields of environmental science, medical diagnosis, food safety, and biological analysis. As deepening research is delved into SERS sensing, more and more high-performance or multifunctional SERS substrate materials emerge, which are expected to push Raman sensing into more application fields. Especially in the field of biological analysis, intrinsic and extrinsic SERS sensing schemes have been widely used and explored due to their fast, sensitive and reliable advantages. Herein, recent developments of SERS substrates and their applications in biomolecular detection (SARS-CoV-2 virus, tumor etc.), biological imaging and pesticide detection are summarized. The SERS concepts (including its basic theory and sensing mechanism) and the important strategies (extending from nanomaterials with tunable shapes and nanostructures to surface bio-functionalization by modifying affinity groups or specific biomolecules) for improving SERS biosensing performance are comprehensively discussed. For data analysis and identification, the applications of machine learning methods and software acquisition sources in SERS biosensing and diagnosing are discussed in detail. In conclusion, the challenges and perspectives of SERS biosensing in the future are presented.
Collapse
Affiliation(s)
- Chenglong Lin
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yanyan Li
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yusi Peng
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Shuai Zhao
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Meimei Xu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Lingxia Zhang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhengren Huang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Jianlin Shi
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yong Yang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
18
|
Yu Q, Trinh HD, Lee Y, Kang T, Chen L, Yoon S, Choo J. SERS-ELISA using silica-encapsulated Au core-satellite nanotags for sensitive detection of SARS-CoV-2. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 382:133521. [PMID: 36818494 PMCID: PMC9927800 DOI: 10.1016/j.snb.2023.133521] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 06/12/2023]
Abstract
The sensitive detection of viruses is key to preventing the spread of infectious diseases. In this study, we develop a silica-encapsulated Au core-satellite (CS@SiO2) nanotag, which produces a strong and reproducible surface-enhanced Raman scattering (SERS) signal. The combination of SERS from the CS@SiO2 nanotags with enzyme-linked immunosorbent assay (ELISA) achieves a highly sensitive detection of SARS-CoV-2. The CS@SiO2 nanotag is constructed by assembling 32 nm Au nanoparticles (AuNPs) on a 75 nm AuNP. Then the core-satellite particles are encapsulated with SiO2 for facile surface modification and stability. The SERS-ELISA technique using the CS@SiO2 nanotags provides a great sensitivity, yielding a detection limit of 8.81 PFU mL-1, which is 10 times better than conventional ELISA and 100 times better than lateral flow assay strip method. SERS-ELISA is applied to 30 SARS-CoV-2 clinical samples and achieved 100% and 55% sensitivities for 15 and 9 positive samples with cycle thresholds < 30 and > 30, respectively. This new CS@SiO2-SERS-ELISA method is an innovative technique that can significantly reduce the false-negative diagnostic rate for SARS-CoV-2 and thereby contribute to overcoming the current pandemic crisis.
Collapse
Affiliation(s)
- Qian Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Hoa Duc Trinh
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Yeonji Lee
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, South Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Sangwoon Yoon
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| |
Collapse
|
19
|
Trinh KTL, Do HDK, Lee NY. Recent Advances in Molecular and Immunological Diagnostic Platform for Virus Detection: A Review. BIOSENSORS 2023; 13:490. [PMID: 37185566 PMCID: PMC10137144 DOI: 10.3390/bios13040490] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused an ongoing coronavirus disease (COVID-19) outbreak and a rising demand for the development of accurate, timely, and cost-effective diagnostic tests for SARS-CoV-2 as well as other viral infections in general. Currently, traditional virus screening methods such as plate culturing and real-time PCR are considered the gold standard with accurate and sensitive results. However, these methods still require sophisticated equipment, trained personnel, and a long analysis time. Alternatively, with the integration of microfluidic and biosensor technologies, microfluidic-based biosensors offer the ability to perform sample preparation and simultaneous detection of many analyses in one platform. High sensitivity, accuracy, portability, low cost, high throughput, and real-time detection can be achieved using a single platform. This review presents recent advances in microfluidic-based biosensors from many works to demonstrate the advantages of merging the two technologies for sensing viruses. Different platforms for virus detection are classified into two main sections: immunoassays and molecular assays. Moreover, available commercial sensing tests are analyzed.
Collapse
Affiliation(s)
- Kieu The Loan Trinh
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 70000, Vietnam
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
20
|
Yang X, Yin ZZ, Zheng G, Zhou M, Zhang H, Li J, Cai W, Kong Y. Molecularly imprinted miniature electrochemical biosensor for SARS-CoV-2 spike protein based on Au nanoparticles and reduced graphene oxide modified acupuncture needle. Bioelectrochemistry 2023; 151:108375. [PMID: 36716516 PMCID: PMC9883973 DOI: 10.1016/j.bioelechem.2023.108375] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023]
Abstract
Accurate detection of SARS-CoV-2 spike (SARS-CoV-2-S) protein is of clinical significance for early diagnosis and timely treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein, a surface molecularly imprinted miniature biosensor was fabricated. Au nanoparticles (AuNPs), reduced graphene oxide (rGO), poly(methylene blue)/poly(ionic liquids) and poly(ionic liquids) were successively electrodeposited onto the pinpoint of an acupuncture needle (AN). The molecularly imprinted miniature biosensor was obtained after the template of SARS-CoV-2-S protein was removed, which could be used for sensitive detection of SARS-CoV-2-S protein. The linear range and limit of detection (LOD) were 0.1 ∼ 1000 ng mL-1 and 38 pg mL-1, respectively, which were superior to other molecularly imprinted biosensors previously reported. The developed miniature biosensor also exhibited high specificity and stability. The reliability of the biosensor was evaluated by the detection of SARS-CoV-2-S protein in clinical serum samples.
Collapse
Affiliation(s)
- Xu Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Zheng-Zhi Yin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Guojun Zheng
- Department of Clinical Laboratory, Changzhou No.3 People's Hospital, Changzhou 213001, China
| | - Min Zhou
- Department of Clinical Laboratory, Changzhou No.3 People's Hospital, Changzhou 213001, China
| | - Hongyu Zhang
- Department of Clinical Laboratory, Changzhou No.3 People's Hospital, Changzhou 213001, China
| | - Junyao Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Wenrong Cai
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
21
|
Huang C, Jiang Y, Li Y, Zhang H. Droplet Detection and Sorting System in Microfluidics: A Review. MICROMACHINES 2022; 14:mi14010103. [PMID: 36677164 PMCID: PMC9867185 DOI: 10.3390/mi14010103] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 05/26/2023]
Abstract
Since being invented, droplet microfluidic technologies have been proven to be perfect tools for high-throughput chemical and biological functional screening applications, and they have been heavily studied and improved through the past two decades. Each droplet can be used as one single bioreactor to compartmentalize a big material or biological population, so millions of droplets can be individually screened based on demand, while the sorting function could extract the droplets of interest to a separate pool from the main droplet library. In this paper, we reviewed droplet detection and active sorting methods that are currently still being widely used for high-through screening applications in microfluidic systems, including the latest updates regarding each technology. We analyze and summarize the merits and drawbacks of each presented technology and conclude, with our perspectives, on future direction of development.
Collapse
Affiliation(s)
- Can Huang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77842, USA
| | - Yuqian Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuwen Li
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77842, USA
| | - Han Zhang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77842, USA
| |
Collapse
|
22
|
Tian C, Zhao L, Qi G, Zhu J, Zhang S. One-pot and rapid detection of SARS-CoV-2 viral particles in environment using SERS aptasensor based on a locking amplifier. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 371:132445. [PMID: 35919746 PMCID: PMC9335397 DOI: 10.1016/j.snb.2022.132445] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 05/07/2023]
Abstract
With the frequent detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in dwellings and wastewater, the risk of transmission of environmental contaminants is of great concern. Fast, simple and sensitive sensors are essential for timely detecting infection and controlling transmission through environment fomites. Herein, we developed a Surface Enhanced Raman Scattering (SERS) aptasensor, which can realize ultrasensitive and rapid assay of SARS-CoV-2 viral particles. In this strategy, we designed a novel locking amplifier which is activated only in the presence of virus by aptamer recognition. The reaction process was carried out though one-pot method at 37 °C, which can save time and resources. In addition, magnetic beads used in reaction system can simplify operation, as well as provide ideas for developing biosensing robots via magnetic field. This SERS aptasensor can detect SARS-CoV-2 virus with a LOD of 260 TU/µL within 40 min in the linear range of 625-10,000 TU/µL. Therefore, this convenience, speediness, sensitivity, and selectivity of detection has great prospects in analyzing SARS-CoV-2 viral particles or other viruses in environment as well as monitoring of environmental virus sources.
Collapse
Affiliation(s)
- Cheng Tian
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, PR China
| | - Lei Zhao
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, PR China
| | - Guoliang Qi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, PR China
| | - Jin Zhu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, PR China
| |
Collapse
|
23
|
Li S, Zhang H, Li W, Zhang Y, Gao X, Liu H, Li N, Hu H. Controllable Formation and Real-Time Characterization of Single Microdroplets Using Optical Tweezers. MICROMACHINES 2022; 13:1693. [PMID: 36296046 PMCID: PMC9607241 DOI: 10.3390/mi13101693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/24/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Existing preparation methods for microdroplets usually require offline measurements to characterize single microdroplets. Here, we report an optical method used to facilitate the controllable formation and real-time characterization of single microdroplets. The optical tweezer technique was used to capture and form a microdroplet at the center of the trap. The controllable growth and real-time characterization of the microdroplet was realized, respectively, by adjusting experimental parameters and by resolving the Raman spectra by fitting Mie scattering to the spike positions of the spectra during the controllable growth of microdroplets. The proposed method can be potentially applied in optical microlenses and virus detection.
Collapse
Affiliation(s)
- Shuai Li
- Quantum Sensing Center, Zhejiang Lab., Hangzhou 310000, China
| | - Hanlin Zhang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wenqiang Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yizhou Zhang
- Quantum Sensing Center, Zhejiang Lab., Hangzhou 310000, China
| | - Xiaowen Gao
- Quantum Sensing Center, Zhejiang Lab., Hangzhou 310000, China
| | - Haiqing Liu
- Isvision (Hangzhou) Technology Co., Ltd., Hangzhou 310052, China
| | - Nan Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Huizhu Hu
- Quantum Sensing Center, Zhejiang Lab., Hangzhou 310000, China
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
24
|
Yang J, Petrescu FIT, Li Y, Song D, Shi G. A Novel Bio-Inspired Ag/3D-TiO 2/Si SERS Substrate with Ordered Moth-like Structure. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3127. [PMID: 36144914 PMCID: PMC9501013 DOI: 10.3390/nano12183127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
This paper reports a novel method to fabricate a bio-inspired SERS substrate with low reflectivity, ultra-sensitivity, excellent uniformity, and recyclability. First, double layers of polystyrene spheres with different particle sizes were assembled on the surface of a silicon wafer to act as a moth-like template. Second, through the template sacrifice method, the TiO2 film with a three-dimensional moth-like eye structure was induced by the double-layer polystyrene spheres in the previous step, and its microscopic morphology showed a high degree of order. Finally, Ag nanoparticles were assembled on the TiO2 film to form a bio-inspired SERS substrate. This ordered bio-inspired structure can not only reduce reflection, but also reinforce the uniformity of hotspot density, which helps to improve the sensitivity and uniformity of the Raman signal. This bio-inspired SERS substrate can detect R6G molecules at a concentration as low as 1.0 × 10-10 mol/L, and its enhancement factor (EF) can reach 6.56 × 106. In addition, the composite of Ag and TiO2 can realize the photocatalytic degradation of R6G and then realize the recyclability of the SERS substrate.
Collapse
Affiliation(s)
- Jingguo Yang
- Key Laboratory of Synthetic and Biotechnology Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | | | - Ying Li
- Key Laboratory of Synthetic and Biotechnology Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Dandan Song
- Key Laboratory of Synthetic and Biotechnology Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Gang Shi
- Key Laboratory of Synthetic and Biotechnology Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
25
|
Curtin K, Fike BJ, Binkley B, Godary T, Li P. Recent Advances in Digital Biosensing Technology. BIOSENSORS 2022; 12:bios12090673. [PMID: 36140058 PMCID: PMC9496261 DOI: 10.3390/bios12090673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/27/2022]
Abstract
Digital biosensing assays demonstrate remarkable advantages over conventional biosensing systems because of their ability to achieve single-molecule detection and absolute quantification. Unlike traditional low-abundance biomarking screening, digital-based biosensing systems reduce sample volumes significantly to the fL-nL level, which vastly reduces overall reagent consumption, improves reaction time and throughput, and enables high sensitivity and single target detection. This review presents the current technology for compartmentalizing reactions and their applications in detecting proteins and nucleic acids. We also analyze existing challenges and future opportunities associated with digital biosensing and research opportunities for developing integrated digital biosensing systems.
Collapse
Affiliation(s)
- Kathrine Curtin
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Bethany J. Fike
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Brandi Binkley
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Toktam Godary
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
- Correspondence:
| |
Collapse
|