1
|
Zhang S, Wu Y, Lyu C, Qu H, Wu X. Magnetothermal and ultrasound-activated nanoplatform for the inhalable therapy of bacterial lung infections. Acta Biomater 2025:S1742-7061(25)00291-0. [PMID: 40274058 DOI: 10.1016/j.actbio.2025.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/16/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
Antibiotic resistance in Klebsiella pneumoniae infections presents significant challenges in treating lung inflammation. To overcome tissue penetration barriers and modulate inflammatory responses, innovative therapeutic approaches are essential. This study introduces an inhalable nanoplatform, FexSy:Gd@PVP (FGP), based on polyvinylpyrrolidone-modified gadolinium-doped nonstoichiometric iron sulfide nanostructures. The platform integrates synergistic magnetic-ultrasound activation with magnetothermal therapy (mMHT), sonodynamic therapy (SDT), and gas therapy (GT) for targeted bacterial lung infection treatment. Gadolinium incorporation enhances the magnetothermal activation, improving magnetothermal conversion efficiency and sonodynamic performance by increasing magnetic anisotropy, narrowing the semiconductor bandgap, and enriching sulfur vacancies. Delivered via nebulized inhalation, FGP reaches infected lung tissues noninvasively. Exposure to alternating magnetic fields (AMF) and ultrasound (US) generates localized heat and reactive oxygen species (ROS), effectively eliminating bacteria. Simultaneously, AMF and US trigger hydrogen sulfide (H2S) release in the acidic microenvironment, reducing inflammation by inhibiting inflammatory factors such as TNF-α and IL-1β through suppression of STAT3 and ERK phosphorylation. This magnetic-ultrasound co-activated inhalable nanoplatform offers a powerful multimodal therapeutic strategy for overcoming clinical challenges associated with bacterial lung infections. STATEMENT OF SIGNIFICANCE: This study introduces an inhalable nanoplatform that effectively treats multidrug-resistant Klebsiella pneumoniae lung infections. By integrating magnetothermal, sonodynamic, and gas therapies, this system eradicates bacteria and reduces inflammation. It uses gadolinium-doped iron sulfide nanostructures to enhance heat, reactive oxygen species, and hydrogen sulfide production, targeting deep lung infections precisely. Unlike traditional antibiotics, this noninvasive approach has minimal side effects and addresses both bacterial clearance and inflammation. This innovative strategy offers a promising solution for antibiotic-resistant infections and could revolutionize respiratory disease management.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Biomedical Engineering, State Key Laboratory of Digital Medical Engineering, Hainan University, Haikou 570228, China; School of Life and Health Sciences, State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China; Collaborative Innovation Center of One Health, Key Laboratory of Biomedical Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Yundi Wu
- School of Biomedical Engineering, State Key Laboratory of Digital Medical Engineering, Hainan University, Haikou 570228, China; School of Life and Health Sciences, State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China; Collaborative Innovation Center of One Health, Key Laboratory of Biomedical Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Chaoyi Lyu
- School of Biomedical Engineering, State Key Laboratory of Digital Medical Engineering, Hainan University, Haikou 570228, China; School of Life and Health Sciences, State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Huanran Qu
- School of Biomedical Engineering, State Key Laboratory of Digital Medical Engineering, Hainan University, Haikou 570228, China; School of Life and Health Sciences, State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China; Collaborative Innovation Center of One Health, Key Laboratory of Biomedical Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Xilong Wu
- School of Biomedical Engineering, State Key Laboratory of Digital Medical Engineering, Hainan University, Haikou 570228, China; School of Life and Health Sciences, State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China; Collaborative Innovation Center of One Health, Key Laboratory of Biomedical Engineering of Hainan Province, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Luo Y, Gao Z, Guo H, Duan K, Lan T, Tao B, Shen X, Guo Q. Multifunctional Photothermal Nanorods for Targeted Treatment of Drug-Resistant Bacteria-Induced Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51480-51495. [PMID: 39287360 DOI: 10.1021/acsami.4c10198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The challenge of drug-resistant bacteria-induced wound healing in clinical and public healthcare settings is significant due to the negative impacts on surrounding tissues and difficulties in monitoring the healing progress. We developed photothermal antibacterial nanorods (AuNRs-PU) with the aim of selectively targeting and combating drug-resistant Pseudomonas aeruginosa (P. aeruginosa). The AuNRs-PU were engineered with a bacterial-specific targeting polypeptide (UBI29-41) and a bacterial adhesive carbohydrate polymer composed of galactose and phenylboronic acid. The objective was to facilitate sutureless wound closure by specially distinguishing between bacteria and nontarget cells and subsequently employing photothermal methods to eradicate the bacteria. AuNRs-PU demonstrated high photothermal conversion efficiency in 808 nm laser and effectively caused physical harm to drug-resistant P. aeruginosa. By integrating the multifunctional bacterial targeting copolymer onto AuNRs, AuNRs-PU showed rapid and efficient bacterial targeting and aggregation in the presence of bacteria and cells, consequently shielding cells from bacterial harm. In a diabetic rat wound model, AuNRs-PU played a crucial role in enhancing healing by markedly decreasing inflammation and expediting epidermis formation, collagen deposition, and neovascularization levels. Consequently, the multifunctional photothermal therapy shows promise in addressing the complexities associated with managing drug-resistant infected wound healing.
Collapse
Affiliation(s)
- Yongjun Luo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 561113, China
- The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Zhenglan Gao
- Department of Nephrology, Chongqing Hospital of Jiangsu Province Hospital, Chongqing 401420, China
| | - Honglei Guo
- Department of Nephrology, Chongqing Hospital of Jiangsu Province Hospital, Chongqing 401420, China
| | - Kunyuan Duan
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 561113, China
| | - Tianyu Lan
- School of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang, Guizhou 550025, China
| | - Buhui Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 561113, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 561113, China
- The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Qianqian Guo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 561113, China
- The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, Guian New District, Guizhou 561113, China
| |
Collapse
|
3
|
Liu H, Tang L, Yin Y, Cao Y, Fu C, Feng J, Shen Y, Wang W. Photoresponsive Multirole Nanoweapon Camouflaged by Hybrid Cell Membrane Vesicles for Efficient Antibacterial Therapy of Pseudomonas aeruginosa-Infected Pneumonia and Wound. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403101. [PMID: 39007186 PMCID: PMC11425291 DOI: 10.1002/advs.202403101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/21/2024] [Indexed: 07/16/2024]
Abstract
Exploring effective antibacterial approaches for targeted treatment of pathogenic bacterial infections with reduced drug resistance is of great significance. Combinational treatment modality that leverages different therapeutic components can improve the overall effectiveness and minimize adverse effects, thus displaying considerable potential against bacterial infections. Herein, red blood cell membrane fuses with macrophage membrane to develop hybrid cell membrane shell, which further camouflages around drug-loaded liposome to fabricate biomimetic liposome (AB@LRM) for precise antibacterial therapy. Specifically, photoactive agent black phosphorus quantum dots (BPQDs) and classical antibiotics amikacin (AM) are loaded in AB@LRM to accurately target the inflammatory sites through the guidance of macrophage membrane and long residence capability of red blood cell membrane, eventually exerting efficacious antibacterial activities. Besides, due to the excellent photothermal and photodynamic properties, BPQDs act as an efficient antibacterial agent when exposed to near-infrared laser irradiation, dramatically increasing the sensitivity of bacteria to antibiotics. Consequently, the synergistic sterilizing effect produced by AB@LRM further restricts bacterial resistance. Upon laser irradiation, AB@LRM shows superior anti-inflammatory and antibacterial properties in models of P. aeruginosa-infected pneumonia and wounds. Hence, this light-activatable antibacterial nanoplatform with good biocompatibility presents great potential to advance the clinical development in the treatment of bacterial infections.
Collapse
Affiliation(s)
- Hening Liu
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsSchool of PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
- NMPA Key Laboratory for Research and Evaluation of CosmeticsChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Lu Tang
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsSchool of PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
- NMPA Key Laboratory for Research and Evaluation of CosmeticsChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Yue Yin
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsSchool of PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
- NMPA Key Laboratory for Research and Evaluation of CosmeticsChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Yuqi Cao
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsSchool of PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
- NMPA Key Laboratory for Research and Evaluation of CosmeticsChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Cong Fu
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsSchool of PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
- NMPA Key Laboratory for Research and Evaluation of CosmeticsChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Jingwen Feng
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsSchool of PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
- NMPA Key Laboratory for Research and Evaluation of CosmeticsChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Yan Shen
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsSchool of PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Wei Wang
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsSchool of PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
- NMPA Key Laboratory for Research and Evaluation of CosmeticsChina Pharmaceutical UniversityNanjing211198P. R. China
| |
Collapse
|
4
|
Omran BA, Tseng BS, Baek KH. Nanocomposites against Pseudomonas aeruginosa biofilms: Recent advances, challenges, and future prospects. Microbiol Res 2024; 282:127656. [PMID: 38432017 DOI: 10.1016/j.micres.2024.127656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/10/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that causes life-threatening and persistent infections in immunocompromised patients. It is the culprit behind a variety of hospital-acquired infections owing to its multiple tolerance mechanisms against antibiotics and disinfectants. Biofilms are sessile microbial aggregates that are formed as a result of the cooperation and competition between microbial cells encased in a self-produced matrix comprised of extracellular polymeric constituents that trigger surface adhesion and microbial aggregation. Bacteria in biofilms exhibit unique features that are quite different from planktonic bacteria, such as high resistance to antibacterial agents and host immunity. Biofilms of P. aeruginosa are difficult to eradicate due to intrinsic, acquired, and adaptive resistance mechanisms. Consequently, innovative approaches to combat biofilms are the focus of the current research. Nanocomposites, composed of two or more different types of nanoparticles, have diverse therapeutic applications owing to their unique physicochemical properties. They are emerging multifunctional nanoformulations that combine the desired features of the different elements to obtain the highest functionality. This review assesses the recent advances of nanocomposites, including metal-, metal oxide-, polymer-, carbon-, hydrogel/cryogel-, and metal organic framework-based nanocomposites for the eradication of P. aeruginosa biofilms. The characteristics and virulence mechanisms of P. aeruginosa biofilms, as well as their devastating impact and economic burden are discussed. Future research addressing the potential use of nanocomposites as innovative anti-biofilm agents is emphasized. Utilization of nanocomposites safely and effectively should be further strengthened to confirm the safety aspects of their application.
Collapse
Affiliation(s)
- Basma A Omran
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan 38541, Republic of Korea; Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), PO 11727, Nasr City, Cairo, Egypt
| | - Boo Shan Tseng
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
5
|
Neiber RR, Samak NA, Xing J, Elmongy EI, Galhoum AA, El Sayed IET, Guibal E, Xin J, Lu X. Synthesis and molecular docking study of α-aminophosphonates as potential multi-targeting antibacterial agents. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133203. [PMID: 38103294 DOI: 10.1016/j.jhazmat.2023.133203] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 11/15/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Antibacterial compounds that reduce extracellular polymeric substances (EPS) are needed to avoid bacterial biofilms in water pipelines. Herein, green one-pot synthesis of α-aminophosphonates (α-Amps) [A-G] was achieved by using ionic liquid (IL) as a Lewis acid catalyst. The synthesized α-Amp analogues were tested against different bacteria such as Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa. The representative [B] analogue showed an efficient antibacterial effect with MIC values of 3.13 μg/mL for E. coli, P. aeruginosa, and 6.25 μg/mL for B. subtilis. Additionally, a strong ability to eliminate the mature bacterial biofilm, with super-MIC values of 12.5 μg/mL for E. coli, P. aeruginosa, and 25 μg/mL for B. subtilis. Moreover, bacterial cell disruption by ROS formation was also tested, and the compound [B] revealed the highest ROS level compared to other compounds and the control, and efficiently destroyed the extracellular polymeric substances (EPS). The docking study confirmed strong interactions between [B] analogue and protein structures with a binding affinity of -6.65 kCal/mol for the lyase protein of gram-positive bacteria and -6.46 kCal/mol for DNA gyrase of gram-negative bacteria. The results showed that α-Amps moiety is a promising candidate for developing novel antibacterial and anti-biofilm agents for clean water supply.
Collapse
Affiliation(s)
- Rana R Neiber
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China; College of Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Road, 100049 Beijing, China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Nadia A Samak
- College of Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Road, 100049 Beijing, China; CAS Key Laboratory of Green Process and Engineering & State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Aquatic microbiology department, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany.
| | - Jianmin Xing
- College of Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Road, 100049 Beijing, China; CAS Key Laboratory of Green Process and Engineering & State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Elshaymaa I Elmongy
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh 11671, Saudi Arabia
| | - Ahmed A Galhoum
- Nuclear Materials Authority, P.O. Box 530, El-Maadi, Cairo, Egypt.
| | | | - Eric Guibal
- Institut Mines Telecom-Mines Alès, C2MA, 6 avenue de Clavières, F-30319 Alès cedex, France
| | - Jiayu Xin
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China; Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Xingmei Lu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China; Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China; Department of Chemistry, University of Chinese Academy of Sciences, 100049 Beijing, China.
| |
Collapse
|
6
|
Zhao S, Wang D, Zhou Q, Wang B, Tong Z, Tian H, Li J, Zhang Y. Nanozyme-based inulin@nanogold for adhesive and antibacterial agent with enhanced biosafety. Int J Biol Macromol 2024; 262:129207. [PMID: 38185305 DOI: 10.1016/j.ijbiomac.2024.129207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/26/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Nanozymes with oxidase or peroxidase-mimicking activity have emerged as a promising alternative for disinfecting resistant pathogens. However, further research and clinical applications of nanozymes are hampered by their low in vivo biosafety and biocompatibility. In this study, inulin-confined gold nanoparticles (IN@AuNP) are synthesized as an antibacterial agent via a straightforward in situ reduction of Au3+ ions by the hydroxyl groups in inulin. The IN@AuNP exhibits both peroxidase-mimicking and oxidase-mimicking catalytic activities, of which the maximum reaction velocity (Vmax) for H2O2 is 2.66 times higher than that of horseradish peroxidase. IN@AuNP can catalyze the production of reactive oxygen species (ROS), resulting in effective antibacterial behavior against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. Abundant hydroxyl groups retained in inulin endow the nanozyme with high adhesion to bacteria, reducing the distance between the captured bacteria and ROS, achieving an antibacterial ratio of 100 % within 1 h. Importantly, due to the natural biosafety and non-absorption of the dietary fiber inulin, as well as the inability of inulin-trapped AuNP to diffuse, the IN@AuNP exhibits high biosafety and biocompatibility under physiological conditions. This work is expected to open a new avenue for nanozymes with great clinical application value.
Collapse
Affiliation(s)
- Shiwen Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China; University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Xi'an 710119, China
| | - Danyang Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China; University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Xi'an 710119, China
| | | | - Beibei Wang
- Xi'an Aerospace Chemical Propulsion Co., Ltd., Xi'an 710025, China
| | - Zhao Tong
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Honglei Tian
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Jianke Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China; University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Xi'an 710119, China.
| | - Yuhuan Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China; University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Xi'an 710119, China.
| |
Collapse
|
7
|
Han Z, Xiong J, Jin X, Dai Q, Han M, Wu H, Yang J, Tang H, He L. Advances in reparative materials for infectious bone defects and their applications in maxillofacial regions. J Mater Chem B 2024; 12:842-871. [PMID: 38173410 DOI: 10.1039/d3tb02069j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Infectious bone defects are characterized by the partial loss or destruction of bone tissue resulting from bacterial contaminations subsequent to diseases or external injuries. Traditional bone transplantation and clinical methods are insufficient in meeting the treatment demands for such diseases. As a result, researchers have increasingly focused on the development of more sophisticated biomaterials for improved therapeutic outcomes in recent years. This review endeavors to investigate specific reparative materials utilized for the treatment of infectious bone defects, particularly those present in the maxillofacial region, with a focus on biomaterials capable of releasing therapeutic substances, functional contact biomaterials, and novel physical therapy materials. These biomaterials operate via heightened antibacterial or osteogenic properties in order to eliminate bacteria and/or stimulate bone cells regeneration in the defect, ultimately fostering the reconstitution of maxillofacial bone tissue. Based upon some successful applications of new concept materials in bone repair of other parts, we also explore their future prospects and potential uses in maxillofacial bone repair later in this review. We highlight that the exploration of advanced biomaterials holds promise in establishing a solid foundation for the development of more biocompatible, effective, and personalized treatments for reconstructing infectious maxillofacial defects.
Collapse
Affiliation(s)
- Ziyi Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jingdi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Xiaohan Jin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Qinyue Dai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Mingyue Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Hongkun Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Haiqin Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Libang He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
8
|
Tang J, Ouyang Q, Li Y, Zhang P, Jin W, Qu S, Yang F, He Z, Qin M. Nanomaterials for Delivering Antibiotics in the Therapy of Pneumonia. Int J Mol Sci 2022; 23:ijms232415738. [PMID: 36555379 PMCID: PMC9779065 DOI: 10.3390/ijms232415738] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 12/14/2022] Open
Abstract
Bacterial pneumonia is one of the leading causes of death worldwide and exerts a significant burden on health-care resources. Antibiotics have long been used as first-line drugs for the treatment of bacterial pneumonia. However, antibiotic therapy and traditional antibiotic delivery are associated with important challenges, including drug resistance, low bioavailability, and adverse side effects; the existence of physiological barriers further hampers treatment. Fortunately, these limitations may be overcome by the application of nanotechnology, which can facilitate drug delivery while improving drug stability and bioavailability. This review summarizes the challenges facing the treatment of bacterial pneumonia and also highlights the types of nanoparticles that can be used for antibiotic delivery. This review places a special focus on the state-of-the-art in nanomaterial-based approaches to the delivery of antibiotics for the treatment of pneumonia.
Collapse
Affiliation(s)
- Jie Tang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Qiuhong Ouyang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanyan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Peisen Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weihua Jin
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Shuang Qu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fengmei Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
- Correspondence: (Z.H.); (M.Q.)
| | - Meng Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (Z.H.); (M.Q.)
| |
Collapse
|
9
|
Luo Y, Zhu X, Qian J, Yu Y, Li J, He Z, Duan S, Guo H, Shen X, Guo Q. Au Nanorods Coated with pH-Responsive Polymers for Photothermal Therapy Against Multidrug-Resistant Bacteria. ACS APPLIED NANO MATERIALS 2022; 5:16884-16895. [DOI: 10.1021/acsanm.2c03739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Affiliation(s)
- Yongjun Luo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District 550025, Guizhou, China
- The Department of Pharmacology of Materia Medical (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District 550025, Guizhou, China
| | - Xiaoping Zhu
- Department of Pediatrics, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Jun Qian
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, China
| | - Yiyi Yu
- Department of Pediatrics, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Jing Li
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District 550025, Guizhou, China
| | - Zhiyong He
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District 550025, Guizhou, China
- The Department of Pharmacology of Materia Medical (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District 550025, Guizhou, China
| | - Suyan Duan
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, China
| | - Honglei Guo
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District 550025, Guizhou, China
- The Department of Pharmacology of Materia Medical (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District 550025, Guizhou, China
| | - Qianqian Guo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District 550025, Guizhou, China
- The Department of Pharmacology of Materia Medical (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District 550025, Guizhou, China
| |
Collapse
|