1
|
Gross CA. Peering into the Bacterial Cell: From Transcription to Functional Genomics. J Mol Biol 2025; 437:169087. [PMID: 40081792 DOI: 10.1016/j.jmb.2025.169087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
I started my faculty career in 1981 at the UW-Madison in the Department of Bacteriology and moved to the University of California, San Francisco in 1993, where I am a Professor in the Departments of Microbiology and Immunology and Cell and Tissue Biology. In this article, I first review my contributions to understanding the molecular biology of the bacterial transcriptional apparatus and the global role of alternative sigmas (σs), a major pillar of bacterial transcriptional control. I then discuss my role in spearheading the development of bacterial systems biology, specifically to the genome-wide phenotyping approaches necessary for rapid understanding of gene function and the molecular basis of pathway connections across the bacterial universe.
Collapse
Affiliation(s)
- Carol A Gross
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA; California Institute of Quantitative Biology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Jain BK, Duan HD, Valentine C, Samiha A, Li H, Graham TR. P4-ATPase control over phosphoinositide membrane asymmetry and neomycin resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.03.641220. [PMID: 40093091 PMCID: PMC11908233 DOI: 10.1101/2025.03.03.641220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Neomycin, an aminoglycoside antibiotic, has robust antibacterial properties, yet its clinical utility is curtailed by its nephrotoxicity and ototoxicity. The mechanism by which the polycationic neomycin enters specific eukaryotic cell types remains poorly understood. In budding yeast, NEO1 is required for neomycin resistance and encodes a phospholipid flippase that establishes membrane asymmetry. Here, we show that mutations altering Neo1 substrate recognition cause neomycin hypersensitivity by exposing phosphatidylinositol-4-phosphate (PI4P) in the plasma membrane extracellular leaflet. Human cells also expose extracellular PI4P upon knockdown of ATP9A, a Neo1 ortholog and ATP9A expression level correlates to neomycin sensitivity. In yeast, the extracellular PI4P is initially produced in the cytosolic leaflet of the plasma membrane and then delivered by Osh6-dependent nonvesicular transport to the endoplasmic reticulum (ER). Here, a portion of PI4P escapes degradation by the Sac1 phosphatase by entering the ER lumenal leaflet. COPII vesicles transport lumenal PI4P to the Golgi where Neo1 flips this substrate back to the cytosolic leaflet. Cryo-EM reveals that PI4P binds Neo1 within the substrate translocation pathway. Loss of Neo1 activity in the Golgi allows secretion of extracellular PI4P, which serves as a neomycin receptor and facilitates its endocytic uptake. These findings unveil novel mechanisms of aminoglycoside sensitivity and phosphoinositide homeostasis, with important implications for signaling by extracellular phosphoinositides.
Collapse
Affiliation(s)
- Bhawik K Jain
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- These authors contributed equally: Bhawik K. Jain, H. Diessel Duan
| | - H Diessel Duan
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
- These authors contributed equally: Bhawik K. Jain, H. Diessel Duan
| | - Christina Valentine
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Ariana Samiha
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
3
|
Dziurdzik SK, Sridhar V, Eng H, Neuman SD, Yan J, Davey M, Taubert S, Bashirullah A, Conibear E. Hoi1 targets the yeast BLTP2 protein to ER-PM contact sites to regulate lipid homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637747. [PMID: 39990326 PMCID: PMC11844476 DOI: 10.1101/2025.02.11.637747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Membrane contact sites between organelles are important for maintaining cellular lipid homeostasis. Members of the recently identified family of bridge-like lipid transfer proteins (BLTPs) span opposing membranes at these contact sites to enable the rapid transfer of bulk lipids between organelles. While the VPS13 and ATG2 family members use organelle-specific adaptors for membrane targeting, the mechanisms that regulate other bridge-like transporters remain unknown. Here, we identify the conserved protein Ybl086c, which we name Hoi1 (Hob interactor 1), as an adaptor that targets the yeast BLTP2-like proteins Fmp27/Hob1 and Hob2 to ER-PM contact sites. Two separate Hoi1 domains interface with alpha-helical projections that decorate the central hydrophobic channel on Fmp27, and loss of these interactions disrupts cellular sterol homeostasis. The mutant phenotypes of BLTP2 and HOI1 orthologs indicate these proteins act in a shared pathway in worms and flies. Together, this suggests that Hoi1-mediated recruitment of BLTP2-like proteins represents an evolutionarily conserved mechanism for regulating lipid transport at membrane contact sites.
Collapse
Affiliation(s)
- Samantha K. Dziurdzik
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada V5Z 4H4
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada V6H 3N1
| | - Vaishnavi Sridhar
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada V5Z 4H4
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6H 3N1
| | - Hailey Eng
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada V5Z 4H4
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6H 3N1
| | - Sarah D. Neuman
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
| | - Junran Yan
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada V5Z 4H4
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6H 3N1
| | - Michael Davey
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada V5Z 4H4
| | - Stefan Taubert
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada V5Z 4H4
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada V6H 3N1
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6H 3N1
| | - Arash Bashirullah
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
| | - Elizabeth Conibear
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada V5Z 4H4
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada V6H 3N1
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6H 3N1
| |
Collapse
|
4
|
van der Horst SC, Kollenstart L, Batté A, Keizer S, Vreeken K, Pandey P, Chabes A, van Attikum H. Replication-IDentifier links epigenetic and metabolic pathways to the replication stress response. Nat Commun 2025; 16:1416. [PMID: 39915438 PMCID: PMC11802883 DOI: 10.1038/s41467-025-56561-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025] Open
Abstract
Perturbation of DNA replication, for instance by hydroxyurea-dependent dNTP exhaustion, often leads to stalling or collapse of replication forks. This triggers a replication stress response that stabilizes these forks, activates cell cycle checkpoints, and induces expression of DNA damage response genes. While several factors are known to act in this response, the full repertoire of proteins involved remains largely elusive. Here, we develop Replication-IDentifier (Repli-ID), which allows for genome-wide identification of regulators of DNA replication in Saccharomyces cerevisiae. During Repli-ID, the replicative polymerase epsilon (Pol ε) is tracked at a barcoded origin of replication by chromatin immunoprecipitation (ChIP) coupled to next-generation sequencing of the barcode in thousands of hydroxyurea-treated yeast mutants. Using this approach, 423 genes that promote Pol ε binding at replication forks were uncovered, including LGE1 and ROX1. Mechanistically, we show that Lge1 affects replication initiation and/or fork stability by promoting Bre1-dependent H2B mono-ubiquitylation. Rox1 affects replication fork progression by regulating S-phase entry and checkpoint activation, hinging on cellular ceramide levels via transcriptional repression of SUR2. Thus, Repli-ID provides a unique resource for the identification and further characterization of factors and pathways involved in the cellular response to DNA replication perturbation.
Collapse
Affiliation(s)
| | - Leonie Kollenstart
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
| | - Amandine Batté
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Sander Keizer
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Kees Vreeken
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Praveen Pandey
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
5
|
Brittin NJ, Aceti DJ, Braun DR, Anderson JM, Ericksen SS, Rajski SR, Currie CR, Andes DR, Bugni TS. Dereplication of Natural Product Antifungals via Liquid Chromatography-Tandem Mass Spectrometry and Chemical Genomics. Molecules 2024; 30:77. [PMID: 39795134 PMCID: PMC11721837 DOI: 10.3390/molecules30010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/13/2025] Open
Abstract
Recently expanded reports of multidrug-resistant fungal infections underscore the need to develop new and more efficient methods for antifungal drug discovery. A ubiquitous problem in natural product drug discovery campaigns is the rediscovery of known compounds or their relatives; accordingly, we have integrated Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) for structural dereplication and Yeast Chemical Genomics for bioprocess evaluation into a screening platform to identify such compounds early in the screening process. We identified 450 fractions inhibiting Candida albicans and the resistant strains of C. auris and C. glabrata among more than 40,000 natural product fractions. LC-MS/MS and chemical genomics were then used to identify those with known chemistry and mechanisms of action. The parallel deployment of these orthogonal methods improved the detection of unwanted compound classes over the methods applied individually.
Collapse
Affiliation(s)
- Nathaniel J. Brittin
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.J.B.); (D.R.B.); (J.M.A.); (S.R.R.)
- Lachman Institute for Pharmaceutical Development, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - David J. Aceti
- Small Molecule Screening Facility, UW Carbone Cancer Center, Madison, WI 53792, USA; (D.J.A.); (S.S.E.)
| | - Doug R. Braun
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.J.B.); (D.R.B.); (J.M.A.); (S.R.R.)
| | - Josephine M. Anderson
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.J.B.); (D.R.B.); (J.M.A.); (S.R.R.)
| | - Spencer S. Ericksen
- Small Molecule Screening Facility, UW Carbone Cancer Center, Madison, WI 53792, USA; (D.J.A.); (S.S.E.)
| | - Scott R. Rajski
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.J.B.); (D.R.B.); (J.M.A.); (S.R.R.)
| | - Cameron R. Currie
- Department of Biochemistry and Biomedical Sciences, M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, ON L8S 4L8, Canada;
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David R. Andes
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA;
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
| | - Tim S. Bugni
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.J.B.); (D.R.B.); (J.M.A.); (S.R.R.)
- Lachman Institute for Pharmaceutical Development, University of Wisconsin-Madison, Madison, WI 53705, USA
- Small Molecule Screening Facility, UW Carbone Cancer Center, Madison, WI 53792, USA; (D.J.A.); (S.S.E.)
| |
Collapse
|
6
|
Bradley JM, Bunsick M, Ly G, Aquino B, Wang FZ, Holbrook-Smith D, Suginoo S, Bradizza D, Kato N, As'sadiq O, Marsh N, Osada H, Boyer FD, McErlean CSP, Tsuchiya Y, Subramaniam R, Bonetta D, McCourt P, Lumba S. Modulation of fungal phosphate homeostasis by the plant hormone strigolactone. Mol Cell 2024; 84:4031-4047.e11. [PMID: 39357514 DOI: 10.1016/j.molcel.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 07/12/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
Inter-kingdom communication through small molecules is essential to the coexistence of organisms in an ecosystem. In soil communities, the plant root is a nexus of interactions for a remarkable number of fungi and is a source of small-molecule plant hormones that shape fungal compositions. Although hormone signaling pathways are established in plants, how fungi perceive and respond to molecules is unclear because many plant-associated fungi are recalcitrant to experimentation. Here, we develop an approach using the model fungus, Saccharomyces cerevisiae, to elucidate mechanisms of fungal response to plant hormones. Two plant hormones, strigolactone and methyl jasmonate, produce unique transcript profiles in yeast, affecting phosphate and sugar metabolism, respectively. Genetic analysis in combination with structural studies suggests that SLs require the high-affinity transporter Pho84 to modulate phosphate homeostasis. The ability to study small-molecule plant hormones in a tractable genetic system should have utility in understanding fungal-plant interactions.
Collapse
Affiliation(s)
- James M Bradley
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Michael Bunsick
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - George Ly
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Bruno Aquino
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Flora Zhiqi Wang
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | | | - Shingo Suginoo
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Dylan Bradizza
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Naoki Kato
- RIKEN Center for Sustainable Research Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Omar As'sadiq
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Nina Marsh
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Hiroyuki Osada
- RIKEN Center for Sustainable Research Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - François-Didier Boyer
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | | | - Yuichiro Tsuchiya
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | | | - Dario Bonetta
- Ontario Tech University, 2000 Simcoe St. N, Oshawa, ON L1G 0C5, Canada
| | - Peter McCourt
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada; Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada.
| | - Shelley Lumba
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada; Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada.
| |
Collapse
|
7
|
Takallou S, Hajikarimlou M, Al-Gafari M, Wang J, Jagadeesan SK, Kazmirchuk TDD, Arnoczki C, Moteshareie H, Said KB, Azad T, Holcik M, Samanfar B, Smith M, Golshani A. Oxidative stress-induced YAP1 expression is regulated by NCE102, CDA2, and BCS1. FEBS J 2024; 291:4602-4618. [PMID: 39102301 DOI: 10.1111/febs.17243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/31/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Maintaining cellular homeostasis in the face of stress conditions is vital for the overall well-being of an organism. Reactive oxygen species (ROS) are among the most potent cellular stressors and can disrupt the internal redox balance, giving rise to oxidative stress. Elevated levels of ROS can severely affect biomolecules and have been associated with a range of pathophysiological conditions. In response to oxidative stress, yeast activator protein-1 (Yap1p) undergoes post-translation modification that results in its nuclear accumulation. YAP1 has a key role in oxidative detoxification by promoting transcription of numerous antioxidant genes. In this study, we identified previously undescribed functions for NCE102, CDA2, and BCS1 in YAP1 expression in response to oxidative stress induced by hydrogen peroxide (H2O2). Deletion mutant strains for these candidates demonstrated increased sensitivity to H2O2. Our follow-up investigation linked the activity of these genes to YAP1 expression at the level of translation. Under oxidative stress, global cap-dependent translation is inhibited, prompting stress-responsive genes like YAP1 to employ alternative modes of translation. We provide evidence that NCE102, CDA2, and BCS1 contribute to cap-independent translation of YAP1 under oxidative stress.
Collapse
Affiliation(s)
- Sarah Takallou
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Maryam Hajikarimlou
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Mustafa Al-Gafari
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Jiashu Wang
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Sasi Kumar Jagadeesan
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Thomas David Daniel Kazmirchuk
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | | | - Houman Moteshareie
- Department of Biology, Carleton University, Ottawa, Canada
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Kamaledin B Said
- Department of Pathology and Microbiology, College of Medicine, University of Hail, Saudi Arabia
| | - Taha Azad
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke (CHUS), Canada
| | - Martin Holcik
- Department of Health Sciences, Carleton University, Ottawa, Canada
| | - Bahram Samanfar
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Canada
| | - Myron Smith
- Department of Biology, Carleton University, Ottawa, Canada
| | - Ashkan Golshani
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| |
Collapse
|
8
|
Jiménez M, Kyoung CK, Nabukhotna K, Watkins D, Jain BK, Best JT, Graham TR. P4-ATPase endosomal recycling relies on multiple retromer-dependent localization signals. Mol Biol Cell 2024; 35:ar125. [PMID: 39110530 PMCID: PMC11481694 DOI: 10.1091/mbc.e24-05-0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 09/21/2024] Open
Abstract
Type IV P-type ATPases (P4-ATPases) are lipid flippases that generate an asymmetric membrane organization essential for cell viability. The five budding yeast P4-ATPases traffic between the Golgi complex, plasma membrane, and endosomes but how they are recycled from the endolysosomal system to the Golgi complex is poorly understood. In this study, we find that P4-ATPase endosomal recycling is primarily driven by the retromer complex and the F-box protein Rcy1. Defects in P4-ATPase recycling result in their mislocalization to the vacuole and a substantial loss of membrane asymmetry. The P4-ATPases contain multiple predicted retromer sorting signals, and the characterization of these signals in Dnf1 and Dnf2 led to the identification of a novel retromer-dependent signal, IPM[ST] that acts redundantly with predicted motifs. Together, these results emphasize the importance of endosomal recycling for the functional localization of P4-ATPases and membrane organization.
Collapse
Affiliation(s)
- Mariana Jiménez
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | - Claire K. Kyoung
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | - Kateryna Nabukhotna
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | - Davia Watkins
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | - Bhawik K. Jain
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | - Jordan T. Best
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | - Todd R. Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| |
Collapse
|
9
|
Lee AJ, Hammond J, Sheridan J, Swift S, Munkacsi AB, Villas-Boas SG. Antifungal Activity of Disalt of Epipyrone A from Epicoccum nigrum Likely via Disrupted Fatty Acid Elongation and Sphingolipid Biosynthesis. J Fungi (Basel) 2024; 10:597. [PMID: 39330357 PMCID: PMC11433475 DOI: 10.3390/jof10090597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/28/2024] Open
Abstract
Multidrug-resistant fungal pathogens and antifungal drug toxicity have challenged our current ability to fight fungal infections. Therefore, there is a strong global demand for novel antifungal molecules with the distinct mode of action and specificity to service the medical and agricultural sectors. Polyenes are a class of antifungal drugs with the broadest spectrum of activity among the current antifungal drugs. Epipyrone A, a water-soluble antifungal molecule with a unique, linear polyene structure, was isolated from the fungus Epiccocum nigrum. Since small changes in a compound structure can significantly alter its cell target and mode of action, we present here a study on the antifungal mode of action of the disalt of epipyrone A (DEA) using chemical-genetic profiling, fluorescence microscopy, and metabolomics. Our results suggest the disruption of sphingolipid/fatty acid biosynthesis to be the primary mode of action of DEA, followed by the intracellular accumulation of toxic phenolic compounds, in particular p-toluic acid (4-methylbenzoic acid). Although membrane ergosterol is known to be the main cell target for polyene antifungal drugs, we found little evidence to support that is the case for DEA. Sphingolipids, on the other hand, are known for their important roles in fungal cell physiology, and their biosynthesis has been recognized as a potential fungal-specific cell target for the development of new antifungal drugs.
Collapse
Affiliation(s)
- Alex J Lee
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Joseph Hammond
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Jeffrey Sheridan
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Simon Swift
- Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Andrew B Munkacsi
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Silas G Villas-Boas
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation Department, L-4362 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
10
|
Mokhtari M, Amiri P, Miller D, Gresham D, Bloor SJ, Munkacsi AB. Chemical genomic analysis reveals the interplay between iron chelation, zinc homeostasis, and retromer function in the bioactivity of an ethanol adduct of the feijoa fruit-derived ellagitannin vescalagin. G3 (BETHESDA, MD.) 2024; 14:jkae098. [PMID: 38805688 PMCID: PMC11228861 DOI: 10.1093/g3journal/jkae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/30/2024]
Abstract
Nature has been a rich source of pharmaceutical compounds, producing 80% of our currently prescribed drugs. The feijoa plant, Acca sellowiana, is classified in the family Myrtaceae, native to South America, and currently grown worldwide to produce feijoa fruit. Feijoa is a rich source of bioactive compounds with anticancer, anti-inflammatory, antibacterial, and antifungal activities; however, the mechanism of action of these compounds is largely not known. Here, we used chemical genetic analyses in the model organism Saccharomyces cerevisiae to investigate the mechanism of action of a feijoa-derived ethanol adduct of vescalagin (EtOH-vescalagin). Genome-wide barcode sequencing analysis revealed yeast strains lacking genes in iron metabolism, zinc metabolism, retromer function, or mitochondrial function were hypersensitive to 0.3 µM EtOH-vescalagin. This treatment increased expression of iron uptake proteins at the plasma membrane, which was a compensatory response to reduced intracellular iron. Likewise, EtOH-vescalagin increased expression of the Cot1 protein in the vacuolar membrane that transports zinc into the vacuole to prevent cytoplasmic accumulation of zinc. Each individual subunit in the retromer complex was required for the iron homeostatic mechanism of EtOH-vescalagin, while only the cargo recognition component in the retromer complex was required for the zinc homeostatic mechanism. Overexpression of either retromer subunits or high-affinity iron transporters suppressed EtOH-vescalagin bioactivity in a zinc-replete condition, while overexpression of only retromer subunits increased EtOH-vescalagin bioactivity in a zinc-deficient condition. Together, these results indicate that EtOH-vescalagin bioactivity begins with extracellular iron chelation and proceeds with intracellular transport of zinc via the retromer complex. More broadly, this is the first report of a bioactive compound to further characterize the poorly understood interaction between zinc metabolism and retromer function.
Collapse
Affiliation(s)
- Mona Mokhtari
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Pegah Amiri
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Darach Miller
- Department of Genetics, Stanford University Medical School, Stanford, CA 94305, USA
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - David Gresham
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | | | - Andrew B Munkacsi
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
11
|
Hammond J, Das IM, Paenga R, Caddie M, Skinner D, Sheridan JP, Miller MR, Munkacsi AB. Multi-omic analysis reveals genes and proteins integral to bioactivity of Echinochrome A isolated from the waste stream of the sea urchin industry in Aotearoa New Zealand. Food Sci Nutr 2024; 12:4927-4943. [PMID: 39055184 PMCID: PMC11266889 DOI: 10.1002/fsn3.4140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 07/27/2024] Open
Abstract
Evechinus chloroticus (commonly known as kina) is a sea urchin species endemic to New Zealand. Its roe is a culinary delicacy to the indigenous Māori and a globally exported food product. Echinochrome A (Ech A) is a bioactive compound isolated from the waste product of kina shells and spines; however, the molecular mechanisms of Ech A bioactivity are not well understood, partly due to Ech A never being studied using unbiased genome-wide analysis. To explore the high-value pharmaceutical potential of kina food waste, we obtained unbiased functional genomic and proteomic profiles of yeast cells treated with Echinochrome A. Abundance was measured for 4100 proteins every 30 min for four hours using fluorescent microscopy, resulting in the identification of 92 proteins with significant alterations in protein abundance caused by Ech A treatment that were over-represented with specific changes in DNA replication, repair and RNA binding after 30 min, followed by specific changes in the metabolism of metal ions (specifically iron and copper) from 60-240 min. Further analysis indicated that Ech A chelated iron, and that iron supplementation negated the growth inhibition caused by Ech A. Via a growth-based genome-wide analysis of 4800 gene deletion strains, 20 gene deletion strains were sensitive to Ech A in an iron-dependent manner. These genes were over-represented in the cellular response to oxidative stress, suggesting that Ech A suppressed growth inhibition caused by oxidative stress. Unexpectedly, genes integral to cardiolipin and inositol phosphate biosynthesis were required for Ech A bioactivity. Overall, these results identify genes, proteins, and cellular processes mediating the bioactivity of Ech A. Moreover, we demonstrate unbiased genomic and proteomic methodology that will be useful for characterizing bioactive compounds in food and food waste.
Collapse
Affiliation(s)
- Joseph Hammond
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| | | | - Ruihana Paenga
- Hikurangi Bioactives Limited PartnershipRuatōriaNew Zealand
| | - Manu Caddie
- Hikurangi Bioactives Limited PartnershipRuatōriaNew Zealand
| | - Damian Skinner
- Hikurangi Bioactives Limited PartnershipRuatōriaNew Zealand
| | - Jeffrey P. Sheridan
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| | | | - Andrew B. Munkacsi
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for BiodiscoveryVictoria University of WellingtonWellingtonNew Zealand
| |
Collapse
|
12
|
Qiu C, Arora P, Malik I, Laperuta AJ, Pavlovic EM, Ugochukwu S, Naik M, Kaplan CD. Thiolutin has complex effects in vivo but is a direct inhibitor of RNA polymerase II in vitro. Nucleic Acids Res 2024; 52:2546-2564. [PMID: 38214235 PMCID: PMC10954460 DOI: 10.1093/nar/gkad1258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 12/18/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024] Open
Abstract
Thiolutin is a natural product transcription inhibitor with an unresolved mode of action. Thiolutin and the related dithiolopyrrolone holomycin chelate Zn2+ and previous studies have concluded that RNA Polymerase II (Pol II) inhibition in vivo is indirect. Here, we present chemicogenetic and biochemical approaches to investigate thiolutin's mode of action in Saccharomyces cerevisiae. We identify mutants that alter sensitivity to thiolutin. We provide genetic evidence that thiolutin causes oxidation of thioredoxins in vivo and that thiolutin both induces oxidative stress and interacts functionally with multiple metals including Mn2+ and Cu2+, and not just Zn2+. Finally, we show direct inhibition of RNA polymerase II (Pol II) transcription initiation by thiolutin in vitro in support of classical studies that thiolutin can directly inhibit transcription in vitro. Inhibition requires both Mn2+ and appropriate reduction of thiolutin as excess DTT abrogates its effects. Pause prone, defective elongation can be observed in vitro if inhibition is bypassed. Thiolutin effects on Pol II occupancy in vivo are widespread but major effects are consistent with prior observations for Tor pathway inhibition and stress induction, suggesting that thiolutin use in vivo should be restricted to studies on its modes of action and not as an experimental tool.
Collapse
Affiliation(s)
- Chenxi Qiu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Payal Arora
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Indranil Malik
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | - Mandar Naik
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
13
|
Gaikani HK, Stolar M, Kriti D, Nislow C, Giaever G. From beer to breadboards: yeast as a force for biological innovation. Genome Biol 2024; 25:10. [PMID: 38178179 PMCID: PMC10768129 DOI: 10.1186/s13059-023-03156-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
The history of yeast Saccharomyces cerevisiae, aka brewer's or baker's yeast, is intertwined with our own. Initially domesticated 8,000 years ago to provide sustenance to our ancestors, for the past 150 years, yeast has served as a model research subject and a platform for technology. In this review, we highlight many ways in which yeast has served to catalyze the fields of functional genomics, genome editing, gene-environment interaction investigation, proteomics, and bioinformatics-emphasizing how yeast has served as a catalyst for innovation. Several possible futures for this model organism in synthetic biology, drug personalization, and multi-omics research are also presented.
Collapse
Affiliation(s)
- Hamid Kian Gaikani
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Monika Stolar
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Divya Kriti
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Corey Nislow
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.
| | - Guri Giaever
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
Elyamany A, Ghazala R, Fayed O, Hamed Y, El-Shendidi A. Mitochondrial DNA copy number in Hepatitis C virus-related chronic liver disease: impact of direct-acting antiviral therapy. Sci Rep 2023; 13:18330. [PMID: 37884543 PMCID: PMC10603142 DOI: 10.1038/s41598-023-44665-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Hepatitis C virus (HCV) infection can regulate the number and dynamics of mitochondria, and is associated with a prominent hepatic mitochondrial injury. Mitochondrial distress conveys oxidative damage which is implicated in liver disease progression. The present study was conducted to assess the change of mitochondrial DNA (mtDNA) copy number in patients with HCV-related chronic liver disease and the impact of direct-acting antiviral (DAA) therapy. Whole blood mtDNA copy number was measured using real-time quantitative polymerase chain reaction at baseline and 12 weeks after the end of therapy in 50 treatment-naïve HCV-infected patients who achieved sustained viral response (SVR) after DAA therapy and 20 healthy controls. Whole blood mtDNA copy number appeared significantly lower in HCV-infected patients before therapy compared to healthy subjects (P < 0.001). Post-treatment, there was significant increase of mtDNA copy number in HCV-infected patients at SVR12 compared to the pre-treatment values (P < 0.001), meanwhile it didn't differ significantly between HCV-infected patients after therapy and healthy subjects (P = 0.059). Whole blood mtDNA copy number correlated inversely to the serum bilirubin in HCV-infected patients (P = 0.013), however it didn't correlate significantly to the serum aminotransferases, viral load or fibrosis-4 score (P > 0.05). In conclusion, chronic HCV infection has been associated with a prominent mitochondrial injury which could mediate a progressive liver disease. The improved mtDNA content after DAA therapy highlights a possible potential of these drugs to alleviate mitochondrial damage in HCV-related liver disease.
Collapse
Affiliation(s)
- Amany Elyamany
- Department of Internal Medicine (Hepatology Unit), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Rasha Ghazala
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Omnia Fayed
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Yasmin Hamed
- Department of Internal Medicine (Hepatology Unit), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Assem El-Shendidi
- Department of Internal Medicine (Hepatology Unit), Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
15
|
Epremyan KK, Mamaev DV, Zvyagilskaya RA. Alzheimer's Disease: Significant Benefit from the Yeast-Based Models. Int J Mol Sci 2023; 24:9791. [PMID: 37372938 DOI: 10.3390/ijms24129791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related, multifaceted neurological disorder associated with accumulation of aggregated proteins (amyloid Aβ and hyperphosphorylated tau), loss of synapses and neurons, and alterations in microglia. AD was recognized by the World Health Organization as a global public health priority. The pursuit of a better understanding of AD forced researchers to pay attention to well-defined single-celled yeasts. Yeasts, despite obvious limitations in application to neuroscience, show high preservation of basic biological processes with all eukaryotic organisms and offer great advantages over other disease models due to the simplicity, high growth rates on low-cost substrates, relatively simple genetic manipulations, the large knowledge base and data collections, and availability of an unprecedented amount of genomic and proteomic toolboxes and high-throughput screening techniques, inaccessible to higher organisms. Research reviewed above clearly indicates that yeast models, together with other, more simple eukaryotic models including animal models, C. elegans and Drosophila, significantly contributed to understanding Aβ and tau biology. These models allowed high throughput screening of factors and drugs that interfere with Aβ oligomerization, aggregation and toxicity, and tau hyperphosphorylation. In the future, yeast models will remain relevant, with a focus on creating novel high throughput systems to facilitate the identification of the earliest AD biomarkers among different cellular networks in order to achieve the main goal-to develop new promising therapeutic strategies to treat or prevent the disease.
Collapse
Affiliation(s)
- Khoren K Epremyan
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Dmitry V Mamaev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Renata A Zvyagilskaya
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| |
Collapse
|
16
|
Turco G, Chang C, Wang RY, Kim G, Stoops EH, Richardson B, Sochat V, Rust J, Oughtred R, Thayer N, Kang F, Livstone MS, Heinicke S, Schroeder M, Dolinski KJ, Botstein D, Baryshnikova A. Global analysis of the yeast knockout phenome. SCIENCE ADVANCES 2023; 9:eadg5702. [PMID: 37235661 PMCID: PMC11326039 DOI: 10.1126/sciadv.adg5702] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Genome-wide phenotypic screens in the budding yeast Saccharomyces cerevisiae, enabled by its knockout collection, have produced the largest, richest, and most systematic phenotypic description of any organism. However, integrative analyses of this rich data source have been virtually impossible because of the lack of a central data repository and consistent metadata annotations. Here, we describe the aggregation, harmonization, and analysis of ~14,500 yeast knockout screens, which we call Yeast Phenome. Using this unique dataset, we characterized two unknown genes (YHR045W and YGL117W) and showed that tryptophan starvation is a by-product of many chemical treatments. Furthermore, we uncovered an exponential relationship between phenotypic similarity and intergenic distance, which suggests that gene positions in both yeast and human genomes are optimized for function.
Collapse
Affiliation(s)
- Gina Turco
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Christie Chang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | | | - Griffin Kim
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | - Brianna Richardson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Vanessa Sochat
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jennifer Rust
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Rose Oughtred
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | | | - Fan Kang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Michael S Livstone
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Sven Heinicke
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Mark Schroeder
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Kara J Dolinski
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | | | | |
Collapse
|
17
|
Mertens RT, Gukathasan S, Arojojoye AS, Olelewe C, Awuah SG. Next Generation Gold Drugs and Probes: Chemistry and Biomedical Applications. Chem Rev 2023; 123:6612-6667. [PMID: 37071737 PMCID: PMC10317554 DOI: 10.1021/acs.chemrev.2c00649] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The gold drugs, gold sodium thiomalate (Myocrisin), aurothioglucose (Solganal), and the orally administered auranofin (Ridaura), are utilized in modern medicine for the treatment of inflammatory arthritis including rheumatoid and juvenile arthritis; however, new gold agents have been slow to enter the clinic. Repurposing of auranofin in different disease indications such as cancer, parasitic, and microbial infections in the clinic has provided impetus for the development of new gold complexes for biomedical applications based on unique mechanistic insights differentiated from auranofin. Various chemical methods for the preparation of physiologically stable gold complexes and associated mechanisms have been explored in biomedicine such as therapeutics or chemical probes. In this Review, we discuss the chemistry of next generation gold drugs, which encompasses oxidation states, geometry, ligands, coordination, and organometallic compounds for infectious diseases, cancer, inflammation, and as tools for chemical biology via gold-protein interactions. We will focus on the development of gold agents in biomedicine within the past decade. The Review provides readers with an accessible overview of the utility, development, and mechanism of action of gold-based small molecules to establish context and basis for the thriving resurgence of gold in medicine.
Collapse
Affiliation(s)
- R Tyler Mertens
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Sailajah Gukathasan
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Adedamola S Arojojoye
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Chibuzor Olelewe
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Samuel G Awuah
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- University of Kentucky Markey Cancer Center, Lexington, Kentucky 40536, United States
| |
Collapse
|
18
|
Zhu P, Li Y, Guo T, Liu S, Tancer RJ, Hu C, Zhao C, Xue C, Liao G. New antifungal strategies: drug combination and co-delivery. Adv Drug Deliv Rev 2023; 198:114874. [PMID: 37211279 DOI: 10.1016/j.addr.2023.114874] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/23/2023]
Abstract
The growing occurrence of invasive fungal infections and the mounting rates of drug resistance constitute a significant menace to human health. Antifungal drug combinations have garnered substantial interest for their potential to improve therapeutic efficacy, reduce drug doses, reverse, or ameliorate drug resistance. A thorough understanding of the molecular mechanisms underlying antifungal drug resistance and drug combination is key to developing new drug combinations. Here we discuss the mechanisms of antifungal drug resistance and elucidate how to discover potent drug combinations to surmount resistance. We also examine the challenges encountered in developing such combinations and discuss prospects, including advanced drug delivery strategies.
Collapse
Affiliation(s)
- Ping Zhu
- State Key Laboratory of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400700, China
| | - Yan Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Ting Guo
- State Key Laboratory of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400700, China
| | - Simei Liu
- Department of Traditional Chinese Medicine, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, China; Institute of Pharmacology and Toxicology, Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Robert J Tancer
- Public Health Research Institute and Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Changhua Hu
- State Key Laboratory of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400700, China
| | - Chengzhi Zhao
- Chongqing Health Center for Women and Children, Chongqing, 400700, PR China.
| | - Chaoyang Xue
- Public Health Research Institute and Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Guojian Liao
- State Key Laboratory of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400700, China.
| |
Collapse
|
19
|
Baglyas M, Ott PG, Schwarczinger I, Nagy JK, Darcsi A, Bakonyi J, Móricz ÁM. Antimicrobial Diterpenes from Rough Goldenrod ( Solidago rugosa Mill.). Molecules 2023; 28:molecules28093790. [PMID: 37175200 PMCID: PMC10180332 DOI: 10.3390/molecules28093790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Solidago rugosa is one of the goldenrod species native to North America but has sporadically naturalized as an alien plant in Europe. The investigation of the root and leaf ethanol extracts of the plant using a bioassay-guided process with an anti-Bacillus assay resulted in the isolation of two antimicrobial components. Structure elucidation was performed based on high-resolution tandem mass spectrometric and one- and two-dimensional NMR spectroscopic analyses that revealed (-)-hardwickiic acid (Compound 1) and (-)-abietic acid (Compound 2). The isolates were evaluated for their antimicrobial properties against several plant pathogenic bacterial and fungal strains. Both compounds demonstrated an antibacterial effect, especially against Gram-positive bacterial strains (Bacillus spizizenii, Clavibacter michiganensis subsp. michiganensis, and Curtobacterium flaccumfaciens pv. flaccumfaciens) with half maximal inhibitory concentration (IC50) between 1 and 5.1 µg/mL (5-20 times higher than that of the positive control gentamicin). In the used concentrations, minimal bactericidal concentration (MBC) was reached only against the non-pathogen B. spizizenii. Besides their activity against Fusarium avenaceum, the highest antifungal activity was observed for Compound 1 against Bipolaris sorokiniana with an IC50 of 3.8 µg/mL.
Collapse
Affiliation(s)
- Márton Baglyas
- Plant Protection Institute, Centre for Agricultural Research, ELKH, Herman O. Str. 15, 1022 Budapest, Hungary
- Doctoral School of Pharmaceutical Sciences, Semmelweis University, Hőgyes E. Str. 7-9, 1092 Budapest, Hungary
| | - Péter G Ott
- Plant Protection Institute, Centre for Agricultural Research, ELKH, Herman O. Str. 15, 1022 Budapest, Hungary
| | - Ildikó Schwarczinger
- Plant Protection Institute, Centre for Agricultural Research, ELKH, Herman O. Str. 15, 1022 Budapest, Hungary
| | - Judit Kolozsváriné Nagy
- Plant Protection Institute, Centre for Agricultural Research, ELKH, Herman O. Str. 15, 1022 Budapest, Hungary
| | - András Darcsi
- Pharmaceutical Chemistry and Technology Department, National Institute of Pharmacy and Nutrition, Szabolcs Str. 33, 1135 Budapest, Hungary
| | - József Bakonyi
- Plant Protection Institute, Centre for Agricultural Research, ELKH, Herman O. Str. 15, 1022 Budapest, Hungary
| | - Ágnes M Móricz
- Plant Protection Institute, Centre for Agricultural Research, ELKH, Herman O. Str. 15, 1022 Budapest, Hungary
| |
Collapse
|
20
|
del Rio Hernandez CE, Campbell LJ, Atkinson PH, Munkacsi AB. Network Analysis Reveals the Molecular Bases of Statin Pleiotropy That Vary with Genetic Background. Microbiol Spectr 2023; 11:e0414822. [PMID: 36946734 PMCID: PMC10100750 DOI: 10.1128/spectrum.04148-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/18/2023] [Indexed: 03/23/2023] Open
Abstract
Many approved drugs are pleiotropic: for example, statins, whose main cholesterol-lowering activity is complemented by anticancer and prodiabetogenic mechanisms involving poorly characterized genetic interaction networks. We investigated these using the Saccharomyces cerevisiae genetic model, where most genetic interactions known are limited to the statin-sensitive S288C genetic background. We therefore broadened our approach by investigating gene interactions to include two statin-resistant genetic backgrounds: UWOPS87-2421 and Y55. Networks were functionally focused by selection of HMG1 and BTS1 mevalonate pathway genes for detection of genetic interactions. Networks, multilayered by genetic background, were analyzed for key genes using network centrality (degree, betweenness, and closeness), pathway enrichment, functional community modules, and Gene Ontology. Specifically, we found modification genes related to dysregulated endocytosis and autophagic cell death. To translate results to human cells, human orthologues were searched for other drug targets, thus identifying candidates for synergistic anticancer bioactivity. IMPORTANCE Atorvastatin is a highly successful drug prescribed to lower cholesterol and prevent cardiovascular disease in millions of people. Though much of its effect comes from inhibiting a key enzyme in the cholesterol biosynthetic pathway, genes in this pathway interact with genes in other pathways, resulting in 15% of patients suffering painful muscular side effects and 50% having inadequate responses. Such multigenic complexity may be unraveled using gene networks assembled from overlapping pairs of genes that complement each other. We used the unique power of yeast genetics to construct genome-wide networks specific to atorvastatin bioactivity in three genetic backgrounds to represent the genetic variation and varying response to atorvastatin in human individuals. We then used algorithms to identify key genes and their associated FDA-approved drugs in the networks, which resulted in the distinction of drugs that may synergistically enhance the known anticancer activity of atorvastatin.
Collapse
Affiliation(s)
- Cintya E. del Rio Hernandez
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Lani J. Campbell
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Paul H. Atkinson
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Andrew B. Munkacsi
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
21
|
Yang H, He K, Cao Y, Li Z, Ji Q, Sun J, Li G, Chen X, Mo H, Du G, Li Q. Comparative transcriptome analysis of Armillaria gallica 012m in response to ethephon treatment. PeerJ 2023; 11:e14714. [PMID: 37056223 PMCID: PMC10088873 DOI: 10.7717/peerj.14714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/19/2022] [Indexed: 01/18/2023] Open
Abstract
Background
Gastrodia elata, known as a rootless, leafless, achlorophyllous and fully mycoheterotrophic orchid, needs to establish symbionts with particular Armillaria species to acquire nutrition and energy. Previous research findings had approved that ethylene (ET) played an important role in plant-fungi interaction and some receptors of ET had been discovered in microorganisms. However, the molecular mechanisms underlying the role of ET in the interaction between G. elata and Armillaria species remain unknown.
Methods
Exiguous ethephon (ETH) was added to agar and liquid media to observe the morphological features of mycelium and count the biomass respectively. Mycelium cultured in liquid media with exiguous ETH (0.1 ppm, 2.0 ppm, 5.0 ppm) were chosen to perform whole-transcriptome profiling through the RNA-seq technology (Illumina NGS sequencing). The DEGs of growth-related genes and candidate ET receptor domains were predicted on SMART.
Results
ETH-0.1 ppm and ETH-2 ppm could significantly improve the mycelium growth of A. gallica 012m, while ETH-5 ppm inhibited the mycelium growth in both solid and liquid media. The number of up-regulated or down-regulated genes increased along with the concentrations of ETH. The growth of mycelia might benefit from the up-regulated expression of Pyr_redox (Pyridine nucleotide-disulphide oxidoreductase), GAL4 (C6 zinc finger) and HMG (High Mobility Group) genes in the ETH-0.1 ppm and ETH-2 ppm. Therefore, the growth of mycelia might be impaired by the down-regulated expression of ZnF_C2H2 and ribosomal protein S4 proteins in the ETH-5 ppm. Seven ET receptor domains were predicted in A. gallica 012m. Based on cluster analysis and comparative studies of proteins, the putative ETH receptor domains of A. gallica 012m have a higher homologous correlation with fungi.
Conclusions
The responses of A. gallica 012m to ETH had a concentration effect similar to the plants’ responses to ET. Therefore, the number of up-regulated or down-regulated genes are increased along with the concentrations of ETH. Seven ET receptor protein domains were predicted in the genome and transcriptome of A. gallica 012m. We speculate that ETH receptors exist in A. gallica 012m and ethylene might play an important role in the plant-fungi interaction.
Collapse
Affiliation(s)
- Haiying Yang
- Yunnan Minzu University, School of Chemistry and Environment, Kunming, Yunnan, China
| | - Kaixiang He
- Yunnan Minzu University, School of Chemistry and Environment, Kunming, Yunnan, China
| | - Yapu Cao
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Zhihao Li
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Qiaolin Ji
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Jingxian Sun
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Ganpeng Li
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Xin Chen
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Haiying Mo
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Gang Du
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Qingqing Li
- Southwest Forestry University, Life Science College, Kunming, Yunnan, China
- Kunming Xianghao Technology Co. Ltd, Kunming, Yunnan, China
| |
Collapse
|
22
|
Basante-Bedoya MA, Bogliolo S, Garcia-Rodas R, Zaragoza O, Arkowitz RA, Bassilana M. Two distinct lipid transporters together regulate invasive filamentous growth in the human fungal pathogen Candida albicans. PLoS Genet 2022; 18:e1010549. [PMID: 36516161 PMCID: PMC9797089 DOI: 10.1371/journal.pgen.1010549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/28/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Flippases transport lipids across the membrane bilayer to generate and maintain asymmetry. The human fungal pathogen Candida albicans has 5 flippases, including Drs2, which is critical for filamentous growth and phosphatidylserine (PS) distribution. Furthermore, a drs2 deletion mutant is hypersensitive to the antifungal drug fluconazole and copper ions. We show here that such a flippase mutant also has an altered distribution of phosphatidylinositol 4-phosphate [PI(4)P] and ergosterol. Analyses of additional lipid transporters, i.e. the flippases Dnf1-3, and all the oxysterol binding protein (Osh) family lipid transfer proteins, i.e. Osh2-4 and Osh7, indicate that they are not critical for filamentous growth. However, deletion of Osh4 alone, which exchanges PI(4)P for sterol, in a drs2 mutant can bypass the requirement for this flippase in invasive filamentous growth. In addition, deletion of the lipid phosphatase Sac1, which dephosphorylates PI(4)P, in a drs2 mutant results in a synthetic growth defect, suggesting that Drs2 and Sac1 function in parallel pathways. Together, our results indicate that a balance between the activities of two putative lipid transporters regulates invasive filamentous growth, via PI(4)P. In contrast, deletion of OSH4 in drs2 does not restore growth on fluconazole, nor on papuamide A, a toxin that binds PS in the outer leaflet of the plasma membrane, suggesting that Drs2 has additional role(s) in plasma membrane organization, independent of Osh4. As we show that C. albicans Drs2 localizes to different structures, including the Spitzenkörper, we investigated if a specific localization of Drs2 is critical for different functions, using a synthetic physical interaction approach to restrict/stabilize Drs2 at the Spitzenkörper. Our results suggest that the localization of Drs2 at the plasma membrane is critical for C. albicans growth on fluconazole and papuamide A, but not for invasive filamentous growth.
Collapse
Affiliation(s)
| | | | - Rocio Garcia-Rodas
- Université Côte d’Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, FRANCE
- Mycology Reference Laboratory, National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC-CB21/13/00105), Health Institute Carlos III, Madrid, Spain
| | | | - Martine Bassilana
- Université Côte d’Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, FRANCE
- * E-mail:
| |
Collapse
|
23
|
Kim JH, Ofori S, Tagmount A, Vulpe CD, Awuah SG. Genome-wide CRISPR Screen Reveal Targets of Chiral Gold(I) Anticancer Compound in Mammalian Cells. ACS OMEGA 2022; 7:39197-39205. [PMID: 36340096 PMCID: PMC9631916 DOI: 10.1021/acsomega.2c05166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/06/2022] [Indexed: 06/09/2023]
Abstract
Metal-based drugs, such as cisplatin and auranofin, are used for the treatment of cancer and rheumatoid arthritis, respectively. Auranofin and other gold-derived compounds have been shown to possess anticancer, anti-inflammatory, antimicrobial, and antiparasitic activity in preclinical and clinical trials. Unlike platinum agents which are known to target DNA, the target of gold is not well elucidated. To better understand the targets and effects of gold agents in mammalian cells, we used a targeted CRISPR (ToxCRISPR) screen in K562 cancer cells to identify genes that modulate cellular sensitivity to gold. We synthesized a novel chiral gold(I) compound, JHK-21, with potent anticancer activity. Among the most sensitizing hits were proteins involved in mitochondrial carriers, mitochondrial metabolism, and oxidative phosphorylation. Further analysis revealed that JHK-21 induced inner mitochondria membrane dysfunction and modulated ATP-binding cassette subfamily member C (ABCC1) function in a manner distinct from auranofin. Characterizing the therapeutic effects and toxicities of metallodrugs in mammalian cells is of growing interest to guide future drug discovery, and cellular and preclinical/clinical studies.
Collapse
Affiliation(s)
- Jong Hyun Kim
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Samuel Ofori
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Abderrahmane Tagmount
- Department
of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Chris D. Vulpe
- Department
of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Samuel G. Awuah
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Markey
Cancer Center, University of Kentucky, Lexington, Kentucky 40536, United States
| |
Collapse
|
24
|
Poulton NC, Rock JM. Unraveling the mechanisms of intrinsic drug resistance in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:997283. [PMID: 36325467 PMCID: PMC9618640 DOI: 10.3389/fcimb.2022.997283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/30/2022] [Indexed: 02/03/2023] Open
Abstract
Tuberculosis (TB) is among the most difficult infections to treat, requiring several months of multidrug therapy to produce a durable cure. The reasons necessitating long treatment times are complex and multifactorial. However, one major difficulty of treating TB is the resistance of the infecting bacterium, Mycobacterium tuberculosis (Mtb), to many distinct classes of antimicrobials. This review will focus on the major gaps in our understanding of intrinsic drug resistance in Mtb and how functional and chemical-genetics can help close those gaps. A better understanding of intrinsic drug resistance will help lay the foundation for strategies to disarm and circumvent these mechanisms to develop more potent antitubercular therapies.
Collapse
|
25
|
The NPR/Hal family of protein kinases in yeasts: biological role, phylogeny and regulation under environmental challenges. Comput Struct Biotechnol J 2022; 20:5698-5712. [PMID: 36320937 PMCID: PMC9596735 DOI: 10.1016/j.csbj.2022.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/30/2022] Open
Abstract
Protein phosphorylation is the most common and versatile post-translational modification occurring in eukaryotes. In yeast, protein phosphorylation is fundamental for maintaining cell growth and adapting to sudden changes in environmental conditions by regulating cellular processes and activating signal transduction pathways. Protein kinases catalyze the reversible addition of phosphate groups to target proteins, thereby regulating their activity. In Saccharomyces cerevisiae, kinases are classified into six major groups based on structural and functional similarities. The NPR/Hal family of kinases comprises nine fungal-specific kinases that, due to lack of similarity with the remaining kinases, were classified to the “Other” group. These kinases are primarily implicated in regulating fundamental cellular processes such as maintaining ion homeostasis and controlling nutrient transporters’ concentration at the plasma membrane. Despite their biological relevance, these kinases remain poorly characterized and explored. This review provides an overview of the information available regarding each of the kinases from the NPR/Hal family, including their known biological functions, mechanisms of regulation, and integration in signaling pathways in S. cerevisiae. Information gathered for non-Saccharomyces species of biotechnological or clinical relevance is also included.
Collapse
|
26
|
Vanderwaeren L, Dok R, Voordeckers K, Nuyts S, Verstrepen KJ. Saccharomyces cerevisiae as a Model System for Eukaryotic Cell Biology, from Cell Cycle Control to DNA Damage Response. Int J Mol Sci 2022; 23:11665. [PMID: 36232965 PMCID: PMC9570374 DOI: 10.3390/ijms231911665] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has been used for bread making and beer brewing for thousands of years. In addition, its ease of manipulation, well-annotated genome, expansive molecular toolbox, and its strong conservation of basic eukaryotic biology also make it a prime model for eukaryotic cell biology and genetics. In this review, we discuss the characteristics that made yeast such an extensively used model organism and specifically focus on the DNA damage response pathway as a prime example of how research in S. cerevisiae helped elucidate a highly conserved biological process. In addition, we also highlight differences in the DNA damage response of S. cerevisiae and humans and discuss the challenges of using S. cerevisiae as a model system.
Collapse
Affiliation(s)
- Laura Vanderwaeren
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, Department M2S, KU Leuven, 3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| | - Rüveyda Dok
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Karin Voordeckers
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, Department M2S, KU Leuven, 3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| | - Sandra Nuyts
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- Department of Radiation Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Kevin J. Verstrepen
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, Department M2S, KU Leuven, 3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| |
Collapse
|
27
|
Abstract
The last several decades have witnessed a surge in drug-resistant fungal infections that pose a serious threat to human health. While there is a limited arsenal of drugs that can be used to treat systemic infections, scientific advances have provided renewed optimism for the discovery of novel antifungals. The development of chemical-genomic assays using Saccharomyces cerevisiae has provided powerful methods to identify the mechanism of action of molecules in a living cell. Advances in molecular biology techniques have enabled complementary assays to be developed in fungal pathogens, including Candida albicans and Cryptococcus neoformans. These approaches enable the identification of target genes for drug candidates, as well as genes involved in buffering drug target pathways. Here, we examine yeast chemical-genomic assays and highlight how such resources can be utilized to predict the mechanisms of action of compounds, to study virulence attributes of diverse fungal pathogens, and to bolster the antifungal pipeline.
Collapse
Affiliation(s)
- Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada;
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada;
| |
Collapse
|
28
|
Parikh SB, Houghton C, Van Oss SB, Wacholder A, Carvunis A. Origins, evolution, and physiological implications of de novo genes in yeast. Yeast 2022; 39:471-481. [PMID: 35959631 PMCID: PMC9544372 DOI: 10.1002/yea.3810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 12/03/2022] Open
Abstract
De novo gene birth is the process by which new genes emerge in sequences that were previously noncoding. Over the past decade, researchers have taken advantage of the power of yeast as a model and a tool to study the evolutionary mechanisms and physiological implications of de novo gene birth. We summarize the mechanisms that have been proposed to explicate how noncoding sequences can become protein-coding genes, highlighting the discovery of pervasive translation of the yeast transcriptome and its presumed impact on evolutionary innovation. We summarize current best practices for the identification and characterization of de novo genes. Crucially, we explain that the field is still in its nascency, with the physiological roles of most young yeast de novo genes identified thus far still utterly unknown. We hope this review inspires researchers to investigate the true contribution of de novo gene birth to cellular physiology and phenotypic diversity across yeast strains and species.
Collapse
Affiliation(s)
- Saurin B. Parikh
- Department of Computational and Systems Biology, School of Medicine, Pittsburgh Center for Evolutionary Biology and EvolutionUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Carly Houghton
- Department of Computational and Systems Biology, School of Medicine, Pittsburgh Center for Evolutionary Biology and EvolutionUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - S. Branden Van Oss
- Department of Computational and Systems Biology, School of Medicine, Pittsburgh Center for Evolutionary Biology and EvolutionUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Aaron Wacholder
- Department of Computational and Systems Biology, School of Medicine, Pittsburgh Center for Evolutionary Biology and EvolutionUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Anne‐Ruxandra Carvunis
- Department of Computational and Systems Biology, School of Medicine, Pittsburgh Center for Evolutionary Biology and EvolutionUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
29
|
Fu W, Cao X, An T, Zhao H, Zhang J, Li D, Jin X, Liu B. Genome-wide identification of resistance genes and transcriptome regulation in yeast to accommodate ammonium toxicity. BMC Genomics 2022; 23:514. [PMID: 35840887 PMCID: PMC9287935 DOI: 10.1186/s12864-022-08742-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/07/2022] [Indexed: 12/04/2022] Open
Abstract
Background Ammonium is an important raw material for biomolecules and life activities, and the toxicity of ammonium is also an important ecological and agricultural issue. Ammonium toxicity in yeast has only recently been discovered, and information on its mechanism is limited. In recent years, environmental pollution caused by nitrogen-containing wastewater has been increasing. In addition, the use of yeast in bioreactors to produce nitrogen-containing compounds has been developed. Therefore, research on resistance mechanisms that allow yeast to grow under conditions of high concentrations of ammonium has become more and more important. Results To further understand the resistance mechanism of yeast to grow under high concentration of ammonium, we used NH4Cl to screen a yeast non-essential gene-deletion library. We identified 61 NH4Cl-sensitive deletion mutants from approximately 4200 mutants in the library, then 34 of them were confirmed by drop test analysis. Enrichment analysis of these 34 genes showed that biosynthesis metabolism, mitophagy, MAPK signaling, and other pathways may play important roles in NH4Cl resistance. Transcriptome analysis under NH4Cl stress revealed 451 significantly upregulated genes and 835 significantly downregulated genes. The genes are mainly enriched in: nitrogen compound metabolic process, cell wall, MAPK signaling pathway, mitophagy, and glycine, serine and threonine metabolism. Conclusions Our results present a broad view of biological pathways involved in the response to NH4Cl stress, and thereby advance our understanding of the resistance genes and cellular transcriptional regulation under high concentration of ammonium. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08742-y.
Collapse
Affiliation(s)
- Wenhao Fu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China.
| | - Tingting An
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Huihui Zhao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Jie Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Danqi Li
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China.
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China. .,Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, SE-413 90, Goteborg, Sweden. .,Center for Large-Scale Cell-Based Screening, Faculty of Science, University of Gothenburg, Medicinaregatan 9C, SE-413 90, Goteborg, Sweden.
| |
Collapse
|
30
|
Cao X, An T, Fu W, Zhang J, Zhao H, Li D, Jin X, Liu B. Genome-Wide Identification of Cellular Pathways and Key Genes That Respond to Sodium Bicarbonate Stress in Saccharomyces cerevisiae. Front Microbiol 2022; 13:831973. [PMID: 35495664 PMCID: PMC9042421 DOI: 10.3389/fmicb.2022.831973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/23/2022] [Indexed: 12/04/2022] Open
Abstract
Sodium bicarbonate (NaHCO3) is an important inorganic salt. It is not only widely used in industrial production and daily life, but is also the main stress in alkaline saline soil. NaHCO3 has a strong ability to inhibit the growth of fungi in both natural environment and daily application. However, the mechanism by which fungi respond to NaHCO3 stress is not fully understood. To further clarify the toxic mechanisms of NaHCO3 stress and identify the specific cellular genes and pathways involved in NaHCO3 resistance, we performed genome-wide screening with NaHCO3 using a Saccharomyces cerevisiae deletion mutant library. A total of 33 deletion mutants with NaHCO3 sensitivity were identified. Compared with wild-type strains, these mutants had significant growth defects in the medium containing NaHCO3. Bioinformatics analysis found that the corresponding genes of these mutants are mainly enriched in the cell cycle, mitophagy, cell wall integrity, and signaling pathways. Further study using transcriptomic analysis showed that 309 upregulated and 233 downregulated genes were only responded to NaHCO3 stress, when compared with yeast transcriptomic data under alkaline and saline stress. Upregulated genes were mainly concentrated in amino acid metabolism, steroid biosynthesis, and cell wall, while downregulated genes were enriched in various cellular metabolisms. In summary, we have identified the cellular pathways and key genes that respond to NaHCO3 stress in the whole genome, providing resource and direction for understanding NaHCO3 toxicity and cellular resistance mechanisms.
Collapse
Affiliation(s)
- Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Tingting An
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Wenhao Fu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Jie Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Huihui Zhao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Danqi Li
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.,Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.,Center for Large-Scale Cell-Based Screening, Faculty of Science, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
31
|
Chemical-genetic interaction mapping links carbon metabolism and cell wall structure to tuberculosis drug efficacy. Proc Natl Acad Sci U S A 2022; 119:e2201632119. [PMID: 35380903 PMCID: PMC9169745 DOI: 10.1073/pnas.2201632119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Efforts to improve tuberculosis therapy include optimizing multidrug regimens to take advantage of drug–drug synergies. However, the complex host environment has a profound effect on bacterial metabolic state and drug activity, making predictions of optimal drug combinations difficult. In this study, we leverage a newly developed library of conditional knockdown Mycobacterium tuberculosis mutants in which genetic depletion of essential genes mimics the effect of drug therapy. This tractable system allowed us to assess the effect of growth condition on predicted drug–drug interactions. We found that these interactions can be differentially sensitive to the metabolic state, and select in vitro–defined interactions can be leveraged to accelerate bacterial killing during infection. These findings suggest strategies for optimizing tuberculosis therapy. Current chemotherapy against Mycobacterium tuberculosis (Mtb), an important human pathogen, requires a multidrug regimen lasting several months. While efforts have been made to optimize therapy by exploiting drug–drug synergies, testing new drug combinations in relevant host environments remains arduous. In particular, host environments profoundly affect the bacterial metabolic state and drug efficacy, limiting the accuracy of predictions based on in vitro assays alone. In this study, we utilized conditional Mtb knockdown mutants of essential genes as an experimentally tractable surrogate for drug treatment and probe the relationship between Mtb carbon metabolism and chemical–genetic interactions (CGIs). We examined the antitubercular drugs isoniazid, rifampicin, and moxifloxacin and found that CGIs are differentially responsive to the metabolic state, defining both environment-independent and -dependent interactions. Specifically, growth on the in vivo–relevant carbon source, cholesterol, reduced rifampicin efficacy by altering mycobacterial cell surface lipid composition. We report that a variety of perturbations in cell wall synthesis pathways restore rifampicin efficacy during growth on cholesterol, and that both environment-independent and cholesterol-dependent in vitro CGIs could be leveraged to enhance bacterial clearance in the mouse infection model. Our findings present an atlas of chemical–genetic–environmental interactions that can be used to optimize drug–drug interactions, as well as provide a framework for understanding in vitro correlates of in vivo efficacy.
Collapse
|
32
|
High-throughput platform for yeast morphological profiling predicts the targets of bioactive compounds. NPJ Syst Biol Appl 2022; 8:3. [PMID: 35087094 PMCID: PMC8795194 DOI: 10.1038/s41540-022-00212-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/05/2022] [Indexed: 01/03/2023] Open
Abstract
Morphological profiling is an omics-based approach for predicting intracellular targets of chemical compounds in which the dose-dependent morphological changes induced by the compound are systematically compared to the morphological changes in gene-deleted cells. In this study, we developed a reliable high-throughput (HT) platform for yeast morphological profiling using drug-hypersensitive strains to minimize compound use, HT microscopy to speed up data generation and analysis, and a generalized linear model to predict targets with high reliability. We first conducted a proof-of-concept study using six compounds with known targets: bortezomib, hydroxyurea, methyl methanesulfonate, benomyl, tunicamycin, and echinocandin B. Then we applied our platform to predict the mechanism of action of a novel diferulate-derived compound, poacidiene. Morphological profiling of poacidiene implied that it affects the DNA damage response, which genetic analysis confirmed. Furthermore, we found that poacidiene inhibits the growth of phytopathogenic fungi, implying applications as an effective antifungal agent. Thus, our platform is a new whole-cell target prediction tool for drug discovery.
Collapse
|
33
|
Nishimura S. Marine natural products targeting the eukaryotic cell membrane. J Antibiot (Tokyo) 2021; 74:769-785. [PMID: 34493848 DOI: 10.1038/s41429-021-00468-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/16/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
The cell membrane, with high fluidity and alternative curvatures, maintains the robust integrity to distinguish inner and outer space of cells or organelles. Lipids are the main components of the cell membrane, but their functions are largely unknown. Even the visualization of lipids is not straightforward since modification of lipids often hampers its correct physical properties. Many natural products target cell membranes, some of which are used as pharmaceuticals and/or research tools. They show specific recognition on lipids, and thus exhibit desired pharmacological effects and unique biological phenotypes. This review is a catalog of marine natural products that target eukaryotic cell membranes. Chemical structures, biological activities, and molecular mechanisms are summarized. I hope that this review will be helpful for readers to notice the potential of marine natural products in the exploration of the function of lipids and the druggability of eukaryotic cell membranes.
Collapse
Affiliation(s)
- Shinichi Nishimura
- Department of Biotechnology, Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
34
|
Yahya G, Hashem Mohamed N, Pijuan J, Seleem NM, Mosbah R, Hess S, Abdelmoaty AA, Almeer R, Abdel‐Daim MM, Shulaywih Alshaman H, Juraiby I, Metwally K, Storchova Z. Profiling the physiological pitfalls of anti-hepatitis C direct-acting agents in budding yeast. Microb Biotechnol 2021; 14:2199-2213. [PMID: 34378349 PMCID: PMC8449668 DOI: 10.1111/1751-7915.13904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 02/05/2023] Open
Abstract
Sofosbuvir and Daclatasvir are among the direct-acting antiviral (DAA) medications prescribed for the treatment of chronic hepatitis C (CHC) virus infection as combination therapy with other antiviral medications. DAA-based therapy achieves high cure rates, reaching up to 97% depending on the genotype of the causative hepatitis C virus (HCV). While DAAs have been approved as an efficient and well-tolerated therapy for CHC, emerging concerns about adverse cardiac side effects, higher risk of recurrence and occurrence of hepatocellular carcinoma (HCC) and doubts of genotoxicity have been reported. In our study, we investigated in detail physiological off-targets of DAAs and dissected the effects of these drugs on cellular organelles using budding yeast, a unicellular eukaryotic organism. DAAs were found to disturb the architecture of the endoplasmic reticulum (ER) and the mitochondria, while showing no apparent genotoxicity or DNA damaging effect. Our study provides evidence that DAAs are not associated with genotoxicity and highlights the necessity for adjunctive antioxidant therapy to mitigate the adverse effects of DAAs on ER and mitochondria.
Collapse
Affiliation(s)
- Galal Yahya
- Department of Microbiology and ImmunologyFaculty of PharmacyZagazig UniversityAl Sharqia44519Egypt
- Department of Molecular GeneticsFaculty of BiologyTechnical University of KaiserslauternPaul‐Ehrlich Str. 24Kaiserslautern67663Germany
| | | | - Jordi Pijuan
- Laboratory of Neurogenetics and Molecular Medicine ‐ IPERInstitut de Recerca Sant Joan de DéuBarcelona08950Spain
| | - Noura M. Seleem
- Department of Microbiology and ImmunologyFaculty of PharmacyZagazig UniversityAl Sharqia44519Egypt
| | - Rasha Mosbah
- Infection Control UnitHospitals of Zagazig UniversityAl SharqiaEgypt
| | - Steffen Hess
- Department of Cell BiologyFaculty of BiologyTechnical University of KaiserslauternKaiserslauternGermany
| | - Ahmed A. Abdelmoaty
- Department of Tropical MedicineFaculty of MedicineZagazig UniversityZagazig44519Egypt
| | - Rafa Almeer
- Department of ZoologyCollege of ScienceKing Saud UniversityP.O. Box 2455Riyadh11451Saudi Arabia
| | - Mohamed M. Abdel‐Daim
- Department of ZoologyCollege of ScienceKing Saud UniversityP.O. Box 2455Riyadh11451Saudi Arabia
- Pharmacology DepartmentCollege of Veterinary MedicineSuez Canal UniversityIsmailiaEgypt
| | | | - Ibrahim Juraiby
- General Directorate of Health AffairsMinistry of HealthJazan82723Saudi Arabia
| | - Kamel Metwally
- Department of Pharmaceutical ChemistryFaculty of PharmacyTabuk UniversityTabuk47713Saudi Arabia
- Department of Medicinal ChemistryFaculty of PharmacyZagazig UniversityZagazig44519Egypt
| | - Zuzana Storchova
- Department of Molecular GeneticsFaculty of BiologyTechnical University of KaiserslauternPaul‐Ehrlich Str. 24Kaiserslautern67663Germany
| |
Collapse
|
35
|
Sellers-Moya Á, Nuévalos M, Molina M, Martín H. Clotrimazole-Induced Oxidative Stress Triggers Novel Yeast Pkc1-Independent Cell Wall Integrity MAPK Pathway Circuitry. J Fungi (Basel) 2021; 7:jof7080647. [PMID: 34436186 PMCID: PMC8399625 DOI: 10.3390/jof7080647] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 01/13/2023] Open
Abstract
Azoles are one of the most widely used drugs to treat fungal infections. To further understand the fungal response to azoles, we analyzed the MAPK circuitry of the model yeast Saccharomyces cerevisiae that operates under treatment with these antifungals. Imidazoles, and particularly clotrimazole, trigger deeper changes in MAPK phosphorylation than triazoles, involving a reduction in signaling through the mating pathway and the activation of the MAPKs Hog1 and Slt2 from the High-Osmolarity Glycerol (HOG) and the Cell Wall Integrity (CWI) pathways, respectively. Clotrimazole treatment leads to actin aggregation, mitochondrial alteration, and oxidative stress, which is essential not only for the activation of both MAPKs, but also for the appearance of a low-mobility form of Slt2 caused by additional phosphorylation to that occurring at the conserved TEY activation motif. Clotrimazole-induced ROS production and Slt2 phosphorylation are linked to Tpk3-mediated PKA activity. Resistance to clotrimazole depends on HOG and CWI-pathway-mediated stress responses. However, Pkc1 and other proteins acting upstream in the pathway are not critical for the activation of the Slt2 MAPK module, suggesting a novel rewiring of signaling through the CWI pathway. We further show that the strong impact of azole treatment on MAPK signaling is conserved in other yeast species.
Collapse
Affiliation(s)
| | | | - María Molina
- Correspondence: (M.M.); (H.M.); Tel.: +34-91-3941888 (M.M. & H.M.)
| | - Humberto Martín
- Correspondence: (M.M.); (H.M.); Tel.: +34-91-3941888 (M.M. & H.M.)
| |
Collapse
|
36
|
Safizadeh H, Simpkins SW, Nelson J, Li SC, Piotrowski JS, Yoshimura M, Yashiroda Y, Hirano H, Osada H, Yoshida M, Boone C, Myers CL. Improving Measures of Chemical Structural Similarity Using Machine Learning on Chemical-Genetic Interactions. J Chem Inf Model 2021; 61:4156-4172. [PMID: 34318674 PMCID: PMC8479812 DOI: 10.1021/acs.jcim.0c00993] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
A common strategy
for identifying molecules likely to possess a
desired biological activity is to search large databases of compounds
for high structural similarity to a query molecule that demonstrates
this activity, under the assumption that structural similarity is
predictive of similar biological activity. However, efforts to systematically
benchmark the diverse array of available molecular fingerprints and
similarity coefficients have been limited by a lack of large-scale
datasets that reflect biological similarities of compounds. To elucidate
the relative performance of these alternatives, we systematically
benchmarked 11 different molecular fingerprint encodings, each combined
with 13 different similarity coefficients, using a large set of chemical–genetic
interaction data from the yeast Saccharomyces cerevisiae as a systematic proxy for biological activity. We found that the
performance of different molecular fingerprints and similarity coefficients
varied substantially and that the all-shortest path fingerprints paired
with the Braun-Blanquet similarity coefficient provided superior performance
that was robust across several compound collections. We further proposed
a machine learning pipeline based on support vector machines that
offered a fivefold improvement relative to the best unsupervised approach.
Our results generally suggest that using high-dimensional chemical–genetic
data as a basis for refining molecular fingerprints can be a powerful
approach for improving prediction of biological functions from chemical
structures.
Collapse
Affiliation(s)
- Hamid Safizadeh
- Department of Electrical and Computer Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States.,Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Scott W Simpkins
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Justin Nelson
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Sheena C Li
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,RIKEN Center for Sustainable Resource Science (CSRS), Wako, Saitama 351-0198, Japan
| | - Jeff S Piotrowski
- RIKEN Center for Sustainable Resource Science (CSRS), Wako, Saitama 351-0198, Japan
| | - Mami Yoshimura
- RIKEN Center for Sustainable Resource Science (CSRS), Wako, Saitama 351-0198, Japan
| | - Yoko Yashiroda
- RIKEN Center for Sustainable Resource Science (CSRS), Wako, Saitama 351-0198, Japan
| | - Hiroyuki Hirano
- RIKEN Center for Sustainable Resource Science (CSRS), Wako, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- RIKEN Center for Sustainable Resource Science (CSRS), Wako, Saitama 351-0198, Japan
| | - Minoru Yoshida
- RIKEN Center for Sustainable Resource Science (CSRS), Wako, Saitama 351-0198, Japan.,Department of Biotechnology and Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo City, Tokyo 113-8654, Japan
| | - Charles Boone
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,RIKEN Center for Sustainable Resource Science (CSRS), Wako, Saitama 351-0198, Japan
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States.,Bioinformatics and Computational Biology Graduate Program, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
37
|
Lee S, Nam M, Lee AR, Baek ST, Kim MJ, Kim JS, Kong AH, Lee M, Lee SJ, Kim SY, Kim DU, Hoe KL. Genetic alterations in Wnt family of genes and their putative association with head and neck squamous cell carcinoma. Genomics Inform 2021; 19:e39. [PMID: 35172472 PMCID: PMC8752990 DOI: 10.5808/gi.21049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/15/2021] [Indexed: 11/24/2022] Open
Abstract
Tamoxifen (TAM) is an anticancer drug used to treat estrogen receptor (ER)‒positive breast cancer. However, its ER-independent cytotoxic and antifungal activities have prompted debates on its mechanism of action. To achieve a better understanding of the ER-independent antifungal action mechanisms of TAM, we systematically identified TAM-sensitive genes through microarray screening of the heterozygous gene deletion library in fission yeast (Schizosaccharomyces pombe). Secondary confirmation was followed by a spotting assay, finally yielding 13 TAM-sensitive genes under the drug-induced haploinsufficient condition. For these 13 TAM-sensitive genes, we conducted a comparative analysis of their Gene Ontology (GO) ‘biological process’ terms identified from other genome-wide screenings of the budding yeast deletion library and the MCF7 breast cancer cell line. Several TAM-sensitive genes overlapped between the yeast strains and MCF7 in GO terms including ‘cell cycle’ (cdc2, rik1, pas1, and leo1), ‘signaling’ (sck2, oga1, and cki3), and ‘vesicle-mediated transport’ (SPCC126.08c, vps54, sec72, and tvp15), suggesting their roles in the ER-independent cytotoxic effects of TAM. We recently reported that the cki3 gene with the ‘signaling’ GO term was related to the ER-independent antifungal action mechanisms of TAM in yeast. In this study, we report that haploinsufficiency of the essential vps54 gene, which encodes the GARP complex subunit, significantly aggravated TAM sensitivity and led to an enlarged vesicle structure in comparison with the SP286 control strain. These results strongly suggest that the vesicle-mediated transport process might be another action mechanism of the ER-independent antifungal or cytotoxic effects of TAM.
Collapse
Affiliation(s)
- Sol Lee
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Korea
| | - Miyoung Nam
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Korea
| | - Ah-Reum Lee
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Korea
| | - Seung-Tae Baek
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Korea
| | - Min Jung Kim
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Korea
| | - Ju Seong Kim
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Korea
| | - Andrew Hyunsoo Kong
- Morrissey College of Arts and Sciences, Boston College, Boston 02467, MA, USA
| | - Minho Lee
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Korea
| | - Sook-Jeong Lee
- Department of Bioactive Material Science, Jeonbuk National University, Jeonju 54896, Korea
| | - Seon-Young Kim
- Personalized Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Dong-Uk Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Kwang-Lae Hoe
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Korea.,Korea Research Institute of Chemistry & Technology, Daejeon 34141, Korea
| |
Collapse
|
38
|
Khandelwal Gilman KA, Han S, Won YW, Putnam CW. Complex interactions of lovastatin with 10 chemotherapeutic drugs: a rigorous evaluation of synergism and antagonism. BMC Cancer 2021; 21:356. [PMID: 33823841 PMCID: PMC8022429 DOI: 10.1186/s12885-021-07963-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
Background Evidence bearing on the role of statins in the prevention and treatment of cancer is confounded by the diversity of statins, chemotherapeutic agents and cancer types included in the numerous published studies; consequently, the adjunctive value of statins with chemotherapy remains uncertain. Methods We assayed lovastatin in combination with each of ten commonly prescribed chemotherapy drugs in highly reproducible in vitro assays, using a neutral cellular substrate, Saccharomyces cerevisiae. Cell density (OD600) data were analyzed for synergism and antagonism using the Loewe additivity model implemented with the Combenefit software. Results Four of the ten chemotherapy drugs – tamoxifen, doxorubicin, methotrexate and rapamycin – exhibited net synergism with lovastatin. The remaining six agents (5-fluorouracil, gemcitabine, epothilone, cisplatin, cyclophosphamide and etoposide) compiled neutral or antagonistic scores. Distinctive patterns of synergism and antagonism, often coexisting within the same concentration space, were documented with the various combinations, including those with net synergism scores. Two drug pairs, lovastatin combined with tamoxifen or cisplatin, were also assayed in human cell lines as proof of principle. Conclusions The synergistic interactions of tamoxifen, doxorubicin, methotrexate and rapamycin with lovastatin – because they suggest the possibility of clinical utility - merit further exploration and validation in cell lines and animal models. No less importantly, strong antagonistic interactions between certain agents and lovastatin argue for a cautious, data-driven approach before adding a statin to any chemotherapeutic regimen. We also urge awareness of adventitious statin usage by patients entering cancer treatment protocols. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07963-w.
Collapse
Affiliation(s)
| | - Seungmin Han
- Division of Cardiothoracic Surgery, Department of Surgery, College of Medicine-Tucson, University of Arizona, Tucson, AZ, USA
| | - Young-Wook Won
- Arizona Cancer Center, University of Arizona, Tucson, AZ, USA.,Division of Cardiothoracic Surgery, Department of Surgery, College of Medicine-Tucson, University of Arizona, Tucson, AZ, USA
| | - Charles W Putnam
- Arizona Cancer Center, University of Arizona, Tucson, AZ, USA. .,Division of Cardiothoracic Surgery, Department of Surgery, College of Medicine-Tucson, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
39
|
Lee S, Nam M, Lee AR, Lee J, Woo J, Kang NS, Balupuri A, Lee M, Kim SY, Ro H, Choi YW, Kim DU, Hoe KL. Systematic Target Screening Revealed That Tif302 Could Be an Off-Target of the Antifungal Terbinafine in Fission Yeast. Biomol Ther (Seoul) 2021; 29:234-247. [PMID: 33223513 PMCID: PMC7921855 DOI: 10.4062/biomolther.2020.166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 11/22/2022] Open
Abstract
We used a heterozygous gene deletion library of fission yeasts comprising all essential and non-essential genes for a microarray screening of target genes of the antifungal terbinafine, which inhibits ergosterol synthesis via the Erg1 enzyme. We identified 14 heterozygous strains corresponding to 10 non-essential [7 ribosomal-protein (RP) coding genes, spt7, spt20, and elp2] and 4 essential genes (tif302, rpl2501, rpl31, and erg1). Expectedly, their erg1 mRNA and protein levels had decreased compared to the control strain SP286. When we studied the action mechanism of the non-essential target genes using cognate haploid deletion strains, knockout of SAGA-subunit genes caused a down-regulation in erg1 transcription compared to the control strain ED668. However, knockout of RP genes conferred no susceptibility to ergosterol-targeting antifungals. Surprisingly, the RP genes participated in the erg1 transcription as components of repressor complexes as observed in a comparison analysis of the experimental ratio of erg1 mRNA. To understand the action mechanism of the interaction between the drug and the novel essential target genes, we performed isobologram assays with terbinafine and econazole (or cycloheximide). Terbinafine susceptibility of the tif302 heterozygous strain was attributed to both decreased erg1 mRNA levels and inhibition of translation. Moreover, Tif302 was required for efficacy of both terbinafine and cycloheximide. Based on a molecular modeling analysis, terbinafine could directly bind to Tif302 in yeasts, suggesting Tif302 as a potential off-target of terbinafine. In conclusion, this genome-wide screening system can be harnessed for the identification and characterization of target genes under any condition of interest.
Collapse
Affiliation(s)
- Sol Lee
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Miyoung Nam
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ah-Reum Lee
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jaewoong Lee
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jihye Woo
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Nam Sook Kang
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Anand Balupuri
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Minho Lee
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Seon-Young Kim
- Personalized Genomic Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Hyunju Ro
- Department of Biological Science, College of Bioscience & Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | | | - Dong-Uk Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Kwang-Lae Hoe
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
40
|
Parikh SB, Castilho Coelho N, Carvunis AR. LI Detector: a framework for sensitive colony-based screens regardless of the distribution of fitness effects. G3-GENES GENOMES GENETICS 2021; 11:6161305. [PMID: 33693606 PMCID: PMC8022918 DOI: 10.1093/g3journal/jkaa068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022]
Abstract
Microbial growth characteristics have long been used to investigate fundamental questions of biology. Colony-based high-throughput screens enable parallel fitness estimation of thousands of individual strains using colony growth as a proxy for fitness. However, fitness estimation is complicated by spatial biases affecting colony growth, including uneven nutrient distribution, agar surface irregularities, and batch effects. Analytical methods that have been developed to correct for these spatial biases rely on the following assumptions: (1) that fitness effects are normally distributed, and (2) that most genetic perturbations lead to minor changes in fitness. Although reasonable for many applications, these assumptions are not always warranted and can limit the ability to detect small fitness effects. Beneficial fitness effects, in particular, are notoriously difficult to detect under these assumptions. Here, we developed the linear interpolation-based detector (LI Detector) framework to enable sensitive colony-based screening without making prior assumptions about the underlying distribution of fitness effects. The LI Detector uses a grid of reference colonies to assign a relative fitness value to every colony on the plate. We show that the LI Detector is effective in correcting for spatial biases and equally sensitive toward increase and decrease in fitness. LI Detector offers a tunable system that allows the user to identify small fitness effects with unprecedented sensitivity and specificity. LI Detector can be utilized to develop and refine gene-gene and gene-environment interaction networks of colony-forming organisms, including yeast, by increasing the range of fitness effects that can be reliably detected.
Collapse
Affiliation(s)
- Saurin Bipin Parikh
- Department of Computational and Systems Biology, Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Nelson Castilho Coelho
- Department of Computational and Systems Biology, Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Anne-Ruxandra Carvunis
- Department of Computational and Systems Biology, Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
41
|
Kahlhofer J, Leon S, Teis D, Schmidt O. The α-arrestin family of ubiquitin ligase adaptors links metabolism with selective endocytosis. Biol Cell 2021; 113:183-219. [PMID: 33314196 DOI: 10.1111/boc.202000137] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022]
Abstract
The regulation of nutrient uptake into cells is important, as it allows to either increase biomass for cell growth or to preserve homoeostasis. A key strategy to adjust cellular nutrient uptake is the reconfiguration of the nutrient transporter repertoire at the plasma membrane by the addition of nutrient transporters through the secretory pathway and by their endocytic removal. In this review, we focus on the mechanisms that regulate selective nutrient transporter endocytosis, which is mediated by the α-arrestin protein family. In the budding yeast Saccharomyces cerevisiae, 14 different α-arrestins (also named arrestin-related trafficking adaptors, ARTs) function as adaptors for the ubiquitin ligase Rsp5. They instruct Rsp5 to ubiquitinate subsets of nutrient transporters to orchestrate their endocytosis. The ART proteins are under multilevel control of the major nutrient sensing systems, including amino acid sensing by the general amino acid control and target of rapamycin pathways, and energy sensing by 5'-adenosine-monophosphate-dependent kinase. The function of the six human α-arrestins is comparably under-characterised. Here, we summarise the current knowledge about the function, regulation and substrates of yeast ARTs and human α-arrestins, and highlight emerging communalities and general principles.
Collapse
Affiliation(s)
- Jennifer Kahlhofer
- Institute for Cell Biology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Sebastien Leon
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - David Teis
- Institute for Cell Biology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Oliver Schmidt
- Institute for Cell Biology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
42
|
Parcha PK, Sarvagalla S, Ashok C, Sudharshan SJ, Dyavaiah M, Coumar MS, Rajasekaran B. Repositioning antispasmodic drug Papaverine for the treatment of chronic myeloid leukemia. Pharmacol Rep 2021; 73:615-628. [PMID: 33389727 DOI: 10.1007/s43440-020-00196-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 11/08/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Papaverine is a benzylisoquinoline alkaloid from the plant Papaver somniferum (Opium poppy). It is approved as an antispasmodic drug by the US FDA and is also reported to have anti-cancer properties. Here, Papaverine's activity in chronic myeloid leukemia (CML) is explored using Saccharomyces cerevisiae, mammalian cancer cell lines, and in silico studies. METHODS The sensitivity of wild-type and mutant (anti-oxidant defense, apoptosis) strains of S. cerevisiae to the drug Papaverine was tested by colony formation, spot assays, and AO/EB staining. In vitro cytotoxic effect was investigated on HCT15 (colon), A549 (lung), HeLa (cervical), and K562 (Bcr-Abl positive CML), and RAW 264.7 cell lines; cell cycle, mitochondrial membrane potential, ROS detection analyzed in K562 cells using flow cytometry and apoptotic markers, Bcr-Abl signaling pathways examined by western blotting. Molecular docking and molecular dynamics simulation of Papaverine against the target Bcr-Abl were also carried out. RESULTS Investigation in S. cerevisiae evidenced Papaverine induces ROS-mediated apoptosis. Subsequent in vitro examination showed that CML cell line K562 was more sensitive to the drug Papaverine. Papaverine induces ROS generation, promotes apoptosis, and inhibits Bcr-Abl downstream signaling. Papaverine acts synergistically with the drug Imatinib. Furthermore, the docking and molecular dynamic simulation studies supported that Papaverine binds to the allosteric site of Bcr-Abl. CONCLUSION The data presented here have added support to the concept of polypharmacology of existing drugs and natural compounds to interact with more than one target. This study provides a proof-of-concept for repositioning Papaverine as an anti-CML drug.
Collapse
Affiliation(s)
- Phani Krishna Parcha
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
- DBT-Interdisciplinary Program in Life Sciences, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Sailu Sarvagalla
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Cheemala Ashok
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - S J Sudharshan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
- DBT-Interdisciplinary Program in Life Sciences, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
- DBT-Interdisciplinary Program in Life Sciences, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Mohane Selvaraj Coumar
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.
| | - Baskaran Rajasekaran
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
- DBT-Interdisciplinary Program in Life Sciences, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
43
|
Hamida RS, Shami A, Ali MA, Almohawes ZN, Mohammed AE, Bin-Meferij MM. Kefir: A protective dietary supplementation against viral infection. Biomed Pharmacother 2021; 133:110974. [PMID: 33186795 PMCID: PMC7655491 DOI: 10.1016/j.biopha.2020.110974] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by a recently discovered coronavirus termed 'severe acute respiratory syndrome coronavirus 2' (SARS-CoV-2). Several scholars have tested antiviral drugs and compounds to overcome COVID-19. 'Kefir' is a fermented milk drink similar to a thin yogurt that is made from kefir grains. Kefir and its probiotic contents can modulate the immune system to suppress infections from viruses (e.g., Zika, hepatitis C, influenza, rotaviruses). The antiviral mechanisms of kefir involve enhancement of macrophage production, increasing phagocytosis, boosting production of cluster of differentiation-positive (CD4+), CD8+, immunoglobulin (Ig)G+ and IgA+ B cells, T cells, neutrophils, as well as cytokines (e.g., interleukin (IL)-2, IL-12, interferon gamma-γ). Kefir can act as an anti-inflammatory agent by reducing expression of IL-6, IL-1, TNF-α, and interferon-γ. Hence, kefir might be a significant inhibitor of the 'cytokine storm' that contributes to COVID-19. Here, we review several studies with a particular emphasis on the effect of kefir consumption and their microbial composition against viral infection, as well as discussing the further development of kefir as a protective supplementary dietary against SARS-CoV-2 infection via modulating the immune response.
Collapse
Affiliation(s)
- Reham Samir Hamida
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Egypt.
| | - Ashwag Shami
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
| | - Mohamed Abdelaal Ali
- Biotechnology Unit, Department of Plant Production, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia.
| | - Zakiah Nasser Almohawes
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
| | - Afrah E Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
| | | |
Collapse
|
44
|
The Hsp70-Hsp90 go-between Hop/Stip1/Sti1 is a proteostatic switch and may be a drug target in cancer and neurodegeneration. Cell Mol Life Sci 2021; 78:7257-7273. [PMID: 34677645 PMCID: PMC8629791 DOI: 10.1007/s00018-021-03962-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/24/2021] [Accepted: 09/24/2021] [Indexed: 01/17/2023]
Abstract
The Hsp70 and Hsp90 molecular chaperone systems are critical regulators of protein homeostasis (proteostasis) in eukaryotes under normal and stressed conditions. The Hsp70 and Hsp90 systems physically and functionally interact to ensure cellular proteostasis. Co-chaperones interact with Hsp70 and Hsp90 to regulate and to promote their molecular chaperone functions. Mammalian Hop, also called Stip1, and its budding yeast ortholog Sti1 are eukaryote-specific co-chaperones, which have been thought to be essential for substrate ("client") transfer from Hsp70 to Hsp90. Substrate transfer is facilitated by the ability of Hop to interact simultaneously with Hsp70 and Hsp90 as part of a ternary complex. Intriguingly, in prokaryotes, which lack a Hop ortholog, the Hsp70 and Hsp90 orthologs interact directly. Recent evidence shows that eukaryotic Hsp70 and Hsp90 can also form a prokaryote-like binary chaperone complex in the absence of Hop, and that this binary complex displays enhanced protein folding and anti-aggregation activities. The canonical Hsp70-Hop-Hsp90 ternary chaperone complex is essential for optimal maturation and stability of a small subset of clients, including the glucocorticoid receptor, the tyrosine kinase v-Src, and the 26S/30S proteasome. Whereas many cancers have increased levels of Hop, the levels of Hop decrease in the aging human brain. Since Hop is not essential in all eukaryotic cells and organisms, tuning Hop levels or activity might be beneficial for the treatment of cancer and neurodegeneration.
Collapse
|
45
|
Brockway S, Wang G, Jackson JM, Amici DR, Takagishi SR, Clutter MR, Bartom ET, Mendillo ML. Quantitative and multiplexed chemical-genetic phenotyping in mammalian cells with QMAP-Seq. Nat Commun 2020; 11:5722. [PMID: 33184288 PMCID: PMC7661543 DOI: 10.1038/s41467-020-19553-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022] Open
Abstract
Chemical-genetic interaction profiling in model organisms has proven powerful in providing insights into compound mechanism of action and gene function. However, identifying chemical-genetic interactions in mammalian systems has been limited to low-throughput or computational methods. Here, we develop Quantitative and Multiplexed Analysis of Phenotype by Sequencing (QMAP-Seq), which leverages next-generation sequencing for pooled high-throughput chemical-genetic profiling. We apply QMAP-Seq to investigate how cellular stress response factors affect therapeutic response in cancer. Using minimal automation, we treat pools of 60 cell types—comprising 12 genetic perturbations in five cell lines—with 1440 compound-dose combinations, generating 86,400 chemical-genetic measurements. QMAP-Seq produces precise and accurate quantitative measures of acute drug response comparable to gold standard assays, but with increased throughput at lower cost. Moreover, QMAP-Seq reveals clinically actionable drug vulnerabilities and functional relationships involving these stress response factors, many of which are activated in cancer. Thus, QMAP-Seq provides a broadly accessible and scalable strategy for chemical-genetic profiling in mammalian cells. Identifying chemical-genetic interactions in mammalian cells is limited to low-throughput or computational methods. Here, the authors present QMAP-Seq, a broadly accessible and scalable approach that uses NGS for pooled high-throughput chemical-genetic profiling in mammalian cells.
Collapse
Affiliation(s)
- Sonia Brockway
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Geng Wang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jasen M Jackson
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - David R Amici
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Seesha R Takagishi
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Matthew R Clutter
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA.,Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Marc L Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
46
|
Guan M, Xia P, Tian M, Chen D, Zhang X. Molecular fingerprints of conazoles via functional genomic profiling of Saccharomyces cerevisiae. Toxicol In Vitro 2020; 69:104998. [PMID: 32919014 DOI: 10.1016/j.tiv.2020.104998] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022]
Abstract
Conazoles were designed to inhibit ergosterol biosynthesis. Conazoles have been widely used as agricultural fungicides and are frequently detected in the environment. Although conazoles have been reported to have adverse effects, such as potential carcinogenic effects, the underlying molecular mechanisms of toxicity remain unclear. Here, the molecular fingerprints of five conazoles (propiconazole (Pro), penconazole (Pen), tebuconazole (Teb), flusilazole (Flu) and epoxiconazole (Epo)) were assessed in Saccharomyces cerevisiae (yeast) via functional genome-wide knockout mutant profiling. A total of 169 (4.49%), 176 (4.67%), 198 (5.26%), 218 (5.79%) and 173 (4.59%) responsive genes were identified at three concentrations (IC50, IC20 and IC10) of Pro, Pen, Teb, Flu and Epo, respectively. The five conazoles tended to have similar gene mutant fingerprints and toxicity mechanisms. "Ribosome" (sce03010) and "cytoplasmic translation" (GO: 0002181) were the common KEGG pathway and GO biological process term by gene set enrichment analysis of the responsive genes, which suggested that conazoles influenced protein synthesis. Conazoles also affected fatty acids synthesis because "biosynthesis of unsaturated fatty acids" pathway was among the top-ranked KEGG pathways. Moreover, two genes, YGR037C (acyl-CoA-binding protein) and YCR034W (fatty acid elongase), were key fingerprints of conazoles because they played vital roles in conazole-induced toxicity. Overall, the fingerprints derived from the yeast functional genomic screening provide an alternative approach to elucidate the molecular mechanisms of environmental pollutant conazoles.
Collapse
Affiliation(s)
- Miao Guan
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu 210023, China; Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu 210023, China.
| | - Pu Xia
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu 210023, China
| | - Mingming Tian
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu 210023, China
| | - Dong Chen
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu 210023, China; Jiangsu Provincial Academy of Environmental Science, 176 North Jiangdong Rd., Nanjing, Jiangsu 210036, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu 210023, China.
| |
Collapse
|
47
|
Xue A, Robbins N, Cowen LE. Advances in fungal chemical genomics for the discovery of new antifungal agents. Ann N Y Acad Sci 2020; 1496:5-22. [PMID: 32860238 DOI: 10.1111/nyas.14484] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
Invasive fungal infections have escalated from a rare curiosity to a major cause of human mortality around the globe. This is in part due to a scarcity in the number of antifungal drugs available to combat mycotic disease, making the discovery of novel bioactive compounds and determining their mode of action of utmost importance. The development and application of chemical genomic assays using the model yeast Saccharomyces cerevisiae has provided powerful methods to identify the mechanism of action of diverse molecules in a living cell. Furthermore, complementary assays are continually being developed in fungal pathogens, most notably Candida albicans and Cryptococcus neoformans, to elucidate compound mechanism of action directly in the pathogen of interest. Collectively, the suite of chemical genetic assays that have been developed in multiple fungal species enables the identification of candidate drug target genes, as well as genes involved in buffering drug target pathways, and genes involved in general cellular responses to small molecules. In this review, we examine current yeast chemical genomic assays and highlight how such resources provide powerful tools that can be utilized to bolster the antifungal pipeline.
Collapse
Affiliation(s)
- Alice Xue
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
48
|
Sugai H, Tomita S, Kurita R. Pattern-recognition-based Sensor Arrays for Cell Characterization: From Materials and Data Analyses to Biomedical Applications. ANAL SCI 2020; 36:923-934. [PMID: 32249248 DOI: 10.2116/analsci.20r002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To capture a broader scope of complex biological phenomena, alternatives to conventional sensing based on specificity for cell detection and characterization are needed. Pattern-recognition-based sensing is an analytical method designed to mimic mammalian sensory systems for analyte identification based on the pattern recognition of multivariate data, which are generated using an array of multiple probes that cross-reactively interact with analytes. This sensing approach is significantly different from conventional specific cell sensing based on highly specific probes, including antibodies against biomarkers. Encouraged by the advantages of this technique, such as the simplicity, rapidity, and tunability of the systems without requiring a priori knowledge of biomarkers, numerous sensor arrays have been developed over the past decade and used in a variety of cell sensing applications; these include disease diagnosis, drug discovery, and fundamental research. This review summarizes recent progress in pattern-recognition-based cell sensing, with a particular focus on guidelines for designing materials and arrays, techniques for analyzing response patterns, and applications of sensor systems that are focused primarily for the biomedical field.
Collapse
Affiliation(s)
- Hiroka Sugai
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Shunsuke Tomita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST).,DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST)
| | - Ryoji Kurita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST).,DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST).,Faculty of Pure and Applied Sciences, University of Tsukuba
| |
Collapse
|
49
|
Frøsig MM, Costa SR, Liesche J, Østerberg JT, Hanisch S, Nintemann S, Sørensen H, Palmgren M, Pomorski TG, López-Marqués RL. Pseudohyphal growth in Saccharomyces cerevisiae involves protein kinase-regulated lipid flippases. J Cell Sci 2020; 133:jcs235994. [PMID: 32661085 DOI: 10.1242/jcs.235994] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/01/2020] [Indexed: 12/15/2022] Open
Abstract
Lipid flippases of the P4 ATPase family establish phospholipid asymmetry in eukaryotic cell membranes and are involved in many essential cellular processes. The yeast Saccharomyces cerevisiae contains five P4 ATPases, among which Dnf3p is poorly characterized. Here, we demonstrate that Dnf3p is a flippase that catalyzes translocation of major glycerophospholipids, including phosphatidylserine, towards the cytosolic membrane leaflet. Deletion of the genes encoding Dnf3p and the distantly related P4 ATPases Dnf1p and Dnf2p results in yeast mutants with aberrant formation of pseudohyphae, suggesting that the Dnf1p-Dnf3p proteins have partly redundant functions in the control of this specialized form of polarized growth. Furthermore, as previously demonstrated for Dnf1 and Dnf2p, the phospholipid flipping activity of Dnf3p is positively regulated by flippase kinase 1 (Fpk1p) and Fpk2p. Phylogenetic analyses demonstrate that Dnf3p belongs to a subfamily of P4 ATPases specific for fungi and are likely to represent a hallmark of fungal evolution.
Collapse
Affiliation(s)
- Merethe Mørch Frøsig
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK - 1871 Frederiksberg C, Denmark
| | - Sara Rute Costa
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK - 1871 Frederiksberg C, Denmark
| | - Johannes Liesche
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK - 1871 Frederiksberg C, Denmark
| | - Jeppe Thulin Østerberg
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK - 1871 Frederiksberg C, Denmark
| | - Susanne Hanisch
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK - 1871 Frederiksberg C, Denmark
| | - Sebastian Nintemann
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK - 1871 Frederiksberg C, Denmark
| | - Helle Sørensen
- Data Science Lab, Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK - 1871 Frederiksberg C, Denmark
| | - Thomas Günther Pomorski
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK - 1871 Frederiksberg C, Denmark
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Rosa L López-Marqués
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK - 1871 Frederiksberg C, Denmark
| |
Collapse
|
50
|
Ravishankar A, Pupo A, Gallagher JEG. Resistance Mechanisms of Saccharomyces cerevisiae to Commercial Formulations of Glyphosate Involve DNA Damage Repair, the Cell Cycle, and the Cell Wall Structure. G3 (BETHESDA, MD.) 2020; 10:2043-2056. [PMID: 32299824 PMCID: PMC7263678 DOI: 10.1534/g3.120.401183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/13/2020] [Indexed: 12/16/2022]
Abstract
The use of glyphosate-based herbicides is widespread and despite their extensive use, their effects are yet to be deciphered completely. The additives in commercial formulations of glyphosate, though labeled inert when used individually, have adverse effects when used in combination with other additives along with the active ingredient. As a species, Saccharomyces cerevisiae has a wide range of resistance to glyphosate-based herbicides. To investigate the underlying genetic differences between sensitive and resistant strains, global changes in gene expression were measured, when yeast were exposed to a glyphosate-based herbicide (GBH). Expression of genes involved in numerous pathways crucial to the cell's functioning, such as DNA replication, MAPK signaling, meiosis, and cell wall synthesis changed. Because so many diverse pathways were affected, these strains were then subjected to in-lab-evolutions (ILE) to select mutations that confer increased resistance. Common fragile sites were found to play a role in adaptation to resistance to long-term exposure of GBHs. Copy number increased in approximately 100 genes associated with cell wall proteins, mitochondria, and sterol transport. Taking ILE and transcriptomic data into account it is evident that GBHs affect multiple biological processes in the cell. One such component is the cell wall structure which acts as a protective barrier in alleviating the stress caused by exposure to inert additives in GBHs. Sed1, a GPI-cell wall protein, plays an important role in tolerance of a GBH. Hence, a detailed study of the changes occurring at the genome and transcriptome levels is essential to better understand the effects of an environmental stressor such as a GBH, on the cell as a whole.
Collapse
Affiliation(s)
| | - Amaury Pupo
- Department of Biology, West Virginia University
| | | |
Collapse
|