1
|
Velásquez-Escobar AM, Hillhouse AE, Magnuson T, Threadgill DW. Snrnp25 is a candidate for the peri-implantation lethal phenotype of the Hba deletions. Mamm Genome 2025:10.1007/s00335-025-10133-z. [PMID: 40399475 DOI: 10.1007/s00335-025-10133-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Accepted: 04/29/2025] [Indexed: 05/23/2025]
Abstract
Mutations in adult hemoglobin alpha genes in humans lead to blood disorders commonly known as α-thalassemia. In search of a mouse model for this disease, mutagenesis screens have identified several deletions that resemble these phenotypes. The Hbab2(th) deletion, in particular, replicates the characteristics of alpha-thalassemia minor in heterozygous mice but presents a homozygous embryonic lethal phenotype. Previous analyses of Hbab2(th) mice suggested that the deletion affects both Hba genes (Hba-a1 and Hba-a2) and considered epidermal growth factor receptor (Egfr) or rhomboid 5 homolog 1 (Rhbdf1) to be responsible for the embryonic lethality. Molecular analysis of Hbab2(th) revealed a deletion spanning a 1 cM region of mouse chromosome 11. Importantly, the Hbab2(th) deletion does not extend to Egfr, indicating that the observed lethality of homozygous embryos is not due to the loss of Egfr. Sequence analysis of the Hbab2(th) deletion showed that the Hba-a2 gene is not deleted, but the lack of expression is likely due to the disruption of upstream regulatory regions. Furthermore, we identify Snrnp25, which codes for the small nuclear ribonucleoprotein 25 (U11/U12), as the candidate gene most likely responsible for the peri-implantation lethality of Hbab2(th) homozygous mice. These findings enhance the understanding of the genetic mechanisms underlying α-thalassemia and provide insights into novel genes essential for early mammalian development.
Collapse
Affiliation(s)
- Ana María Velásquez-Escobar
- Department of Cell Biology and Genetics, Texas A&M University, College Station, TX, 77843, USA
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX, 77843, USA
| | - Andrew E Hillhouse
- Department of Cell Biology and Genetics, Texas A&M University, College Station, TX, 77843, USA
| | - Terry Magnuson
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - David W Threadgill
- Department of Cell Biology and Genetics, Texas A&M University, College Station, TX, 77843, USA.
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX, 77843, USA.
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
2
|
Meng X, Wang Y, Tang B, Zhou J, Gu Y, Shen Q, Zhou Y, Wang B, Fang H, Cao Y. A Comprehensive Analysis of the Alternative Splicing Co-Factor U2AF65B Gene Family Reveals Its Role in Stress Responses and Root Development. Int J Mol Sci 2025; 26:3901. [PMID: 40332802 PMCID: PMC12027700 DOI: 10.3390/ijms26083901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/14/2025] [Accepted: 04/18/2025] [Indexed: 05/08/2025] Open
Abstract
U2AF65, a 65 kDa splicing co-factor, promotes spliceosome assembly. Although its role in alternative splicing (AS) is known, the function of U2AF65B (the large subunit of U2AF65) remains unclear. Therefore, we systematically identified and analyzed the U2AF65B gene family across 36 plant species, revealing 103 putative members with conserved structures and functions. Phylogenetic analysis divided the genes into two clades and five subgroups, indicating evolutionary divergence. Gene structure and conserved motif analyses showed that most U2AF65B genes have complex structures and shared similar motifs. Homology modeling and amino acid conservation analyses revealed significant conservation in U2AF65B amino acid sequences, particularly in Groups D and E. Cis-acting element analysis indicated that U2AF65B genes respond to various stimuli, supported by expression analysis under different stress conditions. Subcellular localization predictions indicated that U2AF65B proteins primarily localize in the nucleus and the cytoplasm. Alternative splicing (AS) profile analysis showed that the AS frequency likely varies between species. Functional analysis of the AtU2AF65B mutant in Arabidopsis revealed that AtU2AF65B function loss enhances root elongation and attenuates ABA-dependent germination suppression, indicating negatively regulated seedling growth and development. These findings provide insights into the evolutionary history, molecular mechanisms, and functional roles of the U2AF65B gene family in plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hui Fang
- College of Life Sciences, Nantong University, Nantong 226019, China; (X.M.); (Y.W.); (B.T.); (J.Z.); (Y.G.); (Q.S.); (Y.Z.); (B.W.)
| | - Yunying Cao
- College of Life Sciences, Nantong University, Nantong 226019, China; (X.M.); (Y.W.); (B.T.); (J.Z.); (Y.G.); (Q.S.); (Y.Z.); (B.W.)
| |
Collapse
|
3
|
García Juárez AM, Carrillo González NJ, Campos-Ordoñez T, Gasca Martínez Y, Gudiño-Cabrera G. Neuronal splicing regulator RBFOX3 (NeuN) distribution and organization are modified in response to monosodium glutamate in rat brain at postnatal day 14. Acta Histochem 2024; 126:152207. [PMID: 39427608 DOI: 10.1016/j.acthis.2024.152207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Neuronal splicing regulator RNA binding protein, fox-1 homolog 3 (NeuN/RbFox3), is expressed in postmitotic neurons and distributed heterogeneously in the cell. During excitotoxicity events caused by the excess glutamate, several alterations that culminate in neuronal death have been described. However, NeuN/RbFox3 organization and distribution are still unknown. Therefore, our objective was to analyze the nucleocytoplasmic distribution and organization of NeuN/RbFox3 in hippocampal and cortical neurons using an excitotoxicity model with monosodium glutamate salt (MSG). We used neonatal Wistar rats administered subcutaneously with 4 MSG mg/kg during the postnatal day (PND) 1, 3, 5, and 7. The control group was rats without MSG administration. On 14 PND, the brain was removed, and coronal sections were used for immunodetection with the antibody NeuN, DAPI, and the propidium iodide staining for histological evaluation. The results indicate that in the control group, NeuN/RbFox3 was organized into macromolecular condensates inside and outside the nucleus, forming defined nuclear compartments. Additionally, NeuN/RbFox3 was distributed proximal to the nucleus in the cytoplasm. In contrast, in the group treated with MSG, the distribution was diffuse and dispersed in the nucleus and cytoplasm without the formation of compartments in the nucleus. Our findings, which highlight the significant impact of MSG administration in the neonatal period on the distribution and organization of NeuN/RbFox3 of neurons in the hippocampus and cerebral cortex, offer a new perspective to investigate MSG alterations in the developmental brain.
Collapse
Affiliation(s)
- Anaís Monzerrat García Juárez
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Nidia Jannette Carrillo González
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Tania Campos-Ordoñez
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Yadira Gasca Martínez
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Graciela Gudiño-Cabrera
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico.
| |
Collapse
|
4
|
Theme 5 Human Cell Biology and Pathology. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:158-184. [PMID: 39508672 DOI: 10.1080/21678421.2024.2403302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
|
5
|
Barraza SJ, Woll MG. Pre‐mRNA Splicing Modulation. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2024:151-202. [DOI: 10.1002/9783527840458.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Rawat C, Heemers HV. Alternative splicing in prostate cancer progression and therapeutic resistance. Oncogene 2024; 43:1655-1668. [PMID: 38658776 PMCID: PMC11136669 DOI: 10.1038/s41388-024-03036-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Prostate cancer (CaP) remains the second leading cause of cancer deaths in western men. CaP mortality results from diverse molecular mechanisms that mediate resistance to the standard of care treatments for metastatic disease. Recently, alternative splicing has been recognized as a hallmark of CaP aggressiveness. Alternative splicing events cause treatment resistance and aggressive CaP behavior and are determinants of the emergence of the two major types of late-stage treatment-resistant CaP, namely castration-resistant CaP (CRPC) and neuroendocrine CaP (NEPC). Here, we review recent multi-omics data that are uncovering the complicated landscape of alternative splicing events during CaP progression and the impact that different gene transcript isoforms can have on CaP cell biology and behavior. We discuss renewed insights in the molecular machinery by which alternative splicing occurs and contributes to the failure of systemic CaP therapies. The potential for alternative splicing events to serve as diagnostic markers and/or therapeutic targets is explored. We conclude by considering current challenges and promises associated with splicing-modulating therapies, and their potential for clinical translation into CaP patient care.
Collapse
Affiliation(s)
- Chitra Rawat
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Hannelore V Heemers
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
7
|
Larue GE, Roy SW. Where the minor things are: a pan-eukaryotic survey suggests neutral processes may explain much of minor intron evolution. Nucleic Acids Res 2023; 51:10884-10908. [PMID: 37819006 PMCID: PMC10639083 DOI: 10.1093/nar/gkad797] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
Spliceosomal introns are gene segments removed from RNA transcripts by ribonucleoprotein machineries called spliceosomes. In some eukaryotes a second 'minor' spliceosome is responsible for processing a tiny minority of introns. Despite its seemingly modest role, minor splicing has persisted for roughly 1.5 billion years of eukaryotic evolution. Identifying minor introns in over 3000 eukaryotic genomes, we report diverse evolutionary histories including surprisingly high numbers in some fungi and green algae, repeated loss, as well as general biases in their positional and genic distributions. We estimate that ancestral minor intron densities were comparable to those of vertebrates, suggesting a trend of long-term stasis. Finally, three findings suggest a major role for neutral processes in minor intron evolution. First, highly similar patterns of minor and major intron evolution contrast with both functionalist and deleterious model predictions. Second, observed functional biases among minor intron-containing genes are largely explained by these genes' greater ages. Third, no association of intron splicing with cell proliferation in a minor intron-rich fungus suggests that regulatory roles are lineage-specific and thus cannot offer a general explanation for minor splicing's persistence. These data constitute the most comprehensive view of minor introns and their evolutionary history to date, and provide a foundation for future studies of these remarkable genetic elements.
Collapse
Affiliation(s)
- Graham E Larue
- Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, CA 95343, USA
| | - Scott W Roy
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA 95343, USA
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| |
Collapse
|
8
|
Busselez J, Uzbekov RE, Franco B, Pancione M. New insights into the centrosome-associated spliceosome components as regulators of ciliogenesis and tissue identity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1776. [PMID: 36717357 DOI: 10.1002/wrna.1776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 02/01/2023]
Abstract
Biomolecular condensates are membrane-less assemblies of proteins and nucleic acids. Centrosomes are biomolecular condensates that play a crucial role in nuclear division, cytoskeletal remodeling, and cilia formation in animal cells. Spatial omics technology is providing new insights into the dynamic exchange of spliceosome components between the nucleus and the centrosome/cilium. Intriguingly, centrosomes are emerging as cytoplasmic sites for information storage, enriched with RNA molecules and RNA-processing proteins. Furthermore, growing evidence supports the view that nuclear spliceosome components assembled at the centrosome function as potential coordinators of splicing subprograms, pluripotency, and cell differentiation. In this article, we first discuss the current understanding of the centrosome/cilium complex, which controls both stem cell differentiation and pluripotency. We next explore the molecular mechanisms that govern splicing factor assembly and disassembly around the centrosome and examine how RNA processing pathways contribute to ciliogenesis. Finally, we discuss numerous unresolved compelling questions regarding the centrosome-associated spliceosome components and transcript variants within the cytoplasm as sources of RNA-based secondary messages in the regulation of cell identity and cell fate determination. This article is categorized under: RNA-Based Catalysis > RNA Catalysis in Splicing and Translation RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > Splicing Regulation/Alternative Splicing RNA Processing > RNA Processing.
Collapse
Affiliation(s)
- Johan Busselez
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, France
| | - Rustem E Uzbekov
- Faculté de Médecine, Université de Tours, Tours, France
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Translational Medicine, Medical Genetics, University of Naples "Federico II", Naples, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine program, University of Naples Federico II, Naples, Italy
| | - Massimo Pancione
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University Madrid, Madrid, Spain
| |
Collapse
|
9
|
Augspach A, Drake KD, Roma L, Qian E, Lee SR, Clarke D, Kumar S, Jaquet M, Gallon J, Bolis M, Triscott J, Galván JA, Chen Y, Thalmann GN, Kruithof-de Julio M, Theurillat JPP, Wuchty S, Gerstein M, Piscuoglio S, Kanadia RN, Rubin MA. Minor intron splicing is critical for survival of lethal prostate cancer. Mol Cell 2023; 83:1983-2002.e11. [PMID: 37295433 PMCID: PMC10637423 DOI: 10.1016/j.molcel.2023.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 03/29/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Abstract
The evolutionarily conserved minor spliceosome (MiS) is required for protein expression of ∼714 minor intron-containing genes (MIGs) crucial for cell-cycle regulation, DNA repair, and MAP-kinase signaling. We explored the role of MIGs and MiS in cancer, taking prostate cancer (PCa) as an exemplar. Both androgen receptor signaling and elevated levels of U6atac, a MiS small nuclear RNA, regulate MiS activity, which is highest in advanced metastatic PCa. siU6atac-mediated MiS inhibition in PCa in vitro model systems resulted in aberrant minor intron splicing leading to cell-cycle G1 arrest. Small interfering RNA knocking down U6atac was ∼50% more efficient in lowering tumor burden in models of advanced therapy-resistant PCa compared with standard antiandrogen therapy. In lethal PCa, siU6atac disrupted the splicing of a crucial lineage dependency factor, the RE1-silencing factor (REST). Taken together, we have nominated MiS as a vulnerability for lethal PCa and potentially other cancers.
Collapse
Affiliation(s)
- Anke Augspach
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Kyle D Drake
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Luca Roma
- Institute of Pathology and Medical Genetics, University Hospital Basel, 4056 Basel, Switzerland
| | - Ellen Qian
- Department of Computer Science, Yale University, New Haven, CT 06520, USA; Yale College, New Haven, CT 06520, USA
| | - Se Ri Lee
- Department of Computer Science, Yale University, New Haven, CT 06520, USA; Yale College, New Haven, CT 06520, USA
| | - Declan Clarke
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Sushant Kumar
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Muriel Jaquet
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - John Gallon
- Institute of Pathology and Medical Genetics, University Hospital Basel, 4056 Basel, Switzerland
| | - Marco Bolis
- Institute of Oncology Research, 6500 Bellinzona, Switzerland; Computational Oncology Unit, Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, 20156 Milano, Italy
| | - Joanna Triscott
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - José A Galván
- Institute of Pathology, University of Bern, Bern 3008, Switzerland
| | - Yu Chen
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - George N Thalmann
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland; Department of Urology, Inselspital, Bern University Hospital, 3008 Bern, Switzerland
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland; Department of Urology, Inselspital, Bern University Hospital, 3008 Bern, Switzerland; Bern Center for Precision Medicine, University of Bern and Inselspital, 3008 Bern, Switzerland
| | - Jean-Philippe P Theurillat
- Institute of Oncology Research, 6500 Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera italiana, 6900 Lugano, Switzerland
| | - Stefan Wuchty
- Department of Computer Science, University of Miami, Coral Gables, FL 33146, USA; Sylvester Comprehensive Cancer Center, University of Miami, Coral Gables, FL 33136, USA; Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | - Mark Gerstein
- Department of Computer Science, Yale University, New Haven, CT 06520, USA; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Salvatore Piscuoglio
- Institute of Pathology and Medical Genetics, University Hospital Basel, 4056 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Rahul N Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA.
| | - Mark A Rubin
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland; Bern Center for Precision Medicine, University of Bern and Inselspital, 3008 Bern, Switzerland.
| |
Collapse
|
10
|
Borg R, Herrera P, Purkiss A, Cacciottolo R, Cauchi RJ. Reduced levels of ALS gene DCTN1 induce motor defects in Drosophila. Front Neurosci 2023; 17:1164251. [PMID: 37360176 PMCID: PMC10289029 DOI: 10.3389/fnins.2023.1164251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neuromuscular disease that has a strong genetic component. Deleterious variants in the DCTN1 gene are known to be a cause of ALS in diverse populations. DCTN1 encodes the p150 subunit of the molecular motor dynactin which is a key player in the bidirectional transport of cargos within cells. Whether DCTN1 mutations lead to the disease through either a gain or loss of function mechanism remains unresolved. Moreover, the contribution of non-neuronal cell types, especially muscle tissue, to ALS phenotypes in DCTN1 carriers is unknown. Here we show that gene silencing of Dctn1, the Drosophila main orthologue of DCTN1, either in neurons or muscles is sufficient to cause climbing and flight defects in adult flies. We also identify Dred, a protein with high homology to Drosophila Dctn1 and human DCTN1, that on loss of function also leads to motoric impairments. A global reduction of Dctn1 induced a significant reduction in the mobility of larvae and neuromuscular junction (NMJ) deficits prior to death at the pupal stage. RNA-seq and transcriptome profiling revealed splicing alterations in genes required for synapse organisation and function, which may explain the observed motor dysfunction and synaptic defects downstream of Dctn1 ablation. Our findings support the possibility that loss of DCTN1 function can lead to ALS and underscore an important requirement for DCTN1 in muscle in addition to neurons.
Collapse
Affiliation(s)
- Rebecca Borg
- Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Paul Herrera
- Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Angie Purkiss
- Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Rebecca Cacciottolo
- Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Ruben J. Cauchi
- Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| |
Collapse
|
11
|
Kumar R, Mondal R, Lahiri T, Pal MK. Application of sequence semantic and integrated cellular geography approach to study alternative biogenesis of exonic circular RNA. BMC Bioinformatics 2023; 24:148. [PMID: 37069509 PMCID: PMC10108499 DOI: 10.1186/s12859-023-05279-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/09/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Concurrent existence of lncRNA and circular RNA at both nucleus and cytosol within a cell at different proportions is well reported. Previous studies showed that circular RNAs are synthesized in nucleus followed by transportation across the nuclear membrane and the export is primarily defined by their length. lncRNAs primarily originated through inefficient splicing and seem to use NXF1 for cytoplasm export. However, it is not clear whether circularization of lncRNA happens only in nucleus or it also occurs in cytoplasm. Studies indicate that circular RNAs arise when the splicing apparatus undergoes a phenomenon of back splicing. Minor spliceosome (U12 type) mediated splicing occurs in cytoplasm and is responsible for the splicing of 0.5% of introns of human cells. Therefore, possibility of cRNA biogenesis mediated by minor spliceosome at cytoplasm cannot be ruled out. Secondly, information on genes transcribing both circular and lncRNAs along with total number of RBP binding sites for both of these RNA types is extractable from databases. This study showed how these apparently unconnected pieces of reports could be put together to build a model for exploring biogenesis of circular RNA. RESULTS As a result of this study, a model was built under the premises that, sequences with special semantics were molecular precursors in biogenesis of circular RNA which occurred through catalytic role of some specific RBPs. The model outcome was further strengthened by fulfillment of three logical lemmas which were extracted and assimilated in this work using a novel data analytic approach, Integrated Cellular Geography. Result of the study was found to be in well agreement with proposed model. Furthermore this study also indicated that biogenesis of circular RNA was a post-transcriptional event. CONCLUSIONS Overall, this study provides a novel systems biology based model under the paradigm of Integrated Cellular Geography which can assimilate independently performed experimental results and data published by global researchers on RNA biology to provide important information on biogenesis of circular RNAs considering lncRNAs as precursor molecule. This study also suggests the possible RBP-mediated circularization of RNA in the cytoplasm through back-splicing using minor spliceosome.
Collapse
Affiliation(s)
- Rajnish Kumar
- Department of Pathology and Laboratory Medicine, Medical Center, University of Kansas, Kansas City, 66160, USA
| | - Rajkrishna Mondal
- Department of Biotechnology, Nagaland University, Dimapur, Nagaland, 797112, India
| | - Tapobrata Lahiri
- Room No. 4302, Department of Applied Sciences, Computer Centre - II, Indian Institute of Information Technology-Allahabad, Allahabad, 211015, India.
| | - Manoj Kumar Pal
- Faculty of Engineering and Technology, United University Prayagraj, Prayagraj, UP, 211012, India
| |
Collapse
|
12
|
Nikolaou N, Gordon PM, Hamid F, Taylor R, Lloyd-Jones J, Makeyev EV, Houart C. Cytoplasmic pool of U1 spliceosome protein SNRNP70 shapes the axonal transcriptome and regulates motor connectivity. Curr Biol 2022; 32:5099-5115.e8. [PMID: 36384140 DOI: 10.1016/j.cub.2022.10.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 09/09/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022]
Abstract
Regulation of pre-mRNA splicing and polyadenylation plays a profound role in neurons by diversifying the proteome and modulating gene expression in response to physiological cues. Although most of the pre-mRNA processing is thought to occur in the nucleus, numerous splicing regulators are also found in neurites. Here, we show that U1-70K/SNRNP70, a component of the major spliceosome, localizes in RNA-associated granules in zebrafish axons. We identify the extra-nuclear SNRNP70 as an important regulator of motor axonal growth, nerve-dependent acetylcholine receptor (AChR) clustering, and neuromuscular synaptogenesis. This cytoplasmic pool has a protective role for a limited number of transcripts regulating their abundance and trafficking inside axons. Moreover, non-nuclear SNRNP70 regulates splice variants of transcripts such as agrin, thereby controlling synapse formation. Our results point to an unexpected, yet essential, function of non-nuclear SNRNP70 in axonal development, indicating a role of spliceosome proteins in cytoplasmic RNA metabolism during neuronal connectivity.
Collapse
Affiliation(s)
- Nikolas Nikolaou
- Centre for Developmental Neurobiology MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK; Department of Life Sciences, University of Bath, Bath BA2 7AY, UK.
| | - Patricia M Gordon
- Centre for Developmental Neurobiology MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Fursham Hamid
- Centre for Developmental Neurobiology MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Richard Taylor
- Centre for Developmental Neurobiology MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | | | - Eugene V Makeyev
- Centre for Developmental Neurobiology MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Corinne Houart
- Centre for Developmental Neurobiology MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK.
| |
Collapse
|
13
|
David JK, Maden SK, Wood MA, Thompson RF, Nellore A. Retained introns in long RNA-seq reads are not reliably detected in sample-matched short reads. Genome Biol 2022; 23:240. [PMID: 36369064 PMCID: PMC9652823 DOI: 10.1186/s13059-022-02789-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/10/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND There is growing interest in retained introns in a variety of disease contexts including cancer and aging. Many software tools have been developed to detect retained introns from short RNA-seq reads, but reliable detection is complicated by overlapping genes and transcripts as well as the presence of unprocessed or partially processed RNAs. RESULTS We compared introns detected by 8 tools using short RNA-seq reads with introns observed in long RNA-seq reads from the same biological specimens. We found significant disagreement among tools (Fleiss' [Formula: see text]) such that 47.7% of all detected intron retentions were not called by more than one tool. We also observed poor performance of all tools, with none achieving an F1-score greater than 0.26, and qualitatively different behaviors between general-purpose alternative splicing detection tools and tools confined to retained intron detection. CONCLUSIONS Short-read tools detect intron retention with poor recall and precision, calling into question the completeness and validity of a large percentage of putatively retained introns called by commonly used methods.
Collapse
Affiliation(s)
- Julianne K. David
- grid.5288.70000 0000 9758 5690Computational Biology Program, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR USA ,Present Address: Base5 Genomics, Inc., Mountain View, CA USA
| | - Sean K. Maden
- grid.5288.70000 0000 9758 5690Computational Biology Program, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR USA ,grid.21107.350000 0001 2171 9311Present Address: Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | - Mary A. Wood
- grid.5288.70000 0000 9758 5690Computational Biology Program, Oregon Health & Science University, Portland, OR USA ,grid.429936.30000 0004 5914 210XPortland VA Research Foundation, Portland, OR USA ,Present Address: Phase Genomics, Inc., Seattle, WA USA
| | - Reid F. Thompson
- grid.5288.70000 0000 9758 5690Computational Biology Program, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR USA ,grid.484322.bDivision of Hospital and Specialty Medicine, VA Portland Healthcare System, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Radiation Medicine, Oregon Health & Science University, Portland, OR USA
| | - Abhinav Nellore
- grid.5288.70000 0000 9758 5690Computational Biology Program, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Surgery, Oregon Health & Science University, Portland, OR USA
| |
Collapse
|
14
|
Gao C, Lu S, Zhou R, Ding J, Fan J, Han B, Chen M, Wang B, Cao Y. Phylogenetic analysis and stress response of the plant U2 small nuclear ribonucleoprotein B″ gene family. BMC Genomics 2022; 23:744. [DOI: 10.1186/s12864-022-08956-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Alternative splicing (AS) is an important channel for gene expression regulation and protein diversification, in addition to a major reason for the considerable differences in the number of genes and proteins in eukaryotes. In plants, U2 small nuclear ribonucleoprotein B″ (U2B″), a component of splicing complex U2 snRNP, plays an important role in AS. Currently, few studies have investigated plant U2B″, and its mechanism remains unclear.
Result
Phylogenetic analysis, including gene and protein structures, revealed that U2B″ is highly conserved in plants and typically contains two RNA recognition motifs. Subcellular localisation showed that OsU2B″ is located in the nucleus and cytoplasm, indicating that it has broad functions throughout the cell. Elemental analysis of the promoter region showed that it responded to numerous external stimuli, including hormones, stress, and light. Subsequent qPCR experiments examining response to stress (cold, salt, drought, and heavy metal cadmium) corroborated the findings. The prediction results of protein–protein interactions showed that its function is largely through a single pathway, mainly through interaction with snRNP proteins.
Conclusion
U2B″ is highly conserved in the plant kingdom, functions in the nucleus and cytoplasm, and participates in a wide range of processes in plant growth and development.
Collapse
|
15
|
Lu S, Gao C, Wang Y, He Y, Du J, Chen M, Zhao H, Fang H, Wang B, Cao Y. Phylogenetic Analysis of the Plant U2 snRNP Auxiliary Factor Large Subunit A Gene Family in Response to Developmental Cues and Environmental Stimuli. FRONTIERS IN PLANT SCIENCE 2021; 12:739671. [PMID: 34868124 PMCID: PMC8635922 DOI: 10.3389/fpls.2021.739671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
In all organisms, splicing occurs through the formation of spliceosome complexes, and splicing auxiliary factors are essential during splicing. U2AF65 is a crucial splicing cofactor, and the two typical RNA-recognition motifs at its center recognize and bind the polypyrimidine sequence located between the intron branch site and the 3'-splice site. U2AF65A is a member of the U2AF65 gene family, with pivotal roles in diseases in mammals, specifically humans; however, few studies have investigated plant U2AF65A, and its specific functions are poorly understood. Therefore, in the present study, we systematically identified U2AF65A in plant species from algae to angiosperms. Based on 113 putative U2AF65A sequences from 33 plant species, phylogenetic analyses were performed, followed by basic bioinformatics, including the comparisons of gene structure, protein domains, promoter motifs, and gene expression levels. In addition, using rice as the model crop, we demonstrated that the OsU2AF65A protein is localized to the nucleus and cytoplasm, and it is involved in responses to various stresses, such as drought, high salinity, low temperature, and heavy metal exposure (e.g., cadmium). Using Arabidopsis thaliana and rice mutants, we demonstrated that U2AF65A is involved in the accumulation of plant biomass, growth of hypocotyl upon thermal stimulation, and reduction of tolerance of high temperature stress. These findings offer an overview of the U2AF65 gene family and its stress response functions, serving as the reference for further comprehensive functional studies of the essential specific splicing cofactor U2AF65A in the plant kingdom.
Collapse
Affiliation(s)
- Shuai Lu
- School of Life Sciences, Nantong University, Nantong, China
| | - Cong Gao
- School of Life Sciences, Nantong University, Nantong, China
| | - Yongzhou Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yingying He
- School of Life Sciences, Nantong University, Nantong, China
| | - Junrong Du
- School of Life Sciences, Nantong University, Nantong, China
| | - Moxian Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hua Zhao
- School of Life Sciences, Nantong University, Nantong, China
| | - Hui Fang
- School of Life Sciences, Nantong University, Nantong, China
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yunying Cao
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
16
|
Roles and mechanisms of alternative splicing in cancer - implications for care. Nat Rev Clin Oncol 2020; 17:457-474. [PMID: 32303702 DOI: 10.1038/s41571-020-0350-x] [Citation(s) in RCA: 462] [Impact Index Per Article: 92.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2020] [Indexed: 12/14/2022]
Abstract
Removal of introns from messenger RNA precursors (pre-mRNA splicing) is an essential step for the expression of most eukaryotic genes. Alternative splicing enables the regulated generation of multiple mRNA and protein products from a single gene. Cancer cells have general as well as cancer type-specific and subtype-specific alterations in the splicing process that can have prognostic value and contribute to every hallmark of cancer progression, including cancer immune responses. These splicing alterations are often linked to the occurrence of cancer driver mutations in genes encoding either core components or regulators of the splicing machinery. Of therapeutic relevance, the transcriptomic landscape of cancer cells makes them particularly vulnerable to pharmacological inhibition of splicing. Small-molecule splicing modulators are currently in clinical trials and, in addition to splice site-switching antisense oligonucleotides, offer the promise of novel and personalized approaches to cancer treatment.
Collapse
|
17
|
Horiuchi K, Perez-Cerezales S, Papasaikas P, Ramos-Ibeas P, López-Cardona AP, Laguna-Barraza R, Fonseca Balvís N, Pericuesta E, Fernández-González R, Planells B, Viera A, Suja JA, Ross PJ, Alén F, Orio L, Rodriguez de Fonseca F, Pintado B, Valcárcel J, Gutiérrez-Adán A. Impaired Spermatogenesis, Muscle, and Erythrocyte Function in U12 Intron Splicing-Defective Zrsr1 Mutant Mice. Cell Rep 2019; 23:143-155. [PMID: 29617656 DOI: 10.1016/j.celrep.2018.03.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/28/2017] [Accepted: 03/08/2018] [Indexed: 11/18/2022] Open
Abstract
The U2AF35-like ZRSR1 has been implicated in the recognition of 3' splice site during spliceosome assembly, but ZRSR1 knockout mice do not show abnormal phenotypes. To analyze ZRSR1 function and its precise role in RNA splicing, we generated ZRSR1 mutant mice containing truncating mutations within its RNA-recognition motif. Homozygous mutant mice exhibited severe defects in erythrocytes, muscle stretch, and spermatogenesis, along with germ cell sloughing and apoptosis, ultimately leading to azoospermia and male sterility. Testis RNA sequencing (RNA-seq) analyses revealed increased intron retention of both U2- and U12-type introns, including U12-type intron events in genes with key functions in spermatogenesis and spermatid development. Affected U2 introns were commonly found flanking U12 introns, suggesting functional cross-talk between the two spliceosomes. The splicing and tissue defects observed in mutant mice attributed to ZRSR1 loss of function suggest a physiological role for this factor in U12 intron splicing.
Collapse
Affiliation(s)
- Keiko Horiuchi
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain; Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology (RCAST), University of Tokyo, Tokyo 153-8904, Japan
| | - Serafín Perez-Cerezales
- Dpto. de Reproducción Animal, INIA, Avda Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Panagiotis Papasaikas
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Priscila Ramos-Ibeas
- Dpto. de Reproducción Animal, INIA, Avda Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | | | - Ricardo Laguna-Barraza
- Dpto. de Reproducción Animal, INIA, Avda Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Noelia Fonseca Balvís
- Dpto. de Reproducción Animal, INIA, Avda Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Eva Pericuesta
- Dpto. de Reproducción Animal, INIA, Avda Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Raul Fernández-González
- Dpto. de Reproducción Animal, INIA, Avda Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Benjamín Planells
- Dpto. de Reproducción Animal, INIA, Avda Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Alberto Viera
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jose Angel Suja
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo Juan Ross
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Francisco Alén
- Dpto. Psicobiología, Facultad de Psicología, UCM, Campus de Somosaguas, Madrid, Spain
| | - Laura Orio
- Dpto. Psicobiología, Facultad de Psicología, UCM, Campus de Somosaguas, Madrid, Spain
| | - Fernando Rodriguez de Fonseca
- Dpto. Psicobiología, Facultad de Psicología, UCM, Campus de Somosaguas, Madrid, Spain; UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010 Málaga, Spain
| | - Belén Pintado
- Servicio de Transgénicos, CNB-CSIC, UAM, Madrid, Spain
| | - Juan Valcárcel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| | - Alfonso Gutiérrez-Adán
- Dpto. de Reproducción Animal, INIA, Avda Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain.
| |
Collapse
|
18
|
Abstract
To ensure efficient and accurate gene expression, pre-mRNA processing and mRNA export need to be balanced. However, how this balance is ensured remains largely unclear. Here, we found that SF3b, a component of U2 snRNP that participates in splicing and 3' processing of pre-mRNAs, interacts with the key mRNA export adaptor THO in vivo and in vitro. Depletion of SF3b reduces THO binding with the mRNA and causes nuclear mRNA retention. Consistently, introducing SF3b binding sites into the mRNA enhances THO recruitment and nuclear export in a dose-dependent manner. These data demonstrate a role of SF3b in promoting mRNA export. In support of this role, SF3b binds with mature mRNAs in the cells. Intriguingly, disruption of U2 snRNP by using a U2 antisense morpholino oligonucleotide does not inhibit, but promotes, the role of SF3b in mRNA export as a result of enhanced SF3b-THO interaction and THO recruitment to the mRNA. Together, our study uncovers a U2-snRNP-independent role of SF3b in mRNA export and suggests that SF3b contributes to balancing pre-mRNA processing and mRNA export.
Collapse
|
19
|
Zhu L, Chen L, Yan L, Perkins BD, Li S, Li B, Xu HA, Li XJ. Mutant Ahi1 Affects Retinal Axon Projection in Zebrafish via Toxic Gain of Function. Front Cell Neurosci 2019; 13:81. [PMID: 30949029 PMCID: PMC6438259 DOI: 10.3389/fncel.2019.00081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/18/2019] [Indexed: 12/23/2022] Open
Abstract
Joubert syndrome (JBTS) is an inherited autosomal recessive disorder associated with cerebellum and brainstem malformation and can be caused by mutations in the Abelson helper integration site-1 (AHI1) gene. Although AHI1 mutations in humans cause abnormal cerebellar development and impaired axonal decussation in JBTS, these phenotypes are not robust or are absent in various mouse models with Ahi1 mutations. AHI1 contains an N-terminal coiled-coil domain, multiple WD40 repeats, and a C-terminal Src homology 3 (SH3) domain, suggesting that AHI1 functions as a signaling or scaffolding protein. Since most AHI1 mutations in humans can result in truncated AHI1 proteins lacking WD40 repeats and the SH3 domain, it remains unclear whether mutant AHI1 elicits toxicity via a gain-of-function mechanism by the truncated AHI1. Because Ahi1 in zebrafish and humans share a similar N-terminal region with a coiled-coil domain that is absent in mouse Ahi1, we used zebrafish as a model to investigate whether Ahi1 mutations could affect axonal decussation. Using in situ hybridization, we found that ahi1 is highly expressed in zebrafish ocular tissues, especially in retina, allowing us to examine its effect on retinal ganglion cell (RGC) projection and eye morphology. We injected a morpholino to zebrafish embryos, which can generate mutant Ahi1 lacking the intact WD40 repeats, and found RGC axon misprojection and ocular dysplasia in 4 dpf (days post-fertilization) larvae after the injection. However, ahi1 null zebrafish showed normal RGC axon projection and ocular morphology. We then used CRISPR/Cas9 to generate truncated ahi1 and also found similar defects in the RGC axon projection as seen in those injected with ahi1 morpholino. Thus, the aberrant retinal axon projection in zebrafish is caused by the presence of mutant ahi1 rather than the loss of ahi1, suggesting that mutant Ahi1 may affect axonal decussation via toxic gain of function.
Collapse
Affiliation(s)
- Louyin Zhu
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, China.,Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang, China.,Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Laiqiang Chen
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, China.,Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Lingya Yan
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, China
| | - Brian D Perkins
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| | - Shihua Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Baoming Li
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, China.,Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang, China
| | - Hong A Xu
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, China.,Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang, China
| | - Xiao-Jiang Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
20
|
Splicing dysfunction and disease: The case of granulopoiesis. Semin Cell Dev Biol 2018; 75:23-39. [DOI: 10.1016/j.semcdb.2017.08.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 12/20/2022]
|
21
|
Samuel N, Wilson G, Id Said B, Pan A, Deblois G, Fischer NW, Alexandrova R, Casallo G, Paton T, Lupien M, Gariepy J, Merico D, Hudson TJ, Malkin D. Transcriptome-wide characterization of the endogenous miR-34A-p53 tumor suppressor network. Oncotarget 2018; 7:49611-49622. [PMID: 27391063 PMCID: PMC5226533 DOI: 10.18632/oncotarget.10417] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/19/2016] [Indexed: 11/25/2022] Open
Abstract
microRNA-34A is a critical component of the p53 network and expression of miR- 34A is down-regulated by promoter hypermethylation or focal deletions in numerous human cancers. Although miR-34A deregulation may be an important driver in cancer, the endogenous role of this microRNA in cellular homeostasis is not well characterized. To address this knowledge gap, we aimed to determine the transcriptional landscape of the miR-34A-p53 axis in non-transformed cells. Using primary skin-derived fibroblast cell lines from patients who developed childhood cancers, and who harbor either germline TP53 mutations or are TP53 wild type, we sought to characterize the transcriptional response to miR-34A modulation. Through transcriptome-wide RNA-Sequencing, we show for the first time that in human non- transformed cells harboring TP53 mutations, miR-34A functions in a noncanonical manner to influence noncoding RNA networks, including RNA components of the minor (U12) spliceosome, as well as TP53-dependent and independent epigenetic pathways. miR- 34A-regulated transcripts include known cell cycle mediators and abrogation of miR-34A leads to a TP53-dependent increase in the fraction of cells in G2/M. Collectively, these results provide a framework for understanding the endogenous role of the miR-34A signaling axis and identify novel transcripts and pathways regulated by the essential miR-34A-p53 tumor suppressor network.
Collapse
Affiliation(s)
- Nardin Samuel
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada.,Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Ontario Institute for Cancer Research, Toronto, Canada
| | - Gavin Wilson
- Ontario Institute for Cancer Research, Toronto, Canada.,Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Badr Id Said
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Anna Pan
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Genevieve Deblois
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Nicholas W Fischer
- Department of Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Roumiana Alexandrova
- The Centre for Applied Genomics (TCAG), Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Guillermo Casallo
- The Centre for Applied Genomics (TCAG), Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Tara Paton
- The Centre for Applied Genomics (TCAG), Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Jean Gariepy
- Department of Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Daniele Merico
- The Centre for Applied Genomics (TCAG), Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Thomas J Hudson
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada.,Ontario Institute for Cancer Research, Toronto, Canada.,Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - David Malkin
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada.,Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
22
|
Minor spliceosome and disease. Semin Cell Dev Biol 2017; 79:103-112. [PMID: 28965864 DOI: 10.1016/j.semcdb.2017.09.036] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/21/2017] [Accepted: 09/27/2017] [Indexed: 01/09/2023]
Abstract
The U12-dependent (minor) spliceosome excises a rare group of introns that are characterized by a highly conserved 5' splice site and branch point sequence. Several new congenital or somatic diseases have recently been associated with mutations in components of the minor spliceosome. A common theme in these diseases is the detection of elevated levels of transcripts containing U12-type introns, of which a subset is associated with other splicing defects. Here we review the present understanding of minor spliceosome diseases, particularly those associated with the specific components of the minor spliceosome. We also present a model for interpreting the molecular-level consequences of the different diseases.
Collapse
|
23
|
Elsaid MF, Chalhoub N, Ben-Omran T, Kumar P, Kamel H, Ibrahim K, Mohamoud Y, Al-Dous E, Al-Azwani I, Malek JA, Suhre K, Ross ME, Aleem AA. Mutation in noncoding RNA RNU12 causes early onset cerebellar ataxia. Ann Neurol 2017; 81:68-78. [PMID: 27863452 DOI: 10.1002/ana.24826] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Exome sequences account for only 2% of the genome and may overlook mutations causing disease. To obtain a more complete view, whole genome sequencing (WGS) was analyzed in a large consanguineous family in which members displayed autosomal recessively inherited cerebellar ataxia manifesting before 2 years of age. METHODS WGS from blood-derived genomic DNA was used for homozygosity mapping and a rare variant search. RNA from isolated blood leukocytes was used for quantitative polymerase chain reaction (PCR), RNA sequencing, and comparison of the transcriptomes of affected and unaffected family members. RESULTS WGS revealed a point mutation in noncoding RNA RNU12 that was associated with early onset cerebellar ataxia. The U12-dependent minor spliceosome edits 879 known transcripts. Reverse transcriptase PCR demonstrated minor intron retention in all of 9 randomly selected RNAs from this group, and RNAseq showed splicing disruption specific to all U12-type introns detected in blood monocytes from affected individuals. Moreover, 144 minor intron-containing RNAs were differentially expressed, including transcripts for 3 genes previously associated with cerebellar neurodegeneration. INTERPRETATION Interference with particular spliceosome components, including small nuclear RNAs, cause reproducible uniquely distributed phenotypic and transcript-specific effects, making this an important category of disease-associated mutation. Our approach to differential expression analysis of minor intron-containing genes is applicable to other diseases involving altered transcriptome processing. ANN NEUROL 2017;81:68-78.
Collapse
Affiliation(s)
| | - Nader Chalhoub
- Neurogenetics, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Tawfeg Ben-Omran
- Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar
| | - Pankaj Kumar
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Hussein Kamel
- Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar
| | - Khalid Ibrahim
- Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar
| | | | - Eman Al-Dous
- Genomics Core, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Iman Al-Azwani
- Genomics Core, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Joel A Malek
- Genomics Core, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Karsten Suhre
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - M Elizabeth Ross
- Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY
| | - Alice Abdel Aleem
- Neurogenetics, Weill Cornell Medicine-Qatar, Doha, Qatar.,Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY
| |
Collapse
|
24
|
Thomas-Jinu S, Gordon PM, Fielding T, Taylor R, Smith BN, Snowden V, Blanc E, Vance C, Topp S, Wong CH, Bielen H, Williams KL, McCann EP, Nicholson GA, Pan-Vazquez A, Fox AH, Bond CS, Talbot WS, Blair IP, Shaw CE, Houart C. Non-nuclear Pool of Splicing Factor SFPQ Regulates Axonal Transcripts Required for Normal Motor Development. Neuron 2017; 94:322-336.e5. [PMID: 28392072 PMCID: PMC5405110 DOI: 10.1016/j.neuron.2017.03.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 01/02/2017] [Accepted: 03/17/2017] [Indexed: 12/12/2022]
Abstract
Recent progress revealed the complexity of RNA processing and its association to human disorders. Here, we unveil a new facet of this complexity. Complete loss of function of the ubiquitous splicing factor SFPQ affects zebrafish motoneuron differentiation cell autonomously. In addition to its nuclear localization, the protein unexpectedly localizes to motor axons. The cytosolic version of SFPQ abolishes motor axonal defects, rescuing key transcripts, and restores motility in the paralyzed sfpq null mutants, indicating a non-nuclear processing role in motor axons. Novel variants affecting the conserved coiled-coil domain, so far exclusively found in fALS exomes, specifically affect the ability of SFPQ to localize in axons. They broadly rescue morphology and motility in the zebrafish mutant, but alter motor axon morphology, demonstrating functional requirement for axonal SFPQ. Altogether, we uncover the axonal function of the splicing factor SFPQ in motor development and highlight the importance of the coiled-coil domain in this process. Video Abstract
SFPQ splicing factor is present in motor axons Non-nuclear SFPQ is able to drive axon maturation and connectivity Loss of axonal SFPQ affects axonal morphology Coiled-coil domain of the protein is important for non-nuclear localization
Collapse
Affiliation(s)
- Swapna Thomas-Jinu
- Centre for Developmental Neurobiology and MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Patricia M Gordon
- Centre for Developmental Neurobiology and MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Triona Fielding
- Centre for Developmental Neurobiology and MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Richard Taylor
- Centre for Developmental Neurobiology and MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Bradley N Smith
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London SE5 8AF, UK
| | - Victoria Snowden
- Centre for Developmental Neurobiology and MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Eric Blanc
- Centre for Developmental Neurobiology and MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Caroline Vance
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London SE5 8AF, UK
| | - Simon Topp
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London SE5 8AF, UK
| | - Chun-Hao Wong
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London SE5 8AF, UK
| | - Holger Bielen
- Centre for Developmental Neurobiology and MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Kelly L Williams
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Emily P McCann
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Garth A Nicholson
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia; ANZAC Research Institute, University of Sydney, Concord Hospital, Sydney, NSW 2139, Australia
| | - Alejandro Pan-Vazquez
- Centre for Developmental Neurobiology and MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Archa H Fox
- School of Anatomy, Physiology, and Human Biology, University of Western Australia, Crawley, WA 6009, Australia; Harry Perkins Institute for Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia; Centre for Medical Research, University of Western Australia, Crawley, WA 6009, Australia
| | - Charles S Bond
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, WA 6009, Australia
| | - William S Talbot
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ian P Blair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Christopher E Shaw
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London SE5 8AF, UK
| | - Corinne Houart
- Centre for Developmental Neurobiology and MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK.
| |
Collapse
|
25
|
Despic V, Dejung M, Gu M, Krishnan J, Zhang J, Herzel L, Straube K, Gerstein MB, Butter F, Neugebauer KM. Dynamic RNA-protein interactions underlie the zebrafish maternal-to-zygotic transition. Genome Res 2017; 27:1184-1194. [PMID: 28381614 PMCID: PMC5495070 DOI: 10.1101/gr.215954.116] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/24/2017] [Indexed: 12/21/2022]
Abstract
During the maternal-to-zygotic transition (MZT), transcriptionally silent embryos rely on post-transcriptional regulation of maternal mRNAs until zygotic genome activation (ZGA). RNA-binding proteins (RBPs) are important regulators of post-transcriptional RNA processing events, yet their identities and functions during developmental transitions in vertebrates remain largely unexplored. Using mRNA interactome capture, we identified 227 RBPs in zebrafish embryos before and during ZGA, hereby named the zebrafish MZT mRNA-bound proteome. This protein constellation consists of many conserved RBPs, some of which are potential stage-specific mRNA interactors that likely reflect the dynamics of RNA-protein interactions during MZT. The enrichment of numerous splicing factors like hnRNP proteins before ZGA was surprising, because maternal mRNAs were found to be fully spliced. To address potentially unique roles of these RBPs in embryogenesis, we focused on Hnrnpa1. iCLIP and subsequent mRNA reporter assays revealed a function for Hnrnpa1 in the regulation of poly(A) tail length and translation of maternal mRNAs through sequence-specific association with 3' UTRs before ZGA. Comparison of iCLIP data from two developmental stages revealed that Hnrnpa1 dissociates from maternal mRNAs at ZGA and instead regulates the nuclear processing of pri-mir-430 transcripts, which we validated experimentally. The shift from cytoplasmic to nuclear RNA targets was accompanied by a dramatic translocation of Hnrnpa1 and other pre-mRNA splicing factors to the nucleus in a transcription-dependent manner. Thus, our study identifies global changes in RNA-protein interactions during vertebrate MZT and shows that Hnrnpa1 RNA-binding activities are spatially and temporally coordinated to regulate RNA metabolism during early development.
Collapse
Affiliation(s)
- Vladimir Despic
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Mario Dejung
- Institute of Molecular Biology, 55128 Mainz, Germany
| | - Mengting Gu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.,Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| | - Jayanth Krishnan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.,Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| | - Jing Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.,Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| | - Lydia Herzel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Korinna Straube
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Mark B Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.,Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| | - Falk Butter
- Institute of Molecular Biology, 55128 Mainz, Germany
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
26
|
Abstract
Fully grown oocytes arrest meiosis at prophase I and deposit maternal RNAs. A subset of maternal transcripts is stored in a dormant state in the oocyte, and the timely driven translation of specific mRNAs guides meiotic progression, the oocyte-embryo transition, and early embryo development. In the absence of transcription, the regulation of gene expression in oocytes is controlled almost exclusively at the level of transcriptome and proteome stabilization and at the level of protein synthesis.This chapter focuses on the recent findings on RNA distribution related to the temporal and spatial translational control of the meiotic cycle progression in mammalian oocytes. We discuss the most relevant mechanisms involved in the organization of the oocyte's maternal transcriptome storage and localization, and the regulation of translation, in correlation with the regulation of oocyte meiotic progression.
Collapse
|
27
|
Wragg J, Müller F. Transcriptional Regulation During Zygotic Genome Activation in Zebrafish and Other Anamniote Embryos. ADVANCES IN GENETICS 2016; 95:161-94. [PMID: 27503357 DOI: 10.1016/bs.adgen.2016.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Embryo development commences with the fusion of two terminally differentiated haploid gametes into the totipotent fertilized egg, which through a series of major cellular and molecular transitions generate a pluripotent cell mass. The activation of the zygotic genome occurs during the so-called maternal to zygotic transition and prepares the embryo for zygotic takeover from maternal factors, in the control of the development of cellular lineages during differentiation. Recent advances in next generation sequencing technologies have allowed the dissection of the genomic and epigenomic processes mediating this transition. These processes include reorganization of the chromatin structure to a transcriptionally permissive state, changes in composition and function of structural and regulatory DNA-binding proteins, and changeover of the transcriptome as it is overhauled from that deposited by the mother in the oocyte to a zygotically transcribed complement. Zygotic genome activation in zebrafish occurs 10 cell cycles after fertilization and provides an ideal experimental platform for elucidating the temporal sequence and dynamics of establishment of a transcriptionally active chromatin state and helps in identifying the determinants of transcription activation at polymerase II transcribed gene promoters. The relatively large number of pluripotent cells generated by the fast cell divisions before zygotic transcription provides sufficient biomass for next generation sequencing technology approaches to establish the temporal dynamics of events and suggest causative relationship between them. However, genomic and genetic technologies need to be improved further to capture the earliest events in development, where cell number is a limiting factor. These technologies need to be complemented with precise, inducible genetic interference studies using the latest genome editing tools to reveal the function of candidate determinants and to confirm the predictions made by classic embryological tools and genome-wide assays. In this review we summarize recent advances in the characterization of epigenetic regulation, transcription control, and gene promoter function during zygotic genome activation and how they fit with old models for the mechanisms of the maternal to zygotic transition. This review will focus on the zebrafish embryo but draw comparisons with other vertebrate model systems and refer to invertebrate models where informative.
Collapse
Affiliation(s)
- J Wragg
- University of Birmingham, Birmingham, United Kingdom
| | - F Müller
- University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
28
|
Meyer F. Viral interactions with components of the splicing machinery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:241-68. [PMID: 27571697 DOI: 10.1016/bs.pmbts.2016.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Eukaryotic genes are often interrupted by stretches of sequence with no protein coding potential or obvious function. After transcription, these interrupting sequences must be removed to give rise to the mature messenger RNA. This fundamental process is called RNA splicing and is achieved by complicated machinery made of protein and RNA that assembles around the RNA to be edited. Viruses also use RNA splicing to maximize their coding potential and economize on genetic space, and use clever strategies to manipulate the splicing machinery to their advantage. This article gives an overview of the splicing process and provides examples of viral strategies that make use of various components of the splicing system to promote their replicative cycle. Representative virus families have been selected to illustrate the interaction with various regulatory proteins and ribonucleoproteins. The unifying theme is fine regulation through protein-protein and protein-RNA interactions with the spliceosome components and associated factors to promote or prevent spliceosome assembly on given splice sites, in addition to a strong influence from cis-regulatory sequences on viral transcripts. Because there is an intimate coupling of splicing with the processes that direct mRNA biogenesis, a description of how these viruses couple the regulation of splicing with the retention or stability of mRNAs is also included. It seems that a unique balance of suppression and activation of splicing and nuclear export works optimally for each family of viruses.
Collapse
Affiliation(s)
- F Meyer
- Department of Biochemistry & Molecular Biology, Entomology & Plant Pathology, Mississippi State University, Starkville, MS, USA.
| |
Collapse
|
29
|
Berto S, Usui N, Konopka G, Fogel BL. ELAVL2-regulated transcriptional and splicing networks in human neurons link neurodevelopment and autism. Hum Mol Genet 2016; 25:2451-2464. [PMID: 27260404 DOI: 10.1093/hmg/ddw110] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/01/2016] [Accepted: 04/04/2016] [Indexed: 01/31/2023] Open
Abstract
The role of post-transcriptional gene regulation in human brain development and neurodevelopmental disorders remains mostly uncharacterized. ELAV-like RNA-binding proteins (RNAbps) are a family of proteins that regulate several aspects of neuronal function including neuronal excitability and synaptic transmission, both critical to the normal function of the brain in cognition and behavior. Here, we identify the downstream neuronal transcriptional and splicing networks of ELAVL2, an RNAbp with previously unknown function in the brain. Expression of ELAVL2 was reduced in human neurons and RNA-sequencing was utilized to identify networks of differentially expressed and alternatively spliced genes resulting from haploinsufficient levels of ELAVL2. These networks contain a number of autism-relevant genes as well as previously identified targets of other important RNAbps implicated in autism spectrum disorder (ASD) including RBFOX1 and FMRP. ELAVL2-regulated co-expression networks are also enriched for neurodevelopmental and synaptic genes, and include genes with human-specific patterns of expression in the frontal pole. Together, these data suggest that ELAVL2 regulation of transcript expression is critical for neuronal function and clinically relevant to ASD.
Collapse
Affiliation(s)
- Stefano Berto
- Department of Neuroscience, University of Texas Southwestern Medical School, 5323 Harry Hines Blvd, ND4.300, Dallas, TX 75390-9111, USA
| | - Noriyoshi Usui
- Department of Neuroscience, University of Texas Southwestern Medical School, 5323 Harry Hines Blvd, ND4.300, Dallas, TX 75390-9111, USA
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical School, 5323 Harry Hines Blvd, ND4.300, Dallas, TX 75390-9111, USA
| | - Brent L Fogel
- Program in Neurogenetics and Departments of Neurology and Human Genetics, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Gonda Room 1206, Los Angeles, CA 90095, USA
| |
Collapse
|
30
|
Xu T, Kim BM, Kwak KJ, Jung HJ, Kang H. The Arabidopsis homolog of human minor spliceosomal protein U11-48K plays a crucial role in U12 intron splicing and plant development. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3397-406. [PMID: 27091878 PMCID: PMC4892727 DOI: 10.1093/jxb/erw158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The minor U12 introns are removed from precursor mRNAs by the U12 intron-specific minor spliceosome. Among the seven ribonucleoproteins unique to the minor spliceosome, denoted as U11/U12-20K, U11/U12-25K, U11/U12-31K, U11/U12-65K, U11-35K, U11-48K, and U11-59K, the roles of only U11/U12-31K and U11/U12-65K have been demonstrated in U12 intron splicing and plant development. Here, the functional role of the Arabidopsis homolog of human U11-48K in U12 intron splicing and the development of Arabidopsis thaliana was examined using transgenic knockdown plants. The u11-48k mutants exhibited several defects in growth and development, such as severely arrested primary inflorescence stems, formation of serrated leaves, production of many rosette leaves after bolting, and delayed senescence. The splicing of most U12 introns analyzed was impaired in the u11-48k mutants. Comparative analysis of the splicing defects and phenotypes among the u11/u12-31k, u11-48k, and u11/12-65k mutants showed that the severity of abnormal development was closely correlated with the degree of impairment in U12 intron splicing. Taken together, these results provide compelling evidence that the Arabidopsis homolog of human U11-48K protein, as well as U11/U12-31K and U11/U12-65K proteins, is necessary for correct splicing of U12 introns and normal plant growth and development.
Collapse
Affiliation(s)
- Tao Xu
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China
| | - Bo Mi Kim
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, South Korea
| | - Kyung Jin Kwak
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, South Korea
| | - Hyun Ju Jung
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, South Korea
| | - Hunseung Kang
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, South Korea
| |
Collapse
|
31
|
Abstract
Several pathways control time to flowering in Arabidopsis thaliana through transcriptional and posttranscriptional gene regulation. In recent years, mRNA processing has gained interest as a critical regulator of flowering time control in plants. However, the molecular mechanisms linking RNA splicing to flowering time are not well understood. In a screen for Arabidopsis early flowering mutants we identified an allele of BRR2a. BRR2 proteins are components of the spliceosome and highly conserved in eukaryotes. Arabidopsis BRR2a is ubiquitously expressed in all analyzed tissues and involved in the processing of flowering time gene transcripts, most notably FLC. A missense mutation of threonine 895 in BRR2a caused defects in FLC splicing and greatly reduced FLC transcript levels. Reduced FLC expression increased transcription of FT and SOC1 leading to early flowering in both short and long days. Genome-wide experiments established that only a small set of introns was not correctly spliced in the brr2a mutant. Compared to control introns, retained introns were often shorter and GC-poor, had low H3K4me1 and CG methylation levels, and were often derived from genes with a high-H3K27me3-low-H3K36me3 signature. We propose that BRR2a is specifically needed for efficient splicing of a subset of introns characterized by a combination of factors including intron size, sequence and chromatin, and that FLC is most sensitive to splicing defects. Timing of flowering has a great effect on reproductive success and fitness. It is controlled by many external signals and internal states involving a large set of genes. Here we report that the Arabidopsis thaliana BRR2a gene is needed for normal flowering. BRR2 proteins are components of the spliceosome and highly conserved in eukaryotes. BRR2a is needed for splicing of a subset of introns, most noticeably in the transcript of the flowering repressor FLC. Reduced FLC expression increased transcription of key floral activators, leading to early flowering in both short and long days. Genome-wide experiments established that full BRR2a activity was required only for a small group of introns. We propose that uncompromised BRR2a activity is most important for efficient splicing of a subset of introns of particular size, sequence and chromatin composition, and that FLC is most sensitive to splicing defects.
Collapse
|
32
|
Abstract
RNA splicing represents a post-transcriptional mechanism to generate multiple functional RNAs or proteins from a single transcript. The evolution of RNA splicing is a prime example of the Darwinian function follows form concept. A mutation that leads to a new mRNA (form) that encodes for a new functional protein (function) is likely to be retained, and this way, the genome has gradually evolved to encode for genes with multiple isoforms, thereby creating an enormously diverse transcriptome. Advances in technologies to characterize RNA populations have led to a better understanding of RNA processing in health and disease. In the heart, alternative splicing is increasingly being recognized as an important layer of post-transcriptional gene regulation. Moreover, the recent identification of several cardiac splice factors, such as RNA-binding motif protein 20 and SF3B1, not only provided important insight into the mechanisms underlying alternative splicing but also revealed how these splicing factors impact functional properties of the heart. Here, we review our current knowledge of alternative splicing in the heart, with a particular focus on the major and minor spliceosome, the factors controlling RNA splicing, and the role of alternative splicing in cardiac development and disease.
Collapse
Affiliation(s)
- Maarten M.G. van den Hoogenhof
- From the Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Yigal M. Pinto
- From the Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther E. Creemers
- From the Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Abstract
Initially identified as a marker of coiled bodies (now Cajal bodies or CBs), the protein coilin was discovered a quarter of century ago. Coilin is now known to scaffold the CB, but its structure and function are poorly understood. Nearly devoid of predicted structural motifs, coilin has numerous reported molecular interactions that must underlie its role in the formation and function of CBs. In this review, we summarize what we have learned in the past 25 years about coilin's structure, post-transcriptional modifications, and interactions with RNA and proteins. We show that genes with homology to human coilin are found in primitive metazoans and comment on differences among model organisms. Coilin's function in Cajal body formation and RNP metabolism will be discussed in the light of these developments.
Collapse
Affiliation(s)
- Martin Machyna
- a Department of Molecular Biophysics & Biochemistry ; Yale University ; New Haven , CT USA
| | | | | |
Collapse
|
34
|
Translation in the mammalian oocyte in space and time. Cell Tissue Res 2015; 363:69-84. [PMID: 26340983 DOI: 10.1007/s00441-015-2269-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/03/2015] [Indexed: 02/07/2023]
Abstract
A hallmark of oocyte development in mammals is the dependence on the translation and utilization of stored RNA and proteins rather than the de novo transcription of genes in order to sustain meiotic progression and early embryo development. In the absence of transcription, the completion of meiosis and early embryo development in mammals relies significantly on maternally synthesized RNAs. Post-transcriptional control of gene expression at the translational level has emerged as an important cellular function in normal development. Therefore, the regulation of gene expression in oocytes is controlled almost exclusively at the level of mRNA and protein stabilization and protein synthesis. This current review is focused on the recently emerged findings on RNA distribution related to the temporal and spatial translational control of the meiotic progression of the mammalian oocyte.
Collapse
|
35
|
Welch MD, Howlett M, Halse HM, Greene WK, Kees UR. Novel CT domain-encoding splice forms of CTGF/CCN2 are expressed in B-lineage acute lymphoblastic leukaemia. Leuk Res 2015; 39:913-20. [PMID: 26138615 DOI: 10.1016/j.leukres.2015.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Connective tissue growth factor (CTGF/CCN2) has been shown previously to be aberrantly expressed in a high proportion of paediatric precursor B cell acute lymphoblastic leukaemia (pre-B ALL), suggesting a potential oncogenic role in this tumour type. We therefore assessed CTGF mRNA transcript diversity in B-lineage ALL using primary patient specimens and cell lines. METHODS CTGF mRNA expression was evaluated by quantitative real-time PCR and Northern blotting. We performed a structural analysis of CTGF mRNA by nested reverse-transcriptase PCR and examined CTGF protein diversity by immunoblotting. RESULTS Northern blot analysis of pre-B ALL cell lines revealed short CTGF transcripts that were expressed in association with the active phase of cellular growth. Structural analysis confirmed the synthesis of several novel CTGF mRNA isoforms in B-lineage ALL cell lines that were uniformly characterised by the retention of the coding sequence for the C-terminal (CT) domain. One of these novel spliceforms was expressed in a majority (70%) of primary pre-B ALL patient specimens positive for canonical CTGF mRNA. Evidence that these alternative transcripts have coding potential was provided by cryptic CTGF proteins of predicted size detected by immunoblotting. CONCLUSION This study identifies for the first time alternative splicing of the CTGF gene and shows that a short CTGF splice variant associated with cell proliferation is expressed in most cases of primary CTGF-positive pre-B ALL. This novel variant encoding only the CT domain may play a role in pre-B ALL tumorigenesis and/or progression.
Collapse
Affiliation(s)
- M D Welch
- Division of Children's Leukemia and Cancer Research, Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia; Faculty of Health Sciences, School of Pharmacy, Curtin University, Perth, WA, Australia.
| | - M Howlett
- Division of Children's Leukemia and Cancer Research, Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia.
| | - H M Halse
- Division of Children's Leukemia and Cancer Research, Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia.
| | - W K Greene
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia.
| | - U R Kees
- Division of Children's Leukemia and Cancer Research, Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
36
|
Farrokh S, Brillen AL, Haendeler J, Altschmied J, Schaal H. Critical regulators of endothelial cell functions: for a change being alternative. Antioxid Redox Signal 2015; 22:1212-29. [PMID: 25203279 DOI: 10.1089/ars.2014.6023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
SIGNIFICANCE The endothelium regulates vessel dilation and constriction, balances hemostasis, and inhibits thrombosis. In addition, pro- and anti-angiogenic molecules orchestrate proliferation, survival, and migration of endothelial cells. Regulation of all these processes requires fine-tuning of signaling pathways, which can easily be tricked into running the opposite direction when exogenous or endogenous signals get out of hand. Surprisingly, some critical regulators of physiological endothelial functions can turn malicious by mere alternative splicing, leading to the expression of protein isoforms with opposite functions. RECENT ADVANCES While reviewing the evidence of alternative splicing on cellular physiology, it became evident that expression of splice factors and their activities are regulated by externally triggered signaling cascades. Furthermore, genome-wide identification of RNA-binding sites of splicing regulatory proteins now offer a glimpse into the splicing code responsible for alternative splicing of molecules regulating endothelial functions. CRITICAL ISSUES Due to the constantly growing number of transcript and protein isoforms, it will become more and more important to identify and characterize all transcripts and proteins regulating endothelial cell functions. One critical issue will be a non-ambiguous nomenclature to keep consistency throughout different laboratories. FUTURE DIRECTIONS RNA-deep sequencing focusing on exon-exon junction needs to more reliably identify alternative splicing events combined with functional analyses that will uncover more splice variants contributing to or inhibiting proper endothelial functions. In addition, understanding the signals mediating alternative splicing and its regulation might allow us to derive new strategies to preserve endothelial function by suppressing or upregulating specific protein isoforms. Antioxid. Redox Signal. 22, 1212-1229.
Collapse
Affiliation(s)
- Sabrina Farrokh
- 1 Heisenberg-Group-Environmentally-Induced Cardiovascular Degeneration, IUF-Leibniz Research Institute for Environmental Medicine , Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
37
|
Mammalian introns: when the junk generates molecular diversity. Int J Mol Sci 2015; 16:4429-52. [PMID: 25710723 PMCID: PMC4394429 DOI: 10.3390/ijms16034429] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/06/2015] [Accepted: 02/11/2015] [Indexed: 01/14/2023] Open
Abstract
Introns represent almost half of the human genome, yet their vast majority is eliminated from eukaryotic transcripts through RNA splicing. Nevertheless, they feature key elements and functions that deserve further interest. At the level of DNA, introns are genomic segments that can shelter independent transcription units for coding and non-coding RNAs which transcription may interfere with that of the host gene, and regulatory elements that can influence gene expression and splicing itself. From the RNA perspective, some introns can be subjected to alternative splicing. Intron retention appear to provide some plasticity to the nature of the protein produced, its distribution in a given cell type and timing of its translation. Intron retention may also serve as a switch to produce coding or non-coding RNAs from the same transcription unit. Conversely, splicing of introns has been directly implicated in the production of small regulatory RNAs. Hence, splicing of introns also appears to provide plasticity to the type of RNA produced from a genetic locus (coding, non-coding, short or long). We addressed these aspects to add to our understanding of mechanisms that control the fate of introns and could be instrumental in regulating genomic output and hence cell fate.
Collapse
|
38
|
Temporal and spatial regulation of translation in the mammalian oocyte via the mTOR-eIF4F pathway. Nat Commun 2015; 6:6078. [PMID: 25629602 PMCID: PMC4317492 DOI: 10.1038/ncomms7078] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 12/10/2014] [Indexed: 02/07/2023] Open
Abstract
The fully grown mammalian oocyte is transcriptionally quiescent and utilizes only transcripts synthesized and stored during early development. However, we find that an abundant RNA population is retained in the oocyte nucleus and contains specific mRNAs important for meiotic progression. Here we show that during the first meiotic division, shortly after nuclear envelope breakdown, translational hotspots develop in the chromosomal area and in a region that was previously surrounded the nucleus. These distinct translational hotspots are separated by endoplasmic reticulum and Lamin, and disappear following polar body extrusion. Chromosomal translational hotspots are controlled by the activity of the mTOR–eIF4F pathway. Here we reveal a mechanism that—following the resumption of meiosis—controls the temporal and spatial translation of a specific set of transcripts required for normal spindle assembly, chromosome alignment and segregation. Meiotic maturation of oocytes and early development of mammalian embryos is largely dependent on the translation of mRNAs stored in the oocyte. Here the authors uncover a population of mRNA retained in the oocyte nucleus whose translation is spatially and temporally regulated by the mTOR–eIF4F pathway during meiosis.
Collapse
|
39
|
Aberrant splicing of U12-type introns is the hallmark of ZRSR2 mutant myelodysplastic syndrome. Nat Commun 2015; 6:6042. [PMID: 25586593 PMCID: PMC4349895 DOI: 10.1038/ncomms7042] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 12/04/2014] [Indexed: 02/07/2023] Open
Abstract
Somatic mutations in the spliceosome gene ZRSR2 — located on the X chromosome — are associated with myelodysplastic syndrome (MDS). ZRSR2 is involved in the recognition of 3΄ splice site during the early stages of spliceosome assembly; however, its precise role in RNA splicing has remained unclear. Here, we characterize ZRSR2 as an essential component of the minor spliceosome (U12-dependent) assembly. shRNA mediated knockdown of ZRSR2 leads to impaired splicing of the U12-type introns, and RNA-Sequencing of MDS bone marrow reveals that loss of ZRSR2 activity causes increased mis-splicing. These splicing defects involve retention of the U12-type introns while splicing of the U2-type introns remain mostly unaffected. ZRSR2 deficient cells also exhibit reduced proliferation potential and distinct alterations in myeloid and erythroid differentiation in vitro. These data identify a specific role for ZRSR2 in RNA splicing and highlight dysregulated splicing of U12-type introns as a characteristic feature of ZRSR2 mutations in MDS.
Collapse
|
40
|
Jung H, Gkogkas CG, Sonenberg N, Holt CE. Remote control of gene function by local translation. Cell 2014; 157:26-40. [PMID: 24679524 PMCID: PMC3988848 DOI: 10.1016/j.cell.2014.03.005] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/04/2014] [Accepted: 03/04/2014] [Indexed: 12/12/2022]
Abstract
The subcellular position of a protein is a key determinant of its function. Mounting evidence indicates that RNA localization, where specific mRNAs are transported subcellularly and subsequently translated in response to localized signals, is an evolutionarily conserved mechanism to control protein localization. On-site synthesis confers novel signaling properties to a protein and helps to maintain local proteome homeostasis. Local translation plays particularly important roles in distal neuronal compartments, and dysregulated RNA localization and translation cause defects in neuronal wiring and survival. Here, we discuss key findings in this area and possible implications of this adaptable and swift mechanism for spatial control of gene function.
Collapse
Affiliation(s)
- Hosung Jung
- Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Christos G Gkogkas
- Patrick Wild Centre, Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada.
| | - Christine E Holt
- Department of Physiology Development and Neuroscience, Anatomy Building, Downing Street, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|
41
|
Jung HJ, Kang H. The Arabidopsis U11/U12-65K is an indispensible component of minor spliceosome and plays a crucial role in U12 intron splicing and plant development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:799-810. [PMID: 24606192 DOI: 10.1111/tpj.12498] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 02/14/2014] [Accepted: 02/19/2014] [Indexed: 05/10/2023]
Abstract
The U12-dependent introns have been identified in a wide range of eukaryotes and are removed from precursor-mRNAs by U12 intron-specific minor spliceosome. Although several proteins unique to minor spliceosome have been identified, the nature of their effect on U12 intron splicing as well as plant growth and development remain largely unknown. Here, we characterized the functional role of an U12-type spliceosomal protein, U11/U12-65K in Arabidopsis thaliana. The transgenic knockdown plants generated by artificial miRNA-mediated silencing strategy exhibited severe defect in growth and development, such as severely arrested primary inflorescence stems, serrated leaves, and the formation of many rosette leaves after bolting. RNA sequencing and reverse transcription polymerase chain reaction (RT-PCR) analyses revealed that splicing of 198 out of the 234 previously predicted U12 intron-containing genes and 32 previously unidentified U12 introns was impaired in u11/u12-65k mutant. Moreover, the U11/U12-65K mutation affected alternative splicing, as well as U12 intron splicing, of many introns. Microarray analysis revealed that the genes involved in cell wall biogenesis and function, plant development, and metabolic processes are differentially expressed in the mutant plants. U11/U12-65K protein bound specifically to U12 small nuclear RNA (snRNA), which is necessary for branch-point site recognition. Taken together, these results provide clear evidence that U11/U12-65K is an indispensible component of minor spliceosome and involved in U12 intron splicing and alternative splicing of many introns, which is crucial for plant development.
Collapse
Affiliation(s)
- Hyun Ju Jung
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju, 500-757, South Korea
| | | |
Collapse
|
42
|
RNA-RNA interactions and pre-mRNA mislocalization as drivers of group II intron loss from nuclear genomes. Proc Natl Acad Sci U S A 2014; 111:6612-7. [PMID: 24722636 DOI: 10.1073/pnas.1404276111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Group II introns are commonly believed to be the progenitors of spliceosomal introns, but they are notably absent from nuclear genomes. Barriers to group II intron function in nuclear genomes therefore beg examination. A previous study showed that nuclear expression of a group II intron in yeast results in nonsense-mediated decay and translational repression of mRNA, and that these roadblocks to expression are group II intron-specific. To determine the molecular basis for repression of gene expression, we investigated cellular dynamics of processed group II intron RNAs, from transcription to cellular localization. Our data show pre-mRNA mislocalization to the cytoplasm, where the RNAs are targeted to foci. Furthermore, tenacious mRNA-pre-mRNA interactions, based on intron-exon binding sequences, result in reduced abundance of spliced mRNAs. Nuclear retention of pre-mRNA prevents this interaction and relieves these expression blocks. In addition to providing a mechanistic rationale for group II intron-specific repression, our data support the hypothesis that RNA silencing of the host gene contributed to expulsion of group II introns from nuclear genomes and drove the evolution of spliceosomal introns.
Collapse
|
43
|
Buckley PT, Khaladkar M, Kim J, Eberwine J. Cytoplasmic intron retention, function, splicing, and the sentinel RNA hypothesis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:223-30. [PMID: 24190870 DOI: 10.1002/wrna.1203] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 09/11/2013] [Accepted: 10/04/2013] [Indexed: 01/07/2023]
Abstract
Cytoplasmic splicing represents a newly emerging level of transcriptional regulation adding to the molecular diversity of mammalian cells. As examples of this noncanonical form of transcript processing are discovered, the evidence of its importance to normal cellular function grows. Work from a number of groups using a variety of cell types is steadily identifying a large number of transcripts (and soon to be even larger as genome-wide analyses of retained introns across a number of cellular phenotypes are currently underway) that undergo some level of regulated endogenous extranuclear splicing as part of their normal biosynthetic pathway. Here, we review the existing data covering cytoplasmic retained intron sequences and suggest that such sequences may be a component of 'sentinel RNA' that serves to generate transcript variants within the cytoplasm as well as a source for RNA-based secondary messages.
Collapse
Affiliation(s)
- Peter T Buckley
- Department of Pharmacology, Perelman School of Medicine and the School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
44
|
Khaladkar M, Buckley PT, Lee MT, Francis C, Eghbal MM, Chuong T, Suresh S, Kuhn B, Eberwine J, Kim J. Subcellular RNA sequencing reveals broad presence of cytoplasmic intron-sequence retaining transcripts in mouse and rat neurons. PLoS One 2013; 8:e76194. [PMID: 24098440 PMCID: PMC3789819 DOI: 10.1371/journal.pone.0076194] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/20/2013] [Indexed: 12/03/2022] Open
Abstract
Recent findings have revealed the complexity of the transcriptional landscape in mammalian cells. One recently described class of novel transcripts are the Cytoplasmic Intron-sequence Retaining Transcripts (CIRTs), hypothesized to confer post-transcriptional regulatory function. For instance, the neuronal CIRT KCNMA1i16 contributes to the firing properties of hippocampal neurons. Intronic sub-sequence retention within IL1-β mRNA in anucleate platelets has been implicated in activity-dependent splicing and translation. In a recent study, we showed CIRTs harbor functional SINE ID elements which are hypothesized to mediate dendritic localization in neurons. Based on these studies and others, we hypothesized that CIRTs may be present in a broad set of transcripts and comprise novel signals for post-transcriptional regulation. We carried out a transcriptome-wide survey of CIRTs by sequencing micro-dissected subcellular RNA fractions. We sequenced two batches of 150-300 individually dissected dendrites from primary cultures of hippocampal neurons in rat and three batches from mouse hippocampal neurons. After statistical processing to minimize artifacts, we found a broad prevalence of CIRTs in the neurons in both species (44-60% of the expressed transcripts). The sequence patterns, including stereotypical length, biased inclusion of specific introns, and intron-intron junctions, suggested CIRT-specific nuclear processing. Our analysis also suggested that these cytoplasmic intron-sequence retaining transcripts may serve as a primary transcript for ncRNAs. Our results show that retaining intronic sequences is not isolated to a few loci but may be a genome-wide phenomenon for embedding functional signals within certain mRNA. The results hypothesize a novel source of cis-sequences for post-transcriptional regulation. Our results hypothesize two potentially novel splicing pathways: one, within the nucleus for CIRT biogenesis; and another, within the cytoplasm for removing CIRT sequences before translation. We also speculate that release of CIRT sequences prior to translation may form RNA-based signals within the cell potentially comprising a novel class of signaling pathways.
Collapse
Affiliation(s)
- Mugdha Khaladkar
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Peter T. Buckley
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Miler T. Lee
- Department of Genetics, Yale University, New Haven, Connecticut, United States of America
| | - Chantal Francis
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mitra M. Eghbal
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Tina Chuong
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sangita Suresh
- Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Bernhard Kuhn
- Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - James Eberwine
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Genomics and Computational Biology Program, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Junhyong Kim
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Genomics and Computational Biology Program, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
45
|
Younis I, Dittmar K, Wang W, Foley SW, Berg MG, Hu KY, Wei Z, Wan L, Dreyfuss G. Minor introns are embedded molecular switches regulated by highly unstable U6atac snRNA. eLife 2013; 2:e00780. [PMID: 23908766 PMCID: PMC3728624 DOI: 10.7554/elife.00780] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/27/2013] [Indexed: 11/13/2022] Open
Abstract
Eukaryotes have two types of spliceosomes, comprised of either major (U1, U2, U4, U5, U6) or minor (U11, U12, U4atac, U6atac; <1%) snRNPs. The high conservation of minor introns, typically one amidst many major introns in several hundred genes, despite their poor splicing, has been a long-standing enigma. Here, we discovered that the low abundance minor spliceosome's catalytic snRNP, U6atac, is strikingly unstable (t½<2 hr). We show that U6atac level depends on both RNA polymerases II and III and can be rapidly increased by cell stress-activated kinase p38MAPK, which stabilizes it, enhancing mRNA expression of hundreds of minor intron-containing genes that are otherwise suppressed by limiting U6atac. Furthermore, p38MAPK-dependent U6atac modulation can control minor intron-containing tumor suppressor PTEN expression and cytokine production. We propose that minor introns are embedded molecular switches regulated by U6atac abundance, providing a novel post-transcriptional gene expression mechanism and a rationale for the minor spliceosome's evolutionary conservation. DOI:http://dx.doi.org/10.7554/eLife.00780.001.
Collapse
Affiliation(s)
- Ihab Younis
- Department of Biochemistry and Biophysics , Howard Hughes Medical Institute, University of Pennsylvania School of Medicine , Philadelphia , United States
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Keightley MC, Crowhurst MO, Layton JE, Beilharz T, Markmiller S, Varma S, Hogan BM, de Jong-Curtain TA, Heath JK, Lieschke GJ. In vivo mutation of pre-mRNA processing factor 8 (Prpf8) affects transcript splicing, cell survival and myeloid differentiation. FEBS Lett 2013; 587:2150-7. [PMID: 23714367 DOI: 10.1016/j.febslet.2013.05.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 05/15/2013] [Accepted: 05/15/2013] [Indexed: 01/09/2023]
Abstract
Mutated spliceosome components are recurrently being associated with perturbed tissue development and disease pathogenesis. Cephalophŏnus (cph), is a zebrafish mutant carrying an early premature STOP codon in the spliceosome component Prpf8 (pre-mRNA processing factor 8). Cph initially develops normally, but then develops widespread cell death, especially in neurons, and is embryonic lethal. Cph mutants accumulate aberrantly spliced transcripts retaining both U2- and U12-type introns. Within early haematopoiesis, myeloid differentiation is impaired, suggesting Prpf8 is required for haematopoietic development. Cph provides an animal model for zygotic PRPF8 dysfunction diseases and for evaluating therapeutic interventions.
Collapse
Affiliation(s)
- Maria-Cristina Keightley
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Schreiber C, Kuch V, Umansky V, Sleeman JP. Autochthonous mouse melanoma and mammary tumors do not express the pluripotency genes Oct4 and Nanog. PLoS One 2013; 8:e57465. [PMID: 23468991 PMCID: PMC3585372 DOI: 10.1371/journal.pone.0057465] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/22/2013] [Indexed: 01/06/2023] Open
Abstract
The homeodomain transcription factors Oct4 and Nanog maintain pluripotency and self-renewal in embryonic stem cells. In somatic cells, inappropriate expression of these genes has been associated with loss of differentiation, malignant transformation, and the acquisition of cancer stem cell-like properties. As cancer stem cells have been suggested to underlie the growth and malignancy of tumors, Oct4 and Nanog may represent therapeutic targets. Their expression could also act as a marker of the cancer stem cell population, permitting its isolation and characterisation. Nevertheless, the existence of multiple pseudogenes and isoforms of these genes has complicated the interpretation of the data that supports a role for Oct4 and Nanog in the cancer context. Here we addressed this issue using knockin mice in which IRES elements are used to allow GFP expression under the control of the endogenous Oct4 or Nanog promoters, while maintaining correct expression of the Oct4 or Nanog gene. These mice were crossed with MT/ret mice that develop melanomas, and with MMTV-PyMT mice and MMTV-Neu mice that develop mammary adenocarcinomas. We analysed the tumors that developed in these compound mice for GFP expression. In this way we could assess transcription of Oct4 and Nanog in autochthonous cancers without the complication of factors such as pseudogene expression, alternative splicing and antibody specificity. Both the Oct4 and Nanog knockin tumor-bearing mice expressed GFP in blastocysts and testes as expected. However, we could find no evidence for expression of the GFP reporter above background levels in tumors using FACS, qPCR and immunohistochemistry. Furthermore, cultivation of Oct4GFP and NanogGFP MMTV-PyMT tumor cells either adherently or as spheroids had no effect on the expression of the GFP reporter. Together these data suggest that Oct4 and Nanog are not expressed in tumor cells that arise in the autochthonous cancer models studied here.
Collapse
Affiliation(s)
- Caroline Schreiber
- Centre for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany.
| | | | | | | |
Collapse
|
48
|
Turunen JJ, Niemelä EH, Verma B, Frilander MJ. The significant other: splicing by the minor spliceosome. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 4:61-76. [PMID: 23074130 PMCID: PMC3584512 DOI: 10.1002/wrna.1141] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The removal of non-coding sequences, introns, from the mRNA precursors is an essential step in eukaryotic gene expression. U12-type introns are a minor subgroup of introns, distinct from the major or U2-type introns. U12-type introns are present in most eukaryotes but only account for less than 0.5% of all introns in any given genome. They are processed by a specific U12-dependent spliceosome, which is similar to, but distinct from, the major spliceosome. U12-type introns are spliced somewhat less efficiently than the major introns, and it is believed that this limits the expression of the genes containing such introns. Recent findings on the role of U12-dependent splicing in development and human disease have shown that it can also affect multiple cellular processes not directly related to the functions of the host genes of U12-type introns. At the same time, advances in understanding the regulation and phylogenetic distribution of the minor spliceosome are starting to shed light on how the U12-type introns and the minor spliceosome may have evolved. © 2012 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Janne J Turunen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
49
|
Wang B, Zhang Y, Mao Z, Gao C. Cellular Uptake of Covalent Poly(allylamine hydrochloride) Microcapsules and Its Influences on Cell Functions. Macromol Biosci 2012; 12:1534-45. [DOI: 10.1002/mabi.201200182] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 07/25/2012] [Indexed: 12/15/2022]
|
50
|
Kwak KJ, Jung HJ, Lee KH, Kim YS, Kim WY, Ahn SJ, Kang H. The minor spliceosomal protein U11/U12-31K is an RNA chaperone crucial for U12 intron splicing and the development of dicot and monocot plants. PLoS One 2012; 7:e43707. [PMID: 22912901 PMCID: PMC3422263 DOI: 10.1371/journal.pone.0043707] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 07/23/2012] [Indexed: 11/18/2022] Open
Abstract
U12 intron-specific spliceosomes contain U11 and U12 small nuclear ribonucleoproteins and mediate the removal of U12 introns from precursor-mRNAs. Among the several proteins unique to the U12-type spliceosomes, an Arabidopsis thaliana AtU11/U12-31K protein has been shown to be indispensible for proper U12 intron splicing and for normal growth and development of Arabidopsis plants. Here, we assessed the functional roles of the rice (Oryza sativa) OsU11/U12-31K protein in U12 intron splicing and development of plants. The U11/U12-31K transcripts were abundantly expressed in the shoot apical meristems (SAMs) of Arabidopsis and rice. Ectopic expression of OsU11/U12-31K in AtU11/U12-31K-defecient Arabidopsis mutant complemented the incorrect U12 intron splicing and abnormal development phenotypes of the Arabidopsis mutant plants. Impaired cell division activity in the SAMs and inflorescence stems observed in the AtU11/U12-31K-deficient mutant was completely recovered to normal by the expression of OsU11/U12-31K. Similar to Arabidopsis AtU11/U12-31K, rice OsU11/U12-31K was determined to harbor RNA chaperone activity. Collectively, the present findings provide evidence for the emerging idea that the U11/U12-31K protein is an indispensible RNA chaperone that functions in U12 intron splicing and is necessary for normal development of monocotyledonous plants as well as dicotyledonous plants.
Collapse
Affiliation(s)
- Kyung Jin Kwak
- Department of Plant Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - Hyun Ju Jung
- Department of Plant Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - Kwang Ho Lee
- Department of Wood Science and Landscape Architecture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - Young Soon Kim
- Bioenergy Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - Won Yong Kim
- Department of Plant Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - Sung Ju Ahn
- Department of Bioenergy Science and Technology and Bioenergy Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - Hunseung Kang
- Department of Plant Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
- * E-mail:
| |
Collapse
|