1
|
Seluzicki CM, Razavi-Mohseni M, Türker F, Patel P, Hua B, Beer MA, Goff L, Margolis SS. Regulation of translation elongation and integrated stress response in heat-shocked neurons. Cell Rep 2025; 44:115639. [PMID: 40286269 DOI: 10.1016/j.celrep.2025.115639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/03/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Neurons deviate from a canonical heat shock response (HSR). Here, we revealed that neuronal adaptation to heat shock accompanies a brake on mRNA translation, slowed elongating ribosomes, phosphorylation of eukaryotic elongation factor-2 (p-eEF2), and suppressed the integrated stress response (ISR). Returning neurons to control temperature within 1 h of starting heat shock was necessary for survival and allowed for restored translation following dephosphorylation of eEF2. Subsequent to recovery, neurons briefly activated the ISR and were sensitive to the ISR inhibitor ISRIB, which enhanced protein synthesis and survival. Ribosome profiling and RNA sequencing (RNA-seq) identified newly synthesized and existing transcripts associated with ribosomes during heat shock. Preservation of these transcripts for translation during recovery was in part mediated by p-eEF2 and slowed ribosomes. Our work supports a neuronal heat shock model of a partially suspended state of translation poised for rapid reversal if recovery becomes an option and provides insight into regulation between the HSR and the ISR.
Collapse
Affiliation(s)
- Caitlin M Seluzicki
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Milad Razavi-Mohseni
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fulya Türker
- Department of Molecular Biology and Genetics, Bilkent University, Ankara 06800, Turkey
| | - Priyal Patel
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Boyang Hua
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael A Beer
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Loyal Goff
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seth S Margolis
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
2
|
Ren S, Li Y, Zhou Z. RiboParser/RiboShiny: an integrated platform for comprehensive analysis and visualization of Ribo-seq data. J Genet Genomics 2025:S1673-8527(25)00119-5. [PMID: 40268050 DOI: 10.1016/j.jgg.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
Translation is a crucial step in gene expression. Over the past decade, the development and application of Ribosome profiling (Ribo-seq) have significantly advanced our understanding of translational regulation in vivo. However, the analysis and visualization of Ribo-seq data remain challenging. Despite the availability of various analytical pipelines, improvements in comprehensiveness, accuracy, and user-friendliness are still necessary. In this study, we develop RiboParser/RiboShiny, a robust framework for analyzing and visualizing Ribo-seq data. Building on published methods, we optimize ribosome structure-based and start/stop-based models to improve the accuracy and stability of P-site detection, even in species with a high proportion of leaderless transcripts. Leveraging these improvements, RiboParser offers comprehensive analyses, including quality control, gene-level analysis, codon-level analysis, and the analysis of Ribo-seq variants. Meanwhile, RiboShiny provides a user-friendly and adaptable platform for data visualization, facilitating deeper insights into the translational landscape. Furthermore, the integration of standardized genome annotation renders our platform universally applicable to various organisms with sequenced genomes. This framework has the potential to significantly improve the precision and efficiency of Ribo-seq data interpretation, thereby deepening our understanding of translational regulation.
Collapse
Affiliation(s)
- Shuchao Ren
- National Key Laboratory of Agricultural Microbiology, College of Life Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yinan Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhipeng Zhou
- National Key Laboratory of Agricultural Microbiology, College of Life Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
3
|
Duran-Romaña R, Houben B, Migens PF, Zhang Y, Rousseau F, Schymkowitz J. Native Fold Delay and its implications for co-translational chaperone binding and protein aggregation. Nat Commun 2025; 16:1673. [PMID: 39955309 PMCID: PMC11830000 DOI: 10.1038/s41467-025-57033-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025] Open
Abstract
Because of vectorial protein translation, residues that interact in the native protein structure but are distantly separated in the primary sequence are unavailable simultaneously. Instead, there is a temporal delay during which the N-terminal interaction partner is unsatisfied and potentially vulnerable to non-native interactions. We introduce "Native Fold Delay" (NFD), a metric that integrates protein topology with translation kinetics to quantify such delays. We found that many proteins exhibit residues with NFDs in the range of tens of seconds. These residues, predominantly in well-structured, buried regions, often coincide with aggregation-prone regions. NFD correlates with co-translational engagement by the yeast Hsp70 chaperone Ssb, suggesting that native fold-delayed regions have a propensity to misfold. Supporting this, we show that proteins with long NFDs are more frequently co-translationally ubiquitinated and prone to aggregate upon Ssb deletion.
Collapse
Affiliation(s)
- Ramon Duran-Romaña
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Bert Houben
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Paula Fernández Migens
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Ying Zhang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Frederic Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Joost Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
4
|
Pechmann S. Heterogeneous folding landscapes and predetermined breaking points within a protein family. Protein Sci 2024; 33:e5205. [PMID: 39555686 PMCID: PMC11571096 DOI: 10.1002/pro.5205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024]
Abstract
The accurate prediction of protein structures with artificial intelligence has been a spectacular success. Yet, how proteins fold into their native structures inside the cell remains incompletely understood. Of particular interest is to rationalize how proteins interact with the protein homeostasis network, an organism specific set of protein folding and quality control enzymes. Failure of protein homeostasis leads to widespread misfolding and aggregation, and thus neurodegeneration. Here, I present a comparative analysis of the folding of 16 single-domain proteins from the same organism across a protein family, the Saccharomyces cerevisiae small GTPases. Using computational modeling to directly probe protein folding dynamics, this work shows how near identical structures from the same folding environment can exhibit heterogeneous folding landscapes. Remarkably, yeast small GTPases are found to unfold along different pathways either via the N- or C-terminus initiated by structure-encoded predetermined breaking points. Degrons as recognition signals for ubiquitin-dependent degradation were systematically absent from the initial unfolding sites, as if to protect from too rapid degradation upon spontaneous unfolding or before completion of the folding. The presented results highlight a direct coordination of folding pathway and protein homeostasis interaction signals across a protein family. A deeper understanding of the interdependence of proteins with their folding environment will help to rationalize and combat diseases linked to protein misfolding and dysregulation. More generally, this work underlines the importance of understanding protein folding in the cellular context, and highlights valuable constraints towards a systems-level understanding of protein homeostasis.
Collapse
|
5
|
Zarges C, Riemer J. Oxidative protein folding in the intermembrane space of human mitochondria. FEBS Open Bio 2024; 14:1610-1626. [PMID: 38867508 PMCID: PMC11452306 DOI: 10.1002/2211-5463.13839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/03/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
The mitochondrial intermembrane space hosts a machinery for oxidative protein folding, the mitochondrial disulfide relay. This machinery imports a large number of soluble proteins into the compartment, where they are retained through oxidative folding. Additionally, the disulfide relay enhances the stability of many proteins by forming disulfide bonds. In this review, we describe the mitochondrial disulfide relay in human cells, its components, and their coordinated collaboration in mechanistic detail. We also discuss the human pathologies associated with defects in this machinery and its protein substrates, providing a comprehensive overview of its biological importance and implications for health.
Collapse
Affiliation(s)
| | - Jan Riemer
- Institute for BiochemistryUniversity of CologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneGermany
| |
Collapse
|
6
|
Ruger-Herreros C, Svoboda L, Mogk A, Bukau B. Role of J-domain Proteins in Yeast Physiology and Protein Quality Control. J Mol Biol 2024; 436:168484. [PMID: 38331212 DOI: 10.1016/j.jmb.2024.168484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
The Hsp70 chaperone system is a central component of cellular protein quality control (PQC) by acting in a multitude of protein folding processes ranging from the folding of newly synthesized proteins to the disassembly and refolding of protein aggregates. This multifunctionality of Hsp70 is governed by J-domain proteins (JDPs), which act as indispensable co-chaperones that target specific substrates to Hsp70. The number of distinct JDPs present in a species always outnumbers Hsp70, documenting JDP function in functional diversification of Hsp70. In this review, we describe the physiological roles of JDPs in the Saccharomyces cerevisiae PQC system, with a focus on the abundant JDP generalists, Zuo1, Ydj1 and Sis1, which function in fundamental cellular processes. Ribosome-bound Zuo1 cooperates with the Hsp70 chaperones Ssb1/2 in folding and assembly of nascent polypeptides. Ydj1 and Sis1 cooperate with the Hsp70 members Ssa1 to Ssa4 to exert overlapping functions in protein folding and targeting of newly synthesized proteins to organelles including mitochondria and facilitating the degradation of aberrant proteins by E3 ligases. Furthermore, they act in protein disaggregation reactions, though Ydj1 and Sis1 differ in their modes of Hsp70 cooperation and substrate specificities. This results in functional specialization as seen in prion propagation and the underlying dominant role of Sis1 in targeting Hsp70 for shearing of prion amyloid fibrils.
Collapse
Affiliation(s)
- Carmen Ruger-Herreros
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot, s/n, E-41013 Sevilla, Spain
| | - Lucia Svoboda
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Axel Mogk
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| |
Collapse
|
7
|
Kumar P, Kinger S, Dubey AR, Jagtap YA, Choudhary A, Prasad A, Jha HC, Dhiman R, Gutti RK, Mishra A. Trehalose Promotes Clearance of Proteotoxic Aggregation of Neurodegenerative Disease-Associated Aberrant Proteins. Mol Neurobiol 2024; 61:4055-4073. [PMID: 38057642 DOI: 10.1007/s12035-023-03824-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
Accumulation of misfolded proteins compromises overall cellular health and fitness. The failure to remove misfolded proteins is a critical reason for their unwanted aggregation in dense cellular protein pools. The accumulation of various inclusions serves as a clinical feature for neurodegenerative diseases. Previous findings suggest that different cellular compartments can store these abnormal inclusions. Studies of transgenic mice and cellular models of neurodegenerative diseases indicate that depleted chaperone capacity contributes to the aggregation of damaged or aberrant proteins, which consequently disturb proteostasis and cell viability. However, improving these abnormal proteins' selective elimination is yet to be well understood. Still, molecular strategies that can promote the effective degradation of abnormal proteins without compromising cellular viability are unclear. Here, we reported that the trehalose treatment elevates endogenous proteasome levels and enhances the activities of the proteasome. Trehalose-mediated proteasomal activation elevates the removal of both bona fide misfolded and various neurodegenerative disease-associated proteins. Our current study suggests that trehalose may retain a proteasome activation potential, which seems helpful in the solubilization of different mutant misfolded proteins, improving cell viability. These results reveal a possible molecular approach to reduce the overload of intracellular misfolded proteins, and such cytoprotective functions may play a critical role against protein conformational diseases.
Collapse
Affiliation(s)
- Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Ankur Rakesh Dubey
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Amit Prasad
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Ravi Kumar Gutti
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India.
| |
Collapse
|
8
|
Lang BJ, Holton KM, Guerrero-Gimenez ME, Okusha Y, Magahis PT, Shi A, Neguse M, Venkatesh S, Nhu AM, Gestwicki JE, Calderwood SK. Heat shock protein 72 supports extracellular matrix production in metastatic mammary tumors. Cell Stress Chaperones 2024; 29:456-471. [PMID: 38703814 PMCID: PMC11127224 DOI: 10.1016/j.cstres.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/28/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024] Open
Abstract
This study identified tumorigenic processes most dependent on murine heat shock protein 72 (HSP72) in the mouse mammary tumor virus-PyMT mammary tumor model, which give rise to spontaneous mammary tumors that exhibit HSP72-dependent metastasis to the lung. RNA-seq expression profiling of Hspa1a/Hspa1b (Hsp72) WT and Hsp72-/- primary mammary tumors discovered significantly lower expression of genes encoding components of the extracellular matrix (ECM) in Hsp72 knockout mammary tumors compared to WT controls. In vitro studies found that genetic or chemical inhibition of HSP72 activity in cultured collagen-expressing human or murine cells also reduces mRNA and protein levels of COL1A1 and several other ECM-encoding genes. In search of a possible mechanistic basis for this relationship, we found HSP72 to support the activation of the tumor growth factor-β-suppressor of mothers against decapentaplegic-3 signaling pathway and evidence of suppressor of mothers against decapentaplegic-3 and HSP72 coprecipitation, suggesting potential complex formation. Human COL1A1 mRNA expression was found to have prognostic value for HER2+ breast tumors over other breast cancer subtypes, suggesting a possible human disease context where targeting HSP72 may have a therapeutic rationale. Analysis of human HER2+ breast tumor gene expression data using a gene set comprising ECM-related gene and protein folding-related gene as an input to the statistical learning algorithm, Galgo, found a subset of these genes that can collectively stratify patients by relapse-free survival, further suggesting a potential interplay between the ECM and protein-folding genes may contribute to tumor progression.
Collapse
Affiliation(s)
- Benjamin J Lang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | | | - Martin E Guerrero-Gimenez
- Institute of Biochemistry and Biotechnology, School of Medicine, National University of Cuyo, Mendoza, Argentina
| | - Yuka Okusha
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Patrick T Magahis
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Amy Shi
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mary Neguse
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shreya Venkatesh
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Anh M Nhu
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA, USA
| | - Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Bell RT, Sahakyan H, Makarova KS, Wolf YI, Koonin EV. CoCoNuTs are a diverse subclass of Type IV restriction systems predicted to target RNA. eLife 2024; 13:RP94800. [PMID: 38739430 PMCID: PMC11090510 DOI: 10.7554/elife.94800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote coiled-coil nuclease tandems (CoCoNuTs) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with three distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.
Collapse
Affiliation(s)
- Ryan T Bell
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Harutyun Sahakyan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
10
|
Ziegelhoffer T, Verma AK, Delewski W, Schilke BA, Hill PM, Pitek M, Marszalek J, Craig EA. NAC and Zuotin/Hsp70 chaperone systems coexist at the ribosome tunnel exit in vivo. Nucleic Acids Res 2024; 52:3346-3357. [PMID: 38224454 PMCID: PMC11014269 DOI: 10.1093/nar/gkae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024] Open
Abstract
The area surrounding the tunnel exit of the 60S ribosomal subunit is a hub for proteins involved in maturation and folding of emerging nascent polypeptide chains. How different factors vie for positioning at the tunnel exit in the complex cellular environment is not well understood. We used in vivo site-specific cross-linking to approach this question, focusing on two abundant factors-the nascent chain-associated complex (NAC) and the Hsp70 chaperone system that includes the J-domain protein co-chaperone Zuotin. We found that NAC and Zuotin can cross-link to each other at the ribosome, even when translation initiation is inhibited. Positions yielding NAC-Zuotin cross-links indicate that when both are present the central globular domain of NAC is modestly shifted from the mutually exclusive position observed in cryogenic electron microscopy analysis. Cross-linking results also suggest that, even in NAC's presence, Hsp70 can situate in a manner conducive for productive nascent chain interaction-with the peptide binding site at the tunnel exit and the J-domain of Zuotin appropriately positioned to drive stabilization of nascent chain binding. Overall, our results are consistent with the idea that, in vivo, the NAC and Hsp70 systems can productively position on the ribosome simultaneously.
Collapse
Affiliation(s)
- Thomas Ziegelhoffer
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI 53726, USA
| | - Amit K Verma
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI 53726, USA
| | - Wojciech Delewski
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI 53726, USA
| | - Brenda A Schilke
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI 53726, USA
| | - Paige M Hill
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI 53726, USA
| | - Marcin Pitek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk 80-307, Poland
| | - Jaroslaw Marszalek
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI 53726, USA
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk 80-307, Poland
| | - Elizabeth A Craig
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI 53726, USA
| |
Collapse
|
11
|
Leone S, Srivastava A, Herrero-Ruiz A, Hummel B, Tittel L, Campalastri R, Aprile-Garcia F, Tan JH, Rawat P, Andersson P, Willis AE, Sawarkar R. HSP70 binds to specific non-coding RNA and regulates human RNA polymerase III. Mol Cell 2024; 84:687-701.e7. [PMID: 38266641 DOI: 10.1016/j.molcel.2024.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 10/20/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024]
Abstract
Molecular chaperones are critical for protein homeostasis and are implicated in several human pathologies such as neurodegeneration and cancer. While the binding of chaperones to nascent and misfolded proteins has been studied in great detail, the direct interaction between chaperones and RNA has not been systematically investigated. Here, we provide the evidence for widespread interaction between chaperones and RNA in human cells. We show that the major chaperone heat shock protein 70 (HSP70) binds to non-coding RNA transcribed by RNA polymerase III (RNA Pol III) such as tRNA and 5S rRNA. Global chromatin profiling revealed that HSP70 binds genomic sites of transcription by RNA Pol III. Detailed biochemical analyses showed that HSP70 alleviates the inhibitory effect of cognate tRNA transcript on tRNA gene transcription. Thus, our study uncovers an unexpected role of HSP70-RNA interaction in the biogenesis of a specific class of non-coding RNA with wider implications in cancer therapeutics.
Collapse
Affiliation(s)
- Sergio Leone
- MRC Toxicology Unit, University of Cambridge, Cambridge CB21QR, UK.
| | | | | | - Barbara Hummel
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Lena Tittel
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | | | | | - Jun Hao Tan
- MRC Toxicology Unit, University of Cambridge, Cambridge CB21QR, UK
| | - Prashant Rawat
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Patrik Andersson
- Safety Innovation, Clinical Pharmacology and Safety Sciences, AstraZeneca R&D, Gothenburg 43183, Sweden
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Cambridge CB21QR, UK
| | - Ritwick Sawarkar
- MRC Toxicology Unit, University of Cambridge, Cambridge CB21QR, UK; Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany.
| |
Collapse
|
12
|
Bell RT, Sahakyan H, Makarova KS, Wolf YI, Koonin EV. CoCoNuTs: A diverse subclass of Type IV restriction systems predicted to target RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.31.551357. [PMID: 37790407 PMCID: PMC10542128 DOI: 10.1101/2023.07.31.551357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote CoCoNuTs (coiled-coil nuclease tandems) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with 3 distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.
Collapse
Affiliation(s)
- Ryan T. Bell
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Harutyun Sahakyan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
13
|
Gamerdinger M, Deuerling E. Cotranslational sorting and processing of newly synthesized proteins in eukaryotes. Trends Biochem Sci 2024; 49:105-118. [PMID: 37919225 DOI: 10.1016/j.tibs.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
Ribosomes interact with a variety of different protein biogenesis factors that guide newly synthesized proteins to their native 3D shapes and cellular localization. Depending on the type of translated substrate, a distinct set of cotranslational factors must interact with the ribosome in a timely and coordinated manner to ensure proper protein biogenesis. While cytonuclear proteins require cotranslational maturation and folding factors, secretory proteins must be maintained in an unfolded state and processed cotranslationally by transport and membrane translocation factors. Here we explore the specific cotranslational processing steps for cytonuclear, secretory, and membrane proteins in eukaryotes and then discuss how the nascent polypeptide-associated complex (NAC) cotranslationally sorts these proteins into the correct protein biogenesis pathway.
Collapse
Affiliation(s)
- Martin Gamerdinger
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany.
| | - Elke Deuerling
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
14
|
Black A, Williams TD, Soubigou F, Joshua IM, Zhou H, Lamoliatte F, Rousseau A. The ribosome-associated chaperone Zuo1 controls translation upon TORC1 inhibition. EMBO J 2023; 42:e113240. [PMID: 37984430 PMCID: PMC10711665 DOI: 10.15252/embj.2022113240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023] Open
Abstract
Protein requirements of eukaryotic cells are ensured by proteostasis, which is mediated by tight control of TORC1 activity. Upon TORC1 inhibition, protein degradation is increased and protein synthesis is reduced through inhibition of translation initiation to maintain cell viability. Here, we show that the ribosome-associated complex (RAC)/Ssb chaperone system, composed of the HSP70 chaperone Ssb and its HSP40 co-chaperone Zuo1, is required to maintain proteostasis and cell viability under TORC1 inhibition in Saccharomyces cerevisiae. In the absence of Zuo1, translation does not decrease in response to the loss of TORC1 activity. A functional interaction between Zuo1 and Ssb is required for proper translational control and proteostasis maintenance upon TORC1 inhibition. Furthermore, we have shown that the rapid degradation of eIF4G following TORC1 inhibition is mediated by autophagy and is prevented in zuo1Δ cells, contributing to decreased survival in these conditions. We found that autophagy is defective in zuo1Δ cells, which impedes eIF4G degradation upon TORC1 inhibition. Our findings identify an essential role for RAC/Ssb in regulating translation in response to changes in TORC1 signalling.
Collapse
Affiliation(s)
- Ailsa Black
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeDundeeUK
| | - Thomas D Williams
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeDundeeUK
| | - Flavie Soubigou
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeDundeeUK
| | - Ifeoluwapo M Joshua
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeDundeeUK
| | - Houjiang Zhou
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeDundeeUK
| | - Frederic Lamoliatte
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeDundeeUK
| | - Adrien Rousseau
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeDundeeUK
| |
Collapse
|
15
|
Ries F, Weil HL, Herkt C, Mühlhaus T, Sommer F, Schroda M, Willmund F. Competition co-immunoprecipitation reveals the interactors of the chloroplast CPN60 chaperonin machinery. PLANT, CELL & ENVIRONMENT 2023; 46:3371-3391. [PMID: 37606545 DOI: 10.1111/pce.14697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/28/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023]
Abstract
The functionality of all metabolic processes in chloroplasts depends on a balanced integration of nuclear- and chloroplast-encoded polypeptides into the plastid's proteome. The chloroplast chaperonin machinery is an essential player in chloroplast protein folding under ambient and stressful conditions, with a more intricate structure and subunit composition compared to the orthologous GroEL/ES chaperonin of Escherichia coli. However, its exact role in chloroplasts remains obscure, mainly because of very limited knowledge about the interactors. We employed the competition immunoprecipitation method for the identification of the chaperonin's interactors in Chlamydomonas reinhardtii. Co-immunoprecipitation of the target complex in the presence of increasing amounts of isotope-labelled competitor epitope and subsequent mass spectrometry analysis specifically allowed to distinguish true interactors from unspecifically co-precipitated proteins. Besides known substrates such as RbcL and the expected complex partners, we revealed numerous new interactors with high confidence. Proteins that qualify as putative substrate proteins differ from bulk chloroplast proteins by a higher content of beta-sheets, lower alpha-helical conformation and increased aggregation propensity. Immunoprecipitations targeted against a subunit of the co-chaperonin lid revealed the ClpP protease as a specific partner complex, pointing to a close collaboration of these machineries to maintain protein homeostasis in the chloroplast.
Collapse
Affiliation(s)
- Fabian Ries
- Molecular Genetics of Eukaryotes, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Heinrich Lukas Weil
- Computational Systems Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Claudia Herkt
- Molecular Genetics of Eukaryotes, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Frederik Sommer
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Felix Willmund
- Molecular Genetics of Eukaryotes, University of Kaiserslautern-Landau, Kaiserslautern, Germany
- Plant Physiology/Synmikro, University of Marburg, Marburg, Germany
| |
Collapse
|
16
|
Ciesielski SJ, Young C, Ciesielska EJ, Ciesielski GL. The Hsp70 and JDP proteins: Structure-function perspective on molecular chaperone activity. Enzymes 2023; 54:221-245. [PMID: 37945173 DOI: 10.1016/bs.enz.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Proteins are the most structurally diverse cellular biomolecules that act as molecular machines driving essential activities of all living organisms. To be functional, most of the proteins need to fold into a specific three-dimensional structure, which on one hand should be stable enough to oppose disruptive conditions and on the other hand flexible enough to allow conformational dynamics necessary for their biological functions. This compromise between stability and dynamics makes proteins susceptible to stress-induced misfolding and aggregation. Moreover, the folding process itself is intrinsically prone to conformational errors. Molecular chaperones are proteins that mitigate folding defects and maintain the structural integrity of the cellular proteome. Promiscuous Hsp70 chaperones are central to these processes and their activity depends on the interaction with obligatory J-domain protein (JDP) partners. In this review, we discuss structural aspects of Hsp70s, JDPs, and their interaction in the context of biological activities.
Collapse
Affiliation(s)
- Szymon J Ciesielski
- Department of Chemistry and Biochemistry, University of North Florida, Jacksonville, FL, United States.
| | - Cameron Young
- Department of Chemistry and Biochemistry, University of North Florida, Jacksonville, FL, United States
| | - Elena J Ciesielska
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL, United States; Department of Biology, University of North Florida, Jacksonville, FL, United States
| | - Grzegorz L Ciesielski
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL, United States; Department of Biology, University of North Florida, Jacksonville, FL, United States
| |
Collapse
|
17
|
Nashed S, El Barbry H, Benchouaia M, Dijoux-Maréchal A, Delaveau T, Ruiz-Gutierrez N, Gaulier L, Tribouillard-Tanvier D, Chevreux G, Le Crom S, Palancade B, Devaux F, Laine E, Garcia M. Functional mapping of N-terminal residues in the yeast proteome uncovers novel determinants for mitochondrial protein import. PLoS Genet 2023; 19:e1010848. [PMID: 37585488 PMCID: PMC10482271 DOI: 10.1371/journal.pgen.1010848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 09/06/2023] [Accepted: 06/29/2023] [Indexed: 08/18/2023] Open
Abstract
N-terminal ends of polypeptides are critical for the selective co-translational recruitment of N-terminal modification enzymes. However, it is unknown whether specific N-terminal signatures differentially regulate protein fate according to their cellular functions. In this work, we developed an in-silico approach to detect functional preferences in cellular N-terminomes, and identified in S. cerevisiae more than 200 Gene Ontology terms with specific N-terminal signatures. In particular, we discovered that Mitochondrial Targeting Sequences (MTS) show a strong and specific over-representation at position 2 of hydrophobic residues known to define potential substrates of the N-terminal acetyltransferase NatC. We validated mitochondrial precursors as co-translational targets of NatC by selective purification of translating ribosomes, and found that their N-terminal signature is conserved in Saccharomycotina yeasts. Finally, systematic mutagenesis of the position 2 in a prototypal yeast mitochondrial protein confirmed its critical role in mitochondrial protein import. Our work highlights the hydrophobicity of MTS N-terminal residues and their targeting by NatC as important features for the definition of the mitochondrial proteome, providing a molecular explanation for mitochondrial defects observed in yeast or human NatC-depleted cells. Functional mapping of N-terminal residues thus has the potential to support the discovery of novel mechanisms of protein regulation or targeting.
Collapse
Affiliation(s)
- Salomé Nashed
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Houssam El Barbry
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Médine Benchouaia
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Angélie Dijoux-Maréchal
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Thierry Delaveau
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Nadia Ruiz-Gutierrez
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Lucie Gaulier
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | | | | | - Stéphane Le Crom
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | | | - Frédéric Devaux
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Elodie Laine
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Mathilde Garcia
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| |
Collapse
|
18
|
Ju D, Li L, Xie Y. Homeostatic regulation of ribosomal proteins by ubiquitin-independent cotranslational degradation. Proc Natl Acad Sci U S A 2023; 120:e2306152120. [PMID: 37459537 PMCID: PMC10372694 DOI: 10.1073/pnas.2306152120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
Ribosomes are the workplace for protein biosynthesis. Protein production required for normal cell function is tightly linked to ribosome abundance. It is well known that ribosomal genes are actively transcribed and ribosomal messenger RNAs (mRNAs) are rapidly translated, and yet ribosomal proteins have relatively long half-lives. These observations raise questions as to how homeostasis of ribosomal proteins is controlled. Here, we show that ribosomal proteins, while posttranslationally stable, are subject to high-level cotranslational protein degradation (CTPD) except for those synthesized as ubiquitin (Ub) fusion precursors. The N-terminal Ub moiety protects fused ribosomal proteins from CTPD. We further demonstrate that cotranslational folding efficiency and expression level are two critical factors determining CTPD of ribosomal proteins. Different from canonical posttranslational degradation, we found that CTPD of all the ribosomal proteins tested in this study does not require prior ubiquitylation. This work provides insights into the regulation of ribosomal protein homeostasis and furthers our understanding of the mechanism and biological significance of CTPD.
Collapse
Affiliation(s)
- Donghong Ju
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI48201
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI48201
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI48201
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI48201
| | - Li Li
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI48201
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI48201
| | - Youming Xie
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI48201
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI48201
| |
Collapse
|
19
|
Barros GC, Guerrero S, Silva GM. The central role of translation elongation in response to stress. Biochem Soc Trans 2023; 51:959-969. [PMID: 37318088 PMCID: PMC11160351 DOI: 10.1042/bst20220584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Protein synthesis is essential to support homeostasis, and thus, must be highly regulated during cellular response to harmful environments. All stages of translation are susceptible to regulation under stress, however, the mechanisms involved in translation regulation beyond initiation have only begun to be elucidated. Methodological advances enabled critical discoveries on the control of translation elongation, highlighting its important role in translation repression and the synthesis of stress-response proteins. In this article, we discuss recent findings on mechanisms of elongation control mediated by ribosome pausing and collisions and the availability of tRNAs and elongation factors. We also discuss how elongation intersects with distinct modes of translation control, further supporting cellular viability and gene expression reprogramming. Finally, we highlight how several of these pathways are reversibly regulated, emphasizing the dynamics of translation control during stress-response progression. A comprehensive understanding of translation regulation under stress will produce fundamental knowledge of protein dynamics while opening new avenues and strategies to overcome dysregulated protein production and cellular sensitivity to stress.
Collapse
Affiliation(s)
| | | | - Gustavo M. Silva
- Department of Biology, Duke University, Durham, NC, USA
- Lead contact
| |
Collapse
|
20
|
Seidel M, Romanov N, Obarska-Kosinska A, Becker A, Trevisan Doimo de Azevedo N, Provaznik J, Nagaraja SR, Landry JJM, Benes V, Beck M. Co-translational binding of importins to nascent proteins. Nat Commun 2023; 14:3418. [PMID: 37296145 PMCID: PMC10256725 DOI: 10.1038/s41467-023-39150-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Various cellular quality control mechanisms support proteostasis. While, ribosome-associated chaperones prevent the misfolding of nascent chains during translation, importins were shown to prevent the aggregation of specific cargoes in a post-translational mechanism prior the import into the nucleoplasm. Here, we hypothesize that importins may already bind ribosome-associated cargo in a co-translational manner. We systematically measure the nascent chain association of all importins in Saccharomyces cerevisiae by selective ribosome profiling. We identify a subset of importins that bind to a wide range of nascent, often uncharacterized cargoes. This includes ribosomal proteins, chromatin remodelers and RNA binding proteins that are aggregation prone in the cytosol. We show that importins act consecutively with other ribosome-associated chaperones. Thus, the nuclear import system is directly intertwined with nascent chain folding and chaperoning.
Collapse
Affiliation(s)
- Maximilian Seidel
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt, Germany
- Faculty of Bioscience, Heidelberg University, Heidelberg, Germany
| | - Natalie Romanov
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | | | - Anja Becker
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | | | - Jan Provaznik
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Sankarshana R Nagaraja
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Jonathan J M Landry
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Martin Beck
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt, Germany.
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
21
|
Vu Q, Nissley DA, Jiang Y, O’Brien EP, Li MS. Is Posttranslational Folding More Efficient Than Refolding from a Denatured State: A Computational Study. J Phys Chem B 2023; 127:4761-4774. [PMID: 37200608 PMCID: PMC10240488 DOI: 10.1021/acs.jpcb.3c01694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/04/2023] [Indexed: 05/20/2023]
Abstract
The folding of proteins into their native conformation is a complex process that has been extensively studied over the past half-century. The ribosome, the molecular machine responsible for protein synthesis, is known to interact with nascent proteins, adding further complexity to the protein folding landscape. Consequently, it is unclear whether the folding pathways of proteins are conserved on and off the ribosome. The main question remains: to what extent does the ribosome help proteins fold? To address this question, we used coarse-grained molecular dynamics simulations to compare the mechanisms by which the proteins dihydrofolate reductase, type III chloramphenicol acetyltransferase, and d-alanine-d-alanine ligase B fold during and after vectorial synthesis on the ribosome to folding from the full-length unfolded state in bulk solution. Our results reveal that the influence of the ribosome on protein folding mechanisms varies depending on the size and complexity of the protein. Specifically, for a small protein with a simple fold, the ribosome facilitates efficient folding by helping the nascent protein avoid misfolded conformations. However, for larger and more complex proteins, the ribosome does not promote folding and may contribute to the formation of intermediate misfolded states cotranslationally. These misfolded states persist posttranslationally and do not convert to the native state during the 6 μs runtime of our coarse-grain simulations. Overall, our study highlights the complex interplay between the ribosome and protein folding and provides insight into the mechanisms of protein folding on and off the ribosome.
Collapse
Affiliation(s)
- Quyen
V. Vu
- Institute
of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Daniel A. Nissley
- Department
of Statistics, University of Oxford, Oxford OX1 3LB, U.K.
| | - Yang Jiang
- Department
of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Edward P. O’Brien
- Department
of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Bioinformatics
and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Institute
for Computational and Data Sciences, Pennsylvania
State University, University Park, Pennsylvania 16802, United States
| | - Mai Suan Li
- Institute
of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
- Institute
for Computational Sciences and Technology, Quang Trung Software City, Tan
Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
22
|
Statzer C, Park JYC, Ewald CY. Extracellular Matrix Dynamics as an Emerging yet Understudied Hallmark of Aging and Longevity. Aging Dis 2023; 14:670-693. [PMID: 37191434 DOI: 10.14336/ad.2022.1116] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/16/2022] [Indexed: 05/17/2023] Open
Abstract
The biomechanical properties of extracellular matrices (ECM) and their consequences for cellular homeostasis have recently emerged as a driver of aging. Here we review the age-dependent deterioration of ECM in the context of our current understanding of the aging processes. We discuss the reciprocal interactions of longevity interventions with ECM remodeling. And the relevance of ECM dynamics captured by the matrisome and the matreotypes associated with health, disease, and longevity. Furthermore, we highlight that many established longevity compounds promote ECM homeostasis. A large body of evidence for the ECM to qualify as a hallmark of aging is emerging, and the data in invertebrates is promising. However, direct experimental proof that activating ECM homeostasis is sufficient to slow aging in mammals is lacking. We conclude that further research is required and anticipate that a conceptual framework for ECM biomechanics and homeostasis will provide new strategies to promote health during aging.
Collapse
Affiliation(s)
- Cyril Statzer
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Ji Young Cecilia Park
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| |
Collapse
|
23
|
Hu L, Sun C, Kidd JM, Han J, Fang X, Li H, Liu Q, May AE, Li Q, Zhou L, Liu Q. A first-in-class inhibitor of Hsp110 molecular chaperones of pathogenic fungi. Nat Commun 2023; 14:2745. [PMID: 37173314 PMCID: PMC10182041 DOI: 10.1038/s41467-023-38220-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Proteins of the Hsp110 family are molecular chaperones that play important roles in protein homeostasis in eukaryotes. The pathogenic fungus Candida albicans, which causes infections in humans, has a single Hsp110, termed Msi3. Here, we provide proof-of-principle evidence supporting fungal Hsp110s as targets for the development of new antifungal drugs. We identify a pyrazolo[3,4-b] pyridine derivative, termed HLQ2H (or 2H), that inhibits the biochemical and chaperone activities of Msi3, as well as the growth and viability of C. albicans. Moreover, the fungicidal activity of 2H correlates with its inhibition of in vivo protein folding. We propose 2H and related compounds as promising leads for development of new antifungals and as pharmacological tools for the study of the molecular mechanisms and functions of Hsp110s.
Collapse
Affiliation(s)
- Liqing Hu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Cancan Sun
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Justin M Kidd
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Jizhong Han
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518107, Guangdong, China
| | - Xianjun Fang
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Hongtao Li
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Qingdai Liu
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Aaron E May
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Lei Zhou
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518107, Guangdong, China.
| | - Qinglian Liu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
24
|
Jay-Garcia LM, Cornell JL, Howie RL, Faber QL, Salas A, Chernova TA, Chernoff YO. Yeast Chaperone Hsp70-Ssb Modulates a Variety of Protein-Based Heritable Elements. Int J Mol Sci 2023; 24:ijms24108660. [PMID: 37240005 DOI: 10.3390/ijms24108660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Prions are transmissible self-perpetuating protein isoforms associated with diseases and heritable traits. Yeast prions and non-transmissible protein aggregates (mnemons) are frequently based on cross-β ordered fibrous aggregates (amyloids). The formation and propagation of yeast prions are controlled by chaperone machinery. Ribosome-associated chaperone Hsp70-Ssb is known (and confirmed here) to modulate formation and propagation of the prion form of the Sup35 protein [PSI+]. Our new data show that both formation and mitotic transmission of the stress-inducible prion form of the Lsb2 protein ([LSB+]) are also significantly increased in the absence of Ssb. Notably, heat stress leads to a massive accumulation of [LSB+] cells in the absence of Ssb, implicating Ssb as a major downregulator of the [LSB+]-dependent memory of stress. Moreover, the aggregated form of Gγ subunit Ste18, [STE+], behaving as a non-heritable mnemon in the wild-type strain, is generated more efficiently and becomes heritable in the absence of Ssb. Lack of Ssb also facilitates mitotic transmission, while lack of the Ssb cochaperone Hsp40-Zuo1 facilitates both spontaneous formation and mitotic transmission of the Ure2 prion, [URE3]. These results demonstrate that Ssb is a general modulator of cytosolic amyloid aggregation, whose effect is not restricted only to [PSI+].
Collapse
Affiliation(s)
- Lina M Jay-Garcia
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Joseph L Cornell
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Rebecca L Howie
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Quincy L Faber
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Abigail Salas
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yury O Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
25
|
Kišonaitė M, Wild K, Lapouge K, Gesé GV, Kellner N, Hurt E, Sinning I. Structural inventory of cotranslational protein folding by the eukaryotic RAC complex. Nat Struct Mol Biol 2023; 30:670-677. [PMID: 37081320 DOI: 10.1038/s41594-023-00973-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/20/2023] [Indexed: 04/22/2023]
Abstract
The challenge of nascent chain folding at the ribosome is met by the conserved ribosome-associated complex (RAC), which forms a chaperone triad with the Hsp70 protein Ssb in fungi, and consists of the non-canonical Hsp70 Ssz1 and the J domain protein Zuotin (Zuo1). Here we determine cryo-EM structures of Chaetomium thermophilum RAC bound to 80S ribosomes. RAC adopts two distinct conformations accommodating continuous ribosomal rotation by a flexible lever arm. It is held together by a tight interaction between the Ssz1 substrate-binding domain and the Zuo1 N terminus, and additional contacts between the Ssz1 nucleotide-binding domain and Zuo1 J- and Zuo1 homology domains, which form a rigid unit. The Zuo1 HPD motif conserved in J-proteins is masked in a non-canonical interaction by the Ssz1 nucleotide-binding domain, and allows the positioning of Ssb for activation by Zuo1. Overall, we provide the basis for understanding how RAC cooperates with Ssb in a dynamic nascent chain interaction and protein folding.
Collapse
Affiliation(s)
- Miglė Kišonaitė
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Karine Lapouge
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | | | - Nikola Kellner
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Ed Hurt
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany.
| |
Collapse
|
26
|
Nasi GI, Georgakopoulou KI, Theodoropoulou MK, Papandreou NC, Chrysina ED, Tsiolaki PL, Iconomidou VA. Bacterial Lectin FimH and Its Aggregation Hot-Spots: An Alternative Strategy against Uropathogenic Escherichia coli. Pharmaceutics 2023; 15:pharmaceutics15031018. [PMID: 36986878 PMCID: PMC10058141 DOI: 10.3390/pharmaceutics15031018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Type I fimbriae are the main adhesive organelles of uropathogenic Escherichia coli (UPEC), consisting of four different subunits. Their component with the most important role in establishing bacterial infections is the FimH adhesin located at the fimbrial tip. This two-domain protein mediates adhesion to host epithelial cells through interaction with terminal mannoses on epithelial glycoproteins. Here, we propose that the amyloidogenic potential of FimH can be exploited for the development of therapeutic agents against Urinary Tract Infections (UTIs). Aggregation-prone regions (APRs) were identified via computational methods, and peptide-analogues corresponding to FimH lectin domain APRs were chemically synthesized and studied with the aid of both biophysical experimental techniques and molecular dynamic simulations. Our findings indicate that these peptide-analogues offer a promising set of antimicrobial candidate molecules since they can either interfere with the folding process of FimH or compete for the mannose-binding pocket.
Collapse
Affiliation(s)
- Georgia I Nasi
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Konstantina I Georgakopoulou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Marilena K Theodoropoulou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Nikos C Papandreou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Evangelia D Chrysina
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Paraskevi L Tsiolaki
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Vassiliki A Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| |
Collapse
|
27
|
Alhasan B, Mikeladze M, Guzhova I, Margulis B. Autophagy, molecular chaperones, and unfolded protein response as promoters of tumor recurrence. Cancer Metastasis Rev 2023; 42:217-254. [PMID: 36723697 DOI: 10.1007/s10555-023-10085-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/16/2023] [Indexed: 02/02/2023]
Abstract
Tumor recurrence is a paradoxical function of a machinery, whereby a small proportion of the cancer cell population enters a resistant, dormant state, persists long-term in this condition, and then transitions to proliferation. The dormant phenotype is typical of cancer stem cells, tumor-initiating cells, disseminated tumor cells, and drug-tolerant persisters, which all demonstrate similar or even equivalent properties. Cancer cell dormancy and its conversion to repopulation are regulated by several protein signaling systems that inhibit or induce cell proliferation and provide optimal interrelations between cancer cells and their special niche; these systems act in close connection with tumor microenvironment and immune response mechanisms. During dormancy and reawakening periods, cell proteostasis machineries, autophagy, molecular chaperones, and the unfolded protein response are recruited to protect refractory tumor cells from a wide variety of stressors and therapeutic insults. Proteostasis mechanisms functionally or even physically interfere with the main regulators of tumor relapse, and the significance of these interactions and implications in the tumor recurrence phases are discussed in this review.
Collapse
Affiliation(s)
- Bashar Alhasan
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia.
| | - Marina Mikeladze
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia
| | - Irina Guzhova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia
| | - Boris Margulis
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia
| |
Collapse
|
28
|
Yamada Y, Shiroma A, Hirai S, Iwasaki J. Zuo1, a ribosome-associated J protein, is involved in glucose repression in Saccharomyces cerevisiae. FEMS Yeast Res 2023; 23:foad038. [PMID: 37550218 DOI: 10.1093/femsyr/foad038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023] Open
Abstract
In Saccharomyces cerevisiae, the J-protein Zuo1 and the nonconventional Hsp70 homologue Ssz1 stimulate the ATPase activity of the chaperone proteins Ssb1 and Ssb2 (Ssb1/2), which are associated with the ribosomes. The dephosphorylation of sucrose nonfermenting 1 (Snf1) on Thr210 is required for glucose repression. The Ssb1/2 and 14-3-3 proteins Bmh1 and Bmh2 appear to be responsible for the dephosphorylation of Snf1 on Thr210 and glucose repression. Here, we investigated the role of Zuo1 in glucose repression. The zuo1∆ strain as well as the ssb1∆ssb2∆ strain exhibited a glucose-specific growth defect during logarithmic growth on glucose. Many of the respiratory chain genes examined were statistically significantly upregulated, but less than 2-fold, in the zuo1∆ strain as well as in the ssb1∆ssb2∆ strain on glucose. In addition, excessive phosphorylation of Snf1 on Thr210 was observed in the zuo1∆ strain as well as in the ssb1∆ssb2∆ strain in the presence of glucose. The mRNA levels of SSB1/2 and BMH1 were statistically significantly reduced by approximately 0.5- to 0.8-fold relative to the wild-type level in the zuo1∆ strain on glucose. These results suggest that Zuo1 is responsible for glucose repression, possibly by increasing the mRNA levels of SSB1/2 and BMH1 during growth on glucose.
Collapse
Affiliation(s)
- Yoichi Yamada
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Atsuki Shiroma
- School of Biological Science and Technology, College of Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Suguru Hirai
- School of Biological Science and Technology, College of Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Jun Iwasaki
- School of Biological Science and Technology, College of Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
29
|
Sun S, Li X, Mariappan M. Signal sequences encode information for protein folding in the endoplasmic reticulum. J Cell Biol 2023; 222:213733. [PMID: 36459117 PMCID: PMC9723807 DOI: 10.1083/jcb.202203070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/22/2022] [Accepted: 10/26/2022] [Indexed: 12/05/2022] Open
Abstract
One-third of newly synthesized proteins in mammals are translocated into the endoplasmic reticulum (ER) through the Sec61 translocon. How protein translocation coordinates with chaperone availability in the ER to promote protein folding remains unclear. We find that marginally hydrophobic signal sequences and transmembrane domains cause transient retention at the Sec61 translocon and require the luminal BiP chaperone for efficient protein translocation. Using a substrate-trapping proteomic approach, we identify that nascent proteins bearing marginally hydrophobic signal sequences accumulate on the cytosolic side of the Sec61 translocon. Sec63 is co-translationally recruited to the translocation site and mediates BiP binding to incoming polypeptides. BiP binding not only releases translocationally paused nascent chains but also ensures protein folding in the ER. Increasing hydrophobicity of signal sequences bypasses Sec63/BiP-dependent translocation, but translocated proteins are prone to misfold and aggregate in the ER under limited BiP availability. Thus, the signal sequence-guided protein folding may explain why signal sequences are diverse and use multiple protein translocation pathways.
Collapse
Affiliation(s)
- Sha Sun
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT
| | - Xia Li
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT
| | - Malaiyalam Mariappan
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT
| |
Collapse
|
30
|
Bracher A, Verghese J. Nucleotide Exchange Factors for Hsp70 Molecular Chaperones: GrpE, Hsp110/Grp170, HspBP1/Sil1, and BAG Domain Proteins. Subcell Biochem 2023; 101:1-39. [PMID: 36520302 DOI: 10.1007/978-3-031-14740-1_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Molecular chaperones of the Hsp70 family are key components of the cellular protein-folding machinery. Substrate folding is accomplished by iterative cycles of ATP binding, hydrolysis, and release. The ATPase activity of Hsp70 is regulated by two main classes of cochaperones: J-domain proteins stimulate ATPase hydrolysis by Hsp70, while nucleotide exchange factors (NEFs) facilitate the conversion from the ADP-bound to the ATP-bound state, thus closing the chaperone folding cycle. NEF function can additionally be antagonized by ADP dissociation inhibitors. Beginning with the discovery of the prototypical bacterial NEF, GrpE, a large diversity of nucleotide exchange factors for Hsp70 have been identified, connecting it to a multitude of cellular processes in the eukaryotic cell. Here we review recent advances toward structure and function of nucleotide exchange factors from the Hsp110/Grp170, HspBP1/Sil1, and BAG domain protein families and discuss how these cochaperones connect protein folding with cellular quality control and degradation pathways.
Collapse
Affiliation(s)
- Andreas Bracher
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany.
| | - Jacob Verghese
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
- Trophic Communications GmbH, Munich, Germany
| |
Collapse
|
31
|
Sagarika P, Yadav K, Sahi C. Volleying plasma membrane proteins from birth to death: Role of J-domain proteins. Front Mol Biosci 2022; 9:1072242. [PMID: 36589230 PMCID: PMC9798423 DOI: 10.3389/fmolb.2022.1072242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
The function, stability, and turnover of plasma membrane (PM) proteins are crucial for cellular homeostasis. Compared to soluble proteins, quality control of plasma membrane proteins is extremely challenging. Failure to meet the high quality control standards is detrimental to cellular and organismal health. J-domain proteins (JDPs) are among the most diverse group of chaperones that collaborate with other chaperones and protein degradation machinery to oversee cellular protein quality control (PQC). Although fragmented, the available literature from different models, including yeast, mammals, and plants, suggests that JDPs assist PM proteins with their synthesis, folding, and trafficking to their destination as well as their degradation, either through endocytic or proteasomal degradation pathways. Moreover, some JDPs interact directly with the membrane to regulate the stability and/or functionality of proteins at the PM. The deconvoluted picture emerging is that PM proteins are relayed from one JDP to another throughout their life cycle, further underscoring the versatility of the Hsp70:JDP machinery in the cell.
Collapse
|
32
|
Gestaut D, Zhao Y, Park J, Ma B, Leitner A, Collier M, Pintilie G, Roh SH, Chiu W, Frydman J. Structural visualization of the tubulin folding pathway directed by human chaperonin TRiC/CCT. Cell 2022; 185:4770-4787.e20. [PMID: 36493755 PMCID: PMC9735246 DOI: 10.1016/j.cell.2022.11.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/01/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022]
Abstract
The ATP-dependent ring-shaped chaperonin TRiC/CCT is essential for cellular proteostasis. To uncover why some eukaryotic proteins can only fold with TRiC assistance, we reconstituted the folding of β-tubulin using human prefoldin and TRiC. We find unstructured β-tubulin is delivered by prefoldin to the open TRiC chamber followed by ATP-dependent chamber closure. Cryo-EM resolves four near-atomic-resolution structures containing progressively folded β-tubulin intermediates within the closed TRiC chamber, culminating in native tubulin. This substrate folding pathway appears closely guided by site-specific interactions with conserved regions in the TRiC chamber. Initial electrostatic interactions between the TRiC interior wall and both the folded tubulin N domain and its C-terminal E-hook tail establish the native substrate topology, thus enabling C-domain folding. Intrinsically disordered CCT C termini within the chamber promote subsequent folding of tubulin's core and middle domains and GTP-binding. Thus, TRiC's chamber provides chemical and topological directives that shape the folding landscape of its obligate substrates.
Collapse
Affiliation(s)
- Daniel Gestaut
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Yanyan Zhao
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Junsun Park
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Boxue Ma
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Alexander Leitner
- Institute of Molecular Systems Biology, Dept of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Miranda Collier
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Grigore Pintilie
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Soung-Hun Roh
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea,Co-Corresponding authors: (lead contact), ,
| | - Wah Chiu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA,Co-Corresponding authors: (lead contact), ,
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA 94305, USA,Department of Genetics, Stanford University, Stanford, CA 94305, USA,Co-Corresponding authors: (lead contact), ,
| |
Collapse
|
33
|
A proteome-wide map of chaperone-assisted protein refolding in a cytosol-like milieu. Proc Natl Acad Sci U S A 2022; 119:e2210536119. [PMID: 36417429 PMCID: PMC9860312 DOI: 10.1073/pnas.2210536119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The journey by which proteins navigate their energy landscapes to their native structures is complex, involving (and sometimes requiring) many cellular factors and processes operating in partnership with a given polypeptide chain's intrinsic energy landscape. The cytosolic environment and its complement of chaperones play critical roles in granting many proteins safe passage to their native states; however, it is challenging to interrogate the folding process for large numbers of proteins in a complex background with most biophysical techniques. Hence, most chaperone-assisted protein refolding studies are conducted in defined buffers on single purified clients. Here, we develop a limited proteolysis-mass spectrometry approach paired with an isotope-labeling strategy to globally monitor the structures of refolding Escherichia coli proteins in the cytosolic medium and with the chaperones, GroEL/ES (Hsp60) and DnaK/DnaJ/GrpE (Hsp70/40). GroEL can refold the majority (85%) of the E. coli proteins for which we have data and is particularly important for restoring acidic proteins and proteins with high molecular weight, trends that come to light because our assay measures the structural outcome of the refolding process itself, rather than binding or aggregation. For the most part, DnaK and GroEL refold a similar set of proteins, supporting the view that despite their vastly different structures, these two chaperones unfold misfolded states, as one mechanism in common. Finally, we identify a cohort of proteins that are intransigent to being refolded with either chaperone. We suggest that these proteins may fold most efficiently cotranslationally, and then remain kinetically trapped in their native conformations.
Collapse
|
34
|
Hassell D, Denney A, Singer E, Benson A, Roth A, Ceglowski J, Steingesser M, McMurray M. Chaperone requirements for de novo folding of Saccharomyces cerevisiae septins. Mol Biol Cell 2022; 33:ar111. [PMID: 35947497 PMCID: PMC9635297 DOI: 10.1091/mbc.e22-07-0262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022] Open
Abstract
Polymers of septin protein complexes play cytoskeletal roles in eukaryotic cells. The specific subunit composition within complexes controls functions and higher-order structural properties. All septins have globular GTPase domains. The other eukaryotic cytoskeletal NTPases strictly require assistance from molecular chaperones of the cytosol, particularly the cage-like chaperonins, to fold into oligomerization-competent conformations. We previously identified cytosolic chaperones that bind septins and influence the oligomerization ability of septins carrying mutations linked to human disease, but it was unknown to what extent wild-type septins require chaperone assistance for their native folding. Here we use a combination of in vivo and in vitro approaches to demonstrate chaperone requirements for de novo folding and complex assembly by budding yeast septins. Individually purified septins adopted nonnative conformations and formed nonnative homodimers. In chaperonin- or Hsp70-deficient cells, septins folded slower and were unable to assemble posttranslationally into native complexes. One septin, Cdc12, was so dependent on cotranslational chaperonin assistance that translation failed without it. Our findings point to distinct translation elongation rates for different septins as a possible mechanism to direct a stepwise, cotranslational assembly pathway in which general cytosolic chaperones act as key intermediaries.
Collapse
Affiliation(s)
- Daniel Hassell
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Ashley Denney
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Emily Singer
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Aleyna Benson
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Andrew Roth
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Julia Ceglowski
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Marc Steingesser
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Michael McMurray
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
35
|
Morales-Polanco F, Lee JH, Barbosa NM, Frydman J. Cotranslational Mechanisms of Protein Biogenesis and Complex Assembly in Eukaryotes. Annu Rev Biomed Data Sci 2022; 5:67-94. [PMID: 35472290 PMCID: PMC11040709 DOI: 10.1146/annurev-biodatasci-121721-095858] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The formation of protein complexes is crucial to most biological functions. The cellular mechanisms governing protein complex biogenesis are not yet well understood, but some principles of cotranslational and posttranslational assembly are beginning to emerge. In bacteria, this process is favored by operons encoding subunits of protein complexes. Eukaryotic cells do not have polycistronic mRNAs, raising the question of how they orchestrate the encounter of unassembled subunits. Here we review the constraints and mechanisms governing eukaryotic co- and posttranslational protein folding and assembly, including the influence of elongation rate on nascent chain targeting, folding, and chaperone interactions. Recent evidence shows that mRNAs encoding subunits of oligomeric assemblies can undergo localized translation and form cytoplasmic condensates that might facilitate the assembly of protein complexes. Understanding the interplay between localized mRNA translation and cotranslational proteostasis will be critical to defining protein complex assembly in vivo.
Collapse
Affiliation(s)
| | - Jae Ho Lee
- Department of Biology, Stanford University, Stanford, California, USA;
| | - Natália M Barbosa
- Department of Biology, Stanford University, Stanford, California, USA;
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, California, USA;
- Department of Genetics, Stanford University, Stanford, California, USA
| |
Collapse
|
36
|
Pulse labeling reveals the tail end of protein folding by proteome profiling. Cell Rep 2022; 40:111096. [PMID: 35858568 PMCID: PMC9893312 DOI: 10.1016/j.celrep.2022.111096] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
Accurate and efficient folding of nascent protein sequences into their native states requires support from the protein homeostasis network. Herein we probe which newly translated proteins are thermo-sensitive, making them susceptible to misfolding and aggregation under heat stress using pulse-SILAC mass spectrometry. We find a distinct group of proteins that is highly sensitive to this perturbation when newly synthesized but not once matured. These proteins are abundant and highly structured. Notably, they display a tendency to form β sheet secondary structures, have more complex folding topology, and are enriched for chaperone-binding motifs, suggesting a higher demand for chaperone-assisted folding. These polypeptides are also more often components of stable protein complexes in comparison with other proteins. Combining these findings suggests the existence of a specific subset of proteins in the cell that is particularly vulnerable to misfolding and aggregation following synthesis before reaching the native state.
Collapse
|
37
|
Micic J, Rodríguez-Galán O, Babiano R, Fitzgerald F, Fernández-Fernández J, Zhang Y, Gao N, Woolford JL, de la Cruz J. Ribosomal protein eL39 is important for maturation of the nascent polypeptide exit tunnel and proper protein folding during translation. Nucleic Acids Res 2022; 50:6453-6473. [PMID: 35639884 PMCID: PMC9226512 DOI: 10.1093/nar/gkac366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 04/04/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
During translation, nascent polypeptide chains travel from the peptidyl transferase center through the nascent polypeptide exit tunnel (NPET) to emerge from 60S subunits. The NPET includes portions of five of the six 25S/5.8S rRNA domains and ribosomal proteins uL4, uL22, and eL39. Internal loops of uL4 and uL22 form the constriction sites of the NPET and are important for both assembly and function of ribosomes. Here, we investigated the roles of eL39 in tunnel construction, 60S biogenesis, and protein synthesis. We show that eL39 is important for proper protein folding during translation. Consistent with a delay in processing of 27S and 7S pre-rRNAs, eL39 functions in pre-60S assembly during middle nucleolar stages. Our biochemical assays suggest the presence of eL39 in particles at these stages, although it is not visualized in them by cryo-electron microscopy. This indicates that eL39 takes part in assembly even when it is not fully accommodated into the body of pre-60S particles. eL39 is also important for later steps of assembly, rotation of the 5S ribonucleoprotein complex, likely through long range rRNA interactions. Finally, our data strongly suggest the presence of alternative pathways of ribosome assembly, previously observed in the biogenesis of bacterial ribosomal subunits.
Collapse
Affiliation(s)
- Jelena Micic
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Reyes Babiano
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Fiona Fitzgerald
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - José Fernández-Fernández
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Yunyang Zhang
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - John L Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
38
|
Structural remodeling of ribosome associated Hsp40-Hsp70 chaperones during co-translational folding. Nat Commun 2022; 13:3410. [PMID: 35701497 PMCID: PMC9197937 DOI: 10.1038/s41467-022-31127-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Ribosome associated complex (RAC), an obligate heterodimer of HSP40 and HSP70 (Zuo1 and Ssz1 in yeast), is conserved in eukaryotes and functions as co-chaperone for another HSP70 (Ssb1/2 in yeast) to facilitate co-translational folding of nascent polypeptides. Many mechanistic details, such as the coordination of one HSP40 with two HSP70s and the dynamic interplay between RAC-Ssb and growing nascent chains, remain unclear. Here, we report three sets of structures of RAC-containing ribosomal complexes isolated from Saccharomyces cerevisiae. Structural analyses indicate that RAC on the nascent-chain-free ribosome is in an autoinhibited conformation, and in the presence of a nascent chain at the peptide tunnel exit (PTE), RAC undergoes large-scale structural remodeling to make Zuo1 J-Domain more accessible to Ssb. Our data also suggest a role of Zuo1 in orienting Ssb-SBD proximal to the PTE for easy capture of the substrate. Altogether, in accordance with previous data, our work suggests a sequence of structural remodeling events for RAC-Ssb during co-translational folding, triggered by the binding and passage of growing nascent chain from one to another. Ribosome associated complex (RAC)- HSP70 (Ssb in yeast) is a eukaryotic chaperone system involved in co-translational folding. Here, authors report structures of RAC-containing ribosomal complexes, which suggest a working model for the dynamic actions of RAC-Ssb during the process.
Collapse
|
39
|
Culver JA, Li X, Jordan M, Mariappan M. A second chance for protein targeting/folding: Ubiquitination and deubiquitination of nascent proteins. Bioessays 2022; 44:e2200014. [PMID: 35357021 PMCID: PMC9133216 DOI: 10.1002/bies.202200014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/07/2022]
Abstract
Molecular chaperones in cells constantly monitor and bind to exposed hydrophobicity in newly synthesized proteins and assist them in folding or targeting to cellular membranes for insertion. However, proteins can be misfolded or mistargeted, which often causes hydrophobic amino acids to be exposed to the aqueous cytosol. Again, chaperones recognize exposed hydrophobicity in these proteins to prevent nonspecific interactions and aggregation, which are harmful to cells. The chaperone-bound misfolded proteins are then decorated with ubiquitin chains denoting them for proteasomal degradation. It remains enigmatic how molecular chaperones can mediate both maturation of nascent proteins and ubiquitination of misfolded proteins solely based on their exposed hydrophobic signals. In this review, we propose a dynamic ubiquitination and deubiquitination model in which ubiquitination of newly synthesized proteins serves as a "fix me" signal for either refolding of soluble proteins or retargeting of membrane proteins with the help of chaperones and deubiquitinases. Such a model would provide additional time for aberrant nascent proteins to fold or route for membrane insertion, thus avoiding excessive protein degradation and saving cellular energy spent on protein synthesis. Also see the video abstract here: https://youtu.be/gkElfmqaKG4.
Collapse
Affiliation(s)
- Jacob A. Culver
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT 06516, USA
| | - Xia Li
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT 06516, USA
| | - Matthew Jordan
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT 06516, USA
| | - Malaiyalam Mariappan
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT 06516, USA
| |
Collapse
|
40
|
Karamanos TK, Kalverda AP, Radford SE. Generating Ensembles of Dynamic Misfolding Proteins. Front Neurosci 2022; 16:881534. [PMID: 35431773 PMCID: PMC9008329 DOI: 10.3389/fnins.2022.881534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 01/09/2023] Open
Abstract
The early stages of protein misfolding and aggregation involve disordered and partially folded protein conformers that contain a high degree of dynamic disorder. These dynamic species may undergo large-scale intra-molecular motions of intrinsically disordered protein (IDP) precursors, or flexible, low affinity inter-molecular binding in oligomeric assemblies. In both cases, generating atomic level visualization of the interconverting species that captures the conformations explored and their physico-chemical properties remains hugely challenging. How specific sub-ensembles of conformers that are on-pathway to aggregation into amyloid can be identified from their aggregation-resilient counterparts within these large heterogenous pools of rapidly moving molecules represents an additional level of complexity. Here, we describe current experimental and computational approaches designed to capture the dynamic nature of the early stages of protein misfolding and aggregation, and discuss potential challenges in describing these species because of the ensemble averaging of experimental restraints that arise from motions on the millisecond timescale. We give a perspective of how machine learning methods can be used to extract aggregation-relevant sub-ensembles and provide two examples of such an approach in which specific interactions of defined species within the dynamic ensembles of α-synuclein (αSyn) and β2-microgloblulin (β2m) can be captured and investigated.
Collapse
Affiliation(s)
- Theodoros K. Karamanos
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | | | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
41
|
Degano M. Structure, Oligomerization and Activity Modulation in N-Ribohydrolases. Int J Mol Sci 2022; 23:ijms23052576. [PMID: 35269719 PMCID: PMC8910321 DOI: 10.3390/ijms23052576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
Enzymes catalyzing the hydrolysis of the N-glycosidic bond in nucleosides and other ribosides (N-ribohydrolases, NHs) with diverse substrate specificities are found in all kingdoms of life. While the overall NH fold is highly conserved, limited substitutions and insertions can account for differences in substrate selection, catalytic efficiency, and distinct structural features. The NH structural module is also employed in monomeric proteins devoid of enzymatic activity with different physiological roles. The homo-oligomeric quaternary structure of active NHs parallels the different catalytic strategies used by each isozyme, while providing a buttressing effect to maintain the active site geometry and allow the conformational changes required for catalysis. The unique features of the NH catalytic strategy and structure make these proteins attractive targets for diverse therapeutic goals in different diseases.
Collapse
Affiliation(s)
- Massimo Degano
- Biocrystallography Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS Scientific Institute San Raffaele, via Olgettina 60, 20132 Milano, Italy;
- Università Vita-Salute San Raffaele, via Olgettina 58, 20132 Milano, Italy
| |
Collapse
|
42
|
Stein KC, Morales-Polanco F, van der Lienden J, Rainbolt TK, Frydman J. Ageing exacerbates ribosome pausing to disrupt cotranslational proteostasis. Nature 2022; 601:637-642. [PMID: 35046576 DOI: 10.1038/s41586-021-04295-4] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 12/01/2021] [Indexed: 02/04/2023]
Abstract
Ageing is accompanied by a decline in cellular proteostasis, which underlies many age-related protein misfolding diseases1,2. Yet, how ageing impairs proteostasis remains unclear. As nascent polypeptides represent a substantial burden on the proteostasis network3, we hypothesized that altered translational efficiency during ageing could help to drive the collapse of proteostasis. Here we show that ageing alters the kinetics of translation elongation in both Caenorhabditis elegans and Saccharomyces cerevisiae. Ribosome pausing was exacerbated at specific positions in aged yeast and worms, including polybasic stretches, leading to increased ribosome collisions known to trigger ribosome-associated quality control (RQC)4-6. Notably, aged yeast cells exhibited impaired clearance and increased aggregation of RQC substrates, indicating that ageing overwhelms this pathway. Indeed, long-lived yeast mutants reduced age-dependent ribosome pausing, and extended lifespan correlated with greater flux through the RQC pathway. Further linking altered translation to proteostasis collapse, we found that nascent polypeptides exhibiting age-dependent ribosome pausing in C. elegans were strongly enriched among age-dependent protein aggregates. Notably, ageing increased the pausing and aggregation of many components of proteostasis, which could initiate a cycle of proteostasis collapse. We propose that increased ribosome pausing, leading to RQC overload and nascent polypeptide aggregation, critically contributes to proteostasis impairment and systemic decline during ageing.
Collapse
Affiliation(s)
- Kevin C Stein
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | | | | | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA, USA. .,Department of Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
43
|
McBride JM, Tlusty T. Slowest-first protein translation scheme: Structural asymmetry and co-translational folding. Biophys J 2021; 120:5466-5477. [PMID: 34813729 PMCID: PMC8715247 DOI: 10.1016/j.bpj.2021.11.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/30/2021] [Accepted: 11/17/2021] [Indexed: 11/19/2022] Open
Abstract
Proteins are translated from the N to the C terminus, raising the basic question of how this innate directionality affects their evolution. To explore this question, we analyze 16,200 structures from the Protein Data Bank (PDB). We find remarkable enrichment of α helices at the C terminus and β strands at the N terminus. Furthermore, this α-β asymmetry correlates with sequence length and contact order, both determinants of folding rate, hinting at possible links to co-translational folding (CTF). Hence, we propose the "slowest-first" scheme, whereby protein sequences evolved structural asymmetry to accelerate CTF: the slowest of the cooperatively folding segments are positioned near the N terminus so they have more time to fold during translation. A phenomenological model predicts that CTF can be accelerated by asymmetry in folding rate, up to double the rate, when folding time is commensurate with translation time; analysis of the PDB predicts that structural asymmetry is indeed maximal in this regime. This correspondence is greater in prokaryotes, which generally require faster protein production. Altogether, this indicates that accelerating CTF is a substantial evolutionary force whose interplay with stability and functionality is encoded in secondary structure asymmetry.
Collapse
Affiliation(s)
- John M McBride
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan, South Korea.
| | - Tsvi Tlusty
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan, South Korea; Departments of Physics and Chemistry, Ulsan National Institute of Science and Technology, Ulsan, South Korea.
| |
Collapse
|
44
|
Cytosolic Quality Control of Mitochondrial Protein Precursors-The Early Stages of the Organelle Biogenesis. Int J Mol Sci 2021; 23:ijms23010007. [PMID: 35008433 PMCID: PMC8745001 DOI: 10.3390/ijms23010007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
With few exceptions, proteins that constitute the proteome of mitochondria originate outside of this organelle in precursor forms. Such protein precursors follow dedicated transportation paths to reach specific parts of mitochondria, where they complete their maturation and perform their functions. Mitochondrial precursor targeting and import pathways are essential to maintain proper mitochondrial function and cell survival, thus are tightly controlled at each stage. Mechanisms that sustain protein homeostasis of the cytosol play a vital role in the quality control of proteins targeted to the organelle. Starting from their synthesis, precursors are constantly chaperoned and guided to reduce the risk of premature folding, erroneous interactions, or protein damage. The ubiquitin-proteasome system provides proteolytic control that is not restricted to defective proteins but also regulates the supply of precursors to the organelle. Recent discoveries provide evidence that stress caused by the mislocalization of mitochondrial proteins may contribute to disease development. Precursors are not only subject to regulation but also modulate cytosolic machinery. Here we provide an overview of the cellular pathways that are involved in precursor maintenance and guidance at the early cytosolic stages of mitochondrial biogenesis. Moreover, we follow the circumstances in which mitochondrial protein import deregulation disturbs the cellular balance, carefully looking for rescue paths that can restore proteostasis.
Collapse
|
45
|
Jung SJ, Kim H. Emerging View on the Molecular Functions of Sec62 and Sec63 in Protein Translocation. Int J Mol Sci 2021; 22:ijms222312757. [PMID: 34884562 PMCID: PMC8657602 DOI: 10.3390/ijms222312757] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022] Open
Abstract
Most secreted and membrane proteins are targeted to and translocated across the endoplasmic reticulum (ER) membrane through the Sec61 protein-conducting channel. Evolutionarily conserved Sec62 and Sec63 associate with the Sec61 channel, forming the Sec complex and mediating translocation of a subset of proteins. For the last three decades, it has been thought that ER protein targeting and translocation occur via two distinct pathways: signal recognition particle (SRP)-dependent co-translational or SRP-independent, Sec62/Sec63 dependent post-translational translocation pathway. However, recent studies have suggested that ER protein targeting and translocation through the Sec translocon are more intricate than previously thought. This review summarizes the current understanding of the molecular functions of Sec62/Sec63 in ER protein translocation.
Collapse
Affiliation(s)
| | - Hyun Kim
- Correspondence: ; Tel.: +82-2-880-4440; Fax: +82-2-872-1993
| |
Collapse
|
46
|
Longo F, De Ritis D, Miluzio A, Fraticelli D, Baets J, Scarlato M, Santorelli FM, Biffo S, Maltecca F. Assessment of Sacsin Turnover in Patients With ARSACS: Implications for Molecular Diagnosis and Pathogenesis. Neurology 2021; 97:e2315-e2327. [PMID: 34649874 PMCID: PMC8665432 DOI: 10.1212/wnl.0000000000012962] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/07/2021] [Indexed: 11/15/2022] Open
Abstract
Background and Objectives Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by variations in SACS gene encoding sacsin, a huge multimodular protein of unknown function. More than 200 SACS variations have been described worldwide to date. Because ARSACS presents phenotypic variability, previous empirical studies attempted to correlate the nature and position of SACS variations with the age at onset or with disease severity, although not considering the effect of the various variations on protein stability. In this work, we studied genotype-phenotype correlation in ARSACS at a functional level. Methods We analyzed a large set of skin fibroblasts derived from patients with ARSACS, including both new and already published cases, carrying variations of different types affecting diverse domains of the protein. Results We found that sacsin is almost absent in patients with ARSACS, regardless of the nature of the variation. As expected, we did not detect sacsin in patients with truncating variations. We found it strikingly reduced or absent also in compound heterozygotes carrying diverse missense variations. In this case, we excluded SACS mRNA decay, defective translation, or faster posttranslational degradation as possible causes of protein reduction. Conversely, our results demonstrate that nascent mutant sacsin protein undergoes cotranslational ubiquitination and degradation. Discussion Our results provide a mechanistic explanation for the lack of genotype-phenotype correlation in ARSACS. We also propose a new and unambiguous criterion for ARSACS diagnosis that is based on the evaluation of sacsin level. Last, we identified preemptive degradation of a mutant protein as a novel cause of a human disease.
Collapse
Affiliation(s)
- Fabiana Longo
- Mitochondrial Dysfunctions in Neurodegeneration Unit, Ospedale San Raffaele, Milan, Italy
| | - Daniele De Ritis
- Mitochondrial Dysfunctions in Neurodegeneration Unit, Ospedale San Raffaele, Milan, Italy
| | - Annarita Miluzio
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Davide Fraticelli
- Mitochondrial Dysfunctions in Neurodegeneration Unit, Ospedale San Raffaele, Milan, Italy
| | - Jonathan Baets
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerpen, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerpen, Belgium
| | - Marina Scarlato
- Department of Neurology, Ospedale San Raffaele, Milan, Italy
| | | | - Stefano Biffo
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy.,Department of Biosciences, University of Milan, Milan, Italy
| | - Francesca Maltecca
- Mitochondrial Dysfunctions in Neurodegeneration Unit, Ospedale San Raffaele, Milan, Italy .,Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
47
|
Lee K, Ziegelhoffer T, Delewski W, Berger SE, Sabat G, Craig EA. Pathway of Hsp70 interactions at the ribosome. Nat Commun 2021; 12:5666. [PMID: 34580293 PMCID: PMC8476630 DOI: 10.1038/s41467-021-25930-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 09/08/2021] [Indexed: 11/09/2022] Open
Abstract
In eukaryotes, an Hsp70 molecular chaperone triad assists folding of nascent chains emerging from the ribosome tunnel. In fungi, the triad consists of canonical Hsp70 Ssb, atypical Hsp70 Ssz1 and J-domain protein cochaperone Zuo1. Zuo1 binds the ribosome at the tunnel exit. Zuo1 also binds Ssz1, tethering it to the ribosome, while its J-domain stimulates Ssb’s ATPase activity to drive efficient nascent chain interaction. But the function of Ssz1 and how Ssb engages at the ribosome are not well understood. Employing in vivo site-specific crosslinking, we found that Ssb(ATP) heterodimerizes with Ssz1. Ssb, in a manner consistent with the ADP conformation, also crosslinks to ribosomal proteins across the tunnel exit from Zuo1. These two modes of Hsp70 Ssb interaction at the ribosome suggest a functionally efficient interaction pathway: first, Ssb(ATP) with Ssz1, allowing optimal J-domain and nascent chain engagement; then, after ATP hydrolysis, Ssb(ADP) directly with the ribosome. Here, the authors use in vivo site-specific crosslinking to provide molecular-level insight into how the fungal Hsp70 chaperone system — the Ssb:Ssz1:Zuo1 triad — assists the folding process for the nascent peptide chain emerging from the ribosome tunnel.
Collapse
Affiliation(s)
- Kanghyun Lee
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.,Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, 94158, USA
| | - Thomas Ziegelhoffer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Wojciech Delewski
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Scott E Berger
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.,Department of Chemistry, Lafayette College, Easton, PA, 18042, USA.,Biophysics Program, Stanford University, Stanford, CA, 94305, USA
| | - Grzegorz Sabat
- Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Elizabeth A Craig
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.
| |
Collapse
|
48
|
Allen GE, Panasenko OO, Villanyi Z, Zagatti M, Weiss B, Pagliazzo L, Huch S, Polte C, Zahoran S, Hughes CS, Pelechano V, Ignatova Z, Collart MA. Not4 and Not5 modulate translation elongation by Rps7A ubiquitination, Rli1 moonlighting, and condensates that exclude eIF5A. Cell Rep 2021; 36:109633. [PMID: 34469733 DOI: 10.1016/j.celrep.2021.109633] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/18/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
In this work, we show that Not4 and Not5 from the Ccr4-Not complex modulate translation elongation dynamics and change ribosome A-site dwelling occupancy in a codon-dependent fashion. These codon-specific changes in not5Δ cells are very robust and independent of codon position within the mRNA, the overall mRNA codon composition, or changes of mRNA expression levels. They inversely correlate with codon-specific changes in cells depleted for eIF5A and positively correlate with those in cells depleted for ribosome-recycling factor Rli1. Not5 resides in punctate loci, co-purifies with ribosomes and Rli1, but not with eIF5A, and limits mRNA solubility. Overexpression of wild-type or non-complementing Rli1 and loss of Rps7A ubiquitination enable Not4 E3 ligase-dependent translation of polyarginine stretches. We propose that Not4 and Not5 modulate translation elongation dynamics to produce a soluble proteome by Rps7A ubiquitination, dynamic condensates that limit mRNA solubility and exclude eIF5A, and a moonlighting function of Rli1.
Collapse
Affiliation(s)
- George E Allen
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland
| | - Olesya O Panasenko
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland
| | - Zoltan Villanyi
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland; Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Marina Zagatti
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland
| | - Benjamin Weiss
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland
| | - Lucile Pagliazzo
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland
| | - Susanne Huch
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Solna, Sweden
| | - Christine Polte
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Szabolcs Zahoran
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland; Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | | | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Solna, Sweden
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Martine A Collart
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland.
| |
Collapse
|
49
|
Quality control of protein import into mitochondria. Biochem J 2021; 478:3125-3143. [PMID: 34436539 DOI: 10.1042/bcj20190584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022]
Abstract
Mitochondria import about 1000 proteins that are produced as precursors on cytosolic ribosomes. Defects in mitochondrial protein import result in the accumulation of non-imported precursor proteins and proteotoxic stress. The cell is equipped with different quality control mechanisms to monitor protein transport into mitochondria. First, molecular chaperones guide unfolded proteins to mitochondria and deliver non-imported proteins to proteasomal degradation. Second, quality control factors remove translocation stalled precursor proteins from protein translocases. Third, protein translocases monitor protein sorting to mitochondrial subcompartments. Fourth, AAA proteases of the mitochondrial subcompartments remove mislocalized or unassembled proteins. Finally, impaired efficiency of protein transport is an important sensor for mitochondrial dysfunction and causes the induction of cellular stress responses, which could eventually result in the removal of the defective mitochondria by mitophagy. In this review, we summarize our current understanding of quality control mechanisms that govern mitochondrial protein transport.
Collapse
|
50
|
Cascarina SM, Kaplan JP, Elder MR, Brookbank L, Ross ED. Generalizable Compositional Features Influencing the Proteostatic Fates of Polar Low-Complexity Domains. Int J Mol Sci 2021; 22:ijms22168944. [PMID: 34445649 PMCID: PMC8396281 DOI: 10.3390/ijms22168944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 11/25/2022] Open
Abstract
Protein aggregation is associated with a growing list of human diseases. A substantial fraction of proteins in eukaryotic proteomes constitutes a proteostasis network—a collection of proteins that work together to maintain properly folded proteins. One of the overarching functions of the proteostasis network is the prevention or reversal of protein aggregation. How proteins aggregate in spite of the anti-aggregation activity of the proteostasis machinery is incompletely understood. Exposed hydrophobic patches can trigger degradation by the ubiquitin-proteasome system, a key branch of the proteostasis network. However, in a recent study, we found that model glycine (G)-rich or glutamine/asparagine (Q/N)-rich prion-like domains differ in their susceptibility to detection and degradation by this system. Here, we expand upon this work by examining whether the features controlling the degradation of our model prion-like domains generalize broadly to G-rich and Q/N-rich domains. Experimentally, native yeast G-rich domains in isolation are sensitive to the degradation-promoting effects of hydrophobic residues, whereas native Q/N-rich domains completely resist these effects and tend to aggregate instead. Bioinformatic analyses indicate that native G-rich domains from yeast and humans tend to avoid degradation-promoting features, suggesting that the proteostasis network may act as a form of selection at the molecular level that constrains the sequence space accessible to G-rich domains. However, the sensitivity or resistance of G-rich and Q/N-rich domains, respectively, was not always preserved in their native protein contexts, highlighting that proteins can evolve other sequence features to overcome the intrinsic sensitivity of some LCDs to degradation.
Collapse
|