1
|
Li X, Mariappan M. Nascent Chain Ubiquitination is Uncoupled from Degradation to Enable Protein Maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.561585. [PMID: 37873109 PMCID: PMC10592752 DOI: 10.1101/2023.10.09.561585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A significant proportion of nascent proteins undergo polyubiquitination on ribosomes in mammalian cells, yet the fate of these proteins remains elusive. The ribosome-associated quality control (RQC) is a mechanism that mediates the ubiquitination of nascent chains on stalled ribosomes. Here, we find that nascent proteins ubiquitinated on stalled ribosomes by the RQC E3 ligase LTN1 are insufficient for proteasomal degradation. Our biochemical reconstitution studies reveal that ubiquitinated nascent chains are promptly deubiquitinated in the cytosol upon release from stalled ribosomes, as they are no longer associated with LTN1 E3 ligase for continuous ubiquitination to compete with cytosolic deubiquitinases. These deubiquitinated nascent chains can mature into stable proteins. However, if they misfold and expose a degradation signal, the cytosolic quality control recognizes them for re-ubiquitination and subsequent proteasomal degradation. Thus, our findings suggest that cycles of ubiquitination and deubiquitination spare foldable nascent proteins while ensuring the degradation of terminally misfolded proteins.
Collapse
Affiliation(s)
- Xia Li
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale University West Campus, West Haven, CT 06516, USA
| | - Malaiyalam Mariappan
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale University West Campus, West Haven, CT 06516, USA
| |
Collapse
|
2
|
Sun S, Li X, Mariappan M. Signal sequences encode information for protein folding in the endoplasmic reticulum. J Cell Biol 2023; 222:213733. [PMID: 36459117 PMCID: PMC9723807 DOI: 10.1083/jcb.202203070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/22/2022] [Accepted: 10/26/2022] [Indexed: 12/05/2022] Open
Abstract
One-third of newly synthesized proteins in mammals are translocated into the endoplasmic reticulum (ER) through the Sec61 translocon. How protein translocation coordinates with chaperone availability in the ER to promote protein folding remains unclear. We find that marginally hydrophobic signal sequences and transmembrane domains cause transient retention at the Sec61 translocon and require the luminal BiP chaperone for efficient protein translocation. Using a substrate-trapping proteomic approach, we identify that nascent proteins bearing marginally hydrophobic signal sequences accumulate on the cytosolic side of the Sec61 translocon. Sec63 is co-translationally recruited to the translocation site and mediates BiP binding to incoming polypeptides. BiP binding not only releases translocationally paused nascent chains but also ensures protein folding in the ER. Increasing hydrophobicity of signal sequences bypasses Sec63/BiP-dependent translocation, but translocated proteins are prone to misfold and aggregate in the ER under limited BiP availability. Thus, the signal sequence-guided protein folding may explain why signal sequences are diverse and use multiple protein translocation pathways.
Collapse
Affiliation(s)
- Sha Sun
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT
| | - Xia Li
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT
| | - Malaiyalam Mariappan
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT
| |
Collapse
|
3
|
Wang L, Li J, Wang Q, Ge MX, Ji J, Liu D, Wang Z, Cao Y, Zhang Y, Zhang ZR. TMUB1 is an endoplasmic reticulum-resident escortase that promotes the p97-mediated extraction of membrane proteins for degradation. Mol Cell 2022; 82:3453-3467.e14. [PMID: 35961308 DOI: 10.1016/j.molcel.2022.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 05/15/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023]
Abstract
Membrane protein clients of endoplasmic reticulum (ER)-associated degradation must be retrotranslocated from the ER membrane by the AAA-ATPase p97 for proteasomal degradation. Before direct engagement with p97, client transmembrane domains (TMDs) that have partially or fully crossed the membrane must be constantly shielded to avoid non-native interactions. How client TMDs are seamlessly escorted from the membrane to p97 is unknown. Here, we identified ER-anchored TMUB1 as a TMD-specific escortase. TMUB1 interacts with the TMD of clients within the membrane and holds ∼10-14 residues of a hydrophobic sequence that is exposed out of membrane, using its transmembrane and cytosolic regions, respectively. The ubiquitin-like domain of TMUB1 recruits p97, which can pull client TMDs from bound TMUB1 into the cytosol. The disruption of TMUB1 escortase activity impairs retrotranslocation and stabilizes retrotranslocating intermediates of client proteins within the ER membrane. Thus, TMUB1 promotes TMD segregation by safeguarding the TMD movement from the membrane to p97.
Collapse
Affiliation(s)
- Linhan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jiqiang Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qingchen Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Man-Xi Ge
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jia Ji
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Di Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyuan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yang Cao
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zai-Rong Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Hill J, Nyathi Y. USP5 enhances SGTA mediated protein quality control. PLoS One 2022; 17:e0257786. [PMID: 35895711 PMCID: PMC9328565 DOI: 10.1371/journal.pone.0257786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
Mislocalised membrane proteins (MLPs) present a risk to the cell due to exposed hydrophobic amino acids which cause MLPs to aggregate. Previous studies identified SGTA as a key component of the machinery that regulates the quality control of MLPs. Overexpression of SGTA promotes deubiqutination of MLPs resulting in their accumulation in cytosolic inclusions, suggesting SGTA acts in collaboration with deubiquitinating enzymes (DUBs) to exert these effects. However, the DUBs that play a role in this process have not been identified. In this study we have identified the ubiquitin specific peptidase 5 (USP5) as a DUB important in regulating the quality control of MLPs. We show that USP5 is in complex with SGTA, and this association is increased in the presence of an MLP. Overexpression of SGTA results in an increase in steady-state levels of MLPs suggesting a delay in proteasomal degradation of substrates. However, our results show that this effect is strongly dependent on the presence of USP5. We find that in the absence of USP5, the ability of SGTA to increase the steady state levels of MLPs is compromised. Moreover, knockdown of USP5 results in a reduction in the steady state levels of MLPs, while overexpression of USP5 increases the steady state levels. Our findings suggest that the interaction of SGTA with USP5 enables specific MLPs to escape proteasomal degradation allowing selective modulation of MLP quality control. These findings progress our understanding of aggregate formation, a hallmark in a range of neurodegenerative diseases and type II diabetes, as well as physiological processes of aggregate clearance.
Collapse
Affiliation(s)
- Jake Hill
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, United Kingdom
- School of Chemistry and Bioscience, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Yvonne Nyathi
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, United Kingdom
- School of Chemistry and Bioscience, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
- * E-mail:
| |
Collapse
|
5
|
Culver JA, Li X, Jordan M, Mariappan M. A second chance for protein targeting/folding: Ubiquitination and deubiquitination of nascent proteins. Bioessays 2022; 44:e2200014. [PMID: 35357021 PMCID: PMC9133216 DOI: 10.1002/bies.202200014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/07/2022]
Abstract
Molecular chaperones in cells constantly monitor and bind to exposed hydrophobicity in newly synthesized proteins and assist them in folding or targeting to cellular membranes for insertion. However, proteins can be misfolded or mistargeted, which often causes hydrophobic amino acids to be exposed to the aqueous cytosol. Again, chaperones recognize exposed hydrophobicity in these proteins to prevent nonspecific interactions and aggregation, which are harmful to cells. The chaperone-bound misfolded proteins are then decorated with ubiquitin chains denoting them for proteasomal degradation. It remains enigmatic how molecular chaperones can mediate both maturation of nascent proteins and ubiquitination of misfolded proteins solely based on their exposed hydrophobic signals. In this review, we propose a dynamic ubiquitination and deubiquitination model in which ubiquitination of newly synthesized proteins serves as a "fix me" signal for either refolding of soluble proteins or retargeting of membrane proteins with the help of chaperones and deubiquitinases. Such a model would provide additional time for aberrant nascent proteins to fold or route for membrane insertion, thus avoiding excessive protein degradation and saving cellular energy spent on protein synthesis. Also see the video abstract here: https://youtu.be/gkElfmqaKG4.
Collapse
Affiliation(s)
- Jacob A. Culver
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT 06516, USA
| | - Xia Li
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT 06516, USA
| | - Matthew Jordan
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT 06516, USA
| | - Malaiyalam Mariappan
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT 06516, USA
| |
Collapse
|
6
|
Culver JA, Mariappan M. Deubiquitinases USP20/33 promote the biogenesis of tail-anchored membrane proteins. J Cell Biol 2021; 220:211933. [PMID: 33792613 PMCID: PMC8020466 DOI: 10.1083/jcb.202004086] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 12/19/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Numerous proteins that have hydrophobic transmembrane domains (TMDs) traverse the cytosol and posttranslationally insert into cellular membranes. It is unclear how these hydrophobic membrane proteins evade recognition by the cytosolic protein quality control (PQC), which typically recognizes exposed hydrophobicity in misfolded proteins and marks them for proteasomal degradation by adding ubiquitin chains. Here, we find that tail-anchored (TA) proteins, a vital class of membrane proteins, are recognized by cytosolic PQC and are ubiquitinated as soon as they are synthesized in cells. Surprisingly, the ubiquitinated TA proteins are not routed for proteasomal degradation but instead are handed over to the targeting factor, TRC40, and delivered to the ER for insertion. The ER-associated deubiquitinases, USP20 and USP33, remove ubiquitin chains from TA proteins after their insertion into the ER. Thus, our data suggest that deubiquitinases rescue posttranslationally targeted membrane proteins that are inappropriately ubiquitinated by PQC in the cytosol.
Collapse
Affiliation(s)
- Jacob A Culver
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, West Haven, CT
| | - Malaiyalam Mariappan
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, West Haven, CT
| |
Collapse
|
7
|
The Degron Architecture of Squalene Monooxygenase and How Specific Lipids Calibrate Levels of This Key Cholesterol Synthesis Enzyme. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 32979157 DOI: 10.1007/5584_2020_583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Cholesterol synthesis is a fundamental process that contributes to cellular cholesterol homeostasis. Cells execute transcriptional and post-translational mechanisms to control the abundance of enzymes of the cholesterol synthesis pathway, consequently affecting cholesterol production. One such highly tuned enzyme is squalene monooxygenase (SM), which catalyzes a rate-limiting step in the pathway. A well-characterized mechanism is the cholesterol-mediated degradation of SM. Notably, lipids (cholesterol, plasmalogens, squalene, and unsaturated fatty acids) can act as cellular signals that either promote or reduce SM degradation. The N-terminal region of SM consists of the shortest known cholesterol-responsive degron, characterized by atypical membrane anchoring structures, namely a re-entrant loop and an amphipathic helix. SM also undergoes non-canonical ubiquitination on serine, a relatively uncommon attachment site for ubiquitination. The structure of the catalytic domain of SM has been solved, providing insights into the catalytic mechanisms and modes of inhibition by well-known SM inhibitors, some of which have been effective in lowering cholesterol levels in animal models. Certain human cancers have been linked to dysregulation of SM levels and activity, further emphasizing the relevance of SM in health and disease.
Collapse
|
8
|
Nielsen CP, Jernigan KK, Diggins NL, Webb DJ, MacGurn JA. USP9X Deubiquitylates DVL2 to Regulate WNT Pathway Specification. Cell Rep 2020; 28:1074-1089.e5. [PMID: 31340145 PMCID: PMC6884140 DOI: 10.1016/j.celrep.2019.06.083] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 05/22/2019] [Accepted: 06/24/2019] [Indexed: 01/12/2023] Open
Abstract
The WNT signaling network is comprised of multiple receptors that relay various input signals via distinct transduction pathways to execute multiple complex and context-specific output processes. Integrity of the WNT signaling network relies on proper specification between canonical and noncanonical pathways, which presents a regulatory challenge given that several signal transducing elements are shared between pathways. Here, we report that USP9X, a deubiquitylase, and WWP1, an E3 ubiquitin ligase, regulate a ubiquitin rheostat on DVL2, a WNT signaling protein. Our findings indicate that USP9X-mediated deubiquitylation of DVL2 is required for canonical WNT activation, while increased DVL2 ubiquitylation is associated with localization to actin-rich projections and activation of the planar cell polarity (PCP) pathway. We propose that a WWP1-USP9X axis regulates a ubiquitin rheostat on DVL2 that specifies its participation in either canonical WNT or WNT-PCP pathways. These findings have important implications for therapeutic targeting of USP9X in human cancer. DVL2 is a signal transducing protein that participates in canonical and noncanonical WNT signaling relays. Here, Nielsen et al. report that the deubiquitylase USP9X and the E3 ubiquitin ligase WWP1 operate on DVL2 to establish a ubiquitin rheostat that contributes to WNT pathway specification in human breast cancer cells.
Collapse
Affiliation(s)
- Casey P Nielsen
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Kristin K Jernigan
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Nicole L Diggins
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | - Donna J Webb
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | - Jason A MacGurn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA.
| |
Collapse
|
9
|
Juszkiewicz S, Speldewinde SH, Wan L, Svejstrup JQ, Hegde RS. The ASC-1 Complex Disassembles Collided Ribosomes. Mol Cell 2020; 79:603-614.e8. [PMID: 32579943 PMCID: PMC7447978 DOI: 10.1016/j.molcel.2020.06.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 02/03/2023]
Abstract
Translating ribosomes that slow excessively incur collisions with trailing ribosomes. Persistent collisions are detected by ZNF598, a ubiquitin ligase that ubiquitinates sites on the ribosomal 40S subunit to initiate pathways of mRNA and protein quality control. The collided ribosome complex must be disassembled to initiate downstream quality control, but the mechanistic basis of disassembly is unclear. Here, we reconstitute the disassembly of a collided polysome in a mammalian cell-free system. The widely conserved ASC-1 complex (ASCC) containing the ASCC3 helicase disassembles the leading ribosome in an ATP-dependent reaction. Disassembly, but not ribosome association, requires 40S ubiquitination by ZNF598, but not GTP-dependent factors, including the Pelo-Hbs1L ribosome rescue complex. Trailing ribosomes can elongate once the roadblock has been removed and only become targets if they subsequently stall and incur collisions. These findings define the specific role of ASCC during ribosome-associated quality control and identify the molecular target of its activity.
Collapse
Affiliation(s)
- Szymon Juszkiewicz
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | | | - Li Wan
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
10
|
Schmidt CC, Vasic V, Stein A. Doa10 is a membrane protein retrotranslocase in ER-associated protein degradation. eLife 2020; 9:56945. [PMID: 32588820 PMCID: PMC7319771 DOI: 10.7554/elife.56945] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022] Open
Abstract
In endoplasmic reticulum-associated protein degradation (ERAD), membrane proteins are ubiquitinated, extracted from the membrane, and degraded by the proteasome. The cytosolic ATPase Cdc48 drives extraction by pulling on polyubiquitinated substrates. How hydrophobic transmembrane (TM) segments are moved from the phospholipid bilayer into cytosol, often together with hydrophilic and folded ER luminal protein parts, is not known. Using a reconstituted system with purified proteins from Saccharomyces cerevisiae, we show that the ubiquitin ligase Doa10 (Teb-4/MARCH6 in animals) is a retrotranslocase that facilitates membrane protein extraction. A substrate’s TM segment interacts with the membrane-embedded domain of Doa10 and then passively moves into the aqueous phase. Luminal substrate segments cross the membrane in an unfolded state. Their unfolding occurs on the luminal side of the membrane by cytoplasmic Cdc48 action. Our results reveal how a membrane-bound retrotranslocase cooperates with the Cdc48 ATPase in membrane protein extraction. The inside of a cell contains many different compartments called organelles, which are separated by membranes. Each organelle is composed of a unique set of proteins and performs specific roles in the cell. The endoplasmic reticulum, or ER for short, is an organelle where many proteins are produced. Most of these proteins are then released from the cell or sorted to other organelles. The ER has a strict quality control system that ensures any faulty proteins are quickly marked for the cell to destroy. However, the destruction process itself does not happen in the ER, so faulty proteins first need to leave this organelle. This is achieved by a group of proteins known as endoplasmic reticulum-associated protein degradation machinery (or ERAD for short). To extract a faulty protein from the ER, proteins of the ER and outside the ER cooperate. First, an ERAD protein called Doa10 attaches a small protein tag called ubiquitin to the faulty proteins to mark them for destruction. Then, outside of the ER, a protein called Cdc48 ‘grabs’ the ubiquitin tag and pulls. But that is only part of the story. Many of the proteins made by the ER have tethers that anchor them firmly to the membrane, making them much harder to remove. To get a better idea of how the extraction works, Schmidt et al. rebuilt the ERAD machinery in a test tube. This involved purifying proteins from yeast and inserting them into artificial membranes, allowing closer study of each part of the process. This revealed that attaching ubiquitin tags to faulty proteins is only one part of Doa10's role; it also participates in the extraction itself. Part of Doa10 resides within the membrane, and this ‘membrane-spanning domain’ can interact with faulty proteins, loosening their membrane anchors. At the same time, Cdc48 pulls from the outside. This pulling force causes the faulty proteins to unfold, allowing them to pass through the membrane. Given these findings, the next step is to find out exactly how Doa10 works by looking at its three-dimensional structure. This could have implications not only for the study of ERAD, but of similar quality control processes in other organelles too. A build-up of faulty proteins can cause diseases like neurodegeneration, so understanding how cells remove faulty proteins could help future medical research.
Collapse
Affiliation(s)
- Claudia C Schmidt
- Research Group Membrane Protein Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Vedran Vasic
- Research Group Membrane Protein Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Alexander Stein
- Research Group Membrane Protein Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
11
|
Genetic Selection Based on a Ste6 *C-HA-Ura3 Substrate Identifies New Cytosolic Quality Control Alleles in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2020; 10:1879-1891. [PMID: 32299823 PMCID: PMC7263692 DOI: 10.1534/g3.120.401186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein quality control in the cytosol (CytoQC) is an important cellular pathway consisting of a network of components which monitor the folding of cytosolic proteins and ensure the efficient removal of aberrant ones. Our understanding of CytoQC mechanisms is limited in part by the ability of current approaches to identify new genes in the pathway. In this study, we developed a CytoQC reporter substrate, Ste6*C-HA-Ura3, for a new genetic selection of spontaneous CytoQC mutations in the yeast Saccharomyces cerevisiae In addition to UBR1, which encodes for a known CytoQC E3 ligase, we identified six new CytoQC candidates. In the preliminary characterization of two mutants, we found that Doa4 is involved in the degradation of misfolded substrates while Pup2 functions in the selectivity of CytoQC and ERAD substrates. Overall, the strategy demonstrates the potential to identify novel genes and advance our understanding of CytoQC.
Collapse
|
12
|
Nielsen CP, MacGurn JA. Coupling Conjugation and Deconjugation Activities to Achieve Cellular Ubiquitin Dynamics. Trends Biochem Sci 2020; 45:427-439. [PMID: 32311336 DOI: 10.1016/j.tibs.2020.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 12/19/2022]
Abstract
In eukaryotic cells, proteome remodeling is mediated by the ubiquitin-proteasome system, which regulates protein degradation, trafficking, and signaling events in the cell. Interplay between the cellular proteome and ubiquitin is complex and dynamic and many regulatory features that support this system have only recently come into focus. An unexpected recurring feature in this system is the physical interaction between E3 ubiquitin ligases and deubiquitylases (DUBs). Recent studies have reported on the regulatory significance of DUB-E3 interactions and it is becoming clear that they play important but complicated roles in the regulation of diverse cellular processes. Here, we summarize the current understanding of interactions between ubiquitin conjugation and deconjugation machineries and we examine the regulatory logic of these enigmatic complexes.
Collapse
Affiliation(s)
- Casey P Nielsen
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Jason A MacGurn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
13
|
Ballweg S, Sezgin E, Doktorova M, Covino R, Reinhard J, Wunnicke D, Hänelt I, Levental I, Hummer G, Ernst R. Regulation of lipid saturation without sensing membrane fluidity. Nat Commun 2020; 11:756. [PMID: 32029718 PMCID: PMC7005026 DOI: 10.1038/s41467-020-14528-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/14/2020] [Indexed: 12/22/2022] Open
Abstract
Cells maintain membrane fluidity by regulating lipid saturation, but the molecular mechanisms of this homeoviscous adaptation remain poorly understood. We have reconstituted the core machinery for regulating lipid saturation in baker’s yeast to study its molecular mechanism. By combining molecular dynamics simulations with experiments, we uncover a remarkable sensitivity of the transcriptional regulator Mga2 to the abundance, position, and configuration of double bonds in lipid acyl chains, and provide insights into the molecular rules of membrane adaptation. Our data challenge the prevailing hypothesis that membrane fluidity serves as the measured variable for regulating lipid saturation. Rather, we show that Mga2 senses the molecular lipid-packing density in a defined region of the membrane. Our findings suggest that membrane property sensors have evolved remarkable sensitivities to highly specific aspects of membrane structure and dynamics, thus paving the way toward the development of genetically encoded reporters for such properties in the future. Cells maintain membrane fluidity by regulating lipid saturation, but the molecular mechanisms of this homeoviscous adaptation remain poorly understood. Here authors reconstituted the core machinery for regulating lipid saturation in baker’s yeast to directly characterize its response to defined membrane environments and uncover its mode-of-action.
Collapse
Affiliation(s)
- Stephanie Ballweg
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Kirrberger Strasse 100, Building 61.4, 66421, Homburg, Germany.,PZMS, Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421, Homburg, Germany
| | - Erdinc Sezgin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Milka Doktorova
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Roberto Covino
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438, Frankfurt, Germany
| | - John Reinhard
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Kirrberger Strasse 100, Building 61.4, 66421, Homburg, Germany.,PZMS, Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421, Homburg, Germany
| | - Dorith Wunnicke
- Institute of Biochemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany
| | - Inga Hänelt
- Institute of Biochemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438, Frankfurt, Germany.,Institute of Biophysics, Goethe University Frankfurt, 60438, Frankfurt, Germany
| | - Robert Ernst
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Kirrberger Strasse 100, Building 61.4, 66421, Homburg, Germany. .,PZMS, Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
14
|
Shi J, Hu X, Guo Y, Wang L, Ji J, Li J, Zhang ZR. A technique for delineating the unfolding requirements for substrate entry into retrotranslocons during endoplasmic reticulum-associated degradation. J Biol Chem 2019; 294:20084-20096. [PMID: 31748412 DOI: 10.1074/jbc.ra119.010019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/13/2019] [Indexed: 11/06/2022] Open
Abstract
The endoplasmic reticulum-associated degradation (ERAD) pathway mediates the endoplasmic reticulum-to-cytosol retrotranslocation of defective proteins through protein complexes called retrotranslocons. Defective proteins usually have complex conformations and topologies, and it is unclear how ERAD can thread these conformationally diverse protein substrates through the retrotranslocons. Here, we investigated the substrate conformation flexibility necessary for transport via retrotranslocons on the ERAD-L, ERAD-M, and HIV-encoded protein Vpu-hijacked ERAD branches. To this end, we appended various ERAD substrates with specific domains whose conformations were tunable in flexibility or tightness by binding to appropriate ligands. With this technique, we could define the capacity of specific retrotranslocons in disentangling very tight, less tight but well-folded, and unstructured conformations. The Hrd1 complex, the retrotranslocon on the ERAD-L branch, permitted the passage of substrates with a proteinase K-resistant tight conformation, whereas the E3 ligase gp78-mediated ERAD-M allowed passage only of nearly completely disordered but not well-folded substrates and thus may have the least unfoldase activity. Vpu-mediated ERAD, containing a potential retrotranslocon, could unfold well-folded substrates for successful retrotranslocation. However, substrate retrotranslocation in Vpu-mediated ERAD was blocked by enhanced conformational tightness of the substrate. On the basis of these findings, we propose a mechanism underlying polypeptide movement through the endoplasmic reticulum membrane. We anticipate that our biochemical system paves the way for identifying the factors necessary for the retrotranslocation of membrane proteins.
Collapse
Affiliation(s)
- Junfen Shi
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Xianyan Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Yuan Guo
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Linhan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Jia Ji
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Jiqiang Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Zai-Rong Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China .,University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| |
Collapse
|
15
|
Peterson BG, Glaser ML, Rapoport TA, Baldridge RD. Cycles of autoubiquitination and deubiquitination regulate the ERAD ubiquitin ligase Hrd1. eLife 2019; 8:50903. [PMID: 31713515 PMCID: PMC6914336 DOI: 10.7554/elife.50903] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/11/2019] [Indexed: 12/28/2022] Open
Abstract
Misfolded proteins in the lumen of the endoplasmic reticulum (ER) are retrotranslocated into the cytosol and polyubiquitinated before being degraded by the proteasome. The multi-spanning ubiquitin ligase Hrd1 forms the retrotranslocation channel and associates with three other membrane proteins (Hrd3, Usa1, Der1) of poorly defined function. The Hrd1 channel is gated by autoubiquitination, but how Hrd1 escapes degradation by the proteasome and returns to its inactive ground state is unknown. Here, we show that autoubiquitination of Hrd1 is counteracted by Ubp1, a deubiquitinating enzyme that requires its N-terminal transmembrane segment for activity towards Hrd1. The Hrd1 partner Hrd3 serves as a brake for autoubiquitination, while Usa1 attenuates Ubp1’s deubiquitination activity through an inhibitory effect of its UBL domain. These results lead to a model in which the Hrd1 channel is regulated by cycles of autoubiquitination and deubiquitination, reactions that are modulated by the other components of the Hrd1 complex. Just like factories make mistakes when producing products, cells make mistakes when producing proteins. In cells, a compartment called the endoplasmic reticulum is where about one third of all proteins are produced, and where new proteins undergo quality control. Damaged or misfolded proteins are removed by a process called endoplasmic reticulum-associated degradation (ERAD for short), because if damaged proteins accumulate, cells become stressed. One type of ERAD is driven by a protein called Hrd1. Together with other components, Hrd1 labels damaged proteins with a ubiquitin tag that acts as a flag for degradation. Hrd1 has a paradoxical feature, however. To be active, Hrd1 tags itself with ubiquitin but this also makes it more prone to becoming degraded. How does Hrd1 remain active while avoiding its own degradation? To address this question, Peterson et al. forced budding yeast cells to produce high levels of 23 different enzymes that remove ubiquitin tags. One of these enzymes, called Ubp1, was able remove the ubiquitin tag from Hrd1, though it had not been seen in the ERAD pathway before. Further experiments also showed that Ubp1 was able to regulate Hrd1 activity, making Ubp1 a regulator of Hrd1 dependent protein quality control. Without protein quality control, damaged proteins can contribute to various diseases. ERAD is a common quality control system for proteins, present in many different species, ranging from yeast to animals. Therefore, understanding how ERAD works in budding yeast may also increase understanding of how human cells deal with damaged proteins.
Collapse
Affiliation(s)
- Brian G Peterson
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, United States
| | - Morgan L Glaser
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, United States
| | - Tom A Rapoport
- Department of Cell Biology, Harvard Medical School, Howard Hughes Medical Institute, Boston, United States
| | - Ryan D Baldridge
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
16
|
Sun Z, Brodsky JL. Protein quality control in the secretory pathway. J Cell Biol 2019; 218:3171-3187. [PMID: 31537714 PMCID: PMC6781448 DOI: 10.1083/jcb.201906047] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/22/2019] [Accepted: 08/29/2019] [Indexed: 12/23/2022] Open
Abstract
Protein folding is inherently error prone, especially in the endoplasmic reticulum (ER). Even with an elaborate network of molecular chaperones and protein folding facilitators, misfolding can occur quite frequently. To maintain protein homeostasis, eukaryotes have evolved a series of protein quality-control checkpoints. When secretory pathway quality-control pathways fail, stress response pathways, such as the unfolded protein response (UPR), are induced. In addition, the ER, which is the initial hub of protein biogenesis in the secretory pathway, triages misfolded proteins by delivering substrates to the proteasome or to the lysosome/vacuole through ER-associated degradation (ERAD) or ER-phagy. Some misfolded proteins escape the ER and are instead selected for Golgi quality control. These substrates are targeted for degradation after retrieval to the ER or delivery to the lysosome/vacuole. Here, we discuss how these guardian pathways function, how their activities intersect upon induction of the UPR, and how decisions are made to dispose of misfolded proteins in the secretory pathway.
Collapse
Affiliation(s)
- Zhihao Sun
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
17
|
Deol KK, Lorenz S, Strieter ER. Enzymatic Logic of Ubiquitin Chain Assembly. Front Physiol 2019; 10:835. [PMID: 31333493 PMCID: PMC6624479 DOI: 10.3389/fphys.2019.00835] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
Protein ubiquitination impacts virtually every biochemical pathway in eukaryotic cells. The fate of a ubiquitinated protein is largely dictated by the type of ubiquitin modification with which it is decorated, including a large variety of polymeric chains. As a result, there have been intense efforts over the last two decades to dissect the molecular details underlying the synthesis of ubiquitin chains by ubiquitin-conjugating (E2) enzymes and ubiquitin ligases (E3s). In this review, we highlight these advances. We discuss the evidence in support of the alternative models of transferring one ubiquitin at a time to a growing substrate-linked chain (sequential addition model) versus transferring a pre-assembled ubiquitin chain (en bloc model) to a substrate. Against this backdrop, we outline emerging principles of chain assembly: multisite interactions, distinct mechanisms of chain initiation and elongation, optimal positioning of ubiquitin molecules that are ultimately conjugated to each other, and substrate-assisted catalysis. Understanding the enzymatic logic of ubiquitin chain assembly has important biomedical implications, as the misregulation of many E2s and E3s and associated perturbations in ubiquitin chain formation contribute to human disease. The resurgent interest in bifunctional small molecules targeting pathogenic proteins to specific E3s for polyubiquitination and subsequent degradation provides an additional incentive to define the mechanisms responsible for efficient and specific chain synthesis and harness them for therapeutic benefit.
Collapse
Affiliation(s)
- Kirandeep K Deol
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| | - Sonja Lorenz
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Eric R Strieter
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States.,Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
18
|
Goder V, Alanis-Dominguez E, Bustamante-Sequeiros M. Lipids and their (un)known effects on ER-associated protein degradation (ERAD). Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158488. [PMID: 31233887 DOI: 10.1016/j.bbalip.2019.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 02/09/2023]
Abstract
Endoplasmic reticulum (ER)-associated protein degradation (ERAD) is a conserved cellular process that apart from protein quality control and maintenance of ER membrane identity has pivotal functions in regulating the lipid composition of the ER membrane. A general trigger for ERAD activation is the exposure of normally buried protein domains due to protein misfolding, absence of binding partners or conformational changes. Several feedback loops for ER lipid homeostasis exploit the induction of conformational changes in key enzymes of lipid biosynthesis or in ER membrane-embedded transcription factors upon shortage or abundance of specific lipids, leading to enzyme degradation or mobilization of transcription factors. Similarly, an insufficient amount of lipids triggers ERAD of apolipoproteins during lipoprotein formation. Lipids might even have a role in ER protein quality control: when proteins destined for ER export are covalently modified with lipids their ER residence time and their susceptibility to ERAD is reduced. Here we summarize and compare the various interconnections of lipids with ER membrane proteins and ERAD. This article is part of a Special Issue entitled Endoplasmic reticulum platforms for lipid dynamics edited by Shamshad Cockcroft and Christopher Stefan.
Collapse
Affiliation(s)
- Veit Goder
- Department of Genetics, University of Seville, 6, Ave Reina Mercedes, 41012 Seville, Spain.
| | | | | |
Collapse
|
19
|
Avci D, Malchus NS, Heidasch R, Lorenz H, Richter K, Neßling M, Lemberg MK. The intramembrane protease SPP impacts morphology of the endoplasmic reticulum by triggering degradation of morphogenic proteins. J Biol Chem 2018; 294:2786-2800. [PMID: 30578301 DOI: 10.1074/jbc.ra118.005642] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/12/2018] [Indexed: 11/06/2022] Open
Abstract
The endoplasmic reticulum (ER), as a multifunctional organelle, plays crucial roles in lipid biosynthesis and calcium homeostasis as well as the synthesis and folding of secretory and membrane proteins. Therefore, it is of high importance to maintain ER homeostasis and to adapt ER function and morphology to cellular needs. Here, we show that signal peptide peptidase (SPP) modulates the ER shape through degradation of morphogenic proteins. Elevating SPP activity induces rapid rearrangement of the ER and formation of dynamic ER clusters. Inhibition of SPP activity rescues the phenotype without the need for new protein synthesis, and this rescue depends on a pre-existing pool of proteins in the Golgi. With the help of organelle proteomics, we identified certain membrane proteins to be diminished upon SPP expression and further show that the observed morphology changes depend on SPP-mediated cleavage of ER morphogenic proteins, including the SNARE protein syntaxin-18. Thus, we suggest that SPP-mediated protein abundance control by a regulatory branch of ER-associated degradation (ERAD-R) has a role in shaping the early secretory pathway.
Collapse
Affiliation(s)
- Dönem Avci
- From the Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany and
| | - Nicole S Malchus
- From the Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany and
| | - Ronny Heidasch
- From the Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany and
| | - Holger Lorenz
- From the Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany and
| | - Karsten Richter
- German Cancer Research Center (DKFZ), Central Unit Electron Microscopy, 69120 Heidelberg, Germany
| | - Michelle Neßling
- German Cancer Research Center (DKFZ), Central Unit Electron Microscopy, 69120 Heidelberg, Germany
| | - Marius K Lemberg
- From the Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany and
| |
Collapse
|
20
|
EMC Is Required to Initiate Accurate Membrane Protein Topogenesis. Cell 2018; 175:1507-1519.e16. [PMID: 30415835 PMCID: PMC6269167 DOI: 10.1016/j.cell.2018.10.009] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/15/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022]
Abstract
Mammals encode ∼5,000 integral membrane proteins that need to be inserted in a defined topology at the endoplasmic reticulum (ER) membrane by mechanisms that are incompletely understood. Here, we found that efficient biogenesis of β1-adrenergic receptor (β1AR) and other G protein-coupled receptors (GPCRs) requires the conserved ER membrane protein complex (EMC). Reconstitution studies of β1AR biogenesis narrowed the EMC requirement to the co-translational insertion of the first transmembrane domain (TMD). Without EMC, a proportion of TMD1 inserted in an inverted orientation or failed altogether. Purified EMC and SRP receptor were sufficient for correctly oriented TMD1 insertion, while the Sec61 translocon was necessary for insertion of the next TMD. Enforcing TMD1 topology with an N-terminal signal peptide bypassed the EMC requirement for insertion in vitro and restored efficient biogenesis of multiple GPCRs in EMC-knockout cells. Thus, EMC inserts TMDs co-translationally and cooperates with the Sec61 translocon to ensure accurate topogenesis of many membrane proteins. Efficient biogenesis of many GPCRs requires EMC, the ER membrane protein complex Without EMC, correct topology and insertion of the first transmembrane domain fails Purified EMC is sufficient for insertion of the first transmembrane domain of GPCRs The Sec61 complex is required for insertion of subsequent transmembrane domains
Collapse
|
21
|
Patel SJ, Van Lehn RC. Characterizing the Molecular Mechanisms for Flipping Charged Peptide Flanking Loops across a Lipid Bilayer. J Phys Chem B 2018; 122:10337-10348. [PMID: 30376710 DOI: 10.1021/acs.jpcb.8b06613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cell membrane largely prevents the passive diffusion of charged molecules due to the large free energy barrier associated with translocating charged groups across the hydrophobic lipid bilayer core. Despite this barrier, some peptides can interconvert between transmembrane and surface-adsorbed states by "flipping" charged flanking loops across the bilayer on a surprisingly rapid second-minute time scale. The transmembrane helices of some multispanning membrane proteins undergo similar reorientation processes, suggesting that loop-flipping may be a mechanism for regulating membrane protein topology; however, the molecular mechanisms underlying this behavior remain unknown. In this work, we study the loop-flipping behavior exhibited by a peptide with a hydrophobic transmembrane helix, charged flanking loops, and a central, membrane-exposed aspartate residue of varying protonation state. We utilize all-atom temperature accelerated molecular dynamics simulations to predict the likelihood of loop-flipping without predefining specific loop-flipping pathways. We demonstrate that this approach can identify multiple possible flipping pathways, with the prevalence of each pathway depending on the protonation state of the central residue. In particular, we find that a charged central residue facilitates loop-flipping by stabilizing membrane water defects, enabling the "self-catalysis" of charge translocation. These findings provide detailed molecular-level insights into charged loop-flipping pathways that may generalize to other charge translocation processes, such as lipid flip-flop or the large-scale conformational rearrangements of multispanning membrane proteins.
Collapse
Affiliation(s)
- Samarthaben J Patel
- Department of Chemical and Biological Engineering , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
22
|
Sardana R, Zhu L, Emr SD. Rsp5 Ubiquitin ligase-mediated quality control system clears membrane proteins mistargeted to the vacuole membrane. J Cell Biol 2018; 218:234-250. [PMID: 30361468 PMCID: PMC6314561 DOI: 10.1083/jcb.201806094] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/06/2018] [Accepted: 10/01/2018] [Indexed: 11/22/2022] Open
Abstract
Sardana et al. show that protein quality control systems on multiple endocytic organelles cooperate to prevent aberrant protein accumulation and maintain proteostasis. By mistargeting PM proteins de novo to the yeast vacuolar membrane, they uncover a “fail-safe” mechanism that ensures degradation of diverse endocytic cargos. Maintenance of organelle identity is profoundly dependent on the coordination between correct targeting of proteins and removal of mistargeted and damaged proteins. This task is mediated by organelle-specific protein quality control (QC) systems. In yeast, the endocytosis and QC of most plasma membrane (PM) proteins requires the Rsp5 ubiquitin ligase and ART adaptor network. We show that intracellular adaptors of Rsp5, Ear1, and Ssh4 mediate recognition and vacuolar degradation of PM proteins that escape or bypass PM QC systems. This second tier of surveillance helps to maintain cell integrity upon heat stress and protects from proteotoxicity. To understand the mechanism of the recognition of aberrant PM cargos by Ssh4–Rsp5, we mistarget multiple PM proteins de novo to the vacuolar membrane. We found that Ssh4–Rsp5 can target and ubiquitinate multiple lysines within a restricted distance from the membrane, providing a fail-safe mechanism for a diverse cargo repertoire. The mistargeting or misfolding of PM proteins likely exposes these lysines or shifts them into the “ubiquitination zone” accessible to the Ssh4–Rsp5 complex.
Collapse
Affiliation(s)
- Richa Sardana
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Lu Zhu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Scott D Emr
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| |
Collapse
|
23
|
Abstract
Ubiquitylation is an essential posttranslational modification that controls cell division, differentiation, and survival in all eukaryotes. By combining multiple E3 ligases (writers), ubiquitin-binding effectors (readers), and de-ubiquitylases (erasers) with functionally distinct ubiquitylation tags, the ubiquitin system constitutes a powerful signaling network that is employed in similar ways from yeast to humans. Here, we discuss conserved principles of ubiquitin-dependent signaling that illustrate how this posttranslational modification shapes intracellular signaling networks to establish robust development and homeostasis throughout the eukaryotic kingdom.
Collapse
Affiliation(s)
- Eugene Oh
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA; .,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - David Akopian
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Michael Rape
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA; .,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
24
|
Guna A, Volkmar N, Christianson JC, Hegde RS. The ER membrane protein complex is a transmembrane domain insertase. Science 2018; 359:470-473. [PMID: 29242231 PMCID: PMC5788257 DOI: 10.1126/science.aao3099] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/26/2017] [Accepted: 11/27/2017] [Indexed: 12/26/2022]
Abstract
Insertion of proteins into membranes is an essential cellular process. The extensive biophysical and topological diversity of membrane proteins necessitates multiple insertion pathways that remain incompletely defined. Here we found that known membrane insertion pathways fail to effectively engage tail-anchored membrane proteins with moderately hydrophobic transmembrane domains. These proteins are instead shielded in the cytosol by calmodulin. Dynamic release from calmodulin allowed sampling of the endoplasmic reticulum (ER), where the conserved ER membrane protein complex (EMC) was shown to be essential for efficient insertion in vitro and in cells. Purified EMC in synthetic liposomes catalyzed the insertion of its substrates in a reconstituted system. Thus, EMC is a transmembrane domain insertase, a function that may explain its widely pleiotropic membrane-associated phenotypes across organisms.
Collapse
Affiliation(s)
- Alina Guna
- Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Norbert Volkmar
- Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, UK
| | - John C Christianson
- Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, UK
| | - Ramanujan S Hegde
- Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| |
Collapse
|
25
|
Xian H, Xie W, Yang S, Liu Q, Xia X, Jin S, Sun T, Cui J. Stratified ubiquitination of RIG-I creates robust immune response and induces selective gene expression. SCIENCE ADVANCES 2017; 3:e1701764. [PMID: 28948228 PMCID: PMC5609842 DOI: 10.1126/sciadv.1701764] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/01/2017] [Indexed: 05/12/2023]
Abstract
The activation of retinoic acid-inducible gene I (RIG-I), an indispensable viral RNA sensor in mammals, is subtly regulated by ubiquitination. Although multiple ubiquitination sites at the amino terminus of RIG-I have been identified, their functional allocations in RIG-I activation remain elusive. We identified a stratified model for RIG-I amino-terminal ubiquitination, in which initiation at either Lys164 or Lys172 allows subsequent ubiquitination at other lysines, to trigger and amplify RIG-I activation. Experimental and mathematical modeling showed that multisite ubiquitination provides robustness in RIG-I-mediated type I interferon (IFN) signaling. Furthermore, the flexibly controlled ultrasensitivity and IFN activation intensity determine the specificity of the IFN-stimulated gene transcription and manipulate cell fate in antiviral immune response. Our work demonstrates that tunable type I IFN signaling can be regulated through multisite RIG-I ubiquitination and elucidates a new paradigm for dynamic regulation in RIG-I-mediated antiviral signaling.
Collapse
Affiliation(s)
- Huifang Xian
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Weihong Xie
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shuai Yang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Qingxiang Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shouheng Jin
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Tingzhe Sun
- School of Life Sciences, Anqing Normal University, Anqing 246011, China
| | - Jun Cui
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
26
|
Wohlever ML, Mateja A, McGilvray PT, Day KJ, Keenan RJ. Msp1 Is a Membrane Protein Dislocase for Tail-Anchored Proteins. Mol Cell 2017; 67:194-202.e6. [PMID: 28712723 DOI: 10.1016/j.molcel.2017.06.019] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/09/2017] [Accepted: 06/16/2017] [Indexed: 11/18/2022]
Abstract
Mislocalized tail-anchored (TA) proteins of the outer mitochondrial membrane are cleared by a newly identified quality control pathway involving the conserved eukaryotic protein Msp1 (ATAD1 in humans). Msp1 is a transmembrane AAA-ATPase, but its role in TA protein clearance is not known. Here, using purified components reconstituted into proteoliposomes, we show that Msp1 is both necessary and sufficient to drive the ATP-dependent extraction of TA proteins from the membrane. A crystal structure of the Msp1 cytosolic region modeled into a ring hexamer suggests that active Msp1 contains a conserved membrane-facing surface adjacent to a central pore. Structure-guided mutagenesis of the pore residues shows that they are critical for TA protein extraction in vitro and for functional complementation of an msp1 deletion in yeast. Together, these data provide a molecular framework for Msp1-dependent extraction of mislocalized TA proteins from the outer mitochondrial membrane.
Collapse
Affiliation(s)
- Matthew L Wohlever
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Agnieszka Mateja
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Philip T McGilvray
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Kasey J Day
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | - Robert J Keenan
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
27
|
Clague MJ, Urbé S. Integration of cellular ubiquitin and membrane traffic systems: focus on deubiquitylases. FEBS J 2017; 284:1753-1766. [PMID: 28064438 PMCID: PMC5484354 DOI: 10.1111/febs.14007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/29/2016] [Accepted: 01/06/2017] [Indexed: 12/17/2022]
Abstract
The cell is comprised of integrated multilevel protein networks or systems. The ubiquitin, protein homeostasis and membrane trafficking systems are highly integrated. Here, we look at the influence of reversible ubiquitylation on membrane trafficking and organelle dynamics. We review the regulation of endocytic sorting, selective autophagy and the secretory pathway by ubiquitin signals, with a particular focus on detailing the contribution of deubiquitylating enzymes.
Collapse
Affiliation(s)
- Michael J Clague
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, UK
| | - Sylvie Urbé
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, UK
| |
Collapse
|
28
|
Deubiquitinase activity is required for the proteasomal degradation of misfolded cytosolic proteins upon heat-stress. Nat Commun 2016; 7:12907. [PMID: 27698423 PMCID: PMC5059457 DOI: 10.1038/ncomms12907] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 08/12/2016] [Indexed: 12/25/2022] Open
Abstract
Elimination of misfolded proteins is crucial for proteostasis and to prevent proteinopathies. Nedd4/Rsp5 emerged as a major E3-ligase involved in multiple quality control pathways that target misfolded plasma membrane proteins, aggregated polypeptides and cytosolic heat-induced misfolded proteins for degradation. It remained unclear how in one case cytosolic heat-induced Rsp5 substrates are destined for proteasomal degradation, whereas other Rsp5 quality control substrates are otherwise directed to lysosomal degradation. Here we find that Ubp2 and Ubp3 deubiquitinases are required for the proteasomal degradation of cytosolic misfolded proteins targeted by Rsp5 after heat-shock (HS). The two deubiquitinases associate more with Rsp5 upon heat-stress to prevent the assembly of K63-linked ubiquitin on Rsp5 heat-induced substrates. This activity was required to promote the K48-mediated proteasomal degradation of Rsp5 HS-induced substrates. Our results indicate that ubiquitin chain editing is key to the cytosolic protein quality control under stress conditions. Ubiquitination of misfolded proteins usually results in protein degradation. Here, the authors show that two deubiquitinases—enzymes that remove ubiquitin—are required for the proteasomal degradation of misfolded proteins in response to heat-shock in yeast.
Collapse
|
29
|
Wang T, Fei HJ, Yang Y, Jiang XS, Yan M, Zeng Z, Wu J, Song LJ, Tian H, Fu GH. Expression of AE1/p16 promoted degradation of AE2 in gastric cancer cells. BMC Cancer 2016; 16:716. [PMID: 27595783 PMCID: PMC5011918 DOI: 10.1186/s12885-016-2751-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 08/26/2016] [Indexed: 12/19/2022] Open
Abstract
Background Human anion exchanger 1 and 2 (AE1 and AE2) mediate the exchange of Cl−/HCO3− across the plasma membrane and regulate intracellular pH (pHi). AE1 is specifically expressed on the surface of erythrocytes, while AE2 is widely expressed in most tissues, and is particularly abundant in parietal cells. Previous studies showed that an interaction between AE1 and p16 is a key event in gastric cancer (GC) progression, but the importance of AE2 in GC is unclear. Methods The relationship among AE1, AE2 and p16 in GC cells was characterized by molecular and cellular experiments. AE2 expression and pHi were measured after knockdown or forced expression of AE1 or p16 in GC cells. The effect of AE2 on GC growth and the correlation of AE2 expression with differentiation and prognosis of GC were also evaluated. The effect of gastrin on AE2 expression and GC growth was investigated in cellular experiments and mouse xenograft models. Results p16 binds to both AE1 and AE2 simultaneously. AE1 or p16 silencing elevated AE2 expression on the plasma membrane where it plays a role in pHi regulation and GC suppression. AE2 expression was decreased in GC tissue, and these decreased levels were correlated with poor differentiation and prognosis of GC. The low AE2 protein levels are due to rapid ubiquitin-mediated degradation that was facilitated in the presence of p16. Gastrin inhibited the growth of GC cells at least partially through up-regulation of AE2 expression. Conclusion AE1/p16 expression promoted AE2 degradation in GC cells. Gastrin is a potential candidate drug for targeted therapies for AE1- and p16-positive GC.
Collapse
Affiliation(s)
- Ting Wang
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, No.280, South Chong-Qing Road, Shanghai, 200025, People's Republic of China
| | - Hong-Jun Fei
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, No.280, South Chong-Qing Road, Shanghai, 200025, People's Republic of China
| | - Ye Yang
- Department of Digestive Medicine, Ningbo No. 2 Hospital, Ningbo, 315010, People's Republic of China
| | - Xiao-Shu Jiang
- Department of Pathophysiology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Min Yan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Zhi Zeng
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, No.280, South Chong-Qing Road, Shanghai, 200025, People's Republic of China
| | - Jun Wu
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, No.280, South Chong-Qing Road, Shanghai, 200025, People's Republic of China
| | - Ling-Jun Song
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, No.280, South Chong-Qing Road, Shanghai, 200025, People's Republic of China
| | - Hua Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, People's Republic of China
| | - Guo-Hui Fu
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, No.280, South Chong-Qing Road, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
30
|
Membrane protein assembly: two cytoplasmic phosphorylated serine sites of Vpu from HIV-1 affect oligomerization. Sci Rep 2016; 6:28866. [PMID: 27353136 PMCID: PMC4926278 DOI: 10.1038/srep28866] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/06/2016] [Indexed: 11/08/2022] Open
Abstract
Viral protein U (Vpu) encoded by human immunodeficiency virus type 1 (HIV-1) is a short integral membrane protein which is known to self-assemble within the lipid membrane and associate with host factors during the HIV-1 infectivity cycle. In this study, full-length Vpu (M group) from clone NL4-3 was over-expressed in human cells and purified in an oligomeric state. Various single and double mutations were constructed on its phosphorylation sites to mimic different degrees of phosphorylation. Size exclusion chromatography of wild-type Vpu and mutants indicated that the smallest assembly unit of Vpu was a dimer and over time Vpu formed higher oligomers. The rate of oligomerization increased when (i) the degree of phosphorylation at serines 52 and 56 was decreased and (ii) when the ionic strength was increased indicating that the cytoplasmic domain of Vpu affects oligomerization. Coarse-grained molecular dynamic simulations with models of wild-type and mutant Vpu in a hydrated lipid bilayer supported the experimental data in demonstrating that, in addition to a previously known role in downregulation of host factors, the phosphorylation sites of Vpu also modulate oligomerization.
Collapse
|
31
|
Avci D, Lemberg MK. Clipping or Extracting: Two Ways to Membrane Protein Degradation. Trends Cell Biol 2016; 25:611-622. [PMID: 26410407 DOI: 10.1016/j.tcb.2015.07.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/18/2015] [Accepted: 07/17/2015] [Indexed: 12/20/2022]
Abstract
Protein degradation is a fundamentally important process that allows cells to recognize and remove damaged protein species and to regulate protein abundance according to functional need. A fundamental challenge is to understand how membrane proteins are recognized and removed from cellular organelles. While most of our understanding of this mechanism comes from studies on p97/Cdc48-mediated protein dislocation along the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway, recent studies have revealed intramembrane proteolysis to be an additional mechanism that can extract transmembrane segments. Here, we review these two principles in membrane protein degradation and discuss how intramembrane proteolysis, which introduces an irreversible step in protein dislocation, is used to drive regulated protein turnover.
Collapse
Affiliation(s)
- Dönem Avci
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Marius K Lemberg
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| |
Collapse
|
32
|
Abstract
The endoplasmic reticulum is the port of entry for proteins into the secretory pathway and the site of synthesis for several important lipids, including cholesterol, triacylglycerol, and phospholipids. Protein production within the endoplasmic reticulum is tightly regulated by a cohort of resident machinery that coordinates the folding, modification, and deployment of secreted and integral membrane proteins. Proteins failing to attain their native conformation are degraded through the endoplasmic reticulum-associated degradation (ERAD) pathway via a series of tightly coupled steps: substrate recognition, dislocation, and ubiquitin-dependent proteasomal destruction. The same ERAD machinery also controls the flux through various metabolic pathways by coupling the turnover of metabolic enzymes to the levels of key metabolites. We review the current understanding and biological significance of ERAD-mediated regulation of lipid metabolism in mammalian cells.
Collapse
Affiliation(s)
- Julian Stevenson
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720;
| | - Edmond Y Huang
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720;
| | - James A Olzmann
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720;
| |
Collapse
|
33
|
Jahan AS, Lestra M, Swee LK, Fan Y, Lamers MM, Tafesse FG, Theile CS, Spooner E, Bruzzone R, Ploegh HL, Sanyal S. Usp12 stabilizes the T-cell receptor complex at the cell surface during signaling. Proc Natl Acad Sci U S A 2016; 113:E705-14. [PMID: 26811477 PMCID: PMC4760780 DOI: 10.1073/pnas.1521763113] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Posttranslational modifications are central to the spatial and temporal regulation of protein function. Among others, phosphorylation and ubiquitylation are known to regulate proximal T-cell receptor (TCR) signaling. Here we used a systematic and unbiased approach to uncover deubiquitylating enzymes (DUBs) that participate during TCR signaling in primary mouse T lymphocytes. Using a C-terminally modified vinyl methyl ester variant of ubiquitin (HA-Ub-VME), we captured DUBs that are differentially recruited to the cytosol on TCR activation. We identified ubiquitin-specific peptidase (Usp) 12 and Usp46, which had not been previously described in this pathway. Stimulation with anti-CD3 resulted in phosphorylation and time-dependent translocation of Usp12 from the nucleus to the cytosol. Usp12(-/-) Jurkat cells displayed defective NFκB, NFAT, and MAPK activities owing to attenuated surface expression of TCR, which were rescued on reconstitution of wild type Usp12. Proximity-based labeling with BirA-Usp12 revealed several TCR adaptor proteins acting as interactors in stimulated cells, of which LAT and Trat1 displayed reduced expression in Usp12(-/-) cells. We demonstrate that Usp12 deubiquitylates and prevents lysosomal degradation of LAT and Trat1 to maintain the proximal TCR complex for the duration of signaling. Our approach benefits from the use of activity-based probes in primary cells without any previous genome modification, and underscores the importance of ubiquitin-mediated regulation to refine signaling cascades.
Collapse
Affiliation(s)
- Akhee S Jahan
- HKU-Pasteur Research Pole and Center for Influenza Research, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Maxime Lestra
- HKU-Pasteur Research Pole and Center for Influenza Research, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Lee Kim Swee
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - Ying Fan
- HKU-Pasteur Research Pole and Center for Influenza Research, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Mart M Lamers
- HKU-Pasteur Research Pole and Center for Influenza Research, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Fikadu G Tafesse
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | | | - Eric Spooner
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - Roberto Bruzzone
- HKU-Pasteur Research Pole and Center for Influenza Research, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong; Department of Cell Biology and Infection, Institut Pasteur, 75015 Paris, France
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Sumana Sanyal
- HKU-Pasteur Research Pole and Center for Influenza Research, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong; Department of Cell Biology and Infection, Institut Pasteur, 75015 Paris, France;
| |
Collapse
|
34
|
Hegde RN, Parashuraman S, Iorio F, Ciciriello F, Capuani F, Carissimo A, Carrella D, Belcastro V, Subramanian A, Bounti L, Persico M, Carlile G, Galietta L, Thomas DY, Di Bernardo D, Luini A. Unravelling druggable signalling networks that control F508del-CFTR proteostasis. eLife 2015; 4. [PMID: 26701908 PMCID: PMC4749566 DOI: 10.7554/elife.10365] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 11/26/2015] [Indexed: 01/17/2023] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in CF transmembrane conductance regulator (CFTR). The most frequent mutation (F508del-CFTR) results in altered proteostasis, that is, in the misfolding and intracellular degradation of the protein. The F508del-CFTR proteostasis machinery and its homeostatic regulation are well studied, while the question whether ‘classical’ signalling pathways and phosphorylation cascades might control proteostasis remains barely explored. Here, we have unravelled signalling cascades acting selectively on the F508del-CFTR folding-trafficking defects by analysing the mechanisms of action of F508del-CFTR proteostasis regulator drugs through an approach based on transcriptional profiling followed by deconvolution of their gene signatures. Targeting multiple components of these signalling pathways resulted in potent and specific correction of F508del-CFTR proteostasis and in synergy with pharmacochaperones. These results provide new insights into the physiology of cellular proteostasis and a rational basis for developing effective pharmacological correctors of the F508del-CFTR defect. DOI:http://dx.doi.org/10.7554/eLife.10365.001 Cystic fibrosis is a genetic disease that commonly affects people of European descent. The condition is caused by mutations in the gene encoding a protein called “cystic fibrosis transmembrane conductance regulator” (or CFTR for short). CFTR forms a channel in the membrane of cells in the lungs that help transport salt across the membrane. Mutated versions of the protein are not as efficient at transporting salts, and eventually this damages the lung tissue. As the damage progresses, individuals become very vulnerable to bacterial infections that further damage the lungs and may eventually lead to death. One of the reasons CFTR mutations are harmful is that they cause the protein to fold up incorrectly and remain trapped inside the cell. Cells have quality control systems that recognize and destroy poorly folded proteins, and so only a few of the mutated CFTR proteins ever make it to the membrane to move salts. New therapies have been developed that improve folding of the protein and/or help the CFTR proteins that make it to the membrane work better. But more and better treatment options are needed. Hegde, Parashuraman et al. have now tested drugs that control how proteins fold and move to the membrane to see how they affect gene expression in cells with the most common cystic fibrosis-causing mutation. These drugs are known to improve the activity of the CFTR mutant, but do so too weakly to be of clinical interest. The experiments revealed that the expression of a few hundred genes was changed in response the drugs. Many of these genes were involved in major signalling pathways that control how CFTR is folded and trafficked within cells. Next, Hegde, Parashuraman et al. tested drugs that inhibit these signalling pathways to see if they improve salt handling in the mutated cells. The experiments demonstrated that these inhibitor drugs efficiently block the breakdown of misfolded CFTR, or boost the likelihood of CFTR making it to the membrane, helping improve salt trafficking in the cells. The inhibitors produced even better results when used in combination with a known CFTR-protecting drug. The results suggest that identifying and targeting signalling pathways involved in the folding, trafficking, and breakdown of CFTR may prove a promising way to treat cystic fibrosis. DOI:http://dx.doi.org/10.7554/eLife.10365.002
Collapse
Affiliation(s)
- Ramanath Narayana Hegde
- Institute of Protein Biochemistry, National Research Council, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Seetharaman Parashuraman
- Institute of Protein Biochemistry, National Research Council, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Francesco Iorio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Fabiana Ciciriello
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Biology and Biotechnology Department "Charles Darwin", Sapienza University, Rome, Italy.,Department of Biochemistry, McIntyre Medical Sciences Building, McGill University, Montréal, Canada
| | | | | | - Diego Carrella
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | | | - Advait Subramanian
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Laura Bounti
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Maria Persico
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Graeme Carlile
- Department of Biochemistry, McIntyre Medical Sciences Building, McGill University, Montréal, Canada
| | - Luis Galietta
- U.O.C. Genetica Medica, Institute of Giannina Gaslini, Genova, Italy
| | - David Y Thomas
- Department of Biochemistry, McIntyre Medical Sciences Building, McGill University, Montréal, Canada
| | - Diego Di Bernardo
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry, National Research Council, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico SDN, Naples, Italy
| |
Collapse
|
35
|
Shao S, Hegde RS. Target Selection during Protein Quality Control. Trends Biochem Sci 2015; 41:124-137. [PMID: 26628391 DOI: 10.1016/j.tibs.2015.10.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/18/2015] [Accepted: 10/20/2015] [Indexed: 11/25/2022]
Abstract
Protein quality control (QC) pathways survey the cellular proteome to selectively recognize and degrade faulty proteins whose accumulation can lead to various diseases. Recognition of the occasional aberrant protein among an abundant sea of similar normal counterparts poses a considerable challenge to the cell. Solving this problem requires protein QC machinery to assay multiple molecular criteria within a spatial and temporal context. Although each QC pathway has unique criteria and mechanisms for distinguishing right from wrong, they appear to share several general concepts. We discuss principles of high-fidelity target recognition, the decisive event of all protein QC pathways, to guide future work in this area.
Collapse
Affiliation(s)
- Sichen Shao
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| | - Ramanujan S Hegde
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
36
|
Abstract
ER-associated degradation (ERAD) is a protein clearance mechanism by which misfolded, misassembled, or metabolically regulated proteins are specifically dislocated from the ER into the cytosol and degraded by the ubiquitin proteasome system. ERAD very likely evolved to maintain proteostasis and sterol homeostasis in the ER. However, the ironic truth is that membrane-penetrating transportation and protein degradation machineries in ERAD are preferably hijacked by exogenous pathogens such as viruses and toxins for their invasion and evasion from immunological surveillance. In this Review, we provide an overview of our current understanding of the pathogenic hijacking of the host cell ERAD, in which pathogens exploit the complex ERAD machinery in a variety of manners for their own use, suggesting flexibility and plasticity of the molecular machinery of ERAD.
Collapse
|
37
|
Nguyen LK. Dynamics of ubiquitin-mediated signalling: insights from mathematical modelling and experimental studies. Brief Bioinform 2015. [DOI: 10.1093/bib/bbv052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
38
|
Leznicki P, Korac-Prlic J, Kliza K, Husnjak K, Nyathi Y, Dikic I, High S. Binding of SGTA to Rpn13 selectively modulates protein quality control. J Cell Sci 2015; 128:3187-96. [PMID: 26169395 PMCID: PMC4582187 DOI: 10.1242/jcs.165209] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 07/03/2015] [Indexed: 12/16/2022] Open
Abstract
Rpn13 is an intrinsic ubiquitin receptor of the 26S proteasome regulatory subunit that facilitates substrate capture prior to degradation. Here we show that the C-terminal region of Rpn13 binds to the tetratricopeptide repeat (TPR) domain of SGTA, a cytosolic factor implicated in the quality control of mislocalised membrane proteins (MLPs). The overexpression of SGTA results in a substantial increase in steady-state MLP levels, consistent with an effect on proteasomal degradation. However, this effect is strongly dependent upon the interaction of SGTA with the proteasomal component Rpn13. Hence, overexpression of the SGTA-binding region of Rpn13 or point mutations within the SGTA TPR domain both inhibit SGTA binding to the proteasome and substantially reduce MLP levels. These findings suggest that SGTA can regulate the access of MLPs to the proteolytic core of the proteasome, implying that a protein quality control cycle that involves SGTA and the BAG6 complex can operate at the 19S regulatory particle. We speculate that the binding of SGTA to Rpn13 enables specific polypeptides to escape proteasomal degradation and/or selectively modulates substrate degradation. Highlighted Article: Binding of SGTA to the proteasome delays substrate degradation, thereby providing a mechanism for potentially viable proteins to be rescued for reuse.
Collapse
Affiliation(s)
- Pawel Leznicki
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Jelena Korac-Prlic
- Department of Immunology and Medical Genetics, School of Medicine, University of Split, Soltanska 2, Split 21000, Croatia
| | - Katarzyna Kliza
- Institute of Biochemistry II, School of Medicine, Goethe University, Theodor-Stern-Kai 7, Frankfurt (Main) 60590, Germany
| | - Koraljka Husnjak
- Institute of Biochemistry II, School of Medicine, Goethe University, Theodor-Stern-Kai 7, Frankfurt (Main) 60590, Germany
| | - Yvonne Nyathi
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Ivan Dikic
- Department of Immunology and Medical Genetics, School of Medicine, University of Split, Soltanska 2, Split 21000, Croatia Institute of Biochemistry II, School of Medicine, Goethe University, Theodor-Stern-Kai 7, Frankfurt (Main) 60590, Germany Buchmann Institute for Molecular Life Sciences, School of Medicine, Goethe University, Theodor-Stern-Kai 7, Frankfurt (Main) 60590, Germany
| | - Stephen High
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
39
|
Benyair R, Ogen-Shtern N, Lederkremer GZ. Glycan regulation of ER-associated degradation through compartmentalization. Semin Cell Dev Biol 2015; 41:99-109. [DOI: 10.1016/j.semcdb.2014.11.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 12/20/2022]
|
40
|
Shao S, Brown A, Santhanam B, Hegde RS. Structure and assembly pathway of the ribosome quality control complex. Mol Cell 2015; 57:433-44. [PMID: 25578875 PMCID: PMC4321881 DOI: 10.1016/j.molcel.2014.12.015] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/07/2014] [Accepted: 12/05/2014] [Indexed: 12/11/2022]
Abstract
During ribosome-associated quality control, stalled ribosomes are split into subunits and the 60S-housed nascent polypeptides are poly-ubiquitinated by Listerin. How this low-abundance ubiquitin ligase targets rare stall-generated 60S among numerous empty 60S is unknown. Here, we show that Listerin specificity for nascent chain-60S complexes depends on nuclear export mediator factor (NEMF). The 3.6 Å cryo-EM structure of a nascent chain-containing 60S-Listerin-NEMF complex revealed that NEMF makes multiple simultaneous contacts with 60S and peptidyl-tRNA to sense nascent chain occupancy. Structural and mutational analyses showed that ribosome-bound NEMF recruits and stabilizes Listerin's N-terminal domain, while Listerin's C-terminal RWD domain directly contacts the ribosome to position the adjacent ligase domain near the nascent polypeptide exit tunnel. Thus, highly specific nascent chain targeting by Listerin is imparted by the avidity gained from a multivalent network of context-specific individually weak interactions, highlighting a new principle of client recognition during protein quality control.
Collapse
Affiliation(s)
- Sichen Shao
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Alan Brown
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Balaji Santhanam
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
41
|
Park SY, Waheed AA, Zhang ZR, Freed EO, Bonifacino JS. HIV-1 Vpu accessory protein induces caspase-mediated cleavage of IRF3 transcription factor. J Biol Chem 2014; 289:35102-10. [PMID: 25352594 DOI: 10.1074/jbc.m114.597062] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vpu is an accessory protein encoded by HIV-1 that interferes with multiple host-cell functions. Herein we report that expression of Vpu by transfection into 293T cells causes partial proteolytic cleavage of interferon regulatory factor 3 (IRF3), a key transcription factor in the innate anti-viral response. Vpu-induced IRF3 cleavage is mediated by caspases and occurs mainly at Asp-121. Cleavage produces a C-terminal fragment of ∼37 kDa that comprises the IRF dimerization and transactivation domains but lacks the DNA-binding domain. A similar cleavage is observed upon infection of the Jurkat T-cell line with vesicular stomatitis virus G glycoprotein (VSV-G)-pseudotyped HIV-1. Two other HIV-1 accessory proteins, Vif and Vpr, also contribute to the induction of IRF3 cleavage in both the transfection and the infection systems. The C-terminal IRF3 fragment interferes with the transcriptional activity of full-length IRF3. Cleavage of IRF3 under all of these conditions correlates with cleavage of poly(ADP-ribose) polymerase, an indicator of apoptosis. We conclude that Vpu contributes to the attenuation of the anti-viral response by partial inactivation of IRF3 while host cells undergo apoptosis.
Collapse
Affiliation(s)
- Sang Yoon Park
- From the Cell Biology and Metabolism Program, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Abdul A Waheed
- the HIV Drug Resistance Program, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Zai-Rong Zhang
- From the Cell Biology and Metabolism Program, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Eric O Freed
- the HIV Drug Resistance Program, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Juan S Bonifacino
- From the Cell Biology and Metabolism Program, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892 and
| |
Collapse
|
42
|
Wunderley L, Leznicki P, Payapilly A, High S. SGTA regulates the cytosolic quality control of hydrophobic substrates. J Cell Sci 2014; 127:4728-39. [PMID: 25179605 PMCID: PMC4215715 DOI: 10.1242/jcs.155648] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hydrophobic amino acids are normally shielded from the cytosol and their exposure is often used as an indicator of protein misfolding to enable the chaperone-mediated recognition and quality control of aberrant polypeptides. Mislocalised membrane proteins (MLPs) represent a particular challenge to cellular quality control, and, in this study, membrane protein fragments have been exploited to study a specialised pathway that underlies the efficient detection and proteasomal degradation of MLPs. Our data show that the BAG6 complex and SGTA compete for cytosolic MLPs by recognition of their exposed hydrophobicity, and the data suggest that SGTA acts to maintain these substrates in a non-ubiquitylated state. Hence, SGTA might counter the actions of BAG6 to delay the ubiquitylation of specific precursors and thereby increase their opportunity for successful post-translational delivery to the endoplasmic reticulum. However, when SGTA is overexpressed, the normally efficient removal of aberrant MLPs is delayed, increasing their steady-state level and promoting aggregation. Our data suggest that SGTA regulates the cellular fate of a range of hydrophobic polypeptides should they become exposed to the cytosol.
Collapse
Affiliation(s)
- Lydia Wunderley
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Pawel Leznicki
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Aishwarya Payapilly
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Stephen High
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
43
|
Abstract
Accurate folding, assembly, localization, and maturation of newly synthesized proteins are essential to all cells and require high fidelity in the protein biogenesis machineries that mediate these processes. Here, we review our current understanding of how high fidelity is achieved in one of these processes, the cotranslational targeting of nascent membrane and secretory proteins by the signal recognition particle (SRP). Recent biochemical, biophysical, and structural studies have elucidated how the correct substrates drive a series of elaborate conformational rearrangements in the SRP and SRP receptor GTPases; these rearrangements provide effective fidelity checkpoints to reject incorrect substrates and enhance the fidelity of this essential cellular pathway. The mechanisms used by SRP to ensure fidelity share important conceptual analogies with those used by cellular machineries involved in DNA replication, transcription, and translation, and these mechanisms likely represent general principles for other complex cellular pathways.
Collapse
Affiliation(s)
- Xin Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125;
| | | |
Collapse
|
44
|
Regulation of Endoplasmic Reticulum-Associated Protein Degradation (ERAD) by Ubiquitin. Cells 2014; 3:824-47. [PMID: 25100021 PMCID: PMC4197631 DOI: 10.3390/cells3030824] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/09/2014] [Accepted: 07/20/2014] [Indexed: 12/05/2022] Open
Abstract
Quality control of protein folding inside the endoplasmic reticulum (ER) includes chaperone-mediated assistance in folding and the selective targeting of terminally misfolded species to a pathway called ER-associated protein degradation, or simply ERAD. Once selected for ERAD, substrates will be transported (back) into the cytosol, a step called retrotranslocation. Although still ill defined, retrotranslocation likely involves a protein conducting channel that is in part formed by specific membrane-embedded E3 ubiquitin ligases. Early during retrotranslocation, reversible self-ubiquitination of these ligases is thought to aid in initiation of substrate transfer across the membrane. Once being at least partially exposed to the cytosol, substrates will become ubiquitinated on the cytosolic side of the ER membrane by the same E3 ubiquitin ligases. Ubiquitin on substrates was originally thought to be a permanent modification that (1) promotes late steps of retrotranslocation by recruiting the energy-providing ATPase Cdc48p/p97 via binding to its associated adaptor proteins and that (2) serves to target substrates to the proteasome. Recently it became evident, however, that the poly-ubiquitin chains (PUCs) on ERAD substrates are often subject to extensive remodeling, or processing, at several stages during ERAD. This review recapitulates the current knowledge and recent findings about PUC processing on ERAD substrates and ubiquitination of ERAD machinery components and discusses their functional consequences.
Collapse
|
45
|
Ast T, Aviram N, Chuartzman SG, Schuldiner M. A cytosolic degradation pathway, prERAD, monitors pre-inserted secretory pathway proteins. J Cell Sci 2014; 127:3017-23. [PMID: 24849653 DOI: 10.1242/jcs.144386] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The endoplasmic reticulum (ER) identifies and disposes of misfolded secretory pathway proteins through the actions of ER-associated degradation (ERAD) pathways. It is becoming evident that a substantial fraction of the secretome transiently resides in the cytosol before translocating into the ER, both in yeast and in higher eukaryotes. To uncover factors that monitor this transient cytosolic protein pool, we carried out a genetic screen in Saccharomyces cerevisiae. Our findings highlighted a pre-insertional degradation mechanism at the cytosolic leaflet of the ER, which we term prERAD. prERAD relies on the concurrent action of the ER-localized ubiquitylation and deubiquitylation machineries Doa10 and Ubp1. By recognizing C-terminal hydrophobic motifs, prERAD tags for degradation pre-inserted proteins that have remained on the cytosolic leaflet of the ER for too long. Our discoveries delineate a new cellular safeguard, which ensures that every stage of secretory pathway protein biogenesis is scrutinized and regulated.
Collapse
Affiliation(s)
- Tslil Ast
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Naama Aviram
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
46
|
Christianson JC, Ye Y. Cleaning up in the endoplasmic reticulum: ubiquitin in charge. Nat Struct Mol Biol 2014; 21:325-35. [PMID: 24699081 DOI: 10.1038/nsmb.2793] [Citation(s) in RCA: 301] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 02/10/2014] [Indexed: 12/18/2022]
Abstract
The eukaryotic endoplasmic reticulum (ER) maintains protein homeostasis by eliminating unwanted proteins through the evolutionarily conserved ER-associated degradation (ERAD) pathway. During ERAD, maturation-defective and surplus polypeptides are evicted from the ER lumen and/or lipid bilayer through the process of retrotranslocation and ultimately degraded by the proteasome. An integral facet of the ERAD mechanism is the ubiquitin system, composed of the ubiquitin modifier and the factors for assembling, processing and binding ubiquitin chains on conjugated substrates. Beyond simply marking polypeptides for degradation, the ubiquitin system is functionally intertwined with retrotranslocation machinery to transport polypeptides across the ER membrane.
Collapse
Affiliation(s)
- John C Christianson
- 1] Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK. [2]
| | - Yihong Ye
- 1] Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA. [2]
| |
Collapse
|
47
|
MacGurn JA. Garbage on, garbage off: new insights into plasma membrane protein quality control. Curr Opin Cell Biol 2014; 29:92-8. [PMID: 24908345 DOI: 10.1016/j.ceb.2014.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/10/2014] [Accepted: 05/10/2014] [Indexed: 01/22/2023]
Abstract
Maintenance of cellular protein quality - by restoring misfolded proteins to their native state and by targeting terminally misfolded or damaged proteins for degradation - is a critical function of all cells. To ensure protein quality, cells have evolved various organelle-specific quality control mechanisms responsible for recognizing and responding to misfolded proteins at different subcellular locations of the cell. Recently, several publications have begun to elucidate mechanisms of quality control that operate at the plasma membrane (PM), recognizing misfolded PM proteins and targeting their endocytic trafficking and lysosomal degradation. Here, I discuss these recent developments in our understanding of PM quality control mechanisms and how they relate to global protein quality control strategies in the cell.
Collapse
Affiliation(s)
- Jason A MacGurn
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-8240, USA.
| |
Collapse
|
48
|
Ruggiano A, Foresti O, Carvalho P. Quality control: ER-associated degradation: protein quality control and beyond. ACTA ACUST UNITED AC 2014; 204:869-79. [PMID: 24637321 PMCID: PMC3998802 DOI: 10.1083/jcb.201312042] [Citation(s) in RCA: 462] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Even with the assistance of many cellular factors, a significant fraction of newly synthesized proteins ends up misfolded. Cells evolved protein quality control systems to ensure that these potentially toxic species are detected and eliminated. The best characterized of these pathways, the ER-associated protein degradation (ERAD), monitors the folding of membrane and secretory proteins whose biogenesis takes place in the endoplasmic reticulum (ER). There is also increasing evidence that ERAD controls other ER-related functions through regulated degradation of certain folded ER proteins, further highlighting the role of ERAD in cellular homeostasis.
Collapse
Affiliation(s)
- Annamaria Ruggiano
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), 88 08003 Barcelona, Spain
| | | | | |
Collapse
|
49
|
Nakatsukasa K, Kamura T, Brodsky JL. Recent technical developments in the study of ER-associated degradation. Curr Opin Cell Biol 2014; 29:82-91. [PMID: 24867671 DOI: 10.1016/j.ceb.2014.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/04/2014] [Accepted: 04/23/2014] [Indexed: 11/25/2022]
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is a mechanism during which native and misfolded proteins are recognized and retrotranslocated across the ER membrane to the cytosol for degradation by the ubiquitin-proteasome system. Like other cellular pathways, the factors required for ERAD have been analyzed using both conventional genetic and biochemical approaches. More recently, however, an integrated top-down approach has identified a functional network that underlies the ERAD system. In turn, bottom-up reconstitution has become increasingly sophisticated and elucidated the molecular mechanisms underlying substrate recognition, ubiquitylation, retrotranslocation, and degradation. In addition, a live cell imaging technique and a site-specific in vivo photo-crosslinking approach have further dissected specific steps during ERAD. These technical developments have revealed an unexpected dynamicity of the membrane-associated ERAD complex. In this article, we will discuss how these technical developments have improved our understanding of the ERAD pathway and have led to new questions.
Collapse
Affiliation(s)
- Kunio Nakatsukasa
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.
| | - Takumi Kamura
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
50
|
Chan NC, den Besten W, Sweredoski MJ, Hess S, Deshaies RJ, Chan DC. Degradation of the deubiquitinating enzyme USP33 is mediated by p97 and the ubiquitin ligase HERC2. J Biol Chem 2014; 289:19789-98. [PMID: 24855649 DOI: 10.1074/jbc.m114.569392] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Because the deubiquitinating enzyme USP33 is involved in several important cellular processes (β-adrenergic receptor recycling, centrosome amplification, RalB signaling, and cancer cell migration), its levels must be carefully regulated. Using quantitative mass spectrometry, we found that the intracellular level of USP33 is highly sensitive to the activity of p97. Knockdown or chemical inhibition of p97 causes robust accumulation of USP33 due to inhibition of its degradation. The p97 adaptor complex involved in this function is the Ufd1-Npl4 heterodimer. Furthermore, we identified HERC2, a HECT domain-containing E3 ligase, as being responsible for polyubiquitination of USP33. Inhibition of p97 causes accumulation of polyubiquitinated USP33, suggesting that p97 is required for postubiquitination processing. Thus, our study has identified several key molecules that control USP33 degradation within the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Nickie C Chan
- From the Division of Biology and Biological Engineering, the Howard Hughes Medical Institute, and
| | | | - Michael J Sweredoski
- From the Division of Biology and Biological Engineering, the Proteome Exploration Laboratory/Beckman Institute, California Institute of Technology, Pasadena, California 91125
| | - Sonja Hess
- From the Division of Biology and Biological Engineering, the Proteome Exploration Laboratory/Beckman Institute, California Institute of Technology, Pasadena, California 91125
| | - Raymond J Deshaies
- From the Division of Biology and Biological Engineering, the Howard Hughes Medical Institute, and
| | - David C Chan
- From the Division of Biology and Biological Engineering, the Howard Hughes Medical Institute, and
| |
Collapse
|