1
|
Mei L, Hu C, Jin G, Ge C, Zhu Y, Li D, Peng W, Li H, Xu X, Jiang Y, Xu G, Xu Q. Molecular genetic testing and cohort analysis of 32 twin pairs with neurodevelopmental disorders-Reporting a novel de novo variant of TET3. Hum Genomics 2025; 19:42. [PMID: 40259394 PMCID: PMC12013076 DOI: 10.1186/s40246-025-00748-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 03/30/2025] [Indexed: 04/23/2025] Open
Abstract
Neurodevelopmental disorders (NDDs) pose significant challenges due to their impact on cognitive, social and motor abilities, often rooted in genetic factors such as copy number variations (CNVs) and single nucleotide variantions (SNVs). Molecular genetic testing, advanced due to sequencing technologies, is instrumental in diagnosing NDDs, with twins offering unique perspectives in detecting novel de novo CNVs and SNVs. The study enrolled 32 pairs of twins that underwent molecular genetic testing and comprehensive clinical data collection. Additionally, we analyzed the potential deleterious effects of a novel de novo TET methylcytosine dioxygenase 3 (TET3) variant (c.4927G > A) using western blotting, immunofluorescence assay and enzymatic activity assay. Analyzing simultaneously, the overall detection yield of molecular genetic testing was 17.2% (11/64). Children with disease-related genetic variants had lower total developmental quotients (DQ) than children without disease-related genetic variants. One pair of monozygotic twins carried a novel de novo TET3 variant. Immunostaining assay revealed that while the wildtype TET3 protein was evenly distributed in the nucleus, the variant was concentrated around the nucleus. Anenzymatic assay using corresponding TET2 mutants suggested that the variant has a significantly reduced activity. Taken together, our study elaborated molecular genetic testing results of 32 pairs of twins and found that children with lower developmental levels are prone to possessing identifiable genetic variants. We reported the clinical phenotype of a pair of monozygotic twins carrying a novel de novo TET3 variant and confirmed the detrimental effects of this variant in vitro.
Collapse
Affiliation(s)
- Lianni Mei
- Department of Child Health Care, Children's Hospital of Fudan University, Shanghai, China
| | - Chunchun Hu
- Department of Child Health Care, Children's Hospital of Fudan University, Shanghai, China
| | - Guangbo Jin
- Institutes of Biomedical Sciences, Shanghai Xuhui Central Hospital, Medical College of Fudan University, Chinese Academy of Medical Sciences (RU069), Shanghai, China
| | - Chuanhui Ge
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, and MOE Frontier Center for Brain Science, Fudan University, Shanghai, China
| | - Yiting Zhu
- Department of Child Health Care, Children's Hospital of Fudan University, Shanghai, China
| | - Dongyun Li
- Department of Child Health Care, Children's Hospital of Fudan University, Shanghai, China
| | - Wenzhu Peng
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, and MOE Frontier Center for Brain Science, Fudan University, Shanghai, China
| | - Huiping Li
- Department of Child Health Care, Children's Hospital of Fudan University, Shanghai, China
| | - Xiu Xu
- Department of Child Health Care, Children's Hospital of Fudan University, Shanghai, China
| | - Yan Jiang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, and MOE Frontier Center for Brain Science, Fudan University, Shanghai, China
| | - Guoliang Xu
- Institutes of Biomedical Sciences, Shanghai Xuhui Central Hospital, Medical College of Fudan University, Chinese Academy of Medical Sciences (RU069), Shanghai, China.
- China State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| | - Qiong Xu
- Department of Child Health Care, Children's Hospital of Fudan University, Shanghai, China.
- Department of Child Health Care, Anhui Provincial Children's Hospital, Hefei, China.
| |
Collapse
|
2
|
Wang K, Ou K, Zeng Y, Yue C, Zhuo Y, Wang L, Chen H, Tu S. Epigenetic Landscapes Drive CAR-T Cell Kinetics and Fate Decisions: Bridging Persistence and Resistance. Crit Rev Oncol Hematol 2025:104729. [PMID: 40246258 DOI: 10.1016/j.critrevonc.2025.104729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/02/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025] Open
Abstract
Chimeric antigen receptor-T (CAR-T)-cell therapy has revolutionized the treatment paradigm for B-cell malignancies and holds promise for solid tumor immunotherapy. However, CAR-T-cell therapy still faces many challenges, especially primary and secondary resistance. Some mechanisms of resistance, including CAR-T-cell dysfunction, an inhibitory tumor microenvironment, and tumor-intrinsic resistance, have been identified in previous studies. As insights into CAR-T-cell biology have increased, the role of epigenetic reprogramming in influencing the clinical effectiveness of CAR-T cells has become increasingly recognized. An increasing number of direct and indirect epigenetic targeting methods are being developed in combination with CAR-T-cell therapy. In this review, we emphasize the broad pharmacological links between epigenetic therapies and CAR-T-cell therapy, not only within CAR-T cells but also involving tumors and the tumor microenvironment. To elucidate the mechanisms through which epigenetic therapies promote CAR-T-cell therapy, we provide a comprehensive overview of the epigenetic basis of CAR-T-cell kinetics and differentiation, tumor-intrinsic factors and the microenvironment. We also describe some epigenetic strategies that have implications for CAR-T-cell therapy in the present and future. Because targeting epigenetics can have pleiotropic effects, developing more selective and less toxic targeting strategies and determining the optimal administration strategy in clinical trials are the focus of the next phase of research. In summary, we highlight the possible mechanisms and clinical potential of epigenetic regulation in CAR-T-cell therapy.
Collapse
Affiliation(s)
- Kecheng Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
| | - Kaixin Ou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yifei Zeng
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
| | - Chunyan Yue
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yaqi Zhuo
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Langqi Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Huifang Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Sanfang Tu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China.
| |
Collapse
|
3
|
Cheng L. Chemical Strategies to Modulate and Manipulate RNA Epigenetic Modifications. Acc Chem Res 2025. [PMID: 40100209 DOI: 10.1021/acs.accounts.4c00844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
ConspectusRNA epigenetics has rapidly emerged as a key frontier in chemical biology, revealing that modifications to RNA bases and riboses can fine-tune essential cellular processes such as gene expression, translation, and metabolic homeostasis. Traditionally, researchers have relied on manipulating the "writers," "erasers," and "readers" of RNA modifications─i.e., protein cofactors─to alter and study these marks. Those enzyme-centric strategies, including small molecule inhibitors and CRISPR/Cas-based genetic perturbations, have been highly effective and are advancing in clinical applications. However, purely chemical approaches for installing, removing, or transforming RNA modifications without enzyme disturbance have offered distinct advantages, such as temporal control, reversibility, and bypassing compensatory biological feedback mechanisms that often arise with genetic or enzymatic inhibition. Every chemist should be concerned about RNA modifications, because they represent a striking intersection of molecular recognition, organic transformation, and cellular function. The ability to direct chemical reactivity at specific nucleosides in RNA can illuminate how individual modifications impact the overall gene regulation. Further, since improper RNA modification and damage patterns are implicated in cancer, metabolic disorders, and neurodegeneration, these chemical repair tools have potential as diagnostic and therapeutic interventions. Beyond medicine, agriculture also stands to benefit from chemical control of nucleoside-based plant hormones, possibly leading to improved crop productivity and resilience.In this Account, we outline several innovative chemical strategies tailored to different classes of RNA modifications. Flavin-based bioorthogonal chemistry has enabled demethylation of N6-methyladenosine (m6A) independent of endogenous demethylases, while oxidative bioorthogonal reactions can convert 5-methylcytidine (m5C) into distinct formyl derivatives for labeling and sequencing. Nitrogen-oxide and photochemical routes provided access for the selective removal of the side chain of N6-isopentenyladenosine (i6A), offering insights for both cell biology and plant hormone research. We also showcase how rationally designed small molecules can rewire complex RNA damage repair pathways, facilitating selective correction of vinyl-adduct lesions otherwise resistant to enzymatic repair. These purely chemical methods bypass the constraints of enzyme dependence, affording temporal precision (e.g., via light activation) and site-selective modification or labeling of RNA. By strategically engineering reactivity, we have uncovered new epitranscriptomic phenomena, such as in situ generation of non-native RNA modification, that offer fresh capabilities for cell imaging or targeted manipulation of plant callus development. Together, these discoveries signal a paradigm shift: chemical tools can complement or even surpass conventional enzyme-based methods for investigating, editing, and repairing RNA modifications. The ramifications are broad. Chemists can leverage these new reactivities to dissect the molecular underpinnings of diseases linked to epitranscriptomic dysregulation and to engineer next-generation therapeutic, diagnostic, and sequencing platforms. Plant biologists can apply the same chemical strategies to hone agronomic traits, from seed vigor to stress resilience. Ultimately, as we have deepened the mechanistic insights and refined reaction design for increased biocompatibility, purely chemical control of the RNA epigenome is poised to become one of the mainstream approaches across fields spanning chemistry, biology, and medicine─fostering deeper understanding of RNA's role in health and disease and opening new avenues for precise interventions.
Collapse
Affiliation(s)
- Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Simsir Ö, Walter T, Sahin H, Carell T, Schneider S. Novel Tet3 enzymes for next-generation epigenetic sequencing. RSC Chem Biol 2025:d4cb00315b. [PMID: 40109300 PMCID: PMC11915426 DOI: 10.1039/d4cb00315b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
Epigenetic regulation of gene expression is essential for cellular development and differentiation processes in higher eukaryotes. Modifications of cytosine, in particular 5-methylcytosine (5mdC), in DNA play a central role through impacting chromatin structure, repressing transposons, and regulating transcription. DNA methylation is actively installed by DNA methyltransferases and reversed through Tet-dioxygenase-mediated oxidation of 5mdC to 5-hydroxylmethylcytosine (5hmdC), 5-formylcytosine (5fdC), and 5-carboxycytosine (5cadC). It is crucial to understand the role of these epigenetic DNA modifications in cellular differentiation and developmental processes, as well as in disease state mapping and tracing of 5mdC and its oxidized forms. In bisulfite sequencing, which has been the benchmark for mapping 5mdC for the last few decades, degradation of the majority of genetic material occurs through harsh chemical treatment. Alternative sequencing methods often utilize Tet-enzyme-mediated oxidation of 5mdC to locate 5mdC and 5hmdC in genomic DNA. Herein, we report the development of novel Tet3-variants for oxidation-based bisulfite-free 5mdC- sequencing.
Collapse
Affiliation(s)
- Özge Simsir
- Department of Chemistry, Institute for Chemical Epigenetics, Ludwig-Maximilians Universität Munich Butenandtstr. 5-13 81377 Munich Germany
| | - Tobias Walter
- Department of Chemistry, Institute for Chemical Epigenetics, Ludwig-Maximilians Universität Munich Butenandtstr. 5-13 81377 Munich Germany
| | - Hanife Sahin
- Department of Chemistry, Institute for Chemical Epigenetics, Ludwig-Maximilians Universität Munich Butenandtstr. 5-13 81377 Munich Germany
| | - Thomas Carell
- Department of Chemistry, Institute for Chemical Epigenetics, Ludwig-Maximilians Universität Munich Butenandtstr. 5-13 81377 Munich Germany
| | - Sabine Schneider
- Department of Chemistry, Institute for Chemical Epigenetics, Ludwig-Maximilians Universität Munich Butenandtstr. 5-13 81377 Munich Germany
| |
Collapse
|
5
|
Hu X, Liu Y, Zhang S, Liu K, Gu X. The multifaceted role of m5C RNA methylation in digestive system tumorigenesis. Front Cell Dev Biol 2025; 13:1533148. [PMID: 40114967 PMCID: PMC11922842 DOI: 10.3389/fcell.2025.1533148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/05/2025] [Indexed: 03/22/2025] Open
Abstract
5-Methylcytosine (m5C) is a widespread RNA methylation modification, wherein a methyl group is enzymatically transferred to specific RNA sites by methyltransferases, such as the NSUN family and DNMT2. The m5C modification not only impacts RNA structure and stability but also governs post-transcriptional regulation by influencing RNA transport, translation, and protein interactions. Recently, the functional importance of m5C in complex diseases, including cancer, has gained substantial attention. Increasing evidence highlights the critical roles of m5C in digestive system malignancies, where it contributes to tumor progression by modulating oncogene expression and regulating processes such as tumor cell proliferation, migration, invasion, and resistance to chemotherapy. Furthermore, m5C's involvement in non-coding RNAs reveals additional dimensions in elucidating their roles in cancer. This review summarizes recent advances in m5C RNA methylation research within digestive system tumors, focusing on its functional mechanisms, clinical significance, and potential applications. Specifically, it aims to explore m5C's role in tumor diagnosis, prognosis, and treatment, while proposing future directions to address current challenges and broaden its clinical utility.
Collapse
Affiliation(s)
- Xinjun Hu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yafeng Liu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Shujun Zhang
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Kaijie Liu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
6
|
Cheng ZL, Zhang S, Wang Z, Song A, Gao C, Song JB, Wang P, Zhang L, Zhou Y, Shan W, Zhang C, Zhang J, Sun Y, Xu Y, Lan F, Zhong M, Lyu LD, Huang G, Chen FX, Li G, Wang Z, Chen F, Xue J, Shi J, Liu Y, Lin Z, Wu D, Na J, Chen LL, Guan KL, Xiong Y, Ye D. Pathogen-derived glyoxylate inhibits Tet2 DNA dioxygenase to facilitate bacterial persister formation. Cell Metab 2025:S1550-4131(25)00020-8. [PMID: 40037360 DOI: 10.1016/j.cmet.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/15/2024] [Accepted: 01/22/2025] [Indexed: 03/06/2025]
Abstract
Pathogenic bacterial persistence enables survival during antibiotic treatment, leading to treatment failure and recurrent infections, yet its underlying mechanisms remain unclear. Here, we reveal that glyoxylate, a metabolite originally evolved for alternative carbon utilization, functions as a signaling molecule to reprogram the host transcriptome and promote persister formation. Glyoxylate inhibits the DNA dioxygenase TET2, suppressing pro-inflammatory gene expression and attenuating host immune defense. Notably, stimulating TET2 activity with vitamin C or blocking glyoxylate production by Salmonella reduces bacterial antibiotic resistance and improves infection treatment outcomes. Beyond its metabolic role, glyoxylate emerges as a regulator of host-pathogen interactions, while TET2 plays a critical role in preventing bacterial persistence. Our findings suggest that targeting glyoxylate production or enhancing TET2 activity offers promising therapeutic strategies to combat bacterial persistence and enhance the efficacy of antibiotic treatments.
Collapse
Affiliation(s)
- Zhou-Li Cheng
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, and Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Shuyuan Zhang
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, and Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Zhenning Wang
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, and Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Aixia Song
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, and Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Chao Gao
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, and Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Jun-Bin Song
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, and Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Pu Wang
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, and Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, and Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yue Zhou
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenyan Shan
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chen Zhang
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, and Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Jinye Zhang
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, and Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yiping Sun
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, and Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yanhui Xu
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, and Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Fei Lan
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, and Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Ming Zhong
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liang-Dong Lyu
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Guanghua Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Fei Xavier Chen
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, and Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Gang Li
- Department of Laboratory Medicine, Jinshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zixin Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital affiliated to Tongji University, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Faying Chen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital affiliated to Tongji University, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jianhuang Xue
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital affiliated to Tongji University, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiejun Shi
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital affiliated to Tongji University, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yujun Liu
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Zihao Lin
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Duojiao Wu
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jim Na
- Cullgen Inc., 12671 High Bluff Drive, San Diego, CA 92130, USA
| | - Lei-Lei Chen
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, and Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Kun-Liang Guan
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Yue Xiong
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, and Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China.
| | - Dan Ye
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, and Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China; Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Palczewski MB, Kuschman HP, Hoffman BM, Kathiresan V, Yang H, Glynn SA, Wilson DL, Kool ET, Montfort WR, Chang J, Petenkaya A, Chronis C, Cundari TR, Sappa S, Islam K, McVicar DW, Fan Y, Chen Q, Meerzaman D, Sierk M, Thomas DD. Nitric oxide inhibits ten-eleven translocation DNA demethylases to regulate 5mC and 5hmC across the genome. Nat Commun 2025; 16:1732. [PMID: 39966373 PMCID: PMC11836389 DOI: 10.1038/s41467-025-56928-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
DNA methylation at cytosine bases (5-methylcytosine, 5mC) is a heritable epigenetic mark regulating gene expression. While enzymes that metabolize 5mC are well-characterized, endogenous signaling molecules that regulate DNA methylation machinery have not been described. We report that physiological nitric oxide (NO) concentrations reversibly inhibit the DNA demethylases TET and ALKBH2 by binding to the mononuclear non-heme iron atom forming a dinitrosyliron complex (DNIC) and preventing cosubstrates from binding. In cancer cells treated with exogenous NO, or endogenously synthesizing NO, 5mC and 5-hydroxymethylcytosine (5hmC) increase, with no changes in DNA methyltransferase activity. 5mC is also significantly increased in NO-producing patient-derived xenograft tumors from mice. Genome-wide methylome analysis of cells chronically treated with NO (10 days) shows enrichment of 5mC and 5hmC at gene-regulatory loci, correlating with altered expression of NO-regulated tumor-associated genes. Regulation of DNA methylation is distinctly different from canonical NO signaling and represents a unique epigenetic role for NO.
Collapse
Affiliation(s)
- Marianne B Palczewski
- Department of Pharmaceutical Sciences, University of Illinois Chicago, College of Pharmacy, Chicago, IL, USA
| | - Hannah Petraitis Kuschman
- Department of Pharmaceutical Sciences, University of Illinois Chicago, College of Pharmacy, Chicago, IL, USA
| | - Brian M Hoffman
- Department of Chemistry, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Venkatesan Kathiresan
- Department of Chemistry, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Hao Yang
- Department of Chemistry, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Sharon A Glynn
- Discipline of Pathology, University of Galway, College of Medicine, Nursing and Health Sciences, School of Medicine, Galway, Ireland
| | - David L Wilson
- Department of Chemistry, Stanford University, School of Humanities and Sciences, Stanford, CA, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, School of Humanities and Sciences, Stanford, CA, USA
| | - William R Montfort
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Jenny Chang
- Dr. Mary and Neal Cancer Center at Houston Methodist, Weill Cornell Medical College, Houston, NY, USA
| | - Aydolun Petenkaya
- Department of Biomedical Engineering, University of Illinois Chicago, College of Engineering, Chicago, IL, USA
| | - Constantinos Chronis
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, College of Medicine, Chicago, IL, USA
| | - Thomas R Cundari
- Department of Chemistry, University of North Texas, Denton, TX, USA
| | - Sushma Sappa
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kabirul Islam
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel W McVicar
- Cancer Innovation Laboratory, National Cancer Institute, Center for Cancer Research, Frederick, MD, USA
| | - Yu Fan
- National Cancer Institute, Center for Biomedical Informatics and Information Technology, Bethesda, USA
| | - Qingrong Chen
- National Cancer Institute, Center for Biomedical Informatics and Information Technology, Bethesda, USA
| | - Daoud Meerzaman
- Cancer Innovation Laboratory, National Cancer Institute, Center for Cancer Research, Frederick, MD, USA
| | - Michael Sierk
- Cancer Innovation Laboratory, National Cancer Institute, Center for Cancer Research, Frederick, MD, USA
| | - Douglas D Thomas
- Department of Pharmaceutical Sciences, University of Illinois Chicago, College of Pharmacy, Chicago, IL, USA.
| |
Collapse
|
8
|
Smith-Díaz C, Das AB, Jurkowski TP, Hore TA, Vissers MCM. Exploring the Ascorbate Requirement of the 2-Oxoglutarate-Dependent Dioxygenases. J Med Chem 2025; 68:2219-2237. [PMID: 39883951 PMCID: PMC11831678 DOI: 10.1021/acs.jmedchem.4c02342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/20/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
In humans, the 2-oxoglutarate-dependent dioxygenases (2-OGDDs) catalyze hydroxylation reactions involved in cell metabolism, the biosynthesis of small molecules, DNA and RNA demethylation, the hypoxic response and the formation of collagen. The reaction is catalyzed by a highly oxidizing ferryl-oxo species produced when the active site non-heme iron engages molecular oxygen. Enzyme activity is specifically stimulated by l-ascorbic acid (ascorbate, vitamin C), an effect not well mimicked by other reducing agents. In this perspective article we discuss the reliance of the 2-OGDDs on ascorbate availability. We draw upon findings from studies with different 2-OGDDs to piece together a comprehensive theory for the specific role of ascorbate in supporting enzyme activity. Our discussion centers on the capacity for ascorbate to act as an efficient radical scavenger and its propensity to reduce and chelate transition metals. In addition, we consider the evidence supporting stereospecific binding of ascorbate in the enzyme active site.
Collapse
Affiliation(s)
- Carlos
C. Smith-Díaz
- Ma̅tai
Ha̅ora − Centre for Redox Biology and Medicine, Department
of Biomedical Science and Pathology, University
of Otago, Christchurch, Christchurch 8140, New Zealand
| | - Andrew B. Das
- Ma̅tai
Ha̅ora − Centre for Redox Biology and Medicine, Department
of Biomedical Science and Pathology, University
of Otago, Christchurch, Christchurch 8140, New Zealand
| | - Tomasz P. Jurkowski
- Cardiff
University, School of Biosciences, Museum Avenue, CF10 3AX Cardiff, Wales, U.K.
| | - Timothy A. Hore
- Department
of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - Margreet C. M. Vissers
- Ma̅tai
Ha̅ora − Centre for Redox Biology and Medicine, Department
of Biomedical Science and Pathology, University
of Otago, Christchurch, Christchurch 8140, New Zealand
| |
Collapse
|
9
|
Zhang F, Li C, Yang D, Liu B, Zhou Y, Zhou Z, Zhong H, Wang Z, Chen D. Label-Free and Sequence-Independent Isothermal Amplification Strategy for the Simultaneous Detection of Genomic 5-Methylcytosine and 5-Hydroxymethylcytosine. Anal Chem 2025; 97:3063-3073. [PMID: 39869504 DOI: 10.1021/acs.analchem.4c06200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
5-Methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are crucial epigenetic modifications in eukaryotic genomic DNA that regulate gene expression and are associated with the occurrence of various cancers. Here, we combined bisulfite conversion with 4-acetamido-2,2,6,6-tetramethyl-1-oxopiperridinium tetrafluoroborate (ACT+BF4-, TCI) oxidation to develop a label-free and sequence-independent isothermal amplification (BTIA) assay for a genome-wide 5mC and 5hmC analysis. The BTIA strategy can distinguish 5mC and 5hmC signatures from other bases with high sensitivity and good specificity, avoiding sophisticated chemical modifications and expensive protein labeling. Moreover, the utilization of terminal deoxynucleotidyl transferase (TdT) enables the proposed strategy to detect global 5mC and 5hmC without sequence dependence. With only 78 ng of input of genomic DNA, global 5mC and 5hmC levels were accurately quantified in cells (including cancer cells of A549, T47D, and K562 and normal cells of HEK-293T, CHO, and NRK-52E) and clinical whole blood samples (including healthy control, precancerous cervical cancer, and confirmed cervical cancer) within 18 h. The detection results suggested that 5mC was highly expressed in cancer cells. More importantly, a significant increase in 5mC was observed in precancerous cervical cancer and further upregulation in confirmed cervical cancer, suggesting a correlation between 5mC and cancer occurrence and development. However, 5hmC showed the reverse result in these tested cells and clinical samples. Collectively, the BTIA strategy can be easily performed on the ordinary heating apparatus in almost all research and medical laboratories, showing a significant application in the early screening of cervical cancer in the clinic.
Collapse
Affiliation(s)
- Feng Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Chengpeng Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Di Yang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Bingqian Liu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Yue Zhou
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Zhixu Zhou
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Hang Zhong
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Zhenchao Wang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Danping Chen
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| |
Collapse
|
10
|
Jin GB, Rong SQ, Yin DR, Deng ZH, Ding X, Sheng MY, Gao H, Kohli RM, Xu GL, Zhou D. Neomorphic leukemia-derived mutations in the TET2 enzyme induce genome instability via a substrate shift from 5-methylcytosine to thymine. Proc Natl Acad Sci U S A 2025; 122:e2418318122. [PMID: 39874291 PMCID: PMC11804724 DOI: 10.1073/pnas.2418318122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025] Open
Abstract
Ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine (mC) in DNA, contributing to the regulation of gene transcription. Diverse mutations of TET2 are frequently found in various blood cancers, yet the full scope of their functional consequences has been unexplored. Here, we report that a subset of TET2 mutations identified in leukemia patients alter the substrate specificity of TET2 from acting on mC to thymine. This neomorphic activity results from substitutions at key residues involved in the interactions with the mC base, including Asn1387 and His1904. Recombinant human TET2 proteins harboring the mutation of these residues can catalyze the oxidation of thymine to 5-hydroxymethyluracil (hmU) and 5-formyluracil (fU). Exogenous expression of the mutant TET2 Asn1387Thr (N1387T) in HEK293T cells leads to hmU accumulation, with levels further increased in cells lacking the glycosylase SMUG1. Endogenous knock-in of N1300T, the murine equivalent of N1387T, in mouse embryonic stem cells induces hmU production, causing DNA lesions and transcriptional activation of DNA damage response genes. N1300T cells accumulate more additional mutations with extended culture and exhibit heightened sensitivity to ATR inhibition compared to Tet2 knockout cells. Our study reveals that certain patient-derived TET2 mutations can acquire unexpected gain-of-function activities beyond impairing mC oxidation, offering a fresh perspective on the diverse molecular etiology of mutant TET2-related leukemogenesis.
Collapse
Affiliation(s)
- Guang-Bo Jin
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) and Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai200032, China
| | - Shao-Qin Rong
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) and Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai200032, China
| | - Dong-Rui Yin
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) and Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai200032, China
| | - Zhou-Hao Deng
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) and Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai200032, China
| | - Xiao Ding
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) and Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai200032, China
| | - Meng-Yao Sheng
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) and Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai200032, China
| | - Hai Gao
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) and Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai200032, China
| | - Rahul M. Kohli
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA19104
- Department of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA19104
| | - Guo-Liang Xu
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) and Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai200032, China
- Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai200031, China
| | - Dan Zhou
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069), Medical College of Fudan University, Shanghai201399, China
| |
Collapse
|
11
|
Kuwik J, Scott V, Chedid S, Stransky S, Hinkelman K, Kavoosi S, Calderon M, Watkins S, Sidoli S, Islam K. Analogue-Sensitive Inhibition of Histone Demethylases Uncovers Member-Specific Function in Ribosomal Protein Synthesis. J Am Chem Soc 2025; 147:3341-3352. [PMID: 39808475 PMCID: PMC11783601 DOI: 10.1021/jacs.4c13870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
Lysine demethylases (KDMs) catalyze the oxidative removal of the methyl group from histones using earth-abundant iron and the metabolite 2-oxoglutarate (2OG). KDMs have emerged as master regulators of eukaryotic gene expression and are novel drug targets; small-molecule inhibitors of KDMs are in the clinical pipeline for the treatment of human cancer. Yet, mechanistic insights into the functional heterogeneity of human KDMs are limited, necessitating the development of chemical probes for precision targeting. Herein, we identify analogue-sensitive (as) mutants of the KDM4 subfamily to elucidate member-specific biological functions in a temporally defined manner. By replacing the highly conserved phenylalanine residue in the active site of KDM4 members with alanine, we develop mutants with intact catalytic activity and substrate specificity indistinguishable from those of the wild type congener. Unlike the wild type demethylases, mutants were sensitized toward cofactor-competitive N-oxalyl glycine (NOG) analogues carrying complementary steric appendage. Particularly notable is N-oxalyl leucine (NOL) which inhibited the KDM4 mutants reversibly with submicromolar efficacy. Cell-permeable NOL prodrugs inhibited as enzymes in cultured human cells to modulate lysine methylation on nucleosomal histones. Through conditional perturbation of the orthogonal enzymes, we uncover a KDM4A-specific role in ribosomal protein synthesis and map a remarkably dynamic signaling cascade involving locus-specific histone demethylation leading to fast rRNA expression, enhanced ribosome assembly, and protein synthesis. The results provide a mechanistic clue into KDM4A's role in cancers that rely on heightened ribosomal activity to support uncontrolled cellular proliferation.
Collapse
Affiliation(s)
- Jordan Kuwik
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Valerie Scott
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sara Chedid
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephanie Stransky
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| | - Kathryn Hinkelman
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sam Kavoosi
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael Calderon
- Department
of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Simon Watkins
- Department
of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Simone Sidoli
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| | - Kabirul Islam
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
12
|
Kounatidou NE, Vitkos E, Palioura S. Ocular surface squamous neoplasia: Update on genetics, epigenetics and opportunities for targeted therapy. Ocul Surf 2025; 35:1-14. [PMID: 39608452 DOI: 10.1016/j.jtos.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
PURPOSE The purpose of this review is to explore the molecular foundations of ocular surface squamous neoplasia (OSSN), focusing on the genetic and epigenetic aspects. While current management strategies include surgical excision and medical therapies, the understanding of OSSN's molecular basis remains limited, hindering the development of targeted treatments. METHODS A comprehensive MEDLINE search was conducted for literature published between January 1993 and October 2023. Only studies with original data on molecular, genetic, or epigenetic mechanisms, such as mutations, gene expression, and genetic predispositions were included. Articles were excluded if they focused solely on clinical management without addressing these factors, or if they were reviews, editorials, or opinion pieces. RESULTS The search yielded a total of 108 articles, out of which 39 articles met the criteria for further analysis. Investigations into OSSN have identified key DNA mutations in the TP53, HGF, EGFR, TERT, and CDKN2A genes, indicating common oncogenic pathways shared with other squamous cell carcinomas (SCCs). Significant epigenetic changes were identified, including DNA methylation, histone modifications, and altered miRNA expression patterns. Epigenetic dysregulation of critical tumor suppressors and oncoproteins, further highlight the complex genetic landscape of OSSN. CONCLUSION The molecular alterations identified in OSSN not only enhance our understanding of its biology but also have potential as novel biomarkers for early detection, prognostic evaluation, and as therapeutic targets. The identification of genetic and epigenetic markers in OSSN signifies progress towards personalized medicine approaches. Further studies and collaborative efforts are essential to validate these molecular markers and translate them into clinical practice, potentially revolutionizing OSSN management and improving patient outcomes.
Collapse
Affiliation(s)
| | - Evangelos Vitkos
- Department of Oral and Maxillofacial Surgery, Klinikum Dortmund, Dortmund, Germany
| | - Sotiria Palioura
- Department of Ophthalmology, University of Cyprus Medical School, Nicosia, Cyprus.
| |
Collapse
|
13
|
Thomas M, Jaber Sathik Rifayee SB, Christov CZ. How Do Variants of Residues in the First Coordination Sphere, Second Coordination Sphere, and Remote Areas Influence the Catalytic Mechanism of Non-Heme Fe(II)/2-Oxoglutarate Dependent Ethylene-Forming Enzyme? ACS Catal 2024; 14:18550-18569. [PMID: 39722885 PMCID: PMC11668244 DOI: 10.1021/acscatal.4c04010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
The ethylene-forming enzyme (EFE) is a Fe(II)/2-oxoglutarate (2OG) and l-arginine (l-Arg)-dependent oxygenase that primarily decomposes 2OG into ethylene while also catalyzing l-Arg hydroxylation. While the hydroxylation mechanism in EFE is similar to other Fe(II)/2OG-dependent oxygenases, the formation of ethylene is unique. Various redesign strategies have aimed to increase ethylene production in EFE, but success has been limited, highlighting the need for alternate approaches. It is crucial to incorporate an accurate and comprehensive description of the integrative and multidimensional effects of the protein environment to enhance the redesign strategy in metalloenzymes, particularly in EFE. This involves understanding the role of the second coordination sphere (SCS) and long-range (LR) interacting residues, correlated motions, electronic structure, intrinsic electric field (IntEF), as well as the stabilization of transition states and reaction intermediates. In this study, we employ a molecular dynamics-based quantum mechanics/molecular mechanics approach to examine the integrative effects of the protein environment on reactions catalyzed by EFE variants from the first coordination sphere (FCS, D191E), SCS (A198V and R171A) and LR (E215A). The study uncovers how substitutions at different positions in EFE similarly impact the ethylene-forming reaction while posing distinct effects on the hydroxylation reaction. Results predict the effect of the variants in controlling the 2OG coordination mode in the Fe(II) center. Specifically, the study suggests that D191E uniquely prefers transitioning from an off-line to an in-line 2OG coordination mode before dioxygen binding. However, studies on the 2OG flip in the presence of off-line approaching dioxygen and dioxygen binding in the D191E variant indicate that the 2OG flip might not be feasible in the 5C Fe(II) state. Calculations show the possibility of a hydrogen atom transfer (HAT)-assisted oxygen flip in EFE and its variants (other than D191E). MD simulations elucidate the characteristic dynamic change in the α7 region in the D191E variant that might contribute to its increased hydroxylation reaction. Results indicate the possibility of forming an in-line ferryl from the IM2 (Fe(III)-partial bond intermediate) in the D191E variant. This alternative pathway from IM2 may also exist in WT EFE and other variants, which are yet to be explored. The study also delineates the impact of substitutions on the electronic structure and IntEF. Overall, the calculations support the idea that understanding the integrative and multidimensional effects of the protein environment on the reactions catalyzed by EFE variants provides the basics for improved enzyme redesign protocols of EFE to increase ethylene production. The results of this study will also contribute to the development of alternate redesign strategies for other metalloenzymes.
Collapse
Affiliation(s)
- Midhun
George Thomas
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | | | - Christo Z. Christov
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
14
|
Sahin H, Salehi R, Islam S, Müller M, Giehr P, Carell T. Robust Bisulfite-Free Single-Molecule Real-Time Sequencing of Methyldeoxycytidine Based on a Novel hpTet3 Enzyme. Angew Chem Int Ed Engl 2024; 63:e202418500. [PMID: 39535873 DOI: 10.1002/anie.202418500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
In addition to the four canonical nucleosides dA, dG, dC and T, genomic DNA contains the additional base 5-methyldeoxycytidine (mdC). The presence of this methylated cytidine nucleoside in promoter regions or gene bodies significantly affects the transcriptional activity of the corresponding gene. Consequently, the methylation patterns of genes are crucial for either silencing or activating genes. Sequencing the positions of mdC in the genome is therefore of paramount importance for early cancer diagnostics as it helps determine incorrect gene expression. Currently, the bisulfite method is the gold standard for mdC-sequencing. However, this method has the drawback that the majority of the input DNA is degraded during the bisulfite treatment. Additionally, bisulfite sequencing is prone to errors. Here, we report a benign, bisulfite-free mdC sequencing method termed EMox-seq, which is based on third-generation single-molecule SMRT sequencing. The foundation of this technology is a new Tet3 enzyme that efficiently oxidizes mdCs to 5-carboxycytidine (cadC). In turn, cadC provides an excellent readout by SMRT sequencing using specially trained AI-based algorithms.
Collapse
Affiliation(s)
- Hanife Sahin
- Center for Nucleic Acid Therapies at the Department of Chemistry, Institute for Chemical Epigenetics, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Raheleh Salehi
- Center for Nucleic Acid Therapies at the Department of Chemistry, Institute for Chemical Epigenetics, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Shariful Islam
- Center for Nucleic Acid Therapies at the Department of Chemistry, Institute for Chemical Epigenetics, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Markus Müller
- Center for Nucleic Acid Therapies at the Department of Chemistry, Institute for Chemical Epigenetics, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Pascal Giehr
- Center for Nucleic Acid Therapies at the Department of Chemistry, Institute for Chemical Epigenetics, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Thomas Carell
- Center for Nucleic Acid Therapies at the Department of Chemistry, Institute for Chemical Epigenetics, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| |
Collapse
|
15
|
Šimelis K, Belle R, Kawamura A. Unravelling 2-oxoglutarate turnover and substrate oxidation dynamics in 5-methylcytosine-oxidising TET enzymes. Commun Chem 2024; 7:305. [PMID: 39706884 DOI: 10.1038/s42004-024-01382-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 11/28/2024] [Indexed: 12/23/2024] Open
Abstract
Fe(II)- and 2-oxoglutarate (2OG)-dependent dioxygenases use 2OG and O2 cofactors to catalyse substrate oxidation and yield oxidised product, succinate, and CO2. Simultaneous detection of substrate and cofactors is difficult, contributing to a poor understanding of the dynamics between substrate oxidation and 2OG decarboxylation activities. Here, we profile 5-methylcytosine (5mC)-oxidising Ten-Eleven Translocation (TET) enzymes using MS and 1H NMR spectroscopy methods and reveal a high degree of substrate oxidation-independent 2OG turnover under a range of conditions. 2OG decarboxylase activity is substantial (>20% 2OG turned over after 1 h) in the absence of substrate, while, under substrate-saturating conditions, half of total 2OG consumption is uncoupled from substrate oxidation. 2OG kinetics are affected by substrate and non-substrate DNA oligomers, and the sequence-agnostic effects are observed in amoeboflagellate Naegleria gruberi NgTet1 and human TET2. TET inhibitors also alter uncoupled 2OG kinetics, highlighting the potential effect of 2OG dioxygenase inhibitors on the intracellular balance of 2OG/succinate.
Collapse
Affiliation(s)
- Klemensas Šimelis
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Roman Belle
- Chemistry-School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, UK
| | - Akane Kawamura
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
- Chemistry-School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
16
|
Song Y, Ren S, Wu S, Liu W, Hu C, Feng S, Chen X, Tu R, Gao F. Glucocorticoid promotes metastasis of colorectal cancer via co-regulation of glucocorticoid receptor and TET2. Int J Cancer 2024. [PMID: 39661335 DOI: 10.1002/ijc.35285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024]
Abstract
Glucocorticoids (GCs), commonly used for anti-inflammatory and cancer treatments, have been linked to the promotion of cancer metastasis. Yet, the molecular mechanisms behind this potential remain poorly understood. Clarifying these mechanisms is crucial for a nuanced understanding and potential refinement of GC therapies in the context of cancer treatment. In HEK293T cells, co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation sequencing (ChIP-seq) were used with antibodies of glucocorticoid receptor (GR) and ten-eleven translocation enzymes (TET) family proteins (TET1, TET2, TET3). Drug repositioning was performed through the Connectivity Map database, using common target genes of GR and TET2 in HEK293 and HCT116 cell lines and differentially expressed genes (DEGs) of colorectal cancer (CRC). Cell migration and invasion were tested in CRC cell lines with varying GR expression, that is, HCT116 and HT29 cell lines. Dexamethasone (Dex) treatment resulted in a significant difference in cell migration rates in two CRC cell lines with disparate GR expression levels. Co-IP and ChIP-seq analyses substantiated the interaction between GR and TET family proteins in HEK293T cells. Belinostat, the selected compound, was successfully validated for its potential to counteract the effects of GC-induced invasion in CRC cells in vitro. Transcriptomic analyses of Belinostat-treated HCT116 cells revealed down-regulation of target genes associated with cancer metastasis. This study provides valuable insights into the molecular mechanisms underlying GC-induced metastasis, introducing newly repositioned compounds that could serve as potential adjuvant therapy to GC treatment. Furthermore, it opens avenues for exploring novel drug candidates for CRC treatment.
Collapse
Affiliation(s)
- Yanwei Song
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shuqiang Ren
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shumei Wu
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | | | - Chenghao Hu
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Siting Feng
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xinyu Chen
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Rui Tu
- E-GENE Co., Ltd, Shenzhen, China
| | - Fei Gao
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, China
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Guo L, Hong T, Lee YT, Hu X, Pan G, Zhao R, Yang Y, Yang J, Cai X, Rivera L, Liang J, Wang R, Dou Y, Kodali S, Li W, Han L, Di Stefano B, Zhou Y, Li J, Huang Y. Perturbing TET2 condensation promotes aberrant genome-wide DNA methylation and curtails leukaemia cell growth. Nat Cell Biol 2024; 26:2154-2167. [PMID: 39251719 DOI: 10.1038/s41556-024-01496-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/01/2024] [Indexed: 09/11/2024]
Abstract
The ten-eleven translocation (TET) family of dioxygenases maintain stable local DNA demethylation during cell division and lineage specification. As the major catalytic product of TET enzymes, 5-hydroxymethylcytosine is selectively enriched at specific genomic regions, such as enhancers, in a tissue-dependent manner. However, the mechanisms underlying this selectivity remain unresolved. Here we unveil a low-complexity insert domain within TET2 that facilitates its biomolecular condensation with epigenetic modulators, such as UTX and MLL4. This co-condensation fosters a permissive chromatin environment for precise DNA demethylation. Disrupting low-complexity insert-mediated condensation alters the genomic binding of TET2 to cause promiscuous DNA demethylation and genome reorganization. These changes influence the expression of key genes implicated in leukaemogenesis to curtail leukaemia cell proliferation. Collectively, this study establishes the pivotal role of TET2 condensation in orchestrating precise DNA demethylation and gene transcription to support tumour cell growth.
Collapse
Affiliation(s)
- Lei Guo
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Tingting Hong
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Yi-Tsang Lee
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Xue Hu
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Guokai Pan
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Rongjie Zhao
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Yuhan Yang
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Jingwen Yang
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Xiaoli Cai
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Logan Rivera
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Jie Liang
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Rui Wang
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Yaling Dou
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Srikanth Kodali
- Stem Cells and Regenerative Medicine Center, Center for Cell and Gene Therapy, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Leng Han
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Bruno Di Stefano
- Stem Cells and Regenerative Medicine Center, Center for Cell and Gene Therapy, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yubin Zhou
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA.
| | - Jia Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China.
- Department of Laboratory Medicine, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China.
| | - Yun Huang
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA.
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, Houston, TX, USA.
| |
Collapse
|
18
|
Foong YH, Caldwell B, Thorvaldsen JL, Krapp C, Mesaros CA, Zhou W, Kohli RM, Bartolomei MS. TET1 displays catalytic and non-catalytic functions in the adult mouse cortex. Epigenetics 2024; 19:2374979. [PMID: 38970823 PMCID: PMC11229741 DOI: 10.1080/15592294.2024.2374979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024] Open
Abstract
TET1/2/3 dioxygenases iteratively demethylate 5-methylcytosine, beginning with the formation of 5-hydroxymethylcytosine (5hmC). The post-mitotic brain maintains higher levels of 5hmC than most peripheral tissues, and TET1 ablation studies have underscored the critical role of TET1 in brain physiology. However, deletion of Tet1 precludes the disentangling of the catalytic and non-catalytic functions of TET1. Here, we dissect these functions of TET1 by comparing adult cortex of Tet1 wildtype (Tet1 WT), a novel Tet1 catalytically dead mutant (Tet1 HxD), and Tet1 knockout (Tet1 KO) mice. Using DNA methylation array, we uncover that Tet1 HxD and KO mutations perturb the methylation status of distinct subsets of CpG sites. Gene ontology (GO) analysis on specific differential 5hmC regions indicates that TET1's catalytic activity is linked to neuronal-specific functions. RNA-Seq further shows that Tet1 mutations predominantly impact the genes that are associated with alternative splicing. Lastly, we performed High-performance Liquid Chromatography Mass-Spectrometry lipidomics on WT and mutant cortices and uncover accumulation of lysophospholipids lysophosphatidylethanolamine and lysophosphatidylcholine in Tet1 HxD cortex. In summary, we show that Tet1 HxD does not completely phenocopy Tet1 KO, providing evidence that TET1 modulates distinct cortical functions through its catalytic and non-catalytic roles.
Collapse
Affiliation(s)
- Yee Hoon Foong
- Department of Cell and Developmental Biology, Perelman School of Medicine, Smilow Center for Translational Research, Philadelphia, PA, USA
| | - Blake Caldwell
- Department of Cell and Developmental Biology, Perelman School of Medicine, Smilow Center for Translational Research, Philadelphia, PA, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Joanne L. Thorvaldsen
- Department of Cell and Developmental Biology, Perelman School of Medicine, Smilow Center for Translational Research, Philadelphia, PA, USA
| | - Christopher Krapp
- Department of Cell and Developmental Biology, Perelman School of Medicine, Smilow Center for Translational Research, Philadelphia, PA, USA
| | - Clementina A. Mesaros
- Translational Biomarkers Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wanding Zhou
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Children’s Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Smilow Center for Translational Rsearch, Philadelphia, PA, USA
| | - Rahul M. Kohli
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Smilow Center for Translational Rsearch, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marisa S. Bartolomei
- Department of Cell and Developmental Biology, Perelman School of Medicine, Smilow Center for Translational Research, Philadelphia, PA, USA
- Penn Epigenetics Institute, Smilow Center for Translational Rsearch, Philadelphia, PA, USA
| |
Collapse
|
19
|
Ma J, Qi R, Harcourt E, Chen YT, Barbosa G, Peng Z, Howarth S, Delaney S, Li D. 3,N4-Etheno-5-methylcytosine blocks TET1-3 oxidation but is repaired by ALKBH2, 3 and FTO. Nucleic Acids Res 2024; 52:12378-12389. [PMID: 39315710 PMCID: PMC11551763 DOI: 10.1093/nar/gkae818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
5-Methyldeoxycytidine (5mC) is a major epigenetic marker that regulates cellular functions in mammals. Endogenous lipid peroxidation can convert 5mC into 3,N4-etheno-5-methylcytosine (ϵ5mC). ϵ5mC is structurally similar to the mutagenic analog 3,N4-ethenocytosine (ϵC), which is repaired by AlkB family enzymes in the direct reversal repair (DRR) pathway and excised by DNA glycosylases in the base excision repair (BER) pathway. However, the repair of ϵ5mC has not been reported. Here, we examined the activities against ϵ5mC by DRR and BER enzymes and TET1-3, enzymes that modify the 5-methyl group in 5mC. We found that the etheno modification of 5mC blocks oxidation by TET1-3. Conversely, three human homologs in the AlkB family, ALKBH2, 3 and FTO were able to repair ϵ5mC to 5mC, which was subsequently modified by TET1 to 5-hydroxymethylcytosine. We also demonstrated that ALKBH2 likely repairs ϵ5mC in MEF cells. Another homolog, ALKBH5, could not repair ϵ5mC. Also, ϵ5mC is not a substrate for BER glycosylases SMUG1, AAG, or TDG. These findings indicate DRR committed by ALKBH2, 3 and FTO could reduce the detrimental effects of ϵ5mC in genetics and epigenetics and may work together with TET enzymes to modulate epigenetic regulations.
Collapse
Affiliation(s)
- Jian Ma
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston RI 02881, USA
| | - Rui Qi
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston RI 02881, USA
| | - Emily M Harcourt
- Department of Chemistry, Le Moyne College, Syracuse, NY 13214, USA
| | - Yi-Tzai Chen
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston RI 02881, USA
| | | | - Zhiyuan Peng
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston RI 02881, USA
| | - Samuel Howarth
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston RI 02881, USA
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, RI 02912, USA
| | - Deyu Li
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston RI 02881, USA
| |
Collapse
|
20
|
Zheng K, Lyu Z, Chen J, Chen G. 5-Hydroxymethylcytosine: Far Beyond the Intermediate of DNA Demethylation. Int J Mol Sci 2024; 25:11780. [PMID: 39519332 PMCID: PMC11546248 DOI: 10.3390/ijms252111780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Epigenetics plays a pivotal role in regulating gene expression and cellular differentiation. DNA methylation, involving the addition of methyl groups to specific cytosine bases, is a well-known epigenetic modification. The recent discovery of 5-hydroxymethylcytosine (5hmC) has provided new insights into cytosine modifications. 5hmC, derived from the oxidation of 5-methylcytosine (5mC), serves as both an intermediate in demethylation and a stable chemical modification in the genome. In this comprehensive review, we summarize the recent research advancements regarding the functions of 5hmC in development and disease. We discuss its implications in gene expression regulation, cellular differentiation, and its potential role as a diagnostic and prognostic marker in various diseases. Additionally, we highlight the challenges associated with accurately detecting and quantifying 5hmC and present the latest methodologies employed for its detection. Understanding the functional role of 5hmC in epigenetic regulation and further advancing our understanding of gene expression dynamics and cellular processes hold immense promise for the development of novel therapeutic strategies and precision medicine approaches.
Collapse
Affiliation(s)
- Kaixi Zheng
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (K.Z.); (Z.L.); (J.C.)
- School of Life Sciences, Central South University, Changsha 410031, China
| | - Zhengbing Lyu
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (K.Z.); (Z.L.); (J.C.)
| | - Jianqing Chen
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (K.Z.); (Z.L.); (J.C.)
| | - Guodong Chen
- School of Life Sciences, Central South University, Changsha 410031, China
| |
Collapse
|
21
|
Kim N, Filipovic D, Bhattacharya S, Cuddapah S. Epigenetic toxicity of heavy metals - implications for embryonic stem cells. ENVIRONMENT INTERNATIONAL 2024; 193:109084. [PMID: 39437622 DOI: 10.1016/j.envint.2024.109084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/14/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Exposure to heavy metals, such as cadmium, nickel, mercury, arsenic, lead, and hexavalent chromium has been linked to dysregulated developmental processes, such as impaired stem cell differentiation. Heavy metals are well-known modifiers of the epigenome. Stem and progenitor cells are particularly vulnerable to exposure to potentially toxic metals since these cells rely on epigenetic reprogramming for their proper functioning. Therefore, exposure to metals can impair stem and progenitor cell proliferation, pluripotency, stemness, and differentiation. In this review, we provide a comprehensive summary of current evidence on the epigenetic effects of heavy metals on stem cells, focusing particularly on DNA methylation and histone modifications. Moreover, we explore the underlying mechanisms responsible for these epigenetic changes. By providing an overview of heavy metal exposure-induced alterations to the epigenome, the underlying mechanisms, and the consequences of those alterations on stem cell function, this review provides a foundation for further research in this critical area of overlap between toxicology and developmental biology.
Collapse
Affiliation(s)
- Nicholas Kim
- Division of Environmental Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA
| | - David Filipovic
- Institute for Quantitative Health Science and Engineering, Division of Systems Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Sudin Bhattacharya
- Institute for Quantitative Health Science and Engineering, Division of Systems Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA; Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| | - Suresh Cuddapah
- Division of Environmental Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA.
| |
Collapse
|
22
|
Zhang Y, Li J, Tan L, Xue J, Shi YG. Understanding the role of ten-eleven translocation family proteins in kidney diseases. Biochem Soc Trans 2024; 52:2203-2214. [PMID: 39377353 DOI: 10.1042/bst20240291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
Epigenetic mechanisms play a critical role in the pathogenesis of human diseases including kidney disorders. As the erasers of DNA methylation, Ten-eleven translocation (TET) family proteins can oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC), thus leading to passive or active DNA demethylation. Similarly, TET family proteins can also catalyze the same reaction on RNA. In addition, TET family proteins can also regulate chromatin structure and gene expression in a catalytic activity-independent manner through recruiting the SIN3A/HDAC co-repressor complex. In 2012, we reported for the first time that the genomic 5-hydroxymethylcytosine level and the mRNA levels of Tet1 and Tet2 were significantly downregulated in murine kidneys upon ischemia and reperfusion injury. Since then, accumulating evidences have eventually established an indispensable role of TET family proteins in not only acute kidney injury but also chronic kidney disease. In this review, we summarize the upstream regulatory mechanisms and the pathophysiological role of TET family proteins in major types of kidney diseases and discuss their potential values in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Yuelin Zhang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Institute of Longevity and Aging Research, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiahui Li
- Institute of Longevity and Aging Research, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Li Tan
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Institute of Longevity and Aging Research, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jun Xue
- Department of Nephology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yujiang Geno Shi
- Institute of Longevity and Aging Research, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Zheng Y, Xu R, Chen X, Lu Y, Zheng J, Lin Y, Lin P, Zhao X, Cui L. Metabolic gatekeepers: harnessing tumor-derived metabolites to optimize T cell-based immunotherapy efficacy in the tumor microenvironment. Cell Death Dis 2024; 15:775. [PMID: 39461979 PMCID: PMC11513100 DOI: 10.1038/s41419-024-07122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
The tumor microenvironment (TME) orchestrates a complex interplay between tumor cells and immune cells, crucially modulating the immune response. This review delves into the pivotal role of metabolic reprogramming in the TME, highlighting how tumor-derived metabolites influence T lymphocyte functionality and the efficacy of cancer immunotherapies. Focusing on the diverse roles of these metabolites, we examine how lactate, lipids, amino acids, and other biochemical signals act not only as metabolic byproducts but as regulatory agents that can suppress or potentiate T cell-mediated immunity. By integrating recent findings, we underscore the dual impact of these metabolites on enhancing tumor progression and inhibiting immune surveillance. Furthermore, we propose innovative therapeutic strategies that target metabolic pathways to restore immune function within the TME. The insights provided in this review pave the way for the development of metabolic interventions aimed at enhancing the success of immunotherapies in oncology, offering new hope for precision medicine in the treatment of cancer.
Collapse
Affiliation(s)
- Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Rongwei Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xu Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Kamei N, Day K, Guo W, Haus DL, Nguyen HX, Scarfone VM, Booher K, Jia XY, Cummings BJ, Anderson AJ. Injured inflammatory environment overrides the TET2 shaped epigenetic landscape of pluripotent stem cell derived human neural stem cells. Sci Rep 2024; 14:25186. [PMID: 39448736 PMCID: PMC11502794 DOI: 10.1038/s41598-024-75689-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Spinal cord injury creates an inflammatory microenvironment that regulates the capacity of transplanted human Neural Stem Cells (hNSC) to migrate, differentiate, and repair injury. Despite similarities in gene expression and markers detected by immunostaining, hNSC populations exhibit heterogeneous therapeutic potential. This heterogeneity derives in part from the epigenetic landscape in the hNSC genome, specifically methylation (5mC) and hydroxymethylation (5hmC) state, which may affect the response of transplanted hNSC in the injury microenvironment and thereby modulate repair capacity. We demonstrate a significant up-regulation of methylcytosine dioxygenase 2 gene (TET2) expression in undifferentiated hNSC derived from human embryonic stem cells (hES-NSC), and report that this is associated with hES-NSC competence for differentiation marker expression. TET2 protein catalyzes active demethylation and TET2 upregulation could be a signature of pluripotent exit, while shaping the epigenetic landscape in hES-NSC. We determine that the inflammatory environment overrides epigenetic programming in vitro and in vivo by directly modulating TET2 expression levels in hES-NSC to change cell fate. We also report the effect of cell fate and microenvironment on differential methylation 5mC/5hmC balance. Understanding how the activity of epigenetic modifiers changes within the transplantation niche in vivo is crucial for assessment of hES-NSC behavior for potential clinical applications.
Collapse
Affiliation(s)
- Noriko Kamei
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, 92697-1705, USA.
- Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, 92697-4475, USA.
| | - Kenneth Day
- Zymo Research Corp, 17062 Murphy Ave, Irvine, CA, 92614, USA
- Vidium Animal Health, 7201 E Henkel Way Suite210, Scottsdale, AZ, 85255, USA
| | - Wei Guo
- Zymo Research Corp, 17062 Murphy Ave, Irvine, CA, 92614, USA
| | - Daniel L Haus
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, 92697-1705, USA
| | - Hal X Nguyen
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, 92697-1705, USA
| | - Vanessa M Scarfone
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, 92697-1705, USA
| | - Keith Booher
- Zymo Research Corp, 17062 Murphy Ave, Irvine, CA, 92614, USA
| | - Xi-Yu Jia
- Zymo Research Corp, 17062 Murphy Ave, Irvine, CA, 92614, USA
| | - Brian J Cummings
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, 92697-1705, USA.
| | - Aileen J Anderson
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, 92697-1705, USA.
| |
Collapse
|
25
|
Yang S, Xing J, Liu D, Song Y, Yu H, Xu S, Zuo Y. Review and new insights into the catalytic structural domains of the Fe(ll) and 2-Oxoglutarate families. Int J Biol Macromol 2024; 278:134798. [PMID: 39153678 DOI: 10.1016/j.ijbiomac.2024.134798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Histone lysine demethylase (KDM), AlkB homolog (ALKBH), and Ten-Eleven Translocation (TET) proteins are members of the 2-Oxoglutarate (2OG) and ferrous iron-dependent oxygenases, each of which harbors a catalytic domain centered on a double-stranded β-helix whose topology restricts the regions directly involved in substrate binding. However, they have different catalytic functions, and the deeply structural biological reasons are not yet clear. In this review, the catalytic domain features of the three protein families are summarized from both sequence and structural perspectives. The construction of the phylogenetic tree and comparison of the structure show ten relatively conserved β-sheets and three key regions with substantial structural differences. We summarize the relationship between three key regions of remarkable differences and the substrate compatibility of the three protein families. This review facilitates research into substrate-selective inhibition and bioengineering by providing new insights into the catalytic domains of KDM, ALKBH, and TET proteins.
Collapse
Affiliation(s)
- Siqi Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Jixiang Xing
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Dongyang Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yancheng Song
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Haoyu Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Shuhua Xu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China; State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China.
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
26
|
Lu L, Zhang X, Zhou Y, Shi Z, Xie X, Zhang X, Gao L, Fu A, Liu C, He B, Xiong X, Yin Y, Wang Q, Yi C, Li X. Base-resolution m 5C profiling across the mammalian transcriptome by bisulfite-free enzyme-assisted chemical labeling approach. Mol Cell 2024; 84:2984-3000.e8. [PMID: 39002544 DOI: 10.1016/j.molcel.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 07/15/2024]
Abstract
5-methylcytosine (m5C) is a prevalent RNA modification crucial for gene expression regulation. However, accurate and sensitive m5C sites identification remains challenging due to severe RNA degradation and reduced sequence complexity during bisulfite sequencing (BS-seq). Here, we report m5C-TAC-seq, a bisulfite-free approach combining TET-assisted m5C-to-f5C oxidation with selective chemical labeling, therefore enabling direct base-resolution m5C detection through pre-enrichment and C-to-T transitions at m5C sites. With m5C-TAC-seq, we comprehensively profiled the m5C methylomes in human and mouse cells, identifying a substantially larger number of confident m5C sites. Through perturbing potential m5C methyltransferases, we deciphered the responsible enzymes for most m5C sites, including the characterization of NSUN5's involvement in mRNA m5C deposition. Additionally, we characterized m5C dynamics during mESC differentiation. Notably, the mild reaction conditions and preservation of nucleotide composition in m5C-TAC-seq allow m5C detection in chromatin-associated RNAs. The accurate and robust m5C-TAC-seq will advance research into m5C methylation functional investigation.
Collapse
Affiliation(s)
- Liang Lu
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaoting Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yuenan Zhou
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zuokun Shi
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiwen Xie
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xinyue Zhang
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Liaoliao Gao
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Anbo Fu
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Cong Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Bo He
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xushen Xiong
- The Second Affiliated Hospital and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China
| | - Yafei Yin
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Xiaoyu Li
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
27
|
Chialastri A, Sarkar S, Schauer EE, Lamba S, Dey SS. Combinatorial quantification of 5mC and 5hmC at individual CpG dyads and the transcriptome in single cells reveals modulators of DNA methylation maintenance fidelity. Nat Struct Mol Biol 2024; 31:1296-1308. [PMID: 38671229 DOI: 10.1038/s41594-024-01291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Inheritance of 5-methylcytosine from one cell generation to the next by DNA methyltransferase 1 (DNMT1) plays a key role in regulating cellular identity. While recent work has shown that the activity of DNMT1 is imprecise, it remains unclear how the fidelity of DNMT1 is tuned in different genomic and cell state contexts. Here we describe Dyad-seq, a method to quantify the genome-wide methylation status of cytosines at the resolution of individual CpG dinucleotides to find that the fidelity of DNMT1-mediated maintenance methylation is related to the local density of DNA methylation and the landscape of histone modifications. To gain deeper insights into methylation/demethylation turnover dynamics, we first extended Dyad-seq to quantify all combinations of 5-methylcytosine and 5-hydroxymethylcytosine at individual CpG dyads. Next, to understand how cell state transitions impact maintenance methylation, we scaled the method down to jointly profile genome-wide methylation levels, maintenance methylation fidelity and the transcriptome from single cells (scDyad&T-seq). Using scDyad&T-seq, we demonstrate that, while distinct cell states can substantially impact the activity of the maintenance methylation machinery, locally there exists an intrinsic relationship between DNA methylation density, histone modifications and DNMT1-mediated maintenance methylation fidelity that is independent of cell state.
Collapse
Affiliation(s)
- Alex Chialastri
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Bioengineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Saumya Sarkar
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Bioengineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Elizabeth E Schauer
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Bioengineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Shyl Lamba
- Department of Mathematics, University of California Los Angeles, Los Angeles, CA, USA
| | - Siddharth S Dey
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA.
- Department of Bioengineering, University of California Santa Barbara, Santa Barbara, CA, USA.
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
28
|
Montgomery T, Uh K, Lee K. TET enzyme driven epigenetic reprogramming in early embryos and its implication on long-term health. Front Cell Dev Biol 2024; 12:1358649. [PMID: 39149518 PMCID: PMC11324557 DOI: 10.3389/fcell.2024.1358649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/23/2024] [Indexed: 08/17/2024] Open
Abstract
Mammalian embryo development is initiated by the union of paternal and maternal gametes. Upon fertilization, their epigenome landscape is transformed through a series of finely orchestrated mechanisms that are crucial for survival and successful embryogenesis. Specifically, maternal or oocyte-specific reprogramming factors modulate germ cell specific epigenetic marks into their embryonic states. Rapid and dynamic changes in epigenetic marks such as DNA methylation and histone modifications are observed during early embryo development. These changes govern the structure of embryonic genome prior to zygotic genome activation. Differential changes in epigenetic marks are observed between paternal and maternal genomes because the structure of the parental genomes allows interaction with specific oocyte reprogramming factors. For instance, the paternal genome is targeted by the TET family of enzymes which oxidize the 5-methylcytosine (5mC) epigenetic mark into 5-hydroxymethylcytosine (5hmC) to lower the level of DNA methylation. The maternal genome is mainly protected from TET3-mediated oxidation by the maternal factor, STELLA. The TET3-mediated DNA demethylation occurs at the global level and is clearly observed in many mammalian species. Other epigenetic modulating enzymes, such as DNA methyltransferases, provide fine tuning of the DNA methylation level by initiating de novo methylation. The mechanisms which initiate the epigenetic reprogramming of gametes are critical for proper activation of embryonic genome and subsequent establishment of pluripotency and normal development. Clinical cases or diseases linked to mutations in reprogramming modulators exist, emphasizing the need to understand mechanistic actions of these modulators. In addition, embryos generated via in vitro embryo production system often present epigenetic abnormalities. Understanding mechanistic actions of the epigenetic modulators will potentially improve the well-being of individuals suffering from these epigenetic disorders and correct epigenetic abnormalities in embryos produced in vitro. This review will summarize the current understanding of epigenetic reprogramming by TET enzymes during early embryogenesis and highlight its clinical relevance and potential implication for assisted reproductive technologies.
Collapse
Affiliation(s)
- Ty Montgomery
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Kyungjun Uh
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Republic of Korea
| | - Kiho Lee
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
29
|
Chen X, Zhang A, Zhao K, Gao H, Shi P, Chen Y, Cheng Z, Zhou W, Zhang Y. The role of oxidative stress in intervertebral disc degeneration: Mechanisms and therapeutic implications. Ageing Res Rev 2024; 98:102323. [PMID: 38734147 DOI: 10.1016/j.arr.2024.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Oxidative stress is one of the main driving mechanisms of intervertebral disc degeneration(IDD). Oxidative stress has been associated with inflammation in the intervertebral disc, cellular senescence, autophagy, and epigenetics of intervertebral disc cells. It and the above pathological mechanisms are closely linked through the common hub reactive oxygen species(ROS), and promote each other in the process of disc degeneration and promote the development of the disease. This reveals the important role of oxidative stress in the process of IDD, and the importance and great potential of IDD therapy targeting oxidative stress. The efficacy of traditional therapy is unstable or cannot be maintained. In recent years, due to the rise of materials science, many bioactive functional materials have been applied in the treatment of IDD, and through the combination with traditional drugs, satisfactory efficacy has been achieved. At present, the research review of antioxidant bioactive materials in the treatment of IDD is not complete. Based on the existing studies, the mechanism of oxidative stress in IDD and the common antioxidant therapy were summarized in this paper, and the strategies based on emerging bioactive materials were reviewed.
Collapse
Affiliation(s)
- Xianglong Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Anran Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kangcheng Zhao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haiyang Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengzhi Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuhang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhangrong Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenjuan Zhou
- Department of Operating Room, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yukun Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
30
|
Graves C, Islam K. Development of a rapid mass spectrometric method for the analysis of ten-eleven translocation enzymes. Methods Enzymol 2024; 703:87-120. [PMID: 39261005 DOI: 10.1016/bs.mie.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
In DNA, methylation at the fifth position of cytosine (5mC) by DNA methyltransferases is essential for eukaryotic gene regulation. Methylation patterns are dynamically controlled by epigenetic machinery. Erasure of 5mC by Fe2+ and 2-ketoglutarate (2KG) dependent dioxygenases in the ten-eleven translocation family (TET1-3), plays a key role in nuclear processes. Through the event of active demethylation, TET proteins iteratively oxidize 5mC to 5-hydroxymethyl cytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxycytosine (5caC), each of which has been implicated in numerous diseases when aberrantly generated. A wide range of biochemical assays have been developed to characterize TET activity, many of which require multi-step processing to detect and quantify the 5mC oxidized products. Herein, we describe the development and optimization of a sensitive MALDI mass spectrometry-based technique that directly measures TET activity and eliminates tedious processing steps. Employing optimized assay conditions, we report the steady-state activity of wild type TET2 enzymes to furnish 5hmC, 5fC and 5caC. We next determine IC50 values of several small-molecule inhibitors of TETs. The utility of this assay is further demonstrated by analyzing the activity of V1395A which is an activating mutant of TET2 that primarily generates 5caC. Lastly, we describe the development of a secondary assay that utilizes bisulfite chemistry to further examine the activity of wildtype TET2 and V1395A in a base-resolution manner. The combined results demonstrate that the activity of TET proteins can be gauged, and their products accurately quantified using our methods.
Collapse
Affiliation(s)
- Clara Graves
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kabirul Islam
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
31
|
Zhang L, Mu Y, Li T, Hu J, Lin H, Zhang L. Molecular basis of an atypical dsDNA 5mC/6mA bifunctional dioxygenase CcTet from Coprinopsis cinerea in catalyzing dsDNA 5mC demethylation. Nucleic Acids Res 2024; 52:3886-3895. [PMID: 38324471 PMCID: PMC11040006 DOI: 10.1093/nar/gkae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/22/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024] Open
Abstract
The eukaryotic epigenetic modifications 5-methyldeoxycytosine (5mC) and N6-methyldeoxyadenine (6mA) have indispensable regulatory roles in gene expression and embryonic development. We recently identified an atypical bifunctional dioxygenase CcTet from Coprinopsis cinerea that works on both 5mC and 6mA demethylation. The nonconserved residues Gly331 and Asp337 of CcTet facilitate 6mA accommodation, while D337F unexpectedly abolishes 5mC oxidation activity without interfering 6mA demethylation, indicating a prominent distinct but unclear 5mC oxidation mechanism to the conventional Tet enzymes. Here, we assessed the molecular mechanism of CcTet in catalyzing 5mC oxidation by representing the crystal structure of CcTet-5mC-dsDNA complex. We identified the distinct mechanism by which CcTet recognizes 5mC-dsDNA compared to 6mA-dsDNA substrate. Moreover, Asp337 was found to have a central role in compensating for the loss of a critical 5mC-stablizing H-bond observed in conventional Tet enzymes, and stabilizes 5mC and subsequent intermediates through an H-bond with the N4 atom of the substrates. These findings improve our understanding of Tet enzyme functions in the dsDNA 5mC and 6mA demethylation pathways, and provide useful information for future discovery of small molecular probes targeting Tet enzymes in DNA active demethylation processes.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yajuan Mu
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tingting Li
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jingyan Hu
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Houwen Lin
- Research Centre for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Liang Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
32
|
Thomas D, Palczewski M, Kuschman H, Hoffman B, Yang H, Glynn S, Wilson D, Kool E, Montfort W, Chang J, Petenkaya A, Chronis C, Cundari T, Sappa S, Islam K, McVicar D, Fan Y, Chen Q, Meerzaman D, Sierk M. Nitric oxide inhibits ten-eleven translocation DNA demethylases to regulate 5mC and 5hmC across the genome. RESEARCH SQUARE 2024:rs.3.rs-4131804. [PMID: 38645113 PMCID: PMC11030528 DOI: 10.21203/rs.3.rs-4131804/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
DNA methylation at cytosine bases of eukaryotic DNA (5-methylcytosine, 5mC) is a heritable epigenetic mark that can regulate gene expression in health and disease. Enzymes that metabolize 5mC have been well-characterized, yet the discovery of endogenously produced signaling molecules that regulate DNA methyl-modifying machinery have not been described. Herein, we report that the free radical signaling molecule nitric oxide (NO) can directly inhibit the Fe(II)/2-OG-dependent DNA demethylases ten-eleven translocation (TET) and human AlkB homolog 2 (ALKBH2). Physiologic NO concentrations reversibly inhibited TET and ALKBH2 demethylase activity by binding to the mononuclear non-heme iron atom which formed a dinitrosyliron complex (DNIC) preventing cosubstrates (2-OG and O2) from binding. In cancer cells treated with exogenous NO, or cells endogenously synthesizing NO, there was a global increase in 5mC and 5-hydroxymethylcytosine (5hmC) in DNA, the substrates for TET, that could not be attributed to increased DNA methyltransferase activity. 5mC was also elevated in NO-producing cell-line-derived mouse xenograft and patient-derived xenograft tumors. Genome-wide DNA methylome analysis of cells chronically treated with NO (10 days) demonstrated enrichment of 5mC and 5hmC at gene-regulatory loci which correlated to changes in the expression of NO-regulated tumor-associated genes. Regulation of DNA methylation is distinctly different from canonical NO signaling and represents a novel epigenetic role for NO.
Collapse
Affiliation(s)
| | - Marianne Palczewski
- University of Illinois Chicago, College of Pharmacy, Department of Pharmaceutical Sciences
| | - Hannah Kuschman
- University of Illinois Chicago, College of Pharmacy, Department of Pharmaceutical Sciences
| | | | - Hao Yang
- Weinberg College of Arts and Sciences, Northwestern University, Department of Chemistry
| | - Sharon Glynn
- University of Galway, College of Medicine, Nursing and Health Sciences, School of Medicine, D. of Pathology
| | | | - Eric Kool
- Stanford University, Department of Chemistry, School of Humanities and Sciences
| | | | - Jenny Chang
- Houston Methodist, Department of Medicine and Oncology, Weill Cornell Medical College
| | - Aydolun Petenkaya
- University of Illinois Chicago, College of Medicine, Biochemistry and Molecular Genetics
| | - Constantinos Chronis
- University of Illinois Chicago, College of Medicine, Biochemistry and Molecular Genetics
| | | | - Sushma Sappa
- University of Pittsburgh, Department of Chemistry
| | | | - Daniel McVicar
- National Institutes of Health, National Cancer Institute, Center for Cancer Research
| | - Yu Fan
- National Cancer Institute, Center for Biomedical Informatics and Information Technology
| | - Qingrong Chen
- National Cancer Institute, Center for Biomedical Informatics and Information Technology
| | - Daoud Meerzaman
- National Cancer Institute, Center for Biomedical Informatics and Information Technology
| | - Michael Sierk
- National Cancer Institute, Center for Biomedical Informatics and Information Technology
| |
Collapse
|
33
|
Wu R, Sun C, Chen X, Yang R, Luan Y, Zhao X, Yu P, Luo R, Hou Y, Tian R, Bian S, Li Y, Dong Y, Liu Q, Dai W, Fan Z, Yan R, Pan B, Feng S, Wu J, Chen F, Yang C, Wang H, Dai H, Shu M. NSUN5/TET2-directed chromatin-associated RNA modification of 5-methylcytosine to 5-hydroxymethylcytosine governs glioma immune evasion. Proc Natl Acad Sci U S A 2024; 121:e2321611121. [PMID: 38547058 PMCID: PMC10998593 DOI: 10.1073/pnas.2321611121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/28/2024] [Indexed: 04/02/2024] Open
Abstract
Malignant glioma exhibits immune evasion characterized by highly expressing the immune checkpoint CD47. RNA 5-methylcytosine(m5C) modification plays a pivotal role in tumor pathogenesis. However, the mechanism underlying m5C-modified RNA metabolism remains unclear, as does the contribution of m5C-modified RNA to the glioma immune microenvironment. In this study, we demonstrate that the canonical 28SrRNA methyltransferase NSUN5 down-regulates β-catenin by promoting the degradation of its mRNA, leading to enhanced phagocytosis of tumor-associated macrophages (TAMs). Specifically, the NSUN5-induced suppression of β-catenin relies on its methyltransferase activity mediated by cysteine 359 (C359) and is not influenced by its localization in the nucleolus. Intriguingly, NSUN5 directly interacts with and deposits m5C on CTNNB1 caRNA (chromatin-associated RNA). NSUN5-induced recruitment of TET2 to chromatin is independent of its methyltransferase activity. The m5C modification on caRNA is subsequently oxidized into 5-hydroxymethylcytosine (5hmC) by TET2, which is dependent on its binding affinity for Fe2+ and α-KG. Furthermore, NSUN5 enhances the chromatin recruitment of RBFOX2 which acts as a 5hmC-specific reader to recognize and facilitate the degradation of 5hmC caRNA. Notably, hmeRIP-seq analysis reveals numerous mRNA substrates of NSUN5 that potentially undergo this mode of metabolism. In addition, NSUN5 is epigenetically suppressed by DNA methylation and is negatively correlated with IDH1-R132H mutation in glioma patients. Importantly, pharmacological blockage of DNA methylation or IDH1-R132H mutant and CD47/SIRPα signaling synergistically enhances TAM-based phagocytosis and glioma elimination in vivo. Our findings unveil a general mechanism by which NSUN5/TET2/RBFOX2 signaling regulates RNA metabolism and highlight NSUN5 targeting as a potential strategy for glioma immune therapy.
Collapse
Affiliation(s)
- Ruixin Wu
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai200040, China
| | - Chunming Sun
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
- Department of Neurology, Huashan hospital, Fudan University, Shanghai200040, China
| | - Xi Chen
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Runyue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai200032, China
| | - Yuxuan Luan
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
- Department of Microbiology, Key Laboratory of Medical Molecular Virology (Ministry of Education/ National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Xiang Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Panpan Yu
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan hospital, Fudan University, Shanghai200032, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan hospital, Fudan University, Shanghai200032, China
| | - Ruotong Tian
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Shasha Bian
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
- Department of Microbiology, Key Laboratory of Medical Molecular Virology (Ministry of Education/ National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Yuli Li
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Yinghua Dong
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
- Department of Logistics, Dalian No.3 People’s hospital Affiliated to Dalian Medical University, Dalian116033, China
| | - Qian Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Weiwei Dai
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
- Department of Microbiology, Key Laboratory of Medical Molecular Virology (Ministry of Education/ National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Zhuoyang Fan
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Rucheng Yan
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Binyang Pan
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai200040, China
| | - Siheng Feng
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Jing Wu
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai200040, China
| | - Fangzhen Chen
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai200040, China
| | - Changle Yang
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai200040, China
| | - Hanlin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Haochen Dai
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Minfeng Shu
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
- Department of Microbiology, Key Laboratory of Medical Molecular Virology (Ministry of Education/ National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| |
Collapse
|
34
|
Belle R, Saraç H, Salah E, Bhushan B, Szykowska A, Roper G, Tumber A, Kriaucionis S, Burgess-Brown N, Schofield CJ, Brown T, Kawamura A. Focused Screening Identifies Different Sensitivities of Human TET Oxygenases to the Oncometabolite 2-Hydroxyglutarate. J Med Chem 2024; 67:4525-4540. [PMID: 38294854 PMCID: PMC10983004 DOI: 10.1021/acs.jmedchem.3c01820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/10/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024]
Abstract
Ten-eleven translocation enzymes (TETs) are Fe(II)/2-oxoglutarate (2OG) oxygenases that catalyze the sequential oxidation of 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine in eukaryotic DNA. Despite their roles in epigenetic regulation, there is a lack of reported TET inhibitors. The extent to which 2OG oxygenase inhibitors, including clinically used inhibitors and oncometabolites, modulate DNA modifications via TETs has been unclear. Here, we report studies on human TET1-3 inhibition by a set of 2OG oxygenase-focused inhibitors, employing both enzyme-based and cellular assays. Most inhibitors manifested similar potencies for TET1-3 and caused increases in cellular 5hmC levels. (R)-2-Hydroxyglutarate, an oncometabolite elevated in isocitrate dehydrogenase mutant cancer cells, showed different degrees of inhibition, with TET1 being less potently inhibited than TET3 and TET2, potentially reflecting the proposed role of TET2 mutations in tumorigenesis. The results highlight the tractability of TETs as drug targets and provide starting points for selective inhibitor design.
Collapse
Affiliation(s)
- Roman Belle
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
- Chemistry
− School of Natural and Environmental Sciences, Bedson Building, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
| | - Hilal Saraç
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
- Chemistry
− School of Natural and Environmental Sciences, Bedson Building, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
- Radcliffe
Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Wellcome Trust Centre for Human
Genetics, Roosevelt Drive, OX3 7BN Oxford, United Kingdom
| | - Eidarus Salah
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
- Centre
for Medicines Discovery, University of Oxford, Old Road Campus Research Building,
Roosevelt Drive, OX3 7DQ Oxford, United Kingdom
| | - Bhaskar Bhushan
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
- Radcliffe
Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Wellcome Trust Centre for Human
Genetics, Roosevelt Drive, OX3 7BN Oxford, United Kingdom
| | - Aleksandra Szykowska
- Centre
for Medicines Discovery, University of Oxford, Old Road Campus Research Building,
Roosevelt Drive, OX3 7DQ Oxford, United Kingdom
| | - Grace Roper
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
- Chemistry
− School of Natural and Environmental Sciences, Bedson Building, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
| | - Anthony Tumber
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
- Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Skirmantas Kriaucionis
- Ludwig
Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, OX3 7DQ Oxford, United Kingdom
| | - Nicola Burgess-Brown
- Centre
for Medicines Discovery, University of Oxford, Old Road Campus Research Building,
Roosevelt Drive, OX3 7DQ Oxford, United Kingdom
| | - Christopher J. Schofield
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
- Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Tom Brown
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Akane Kawamura
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
- Chemistry
− School of Natural and Environmental Sciences, Bedson Building, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
- Radcliffe
Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Wellcome Trust Centre for Human
Genetics, Roosevelt Drive, OX3 7BN Oxford, United Kingdom
| |
Collapse
|
35
|
Li Q, Pan Y, Zhang J, Hu B, Qin D, Liu S, Chen N, Zhang L. TET2 regulation of alcoholic fatty liver via Srebp1 mRNA in paraspeckles. iScience 2024; 27:109278. [PMID: 38482502 PMCID: PMC10933471 DOI: 10.1016/j.isci.2024.109278] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 01/06/2025] Open
Abstract
Epigenetic modifications have emerged as key regulators of metabolism-related complex diseases including the alcoholic fatty liver disease (AFLD) prevalent chronic liver disorder with significant economic implications. Building upon previous research that emphasizes ten-eleven translocation (TET) proteins' involvement in adipocyte insulin sensitization and fatty acid oxidation, we explored the role of TET2 protein in AFLD pathogenesis which catalyzes 5-methylcytosine into 5-hydroxymethylcytosine in DNA/RNA. Our findings revealed that TET2 deficiency exacerbates AFLD progression. And TET2 influenced the expression and activity of sterol regulatory element binding protein 1 (SREBP1), a key regulator of hepatic lipid synthesis, by modulating Srebp1 mRNA retention. Employing RIP-qPCR and bisulfite sequencing techniques, we provided evidence of TET2-mediated epigenetic modifications on Srebp1 mRNA, thereby affecting lipid metabolism. Through elucidating the role of methylation in RNA nuclear retention via paraspeckles, our study enhances understanding of AFLD pathogenesis from an epigenetic perspective, paving the way for identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Qinjin Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yanyan Pan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jing Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Boxu Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Dan Qin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shenghui Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ning Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lisheng Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
36
|
Krishnan A, Waheed SO, Varghese A, Cherilakkudy FH, Schofield CJ, Karabencheva-Christova TG. Unusual catalytic strategy by non-heme Fe(ii)/2-oxoglutarate-dependent aspartyl hydroxylase AspH. Chem Sci 2024; 15:3466-3484. [PMID: 38455014 PMCID: PMC10915816 DOI: 10.1039/d3sc05974j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024] Open
Abstract
Biocatalytic C-H oxidation reactions are of important synthetic utility, provide a sustainable route for selective synthesis of important organic molecules, and are an integral part of fundamental cell processes. The multidomain non-heme Fe(ii)/2-oxoglutarate (2OG) dependent oxygenase AspH catalyzes stereoselective (3R)-hydroxylation of aspartyl- and asparaginyl-residues. Unusually, compared to other 2OG hydroxylases, crystallography has shown that AspH lacks the carboxylate residue of the characteristic two-His-one-Asp/Glu Fe-binding triad. Instead, AspH has a water molecule that coordinates Fe(ii) in the coordination position usually occupied by the Asp/Glu carboxylate. Molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) studies reveal that the iron coordinating water is stabilized by hydrogen bonding with a second coordination sphere (SCS) carboxylate residue Asp721, an arrangement that helps maintain the six coordinated Fe(ii) distorted octahedral coordination geometry and enable catalysis. AspH catalysis follows a dioxygen activation-hydrogen atom transfer (HAT)-rebound hydroxylation mechanism, unusually exhibiting higher activation energy for rebound hydroxylation than for HAT, indicating that the rebound step may be rate-limiting. The HAT step, along with substrate positioning modulated by the non-covalent interactions with SCS residues (Arg688, Arg686, Lys666, Asp721, and Gln664), are essential in determining stereoselectivity, which likely proceeds with retention of configuration. The tetratricopeptide repeat (TPR) domain of AspH influences substrate binding and manifests dynamic motions during catalysis, an observation of interest with respect to other 2OG oxygenases with TPR domains. The results provide unique insights into how non-heme Fe(ii) oxygenases can effectively catalyze stereoselective hydroxylation using only two enzyme-derived Fe-ligating residues, potentially guiding enzyme engineering for stereoselective biocatalysis, thus advancing the development of non-heme Fe(ii) based biomimetic C-H oxidation catalysts, and supporting the proposal that the 2OG oxygenase superfamily may be larger than once perceived.
Collapse
Affiliation(s)
- Anandhu Krishnan
- Department of Chemistry, Michigan Technological University Houghton MI 49931 USA
| | - Sodiq O Waheed
- Department of Chemistry, Michigan Technological University Houghton MI 49931 USA
| | - Ann Varghese
- Department of Chemistry, Michigan Technological University Houghton MI 49931 USA
| | | | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford OX1 3TA Oxford UK
| | | |
Collapse
|
37
|
Peng X, Li H, Wang D, Wu L, Hu J, Ye F, Syed BM, Liu D, Zhang J, Liu Q. Intrauterine arsenic exposure induces glucose metabolism disorders in adult offspring by targeting TET2-mediated DNA hydroxymethylation reprogramming of HNF4α in developing livers, an effect alleviated by ascorbic acid. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133405. [PMID: 38185084 DOI: 10.1016/j.jhazmat.2023.133405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024]
Abstract
Exposure to arsenic during gestation has lasting health-related effects on the developing fetus, including an increase in the risk of metabolic disease later in life. Epigenetics is a potential mechanism involved in this process. Ten-eleven translocation 2 (TET2) has been widely considered as a transferase of 5-hydroxymethylcytosine (5hmC). Here, mice were exposed, via drinking water, to arsenic or arsenic combined with ascorbic acid (AA) during gestation. For adult offspring, intrauterine arsenic exposure exhibited disorders of glucose metabolism, which are associated with DNA hydroxymethylation reprogramming of hepatic nuclear factor 4 alpha (HNF4α). Further molecular structure analysis, by SEC-UV-DAD, SEC-ICP-MS, verified that arsenic binds to the cysteine domain of TET2. Mechanistically, arsenic reduces the stability of TET2 by binding to it, resulting in the decrease of 5hmC levels in Hnf4α and subsequently inhibiting its expression. This leads to the disorders of expression of its downstream key glucose metabolism genes. Supplementation with AA blocked the reduction of TET2 and normalized the 5hmC levels of Hnf4α, thus alleviating the glucose metabolism disorders. Our study provides targets and methods for the prevention of offspring glucose metabolism abnormalities caused by intrauterine arsenic exposure.
Collapse
Affiliation(s)
- Xiaoshan Peng
- Center for Global Health, China International Cooperation Center for Environment and Human Health, Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Han Li
- Center for Global Health, China International Cooperation Center for Environment and Human Health, Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Dapeng Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Lu Wu
- Suzhou Center for Disease Control and Prevention, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Suzhou 215004, Jiangsu, People's Republic of China
| | - Jiacai Hu
- Institute of Physical and Chemical Testing, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, People's Republic of China
| | - Fuping Ye
- Center for Global Health, China International Cooperation Center for Environment and Human Health, Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Binafsha Manzoor Syed
- Medical Research Centre, Liaquat University of Medical & Health Sciences, Jamshoro 76090, Sindh, Pakistan
| | - Deye Liu
- Institute of Physical and Chemical Testing, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, People's Republic of China
| | - Jingshu Zhang
- Center for Global Health, China International Cooperation Center for Environment and Human Health, Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.
| | - Qizhan Liu
- Center for Global Health, China International Cooperation Center for Environment and Human Health, Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Suzhou Center for Disease Control and Prevention, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Suzhou 215004, Jiangsu, People's Republic of China.
| |
Collapse
|
38
|
Lee SM. Detecting DNA hydroxymethylation: exploring its role in genome regulation. BMB Rep 2024; 57:135-142. [PMID: 38449301 PMCID: PMC10979348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/15/2024] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
DNA methylation is one of the most extensively studied epigenetic regulatory mechanisms, known to play crucial roles in various organisms. It has been implicated in the regulation of gene expression and chromatin changes, ranging from global alterations during cell state transitions to locus-specific modifications. 5-hydroxymethylcytosine (5hmC) is produced by a major oxidation, from 5-methylcytosine (5mC), catalyzed by the ten-eleven translocation (TET) enzymes, and is gradually being recognized for its significant role in genome regulation. With the development of state-of-the-art experimental techniques, it has become possible to detect and distinguish 5mC and 5hmC at base resolution. Various techniques have evolved, encompassing chemical and enzymatic approaches, as well as thirdgeneration sequencing techniques. These advancements have paved the way for a thorough exploration of the role of 5hmC across a diverse array of cell types, from embryonic stem cells (ESCs) to various differentiated cells. This review aims to comprehensively report on recent techniques and discuss the emerging roles of 5hmC. [BMB Reports 2024; 57(3): 135-142].
Collapse
Affiliation(s)
- Sun-Min Lee
- Department of Physics, Konkuk Univeristy, Seoul 05029, Korea
| |
Collapse
|
39
|
Zhang L, Duan HC, Paduch M, Hu J, Zhang C, Mu Y, Lin H, He C, Kossiakoff AA, Jia G, Zhang L. The Molecular Basis of Human ALKBH3 Mediated RNA N 1 -methyladenosine (m 1 A) Demethylation. Angew Chem Int Ed Engl 2024; 63:e202313900. [PMID: 38158383 PMCID: PMC11846542 DOI: 10.1002/anie.202313900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
N1 -methyladenosine (m1 A) is a prevalent post-transcriptional RNA modification, and the distribution and dynamics of the modification play key epitranscriptomic roles in cell development. At present, the human AlkB Fe(II)/α-ketoglutarate-dependent dioxygenase family member ALKBH3 is the only known mRNA m1 A demethylase, but its catalytic mechanism remains unclear. Here, we present the structures of ALKBH3-oligo crosslinked complexes obtained with the assistance of a synthetic antibody crystallization chaperone. Structural and biochemical results showed that ALKBH3 utilized two β-hairpins (β4-loop-β5 and β'-loop-β'') and the α2 helix to facilitate single-stranded substrate binding. Moreover, a bubble-like region around Asp194 and a key residue inside the active pocket (Thr133) enabled specific recognition and demethylation of m1 A- and 3-methylcytidine (m3 C)-modified substrates. Mutation of Thr133 to the corresponding residue in the AlkB Fe(II)/α-ketoglutarate-dependent dioxygenase family members FTO or ALKBH5 converted ALKBH3 substrate selectivity from m1 A to N6 -methyladenosine (m6 A), as did Asp194 deletion. Our findings provide a molecular basis for understanding the mechanisms of substrate recognition and m1 A demethylation by ALKBH3. This study is expected to aid structure-guided design of chemical probes for further functional studies and therapeutic applications.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China)
| | - Hong-Chao Duan
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 (China)
| | - Marcin Paduch
- Institute for Biophysical Dynamics, University of Chicago Chicago, IL (USA)
| | - Jingyan Hu
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China)
| | - Chi Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 (China)
| | - Yajuan Mu
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China)
| | - Houwen Lin
- Research Centre for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 (China)
- Institute of Marine Biomedicine, Shenzhen Polytechnic Shenzhen 518055 (China)
| | - Chuan He
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL (USA)
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL (USA)
- Howard Hughes Medical Institute, University of Chicago Chicago, IL (USA)
| | - Anthony A. Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL (USA)
- Institute for Biophysical Dynamics, University of Chicago Chicago, IL (USA)
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 (China)
- Peking-Tsinghua Center for Life Sciences, Beijing 100871 (China)
| | - Liang Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China)
| |
Collapse
|
40
|
Šimelis K, Saraç H, Salah E, Nishio K, McAllister TE, Corner TP, Tumber A, Belle R, Schofield CJ, Suga H, Kawamura A. Selective targeting of human TET1 by cyclic peptide inhibitors: Insights from biochemical profiling. Bioorg Med Chem 2024; 99:117597. [PMID: 38262305 DOI: 10.1016/j.bmc.2024.117597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
Ten-Eleven Translocation (TET) enzymes are Fe(II)/2OG-dependent oxygenases that play important roles in epigenetic regulation, but selective inhibition of the TETs is an unmet challenge. We describe the profiling of previously identified TET1-binding macrocyclic peptides. TiP1 is established as a potent TET1 inhibitor (IC50 = 0.26 µM) with excellent selectivity over other TETs and 2OG oxygenases. TiP1 alanine scanning reveals the critical roles of Trp10 and Glu11 residues for inhibition of TET isoenzymes. The results highlight the utility of the RaPID method to identify potent enzyme inhibitors with selectivity over closely related paralogues. The structure-activity relationship data generated herein may find utility in the development of chemical probes for the TETs.
Collapse
Affiliation(s)
- Klemensas Šimelis
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Hilal Saraç
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Bedson Building, NE1 7RU Newcastle upon Tyne, United Kingdom
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Kosuke Nishio
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tom E McAllister
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Bedson Building, NE1 7RU Newcastle upon Tyne, United Kingdom
| | - Thomas P Corner
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Roman Belle
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom; Chemistry - School of Natural and Environmental Sciences, Newcastle University, Bedson Building, NE1 7RU Newcastle upon Tyne, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akane Kawamura
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom; Chemistry - School of Natural and Environmental Sciences, Newcastle University, Bedson Building, NE1 7RU Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
41
|
He W, Yin X, Xu C, Liu X, Huang Y, Yang C, Xu Y, Hu L. Ascorbic Acid Reprograms Epigenome and Epitranscriptome by Reducing Fe(III) in the Catalytic Cycle of Dioxygenases. ACS Chem Biol 2024; 19:129-140. [PMID: 38100359 DOI: 10.1021/acschembio.3c00567] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Ascorbic acid (ASC) has been reported to stimulate DNA iterative oxidase ten-eleven translocation (TET) enzymes, Jumonji C-domain-containing histone demethylases, and potentially RNA m6A demethylases FTO and ALKBH5 as a cofactor. Although ascorbic acid has been widely investigated in reprogramming DNA and histone methylation status in vitro, in cultured cells and mouse models, its specific role in the catalytic cycle of dioxygenases remains enigmatic. Here, we systematically investigated the stimulation of ASC toward TET2, ALKBH3, histone demethylases, and FTO. We find that ASC reprograms epitranscriptome by erasing the hypermethylated m6A sites in mRNA. Biochemistry and electron spin resonance assays demonstrate that ASC enters the active pocket of dioxygenases and reduces Fe(III), either incorporated upon protein synthesis or generated upon rebounding the hydroxyl radical during oxidation, into Fe(II). Finally, we propose a remedied model for the catalytic cycle of dioxygenases by adding in the essential cofactor, ASC, which refreshes and regenerates inactive dioxygenase through recycling Fe(III) into Fe(II) in a dynamic "hit-and-run" manner.
Collapse
Affiliation(s)
- Weizhi He
- Cancer Institute, Fudan university Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xiaotong Yin
- Cancer Institute, Fudan university Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Chu Xu
- Cancer Institute, Fudan university Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xiangyue Liu
- Cancer Institute, Fudan university Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yue Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Caiguang Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yanhui Xu
- Cancer Institute, Fudan university Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Lulu Hu
- Cancer Institute, Fudan university Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Shanghai Medical College of Fudan University, Shanghai 200032, China
| |
Collapse
|
42
|
Treadway CJ, Boyer JA, Yang S, Yang H, Liu M, Li Z, Cheng M, Marzluff WF, Ye D, Xiong Y, Baldwin AS, Zhang Q, Brown NG. Using NMR to Monitor TET-Dependent Methylcytosine Dioxygenase Activity and Regulation. ACS Chem Biol 2024; 19:15-21. [PMID: 38193366 PMCID: PMC11075173 DOI: 10.1021/acschembio.3c00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The active removal of DNA methylation marks is governed by the ten-eleven translocation (TET) family of enzymes (TET1-3), which iteratively oxidize 5-methycytosine (5mC) into 5-hydroxymethycytosine (5hmC), and then 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). TET proteins are frequently mutated in myeloid malignancies or inactivated in solid tumors. These methylcytosine dioxygenases are α-ketoglutarate (αKG)-dependent and are, therefore, sensitive to metabolic homeostasis. For example, TET2 is activated by vitamin C (VC) and inhibited by specific oncometabolites. However, understanding the regulation of the TET2 enzyme by different metabolites and its activity remains challenging because of limitations in the methods used to simultaneously monitor TET2 substrates, products, and cofactors during catalysis. Here, we measure TET2-dependent activity in real time using NMR. Additionally, we demonstrate that in vitro activity of TET2 is highly dependent on the presence of VC in our system and is potently inhibited by an intermediate metabolite of the TCA cycle, oxaloacetate (OAA). Despite these opposing effects on TET2 activity, the binding sites of VC and OAA on TET2 are shared with αKG. Overall, our work suggests that NMR can be effectively used to monitor TET2 catalysis and illustrates how TET activity is regulated by metabolic and cellular conditions at each oxidation step.
Collapse
Affiliation(s)
- Colton J. Treadway
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Joshua A Boyer
- Department. of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Shiyue Yang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Hui Yang
- Molecular & Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai College of Medicine, Fudan University, Shanghai 200032, China
- Present address: Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, Shanghai College of Medicine, Fudan University, Shanghai, 200032, China
| | - Mengxi Liu
- Molecular & Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai College of Medicine, Fudan University, Shanghai 200032, China
- Present address: Plexium, Inc., San Diego, CA 92121, United States
| | - Zhijun Li
- Department. of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Meng Cheng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - William F. Marzluff
- Department. of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Dan Ye
- Molecular & Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai College of Medicine, Fudan University, Shanghai 200032, China
| | - Yue Xiong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Present address: Cullgen, Inc., 12730 High Bluff Drive, San Diego, CA, 92130, United States
| | - Albert S. Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Qi Zhang
- Department. of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Nicholas G. Brown
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
43
|
Zhang XJ, Han BB, Shao ZY, Yan R, Gao J, Liu T, Jin ZY, Lai W, Xu ZM, Wang CH, Zhang F, Gu C, Wang Y, Wang H, Walsh CP, Guo F, Xu GL, Du YR. Auto-suppression of Tet dioxygenases protects the mouse oocyte genome from oxidative demethylation. Nat Struct Mol Biol 2024; 31:42-53. [PMID: 38177668 DOI: 10.1038/s41594-023-01125-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/14/2023] [Indexed: 01/06/2024]
Abstract
DNA cytosine methylation plays a vital role in repressing retrotransposons, and such derepression is linked with developmental failure, tumorigenesis and aging. DNA methylation patterns are formed by precisely regulated actions of DNA methylation writers (DNA methyltransferases) and erasers (TET, ten-eleven translocation dioxygenases). However, the mechanisms underlying target-specific oxidation of 5mC by TET dioxygenases remain largely unexplored. Here we show that a large low-complexity domain (LCD), located in the catalytic part of Tet enzymes, negatively regulates the dioxygenase activity. Recombinant Tet3 lacking LCD is shown to be hyperactive in converting 5mC into oxidized species in vitro. Endogenous expression of the hyperactive Tet3 mutant in mouse oocytes results in genome-wide 5mC oxidation. Notably, the occurrence of aberrant 5mC oxidation correlates with a consequent loss of the repressive histone mark H3K9me3 at ERVK retrotransposons. The erosion of both 5mC and H3K9me3 causes ERVK derepression along with upregulation of their neighboring genes, potentially leading to the impairment of oocyte development. These findings suggest that Tet dioxygenases use an intrinsic auto-regulatory mechanism to tightly regulate their enzymatic activity, thus achieving spatiotemporal specificity of methylome reprogramming, and highlight the importance of methylome integrity for development.
Collapse
Affiliation(s)
- Xiao-Jie Zhang
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bin-Bin Han
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhen-Yu Shao
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rui Yan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Juan Gao
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ting Liu
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Zi-Yang Jin
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weiyi Lai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhi-Mei Xu
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chao-Han Wang
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fengjuan Zhang
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chan Gu
- Changping Laboratory, Beijing, China
| | - Yin Wang
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) and Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Colum P Walsh
- Genomic Medicine Research Group, Biomedical Sciences, Ulster University, Coleraine, UK
- Department of Cell Biology, Institute for Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Fan Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Guo-Liang Xu
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069) and Zhongshan-Xuhui Hospital, Medical College of Fudan University, Shanghai, China.
| | - Ya-Rui Du
- CAS Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
44
|
Boulet M, Gilbert G, Renaud Y, Schmidt-Dengler M, Plantié E, Bertrand R, Nan X, Jurkowski T, Helm M, Vandel L, Waltzer L. Adenine methylation is very scarce in the Drosophila genome and not erased by the ten-eleven translocation dioxygenase. eLife 2023; 12:RP91655. [PMID: 38126351 PMCID: PMC10735219 DOI: 10.7554/elife.91655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
N6-methyladenine (6mA) DNA modification has recently been described in metazoans, including in Drosophila, for which the erasure of this epigenetic mark has been ascribed to the ten-eleven translocation (TET) enzyme. Here, we re-evaluated 6mA presence and TET impact on the Drosophila genome. Using axenic or conventional breeding conditions, we found traces of 6mA by LC-MS/MS and no significant increase in 6mA levels in the absence of TET, suggesting that this modification is present at very low levels in the Drosophila genome but not regulated by TET. Consistent with this latter hypothesis, further molecular and genetic analyses showed that TET does not demethylate 6mA but acts essentially in an enzymatic-independent manner. Our results call for further caution concerning the role and regulation of 6mA DNA modification in metazoans and underline the importance of TET non-enzymatic activity for fly development.
Collapse
Affiliation(s)
- Manon Boulet
- Université Clermont Auvergne, CNRS, INSERM, iGReDClermont-FerrandFrance
| | - Guerric Gilbert
- Université Clermont Auvergne, CNRS, INSERM, iGReDClermont-FerrandFrance
| | - Yoan Renaud
- Université Clermont Auvergne, CNRS, INSERM, iGReDClermont-FerrandFrance
| | - Martina Schmidt-Dengler
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-UniversitätMainzGermany
| | - Emilie Plantié
- Université Clermont Auvergne, CNRS, INSERM, iGReDClermont-FerrandFrance
| | - Romane Bertrand
- Université Clermont Auvergne, CNRS, INSERM, iGReDClermont-FerrandFrance
| | - Xinsheng Nan
- School of Biosciences, Cardiff UniversityCardiffUnited Kingdom
| | | | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-UniversitätMainzGermany
| | - Laurence Vandel
- Université Clermont Auvergne, CNRS, INSERM, iGReDClermont-FerrandFrance
| | - Lucas Waltzer
- Université Clermont Auvergne, CNRS, INSERM, iGReDClermont-FerrandFrance
| |
Collapse
|
45
|
Liu Y, He T, Li Z, Sun Z, Wang S, Shen H, Hou L, Li S, Wei Y, Zhuo B, Li S, Zhou C, Guo H, Zhang R, Li B. TET2 is recruited by CREB to promote Cebpb, Cebpa, and Pparg transcription by facilitating hydroxymethylation during adipocyte differentiation. iScience 2023; 26:108312. [PMID: 38026190 PMCID: PMC10663734 DOI: 10.1016/j.isci.2023.108312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/10/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Ten-eleven translocation proteins (TETs) are dioxygenases that convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), an important epigenetic mark that regulates gene expression during development and differentiation. Here, we found that the TET2 expression was positively associated with adipogenesis. Further, in vitro and in vivo experiments showed that TET2 deficiency blocked adipogenesis by inhibiting the expression of the key transcription factors CCAAT/enhancer-binding protein beta (C/EBPβ), C/EBPα and peroxisome proliferator-activated receptor gamma (PPARγ). In addition, TET2 promoted 5hmC on the CpG islands (CGIs) of Cebpb, Cebpa and Pparg at the initial time point of their transcription, which requires the cAMP-responsive element-binding protein (CREB). At last, specific knockout of Tet2 in preadipocytes enabled mice to resist obesity and attenuated the obesity-associated insulin resistance. Together, TET2 is recruited by CREB to promote the expression of Cebpb, Cebpa and Pparg via 5hmC during adipogenesis and may be a potential therapeutic target for obesity and insulin resistance.
Collapse
Affiliation(s)
- Yunjia Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Ting He
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Zhuofang Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Zhen Sun
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Shuai Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Huanming Shen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Lingfeng Hou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Shengnan Li
- School of Medicine, Henan Polytechnic University, Jiaozuo, Henan 454000, China
| | - Yixin Wei
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Bingzhao Zhuo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Shanni Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Can Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Huiling Guo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Rui Zhang
- Xiamen Cell Therapy Research Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361003, China
| | - Boan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| |
Collapse
|
46
|
Maity J, Majumder S, Pal R, Saha B, Mukhopadhyay PK. Ascorbic acid modulates immune responses through Jumonji-C domain containing histone demethylases and Ten eleven translocation (TET) methylcytosine dioxygenase. Bioessays 2023; 45:e2300035. [PMID: 37694689 DOI: 10.1002/bies.202300035] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
Ascorbic acid is a redox regulator in many physiological processes. Besides its antioxidant activity, many intriguing functions of ascorbic acid in the expression of immunoregulatory genes have been suggested. Ascorbic acid acts as a co-factor for the Fe+2 -containing α-ketoglutarate-dependent Jumonji-C domain-containing histone demethylases (JHDM) and Ten eleven translocation (TET) methylcytosine dioxygenasemediated epigenetic modulation. By influencing JHDM and TET, ascorbic acid facilitates the differentiation of double negative (CD4- CD8- ) T cells to double positive (CD4+ CD8+ ) T cells and of T-helper cells to different effector subsets. Ascorbic acid modulates plasma cell differentiation and promotes early differentiation of hematopoietic stem cells (HSCs) to NK cells. These findings indicate that ascorbic acid plays a significant role in regulating both innate and adaptive immune cells, opening up new research areas in Immunonutrition. Being a water-soluble vitamin and a safe micro-nutrient, ascorbic acid can be used as an adjunct therapy for many disorders of the immune system.
Collapse
Affiliation(s)
- Jeet Maity
- Department of Life Sciences, Presidency University, Kolkata, India
| | | | - Ranjana Pal
- Department of Life Sciences, Presidency University, Kolkata, India
| | | | | |
Collapse
|
47
|
Seethy AA, Pethusamy K, Kushwaha T, Kumar G, Talukdar J, Chaubey R, Sundaram UD, Mahapatra M, Saxena R, Dhar R, Inampudi KK, Karmakar S. Alterations of the expression of TET2 and DNA 5-hmC predict poor prognosis in Myelodysplastic Neoplasms. BMC Cancer 2023; 23:1035. [PMID: 37884893 PMCID: PMC10601240 DOI: 10.1186/s12885-023-11449-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Myelodysplastic Neoplasms (MDS) are clonal stem cell disorders characterized by ineffective hematopoiesis and progression to acute myeloid leukemia, myelodysplasia-related (AML-MR). A major mechanism of pathogenesis of MDS is the aberration of the epigenetic landscape of the hematopoietic stem cells and/or progenitor cells, especially DNA cytosine methylation, and demethylation. Data on TET2, the predominant DNA demethylator of the hematopoietic system, is limited, particularly in the MDS patients from India, whose biology may differ since these patients present at a relatively younger age. We studied the expression and the variants of TET2 in Indian MDS and AML-MR patients and their effects on 5-hydroxymethyl cytosine (5-hmC, a product of TET2 catalysis) and on the prognosis of MDS patients. RESULTS Of the 42 MDS patients, cytogenetics was available for 31 sub-categorized according to the Revised International Prognostic Scoring System (IPSS-R). Their age resembled that of the previous studies from India. Bone marrow nucleated cells (BMNCs) were also obtained from 13 patients with AML-MR, 26 patients with de-novo AML, and 11 subjects with morphologically normal bone marrow. The patients had a significantly lower TET2 expression which was more pronounced in AML-MR and the IPSS-R higher-risk MDS categories. The 5-hmC levels in higher-risk MDS and AML-MR correlated with TET2 expression, suggesting a possible mechanistic role in the loss of TET2 expression. The findings on TET2 and 5-hmC were also confirmed at the tissue level using immunohistochemistry. Pathogenic variants of TET2 were found in 7 of 24 patient samples (29%), spanning across the IPSS-R prognostic categories. One of the variants - H1778R - was found to affect local and global TET2 structure when studied using structural predictions and molecular dynamics simulations. Thus, it is plausible that some pathogenic variants in TET2 can compromise the structure of TET2 and hence in the formation of 5-hmC. CONCLUSIONS IPSS-R higher-risk MDS categories and AML-MR showed a reduction in TET2 expression, which was not apparent in lower-risk MDS. DNA 5-hmC levels followed a similar pattern. Overall, a decreased TET2 expression and a low DNA 5-hmC level are predictors of advanced disease and adverse outcome in MDS in the population studied, i.e., MDS patients from India.
Collapse
Affiliation(s)
- Ashikh A Seethy
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
- Department of Biochemistry, All India Institute of Medical Sciences, Guwahati, India
| | - Karthikeyan Pethusamy
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Tushar Kushwaha
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Gaurav Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Joyeeta Talukdar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rekha Chaubey
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| | - Udayakumar Dharmalingam Sundaram
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
- Department of Hematopathology, Medanta - The Medicity, Gurgaon, India
| | - Manoranjan Mahapatra
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| | - Renu Saxena
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
- Department of Hematopathology, Medanta - The Medicity, Gurgaon, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Krishna K Inampudi
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
48
|
Watanabe R, Nakachi Y, Matsubara H, Ueda J, Ishii T, Ukai W, Hashimoto E, Kasai K, Simizu S, Kato T, Bundo M, Iwamoto K. Identification of epigenetically active L1 promoters in the human brain and their relationship with psychiatric disorders. Neurosci Res 2023; 195:37-51. [PMID: 37141946 DOI: 10.1016/j.neures.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/09/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
Long interspersed nuclear element-1 (LINE-1, L1) affects the transcriptome landscape in multiple ways. Promoter activity within its 5'UTR plays a critical role in regulating diverse L1 activities. However, the epigenetic status of L1 promoters in adult brain cells and their relationship with psychiatric disorders remain poorly understood. Here, we examined DNA methylation and hydroxymethylation of the full-length L1s in neurons and nonneurons and identified "epigenetically active" L1s. Notably, some of epigenetically active L1s were retrotransposition competent, which even had chimeric transcripts from the antisense promoters at their 5'UTRs. We also identified differentially methylated L1s in the prefrontal cortices of patients with psychiatric disorders. In nonneurons of bipolar disorder patients, one L1 was significantly hypomethylated and showed an inverse correlation with the expression level of the overlapping gene NREP. Finally, we observed that altered DNA methylation levels of L1 in patients with psychiatric disorders were not affected by the surrounding genomic regions but originated from the L1 sequences. These results suggested that altered epigenetic regulation of the L1 5'UTR in the brain was involved in the pathophysiology of psychiatric disorders.
Collapse
Affiliation(s)
- Risa Watanabe
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yutaka Nakachi
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hikari Matsubara
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Junko Ueda
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takao Ishii
- Department of Occupational Therapy, Sapporo Medical University School of Health Sciences, Sapporo, Japan
| | - Wataru Ukai
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, Sapporo, Japan
| | - Eri Hashimoto
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, Sapporo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; The International Research Center for Neurointelligence (WPI-IRCN), University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan; University of Tokyo Institute for Diversity and Adaptation of Human Mind (UTIDAHM), The University of Tokyo, Tokyo, Japan; UTokyo Center for Integrative Science of Human Behaviour (CiSHuB), The University of Tokyo, Tokyo, Japan
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Tadafumi Kato
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan; Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Miki Bundo
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Wako, Saitama, Japan.
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Wako, Saitama, Japan.
| |
Collapse
|
49
|
Zhang D, Zhang J, Wang Y, Wang G, Tang P, Liu Y, Zhang Y, Ouyang L. Targeting epigenetic modifications in Parkinson's disease therapy. Med Res Rev 2023; 43:1748-1777. [PMID: 37119043 DOI: 10.1002/med.21962] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 01/10/2023] [Accepted: 04/12/2023] [Indexed: 04/30/2023]
Abstract
Parkinson's disease (PD) is a multifactorial disease due to a complex interplay between genetic and epigenetic factors. Recent efforts shed new light on the epigenetic mechanisms involved in regulating pathways related to the development of PD, including DNA methylation, posttranslational modifications of histones, and the presence of microRNA (miRNA or miR). Epigenetic regulators are potential therapeutic targets for neurodegenerative disorders. In the review, we aim to summarize mechanisms of epigenetic regulation in PD, and describe how the DNA methyltransferases, histone deacetylases, and histone acetyltransferases that mediate the key processes of PD are attractive therapeutic targets. We discuss the use of inhibitors and/or activators of these regulators in PD models or patients, and how these small molecule epigenetic modulators elicit neuroprotective effects. Further more, given the importance of miRNAs in PD, their contributions to the underlying mechanisms of PD will be discussed as well, together with miRNA-based therapies.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Jifa Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Yuxi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Pan Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Yun Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Yiwen Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
| |
Collapse
|
50
|
Li C, He J, Meng F, Wang F, Sun H, Zhang H, Dong L, Zhang M, Xu Q, Liang L, Li Y, Yang T, He M, Wang T, Lin J, Sun J, Huang Q, Guo L, Zhang X, Mai S, Zheng H. Nuclear localization of TET2 requires β-catenin activation and correlates with favourable prognosis in colorectal cancer. Cell Death Dis 2023; 14:552. [PMID: 37620362 PMCID: PMC10449923 DOI: 10.1038/s41419-023-06038-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023]
Abstract
Mutation-induced malfunction of ten-eleven translocation methylcytosine dioxygenase 2 (TET2) is widely reported in haematological malignancies. However, the role of TET2 in solid cancers, including colorectal cancer (CRC), is unclear. Here, we found that TET2 malfunction in CRC is mostly due to decreased nuclear localization and that nuclear localization of TET2 is correlated with better survival of patients. To explore the underlying mechanisms, 14 immortalized solid tumour cell lines and 12 primary CRC cell lines were used. TET2 was mostly detected in the nucleus, and it induced significant DNA demethylation and suppressed cell growth by demethylating RORA and SPARC in cell lines like SW480. While in cell lines like SW620, TET2 was observed in the cytosol and did not affect DNA methylation or cell growth. Further examination with immunoprecipitation-mass spectrometry illustrated that β-catenin activation was indispensable for the nuclear localization and tumour suppression effects of TET2. In addition, the β-catenin pathway activator IM12 and the TET2 activator vitamin C were used simultaneously to enhance the effects of TET2 under low-expression conditions, and synergistic inhibitory effects on the growth of cancer were observed both in vitro and in vivo. Collectively, these data suggest that β-catenin-mediated nuclear localization of TET2 is an important therapeutic target for solid tumours.
Collapse
Affiliation(s)
- Changpeng Li
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
| | - Jingcai He
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510799, China
| | - Fei Meng
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fuhui Wang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Sun
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Huizhong Zhang
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Linna Dong
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengdan Zhang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiaoran Xu
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lining Liang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Yuan Li
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Tingting Yang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meiai He
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Wang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiechun Lin
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiaqi Sun
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China
| | - Qiuling Huang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Lin Guo
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Xiaofei Zhang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Shijuan Mai
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Hui Zheng
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|