1
|
Chang Y, Lyu T, Luan X, Yang Y, Cao Y, Qiu Y, Feng H. Artesunate-multiple pharmacological effects beyond treating malaria. Eur J Med Chem 2025; 286:117292. [PMID: 39842343 DOI: 10.1016/j.ejmech.2025.117292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
Artesunate, a semisynthetic derivative of artemisinin, is not only recommended as the first-line drug for treating severe malaria but is also a significant member of Artemisinin-based Combination Therapies (ACTs), used in combination with other artemisinin derivatives for treating uncomplicated malaria. Beyond its potent anti-malarial activity, artesunate has garnered considerable attention for its pharmacological effects, which encompass broad-spectrum anti-tumor, anti-viral, and anti-inflammatory properties. It has collectively demonstrated superior drug tolerance, low toxicity, and mild side effects in cell line experiments in vitro, experimental animal models, and clinical drug researches, as a monotherapy or in combination with other agents. Investigating the pharmacological effects of artesunate will facilitate the exploration of novel drug applications and enhance the comprehensive clinical applications.
Collapse
Affiliation(s)
- Yuzhi Chang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, China
| | - Tong Lyu
- Department of Clinical Laboratory, The People's Hospital of Deyang City, Deyang, 618000, China
| | - Xingyue Luan
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100871, China
| | - Yiming Yang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, China.
| | - Yue Qiu
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, 110000, China.
| | - Hui Feng
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
2
|
E Abdel Aziz S, El-Nakib HE, Schaletzky J, Ahmed NS. Analytical Methodologies for Anti-Infective Orphan Drugs: A Comprehensive Review of FDA Approvals (2013-2023) Part 1. Crit Rev Anal Chem 2025:1-26. [PMID: 39899335 DOI: 10.1080/10408347.2025.2459721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Most orphan diseases, which affect small patient populations, are chronic, incurable and often lead to early death. Due to small market size, orphan drugs developed to address these diseases receive little attention from the pharmaceutical industry. This lack of interest also applies to the development of analytical methods, which are crucial for drug analysis and quality control. Analysis of orphan drugs faces challenges, including a lack of reference standard and an inadequate number of samples for testing. In addition, constant adjustment of analytical techniques is demanded due to the lengthy development process. Financial constraints further hinder the advancement of analytical techniques since orphan drugs represents a narrow niche market and the pharmaceutical industry often focuses on research with greater impact, causing orphan drugs to be deprioritized. This review summarizes the analytical methods developed for US FDA-approved anti-infective orphan drugs (except antivirals) in the period between 2013 to 2023, covering in depth small molecules and broadly biologics in numerous dosage forms and biological samples. It covers the most common reported analytical methods, such as liquid chromatography, TLC, spectroscopy, and electrochemical analysis. This review highlights the crucial need for the continuous development of new analytical techniques to support the development and quality control of orphan drugs.
Collapse
Affiliation(s)
- Shimaa E Abdel Aziz
- Analytical Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Heba E El-Nakib
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Julia Schaletzky
- Center for Emerging and Neglected Diseases, Drug Discovery Center, University of California Berkeley, Berkeley, California, USA
| | - Nermin S Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
3
|
Lee YS, Vafaeinik F, Mouakkad L, Kim DH, Song X, Zhang L, Lee YJ. Mcl-1 is a Gatekeeper Molecule to Regulate the Crosstalk Between Ferroptotic Agent-Induced ER Stress and TRAIL-Induced Apoptosis. J Cell Biochem 2025; 126:e30681. [PMID: 39853862 DOI: 10.1002/jcb.30681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 01/30/2025]
Abstract
We previously reported that ferroptosis interplays with apoptosis through the integration of two independent pathways: the endoplasmic reticulum (ER) stress signaling pathway and the mitochondria-dependent apoptotic signaling pathway. In this study, we investigated a potential gatekeeper molecule, Mcl-1, between the two signal transduction pathways. Morphology studies and cell death analyses confirmed that a combination treatment of ferroptotic agent erastin (ERA) and apoptotic agent TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) synergistically enhances TRAIL-induced apoptosis in human pancreatic adenocarcinoma BxPC3 and human colorectal carcinoma HCT116 cells. We further observed that ERA upregulated the proapoptotic proteins PUMA (p53 upregulated modulator of apoptosis) and NOXA, as well as the anti-apoptotic protein Mcl-1 (myeloid cell leukemia sequence 1). These results suggest that ERA upregulates these molecules which results in maintenance of the balance between them. Interestingly, this balance was offset when BxPC3 cells and HCT116 cells were treated with ERA in combination with TRAIL. Our studies suggest that the imbalance between PUMA and NOXA and Mcl-1 during the combined treatment is responsible for ERA-enhanced TRAIL-induced apoptosis. This hypothesis was tested by employing a HCT116 Mcl-1 knock-in of phosphorylation site mutant (S121A/E125A/S159A/T163A) and investigated the synergistic interaction between the ERA and TRAIL. Along with morphology and cell death studies, immunoblotting analyses revealed that HCT116 Mcl-1 knock-in mutant cells effectively inhibited reduction of Mcl-1 and apoptosis promoted by the combination treatment. Moreover, ERA enhanced Mcl-1 inhibitor-induced apoptosis. Collectively, our studies suggest that Mcl-1 is a gatekeeper molecule between the ER stress pathway and the mitochondria-dependent apoptotic pathway.
Collapse
Affiliation(s)
- Young-Sun Lee
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Farzaneh Vafaeinik
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Lila Mouakkad
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA
| | - Xinxin Song
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Lin Zhang
- Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Yong J Lee
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
4
|
Tong D, Wu F, Chen X, Du Z, Zhou J, Zhang J, Yang Y, Du A, Ma G. The mrp-3 gene is involved in haem efflux and detoxification in a blood-feeding nematode. BMC Biol 2024; 22:199. [PMID: 39256727 PMCID: PMC11389519 DOI: 10.1186/s12915-024-02001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Haem is essential but toxic for metazoan organisms. Auxotrophic nematodes can acquire sufficient haem from the environment or their hosts in the meanwhile eliminate or detoxify excessive haem through tightly controlled machinery. In previous work, we reported a role of the unique transporter protein HRG-1 in the haem acquisition and homeostasis of parasitic nematodes. However, little is known about the haem efflux and detoxification via ABC transporters, particularly the multiple drug resistance proteins (MRPs). RESULTS Here, we further elucidate that a member of the mrp family (mrp-3) is involved in haem efflux and detoxification in a blood-feeding model gastrointestinal parasite, Haemonchus contortus. This gene is haem-responsive and dominantly expressed in the intestine and inner membrane of the hypodermis of this parasite. RNA interference of mrp-3 resulted in a disturbance of genes (e.g. hrg-1, hrg-2 and gst-1) that are known to be involved in haem homeostasis and an increased formation of haemozoin in the treated larvae and lethality in vitro, particularly when exposed to exogenous haem. Notably, the nuclear hormone receptor NHR-14 appears to be associated the regulation of mrp-3 expression for haem homeostasis and detoxification. Gene knockdown of nhr-14 and/or mrp-3 increases the sensitivity of treated larvae to exogenous haem and consequently a high death rate (> 80%). CONCLUSIONS These findings demonstrate that MRP-3 and the associated molecules are essential for haematophagous nematodes, suggesting novel intervention targets for these pathogens in humans and animals.
Collapse
Affiliation(s)
- Danni Tong
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Fei Wu
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xueqiu Chen
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zhendong Du
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jingru Zhou
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, 311121, Zhejiang, China
| | - Jingju Zhang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yi Yang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Aifang Du
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Guangxu Ma
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
5
|
Mao L, Deng G, Li M, Lu SH, Jiang W, Yu X. Antitumour effects of artesunate via cell cycle checkpoint controls in human oesophageal squamous carcinoma cells. Eur J Med Res 2024; 29:293. [PMID: 38773551 PMCID: PMC11110347 DOI: 10.1186/s40001-024-01882-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/09/2024] [Indexed: 05/24/2024] Open
Abstract
Artesunate (ART), an effective antimalarial semisynthetic derivative of artemisinin, exhibits antitumour properties, but the mechanism(s) involved remain elusive. In this study, we investigated the antitumour effects of ART on human oesophageal squamous cell carcinoma (ESCC) cell lines. Treatment of ESCC cell lines with ART resulted in the production of excessive reactive oxygen species (ROS) that induced DNA damage, reduced cell proliferation and inhibited clonogenicity via G1-S cell cycle arrest and/or apoptosis in vitro. The administration of ART to nude mice with ESCC cell xenografts inhibited tumour formation in vivo. However, the cytotoxicity of ART strongly differed among the ESCC cell lines tested. Transcriptomic profiling revealed that although the expression of large numbers of genes in ESCC cell lines was affected by ART treatment, these genes could be functionally clustered into pathways involved in regulating cell cycle progression, DNA metabolism and apoptosis. We revealed that p53 and Cdk4/6-p16-Rb cell cycle checkpoint controls were critical determinants required for mediating ART cytotoxicity in ESCC cell lines. Specifically, KYSE30 cells with p53Mut/p16Mut were the most sensitive to ART, KYSE150 and KYSE180 cells with p53Mut/p16Nor exhibited intermediate responses to ART, and Eca109 cells with p53Nor/p16Nor exhibited the most resistance to ATR. Consistently, perturbation of p53 expression using RNA interference (RNAi) and/or Cdk4/6 activity using the inhibitor palbociclib altered ART cytotoxicity in KYSE30 cells. Given that the p53 and Cdk4/6-cyclin D1-p16-Rb genes are commonly mutated in ESCC, our results potentially shed new light on neoadjuvant chemotherapy strategies for ESCC.
Collapse
Affiliation(s)
- Linlin Mao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Guodong Deng
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Mengfan Li
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shih-Hsin Lu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wei Jiang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Xiying Yu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
6
|
Li Y, Wei C, Yan J, Li F, Chen B, Sun Y, Luo K, He B, Liang Y. The application of nanoparticles based on ferroptosis in cancer therapy. J Mater Chem B 2024; 12:413-435. [PMID: 38112639 DOI: 10.1039/d3tb02308g] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Ferroptosis is a new form of non-apoptotic programmed cell death. Due to its effectiveness in cancer treatment, there are increasing studies on the application of nanoparticles based on ferroptosis in cancer therapy. In this paper, we present a summary of the latest progress in nanoparticles based on ferroptosis for effective tumor therapy. We also describe the combined treatment of ferroptosis with other therapies, including chemotherapy, radiotherapy, phototherapy, immunotherapy, and gene therapy. This summary of drug delivery systems based on ferroptosis aims to provide a basis and inspire opinions for researchers concentrating on exploring this field. Finally, we present some prospects and challenges for the application of nanotherapies to clinical treatment by promoting ferroptosis in cancer cells.
Collapse
Affiliation(s)
- Yifei Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Chen Wei
- Department of Pharmacy, Qingdao Women and Children's Hospital, Qingdao 266034, China
| | - Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Fashun Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Bohan Chen
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| |
Collapse
|
7
|
Ramli AH, Mohd Faudzi SM. Diarylpentanoids, the privileged scaffolds in antimalarial and anti-infectives drug discovery: A review. Arch Pharm (Weinheim) 2023; 356:e2300391. [PMID: 37806761 DOI: 10.1002/ardp.202300391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
Asia is a hotspot for infectious diseases, including malaria, dengue fever, tuberculosis, and the pandemic COVID-19. Emerging infectious diseases have taken a heavy toll on public health and the economy and have been recognized as a major cause of morbidity and mortality, particularly in Southeast Asia. Infectious disease control is a major challenge, but many surveillance systems and control strategies have been developed and implemented. These include vector control, combination therapies, vaccine development, and the development of new anti-infectives. Numerous newly discovered agents with pharmacological anti-infective potential are being actively and extensively studied for their bioactivity, toxicity, selectivity, and mode of action, but many molecules lose their efficacy over time due to resistance developments. These facts justify the great importance of the search for new, effective, and safe anti-infectives. Diarylpentanoids, a curcumin derivative, have been developed as an alternative with better bioavailability and metabolism as a therapeutic agent. In this review, the mechanisms of action and potential targets of antimalarial drugs as well as the classes of antimalarial drugs are presented. The bioactivity of diarylpentanoids as a potential scaffold for a new class of anti-infectives and their structure-activity relationships are also discussed in detail.
Collapse
Affiliation(s)
- Amirah H Ramli
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Siti M Mohd Faudzi
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
8
|
Shapiro D, Lee K, Asmussen J, Bourquard T, Lichtarge O. Evolutionary Action-Machine Learning Model Identifies Candidate Genes Associated With Early-Onset Coronary Artery Disease. J Am Heart Assoc 2023; 12:e029103. [PMID: 37642027 PMCID: PMC10547338 DOI: 10.1161/jaha.122.029103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/11/2023] [Indexed: 08/31/2023]
Abstract
Background Coronary artery disease is a primary cause of death around the world, with both genetic and environmental risk factors. Although genome-wide association studies have linked >100 unique loci to its genetic basis, these only explain a fraction of disease heritability. Methods and Results To find additional gene drivers of coronary artery disease, we applied machine learning to quantitative evolutionary information on the impact of coding variants in whole exomes from the Myocardial Infarction Genetics Consortium. Using ensemble-based supervised learning, the Evolutionary Action-Machine Learning framework ranked each gene's ability to classify case and control samples and identified 79 significant associations. These were connected to known risk loci; enriched in cardiovascular processes like lipid metabolism, blood clotting, and inflammation; and enriched for cardiovascular phenotypes in knockout mouse models. Among them, INPP5F and MST1R are examples of potentially novel coronary artery disease risk genes that modulate immune signaling in response to cardiac stress. Conclusions We concluded that machine learning on the functional impact of coding variants, based on a massive amount of evolutionary information, has the power to suggest novel coronary artery disease risk genes for mechanistic and therapeutic discoveries in cardiovascular biology, and should also apply in other complex polygenic diseases.
Collapse
Affiliation(s)
- Dillon Shapiro
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Kwanghyuk Lee
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Jennifer Asmussen
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Thomas Bourquard
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Olivier Lichtarge
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
- Computational & Integrative Biomedical Research CenterBaylor College of MedicineHoustonTXUSA
| |
Collapse
|
9
|
Kim KI, Hossain R, Ryu J, Lee HJ, Lee CJ. Regulation of the Gene Expression of Airway MUC5AC Mucin through NF-κB Signaling Pathway by Artesunate, an Antimalarial Agent. Biomol Ther (Seoul) 2023; 31:544-549. [PMID: 37254459 PMCID: PMC10468416 DOI: 10.4062/biomolther.2023.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
In this study, artesunate, an antimalarial agent, was investigated for its potential effect on the gene expression of airway MUC5AC mucin. The human pulmonary epithelial NCI-H292 cells were pretreated with artesunate for 30 min and then stimulated with phorbol 12-myristate 13-acetate (PMA), for the following 24 h. The effect of artesunate on PMA-induced nuclear factor kappa B (NF-kB) signaling pathway was also examined. Artesunate inhibited the glycoprotein production and mRNA expression of MUC5AC mucins, induced by PMA through the inhibition of degradation of inhibitory kappa Bα (IkBα) and NF-kB p65 nuclear translocation. These results suggest artesunate suppresses the gene expression of mucin through regulation of NF-kB signaling pathway, in human pulmonary epithelial cells.
Collapse
Affiliation(s)
- Kyung-il Kim
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Rajib Hossain
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jiho Ryu
- Department of Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyun Jae Lee
- Smith Liberal Arts College and Department of Addiction Science, Graduate School, Sahmyook University, Seoul 01795, Republic of Korea
| | - Choong Jae Lee
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
10
|
Lee J, Roh JL. Targeting Nrf2 for ferroptosis-based therapy: Implications for overcoming ferroptosis evasion and therapy resistance in cancer. Biochim Biophys Acta Mol Basis Dis 2023:166788. [PMID: 37302427 DOI: 10.1016/j.bbadis.2023.166788] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/10/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023]
Abstract
Ferroptosis is a newly discovered form of programmed cell death caused by redox-active iron-mediated lipid peroxidation. Ferroptosis exhibits a unique morphological phenotype resulting from oxidative damage to membrane lipids. Ferroptosis induction has been shown to be effective in treating human cancers that rely on lipid peroxidation repair pathways. Nuclear factor erythroid 2-related factor 2 (Nrf2) can control the regulatory pathways of ferroptosis, which involve genes associated with glutathione biosynthesis, antioxidant responses, and lipid and iron metabolism. Resistant cancer cells often utilize Nrf2 stabilization by Keap1 inactivation or other somatic alterations in the genes from the Nrf2 pathway, which can confer resistance to ferroptosis induction and other therapies. However, pharmacological inactivation of the Nrf2 pathway can sensitize cancer cells to ferroptosis induction. Inducing lipid peroxidation and ferroptosis through regulating the Nrf2 pathway is a promising strategy for enhancing the anticancer effects of chemotherapy and radiation therapy in therapy-resistant human cancers. Despite promising preliminary studies, clinical trials in human cancer therapy have not yet been realized. A deeper understanding of their exact processes and efficacies in various cancers remains unsolved. Therefore, this article aims to summarize the regulatory mechanisms of ferroptosis, their modulation by Nrf2, and the potential of targeting Nrf2 for ferroptosis-based cancer therapy.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
11
|
Xu L, Liu Y, Chen X, Zhong H, Wang Y. Ferroptosis in life: To be or not to be. Biomed Pharmacother 2023; 159:114241. [PMID: 36634587 DOI: 10.1016/j.biopha.2023.114241] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Ferroptosis is a novel type of programmed cell death, characterized by a dysregulated iron metabolism and accumulation of lipid peroxides. It features the alteration of mitochondria and aberrant accumulation of excessive iron as well as loss of the cysteine-glutathione-GPX4 axis. Eventually, the accumulated lipid peroxides result in lethal damage to the cells. Ferroptosis is induced by the overloading of iron and the accumulation of ROS and can be inhibited by the activation of the GPX4 pathway, FS1-CoQ10 pathway, GCH1-BH4 pathway, and the DHODH pathway, it is also regulated by the oncogenes and tumor suppressors. Ferroptosis involves various physiological and pathological processes, and increasing evidence indicates that ferroptosis play a critical role in cancers and other diseases. It inhibits the proliferation of malignant cells in various types of cancers and inducing ferroptosis may become a new method of cancer treatment. Many inhibitors targeting the key factors of ferroptosis such as SLC7A11, GPX4, and iron overload have been developed. The application of ferroptosis is mainly divided into two directions, i.e. to avoid ferroptosis in healthy cells and selectively induce ferroptosis in cancers. In this review, we provide a critical analysis of the concept, and regulation pathways of ferroptosis and explored its roles in various diseases, we also summarized the compounds targeting ferroptosis, aiming to promote the speed of clinical use of ferroptosis induction in cancer treatment.
Collapse
Affiliation(s)
- Ling Xu
- Department of Internal Medicine of Traditional Chinese Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| | - Yu'e Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Xi Chen
- Xi Chen, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hua Zhong
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA 96813
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
12
|
Lagisetty Y, Bourquard T, Al-Ramahi I, Mangleburg CG, Mota S, Soleimani S, Shulman JM, Botas J, Lee K, Lichtarge O. Identification of risk genes for Alzheimer's disease by gene embedding. CELL GENOMICS 2022; 2:100162. [PMID: 36268052 PMCID: PMC9581494 DOI: 10.1016/j.xgen.2022.100162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Most disease-gene association methods do not account for gene-gene interactions, even though these play a crucial role in complex, polygenic diseases like Alzheimer's disease (AD). To discover new genes whose interactions may contribute to pathology, we introduce GeneEMBED. This approach compares the functional perturbations induced in gene interaction network neighborhoods by coding variants from disease versus healthy subjects. In two independent AD cohorts of 5,169 exomes and 969 genomes, GeneEMBED identified novel candidates. These genes were differentially expressed in post mortem AD brains and modulated neurological phenotypes in mice. Four that were differentially overexpressed and modified neurodegeneration in vivo are PLEC, UTRN, TP53, and POLD1. Notably, TP53 and POLD1 are involved in DNA break repair and inhibited by approved drugs. While these data show proof of concept in AD, GeneEMBED is a general approach that should be broadly applicable to identify genes relevant to risk mechanisms and therapy of other complex diseases.
Collapse
Affiliation(s)
- Yashwanth Lagisetty
- Department of Biology and Pharmacology, UTHealth McGovern Medical School, Houston, TX 77030, USA,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thomas Bourquard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA,Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Carl Grant Mangleburg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Samantha Mota
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shirin Soleimani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joshua M. Shulman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA,Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX 77030, USA,Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA,Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA,Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kwanghyuk Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX 77030, USA,Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, TX 77030, USA,Corresponding author
| |
Collapse
|
13
|
Hsu TK, Asmussen J, Koire A, Choi BK, Gadhikar MA, Huh E, Lin CH, Konecki DM, Kim YW, Pickering CR, Kimmel M, Donehower LA, Frederick MJ, Myers JN, Katsonis P, Lichtarge O. A general calculus of fitness landscapes finds genes under selection in cancers. Genome Res 2022; 32:916-929. [PMID: 35301263 PMCID: PMC9104707 DOI: 10.1101/gr.275811.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 03/14/2022] [Indexed: 11/24/2022]
Abstract
Genetic variants drive the evolution of traits and diseases. We previously modeled these variants as small displacements in fitness landscapes and estimated their functional impact by differentiating the evolutionary relationship between genotype and phenotype. Conversely, here we integrate these derivatives to identify genes steering specific traits. Over cancer cohorts, integration identified 460 likely tumor-driving genes. Many have literature and experimental support but had eluded prior genomic searches for positive selection in tumors. Beyond providing cancer insights, these results introduce a general calculus of evolution to quantify the genotype-phenotype relationship and discover genes associated with complex traits and diseases.
Collapse
Affiliation(s)
- Teng-Kuei Hsu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jennifer Asmussen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Amanda Koire
- Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Byung-Kwon Choi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Mayur A Gadhikar
- Department of Head and Neck Surgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Eunna Huh
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chih-Hsu Lin
- Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Daniel M Konecki
- Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Young Won Kim
- Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Curtis R Pickering
- Department of Head and Neck Surgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Marek Kimmel
- Departments of Statistics and Bioengineering, Rice University, Houston, Texas 77005, USA
- Department of Systems Engineering and Biology, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Lawrence A Donehower
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Mitchell J Frederick
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Olivier Lichtarge
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas 77030, USA
- Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
14
|
Sharma S, Deep S. In-silico drug repurposing for targeting SARS-CoV-2 main protease (M pro). J Biomol Struct Dyn 2022; 40:3003-3010. [PMID: 33179568 PMCID: PMC7678360 DOI: 10.1080/07391102.2020.1844058] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022]
Abstract
COVID-19, caused by novel coronavirus or SARS-CoV-2, is a viral disease which has infected millions worldwide. Considering the urgent need of the drug for fighting against this infectious disease, we have performed in-silico drug repurposing followed by molecular dynamics (MD) simulation and MM-GBSA calculation. The main protease (Mpro) is one of the best-characterized drug targets among coronaviruses, therefore, this was screened for already known FDA approved drugs and some natural compounds. Comparison of docking and MD simulation results of complexes of drugs with that of inhibitor N3 (experimentally obtained) suggests EGCG, withaferin, dolutegravir, artesunate as potential inhibitors of the main protease (Mpro). Further, in silico docking and MD simulation suggest that EGCG analogues ZINC21992196 and ZINC 169337541 may act as a better inhibitor.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shilpa Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
15
|
Shen M, Guo M, Li Y, Wang Y, Qiu Y, Shao J, Zhang F, Xu X, Yin G, Wang S, Chen A, Zhang Z, Zheng S. m 6A methylation is required for dihydroartemisinin to alleviate liver fibrosis by inducing ferroptosis in hepatic stellate cells. Free Radic Biol Med 2022; 182:246-259. [PMID: 35248719 DOI: 10.1016/j.freeradbiomed.2022.02.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 01/07/2023]
Abstract
Activation of hepatic stellate cells (HSCs) is a central event in the development of liver fibrosis, and the elimination of activated HSCs is considered to be an effective anti-fibrotic strategy. Here, we report that dihydroartemisinin (DHA) prevented the activation of HSCs via ferroptosis pathway. Importantly, DHA treatment increased the level of autophagy in HSCs. The inhibition of autophagy by 3-MA dramatically abolished the DHA-induced ferroptosis in HSCs. Mechanistically, the up-regulated m6A modification is essential for the activation of autophagy by DHA through the reduction of fat mass and obesity-associated gene (FTO). Down-regulation of m6A modification by FTO overexpression could impair autophagy and the classical ferroptotic events. Interestingly, the m6A modification of BECN1 mRNA was evidently up-regulated compared with other autophagy-related genes. More importantly, YTHDF1 was identified as a key m6A reader protein for BECN1 mRNA stability, and knockdown of YTHDF1 could prevent DHA-induced HSC ferroptosis. Noteworthy, YTH domain was essential for YTHDF1 to prolong the half-life of BECN1 mRNA in DHA-induced HSC ferroptosis. In mice, DHA treatment alleviated liver fibrosis by triggering HSC ferroptosis. HSC-specific inhibition of m6A modification and autophagy could impair DHA-induced HSC ferroptosis in murine liver fibrosis. Overall, these results provided novel implications to reveal the molecular mechanism of DHA-induced ferroptosis, by which pointed to m6A modification-dependent ferroptosis as a potential target for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Min Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mei Guo
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujia Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yingqian Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yangling Qiu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xuefen Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guoping Yin
- Department of Anesthesiology, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Shijun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250035, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St Louis, MO, 63104, USA
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
16
|
Siddiqui G, Giannangelo C, De Paoli A, Schuh AK, Heimsch KC, Anderson D, Brown TG, MacRaild CA, Wu J, Wang X, Dong Y, Vennerstrom JL, Becker K, Creek DJ. Peroxide Antimalarial Drugs Target Redox Homeostasis in Plasmodium falciparum Infected Red Blood Cells. ACS Infect Dis 2022; 8:210-226. [PMID: 34985858 PMCID: PMC8762662 DOI: 10.1021/acsinfecdis.1c00550] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Plasmodium
falciparum causes the
most lethal form of malaria. Peroxide antimalarials based on artemisinin
underpin the frontline treatments for malaria, but artemisinin resistance
is rapidly spreading. Synthetic peroxide antimalarials, known as ozonides,
are in clinical development and offer a potential alternative. Here,
we used chemoproteomics to investigate the protein alkylation targets
of artemisinin and ozonide probes, including an analogue of the ozonide
clinical candidate, artefenomel. We greatly expanded the list of proteins
alkylated by peroxide antimalarials and identified significant enrichment
of redox-related proteins for both artemisinins and ozonides. Disrupted
redox homeostasis was confirmed by dynamic live imaging of the glutathione
redox potential using a genetically encoded redox-sensitive fluorescence-based
biosensor. Targeted liquid chromatography-mass spectrometry (LC-MS)-based
thiol metabolomics also confirmed changes in cellular thiol levels.
This work shows that peroxide antimalarials disproportionately alkylate
proteins involved in redox homeostasis and that disrupted redox processes
are involved in the mechanism of action of these important antimalarials.
Collapse
Affiliation(s)
- Ghizal Siddiqui
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Carlo Giannangelo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Amanda De Paoli
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Anna Katharina Schuh
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Kim C. Heimsch
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Dovile Anderson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Timothy G. Brown
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Christopher A. MacRaild
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Jianbo Wu
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Xiaofang Wang
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Yuxiang Dong
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Jonathan L. Vennerstrom
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Darren J. Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
17
|
An Uninvited Seat at the Dinner Table: How Apicomplexan Parasites Scavenge Nutrients from the Host. Microorganisms 2021; 9:microorganisms9122592. [PMID: 34946193 PMCID: PMC8707601 DOI: 10.3390/microorganisms9122592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022] Open
Abstract
Obligate intracellular parasites have evolved a remarkable assortment of strategies to scavenge nutrients from the host cells they parasitize. Most apicomplexans form a parasitophorous vacuole (PV) within the invaded cell, a replicative niche within which they survive and multiply. As well as providing a physical barrier against host cell defense mechanisms, the PV membrane (PVM) is also an important site of nutrient uptake that is essential for the parasites to sustain their metabolism. This means nutrients in the extracellular milieu are separated from parasite metabolic machinery by three different membranes, the host plasma membrane, the PVM, and the parasite plasma membrane (PPM). In order to facilitate nutrient transport from the extracellular environment into the parasite itself, transporters on the host cell membrane of invaded cells can be modified by secreted and exported parasite proteins to maximize uptake of key substrates to meet their metabolic demand. To overcome the second barrier, the PVM, apicomplexan parasites secrete proteins contained in the dense granules that remodel the vacuole and make the membrane permissive to important nutrients. This bulk flow of host nutrients is followed by a more selective uptake of substrates at the PPM that is operated by specific transporters of this third barrier. In this review, we recapitulate and compare the strategies developed by Apicomplexa to scavenge nutrients from their hosts, with particular emphasis on transporters at the parasite plasma membrane and vacuolar solute transporters on the parasite intracellular digestive organelle.
Collapse
|
18
|
Mesén-Ramírez P, Bergmann B, Elhabiri M, Zhu L, von Thien H, Castro-Peña C, Gilberger TW, Davioud-Charvet E, Bozdech Z, Bachmann A, Spielmann T. The parasitophorous vacuole nutrient channel is critical for drug access in malaria parasites and modulates the artemisinin resistance fitness cost. Cell Host Microbe 2021; 29:1774-1787.e9. [PMID: 34863371 DOI: 10.1016/j.chom.2021.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/14/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023]
Abstract
Intraerythrocytic malaria parasites proliferate bounded by a parasitophorous vacuolar membrane (PVM). The PVM contains nutrient permeable channels (NPCs) conductive to small molecules, but their relevance for parasite growth for individual metabolites is largely untested. Here we show that growth-relevant levels of major carbon and energy sources pass through the NPCs. Moreover, we find that NPCs are a gate for several antimalarial drugs, highlighting their permeability properties as a critical factor for drug design. Looking into NPC-dependent amino acid transport, we find that amino acid shortage is a reason for the fitness cost in artemisinin-resistant (ARTR) parasites and provide evidence that NPC upregulation to increase amino acids acquisition is a mechanism of ARTR parasites in vitro and in human infections to compensate this fitness cost. Hence, the NPCs are important for nutrient and drug access and reveal amino acid deprivation as a critical constraint in ARTR parasites.
Collapse
Affiliation(s)
- Paolo Mesén-Ramírez
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | - Bärbel Bergmann
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | - Mourad Elhabiri
- UMR7042 Université de Strasbourg‒CNRS‒UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic and Medicinal Chemistry, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France
| | - Lei Zhu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Heidrun von Thien
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany; Centre for Structural Systems Biology, Notkestraße 85, Building 15, 22607, University of Hamburg, 20146 Hamburg, Germany
| | - Carolina Castro-Peña
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | - Tim-Wolf Gilberger
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany; Centre for Structural Systems Biology, Notkestraße 85, Building 15, 22607, University of Hamburg, 20146 Hamburg, Germany
| | - Elisabeth Davioud-Charvet
- UMR7042 Université de Strasbourg‒CNRS‒UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic and Medicinal Chemistry, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; Honorary Visiting Research Fellow, Nuffield Department of Medicine, University of Oxford, UK
| | - Anna Bachmann
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany; Centre for Structural Systems Biology, Notkestraße 85, Building 15, 22607, University of Hamburg, 20146 Hamburg, Germany
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany.
| |
Collapse
|
19
|
Synthesis and biological evaluation of antimalarial and antileukemic activity of new C-10 modified artemisinin derivatives. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Siddiqui FA, Liang X, Cui L. Plasmodium falciparum resistance to ACTs: Emergence, mechanisms, and outlook. Int J Parasitol Drugs Drug Resist 2021; 16:102-118. [PMID: 34090067 PMCID: PMC8188179 DOI: 10.1016/j.ijpddr.2021.05.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/06/2021] [Accepted: 05/21/2021] [Indexed: 01/18/2023]
Abstract
Emergence and spread of resistance in Plasmodium falciparum to the frontline treatment artemisinin-based combination therapies (ACTs) in the epicenter of multidrug resistance of Southeast Asia threaten global malaria control and elimination. Artemisinin (ART) resistance (or tolerance) is defined clinically as delayed parasite clearance after treatment with an ART drug. The resistance phenotype is restricted to the early ring stage and can be measured in vitro using a ring-stage survival assay. ART resistance is associated with mutations in the propeller domain of the Kelch family protein K13. As a pro-drug, ART is activated primarily by heme, which is mainly derived from hemoglobin digestion in the food vacuole. Activated ARTs can react promiscuously with a wide range of cellular targets, disrupting cellular protein homeostasis. Consistent with this mode of action for ARTs, the molecular mechanisms of K13-mediated ART resistance involve reduced hemoglobin uptake/digestion and increased cellular stress response. Mutations in other genes such as AP-2μ (adaptor protein-2 μ subunit), UBP-1 (ubiquitin-binding protein-1), and Falcipain 2a that interfere with hemoglobin uptake and digestion also increase resistance to ARTs. ART resistance has facilitated the development of resistance to the partner drugs, resulting in rapidly declining ACT efficacies. The molecular markers for resistance to the partner drugs are mostly associated with point mutations in the two food vacuole membrane transporters PfCRT and PfMDR1, and amplification of pfmdr1 and the two aspartic protease genes plasmepsin 2 and 3. It has been observed that mutations in these genes can have opposing effects on sensitivities to different partner drugs, which serve as the principle for designing triple ACTs and drug rotation. Although clinical ACT resistance is restricted to Southeast Asia, surveillance for drug resistance using in vivo clinical efficacy, in vitro assays, and molecular approaches is required to prevent or slow down the spread of resistant parasites.
Collapse
Affiliation(s)
- Faiza Amber Siddiqui
- Department of Internal Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Xiaoying Liang
- Department of Internal Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Liwang Cui
- Department of Internal Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
21
|
Asghari A, Nourmohammadi H, Majidiani H, Shariatzadeh SA, Shams M, Montazeri F. In silico analysis and prediction of immunogenic epitopes for pre-erythrocytic proteins of the deadly Plasmodium falciparum. INFECTION GENETICS AND EVOLUTION 2021; 93:104985. [PMID: 34214673 DOI: 10.1016/j.meegid.2021.104985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 12/18/2022]
Abstract
Malaria is the deadliest parasitic disease in tropical and subtropical areas around the world, with considerable morbidity and mortality, particularly due to the life-threatening Plasmodium falciparum. The present in silico investigation was performed to reveal the biophysical characteristics and immunogenic epitopes of the six pre-erythrocytic proteins of the P. falciparum using comprehensive immunoinformatics approaches. For this aim, different web servers were employed to predict subcellular localization, antigenicity, allergenicity, solubility, physico-chemical properties, post-translational modification sites (PTMs), the presence of signal peptide and transmembrane domains. Moreover, the secondary and tertiary structures of the proteins were revealed followed by refinement and validations. Finally, NetCTL server was used to predict cytotoxic T-lymphocyte (CTL) epitopes, followed by subsequent screening in terms of antigenicity and immunogenicity. Also, IEDB server was utilized to predict helper T-lymphocyte (HTL) epitopes, followed by screening regarding interferon gamma induction and population coverage. These proteins showed appropriate antigenicity, abundant PTMs as well as many CTL and HTL epitopes, which could be directed for future vaccination studies in the context of multi-epitope vaccine design.
Collapse
Affiliation(s)
- Ali Asghari
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Nourmohammadi
- Department of Internal Medicine, Shahid Mostafa Khomeini Hospital, Ilam University of Medical Sciences, Ilam, Iran; Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Hamidreza Majidiani
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Seyyed Ali Shariatzadeh
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Morteza Shams
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran; Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran.
| | - Fattaneh Montazeri
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
22
|
Li YQ, Zheng Z, Liu QX, Lu X, Zhou D, Zhang J, Zheng H, Dai JG. Repositioning of Antiparasitic Drugs for Tumor Treatment. Front Oncol 2021; 11:670804. [PMID: 33996598 PMCID: PMC8117216 DOI: 10.3389/fonc.2021.670804] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
Drug repositioning is a strategy for identifying new antitumor drugs; this strategy allows existing and approved clinical drugs to be innovatively repurposed to treat tumors. Based on the similarities between parasitic diseases and cancer, recent studies aimed to investigate the efficacy of existing antiparasitic drugs in cancer. In this review, we selected two antihelminthic drugs (macrolides and benzimidazoles) and two antiprotozoal drugs (artemisinin and its derivatives, and quinolines) and summarized the research progresses made to date on the role of these drugs in cancer. Overall, these drugs regulate tumor growth via multiple targets, pathways, and modes of action. These antiparasitic drugs are good candidates for comprehensive, in-depth analyses of tumor occurrence and development. In-depth studies may improve the current tumor diagnoses and treatment regimens. However, for clinical application, current investigations are still insufficient, warranting more comprehensive analyses.
Collapse
Affiliation(s)
- Yan-Qi Li
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhi Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Quan-Xing Liu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiao Lu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dong Zhou
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiao Zhang
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ji-Gang Dai
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
23
|
Counihan NA, Modak JK, de Koning-Ward TF. How Malaria Parasites Acquire Nutrients From Their Host. Front Cell Dev Biol 2021; 9:649184. [PMID: 33842474 PMCID: PMC8027349 DOI: 10.3389/fcell.2021.649184] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/24/2021] [Indexed: 01/01/2023] Open
Abstract
Plasmodium parasites responsible for the disease malaria reside within erythrocytes. Inside this niche host cell, parasites internalize and digest host hemoglobin to source amino acids required for protein production. However, hemoglobin does not contain isoleucine, an amino acid essential for Plasmodium growth, and the parasite cannot synthesize it de novo. The parasite is also more metabolically active than its host cell, and the rate at which some nutrients are consumed exceeds the rate at which they can be taken up by erythrocyte transporters. To overcome these constraints, Plasmodium parasites increase the permeability of the erythrocyte membrane to isoleucine and other low-molecular-weight solutes it requires for growth by forming new permeation pathways (NPPs). In addition to the erythrocyte membrane, host nutrients also need to cross the encasing parasitophorous vacuole membrane (PVM) and the parasite plasma membrane to access the parasite. This review outlines recent advances that have been made in identifying the molecular constituents of the NPPs, the PVM nutrient channel, and the endocytic apparatus that transports host hemoglobin and identifies key knowledge gaps that remain. Importantly, blocking the ability of Plasmodium to source essential nutrients is lethal to the parasite, and thus, components of these key pathways represent potential antimalaria drug targets.
Collapse
Affiliation(s)
| | - Joyanta K Modak
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | | |
Collapse
|
24
|
Pooventhiran T, Al-Zaqri N, Alsalme A, Bhattacharyya U, Thomas R. Structural aspects, conformational preference and other physico-chemical properties of Artesunate and the formation of self-assembly with graphene quantum dots: A first principle analysis and surface enhancement of Raman activity investigation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114810] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
25
|
Dolivo D, Weathers P, Dominko T. Artemisinin and artemisinin derivatives as anti-fibrotic therapeutics. Acta Pharm Sin B 2021; 11:322-339. [PMID: 33643815 PMCID: PMC7893118 DOI: 10.1016/j.apsb.2020.09.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022] Open
Abstract
Fibrosis is a pathological reparative process that can occur in most organs and is responsible for nearly half of deaths in the developed world. Despite considerable research, few therapies have proven effective and been approved clinically for treatment of fibrosis. Artemisinin compounds are best known as antimalarial therapeutics, but they also demonstrate antiparasitic, antibacterial, anticancer, and anti-fibrotic effects. Here we summarize literature describing anti-fibrotic effects of artemisinin compounds in in vivo and in vitro models of tissue fibrosis, and we describe the likely mechanisms by which artemisinin compounds appear to inhibit cellular and tissue processes that lead to fibrosis. To consider alternative routes of administration of artemisinin for treatment of internal organ fibrosis, we also discuss the potential for more direct oral delivery of Artemisia plant material to enhance bioavailability and efficacy of artemisinin compared to administration of purified artemisinin drugs at comparable doses. It is our hope that greater understanding of the broad anti-fibrotic effects of artemisinin drugs will enable and promote their use as therapeutics for treatment of fibrotic diseases.
Collapse
Key Words
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- AMPK, AMP-activated protein kinase
- ASP, aspartate aminotransferase
- Artemisia
- Artemisinin
- Artesunate
- BAD, BCL-2-associated agonist of cell death
- BDL, bile duct ligation
- BSA, bovine serum albumin
- BUN, blood urea nitrogen
- CCl4, carbon tetrachloride
- CTGF, connective tissue growth factor
- Col I, type I collagen
- DHA, dihydroartemisinin
- DLA, dried leaf Artemisia
- ECM, extracellular matrix
- EMT, epithelial-to-mesenchymal transition
- FLS, fibroblast-like synoviocyte
- Fibroblast
- Fibrosis
- HA, hyaluronic acid
- HSC, hepatic stellate cell
- HUVEC, human umbilical vein endothelial cell
- LAP, latency-associated peptide
- LDH, lactate dehydrogenase
- MAPK, mitogen-activated protein kinase
- MI, myocardial infarction
- MMP, matrix metalloproteinase
- Myofibroblast
- NAG, N-acetyl-β-d-glucosaminidase
- NICD, Notch intracellular domain
- PCNA, proliferating cell nuclear antigen
- PHN, passive heymann nephritis
- ROS, reactive oxygen species
- STZ, streptozotocin
- Scar
- TGF, β-transforming growth factor-β
- TGF-β
- TIMP, tissue inhibitor of metalloproteinase
- UUO, unilateral ureteral obstruction
- i.p., intraperitoneal
- mTOR, mechanistic target of rapamycin
- sCr, serum creatinine
- α-SMA, smooth muscle α-actin
Collapse
Affiliation(s)
- David Dolivo
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Pamela Weathers
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Tanja Dominko
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| |
Collapse
|
26
|
Debieu S, Solier S, Colombeau L, Versini A, Sindikubwabo F, Forrester A, Müller S, Cañeque T, Rodriguez R. Small Molecule Regulators of Ferroptosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1301:81-121. [PMID: 34370289 DOI: 10.1007/978-3-030-62026-4_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ferroptosis is a dedicated mode of cell death involving iron, reactive oxygen species and lipid peroxidation. Involved in processes such as glutathione metabolism, lysosomal iron retention or interference with lipid metabolism, leading either to activation or inhibition of ferroptosis. Given the implications of ferroptosis in diseases such as cancer, aging, Alzheimer and infectious diseases, new molecular mechanisms underlying ferroptosis and small molecules regulators that target those mechanisms have prompted a great deal of interest. Here, we discuss the current scenario of small molecules modulating ferroptosis and critically assess what is known about their mechanisms of action.
Collapse
Affiliation(s)
- Sylvain Debieu
- Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- PSL Université Paris, Paris, France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666, INSERM U1143, Paris, France
| | - Stéphanie Solier
- Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- PSL Université Paris, Paris, France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666, INSERM U1143, Paris, France
| | - Ludovic Colombeau
- Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- PSL Université Paris, Paris, France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666, INSERM U1143, Paris, France
| | - Antoine Versini
- Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- PSL Université Paris, Paris, France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666, INSERM U1143, Paris, France
| | - Fabien Sindikubwabo
- Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- PSL Université Paris, Paris, France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666, INSERM U1143, Paris, France
| | - Alison Forrester
- Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- PSL Université Paris, Paris, France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666, INSERM U1143, Paris, France
| | - Sebastian Müller
- Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- PSL Université Paris, Paris, France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666, INSERM U1143, Paris, France
| | - Tatiana Cañeque
- Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- PSL Université Paris, Paris, France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666, INSERM U1143, Paris, France
| | - Raphaël Rodriguez
- Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
- PSL Université Paris, Paris, France.
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666, INSERM U1143, Paris, France.
| |
Collapse
|
27
|
Wang C, Cao C, Wang N, Wang X, Wang X, Zhang XC. Cryo-electron microscopy structure of human ABCB6 transporter. Protein Sci 2020; 29:2363-2374. [PMID: 33007128 DOI: 10.1002/pro.3960] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 01/12/2023]
Abstract
Human ATP-binding cassette transporter 6 of subfamily B (ABCB6) is an ABC transporter involved in the translocation toxic metals and anti-cancer drugs. Using cryo-electron microscopy, we determined the molecular structure of full-length ABCB6 in an apo state. The structure of ABCB6 unravels the architecture of a full-length ABCB transporter that harbors two N-terminal transmembrane domains which is indispensable for its ATPase activity in our in vitro assay. A slit-like substrate binding pocket of ABCB6 may accommodate the planar shape of porphyrins, and the existence of a secondary cavity near the mitochondrial intermembrane space side would further facilitate substrate release. Furthermore, the ATPase activity of ABCB6 stimulated with a variety of porphyrin substrates showed different profiles in the presence of glutathione (GSH), suggesting the action of a distinct substrate translocation mechanism depending on the use of GSH as a cofactor.
Collapse
Affiliation(s)
- Chunyu Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Can Cao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Nan Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiangxi Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xianping Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuejun C Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Peng L, Dong Y, Fan H, Cao M, Wu Q, Wang Y, Zhou C, Li S, Zhao C, Wang Y. Traditional Chinese Medicine Regulating Lymphangiogenesis: A Literature Review. Front Pharmacol 2020; 11:1259. [PMID: 33013360 PMCID: PMC7495091 DOI: 10.3389/fphar.2020.01259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/30/2020] [Indexed: 01/13/2023] Open
Abstract
Lymphatic vessels, as an important part of the lymphatic system, form a fine vascular system in humans and play an important role in regulating fluid homeostasis, assisting immune surveillance and transporting dietary lipids. Dysfunction of lymphatic vessels can cause many diseases, including cancer, cardiovascular diseases, lymphedema, inflammation, rheumatoid arthritis. Research on lymphangiogenesis has become increasingly important over the last few decades. Nevertheless, the explicit role of regulating lymphangiogenesis in preventing and treating diseases remains unclear owing to the lack of a deeper understanding of the cellular and molecular pathways of the specific and tissue-specific changes in lymphangiopathy. TCM, consisting of compound extracted from TCM, Injections of single TCM and formula, is an important complementary strategy for treating disease in China. Lots of valuable traditional Chinese medicines are used as substitutes or supplements in western countries. As one of the main natural resources, these TCM are widely used in new drug research and development in Asia. Moreover, as a historical and cultural heritage, TCM has been widely applied to clinical research on lymphangiogenesis leveraging new technologies recently. Available studies show that TCM has an explicit effect on the regulation of lymphatic regeneration. This review aims to clarify the function and mechanisms, especially the inhibitory effect of TCM in facilitating and inhibiting lymphatic regeneration.
Collapse
Affiliation(s)
- Longping Peng
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yidan Dong
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Fan
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Cao
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiong Wu
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Wang
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chang Zhou
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuchun Li
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Zhao
- Vascular Disease Department, Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Youhua Wang
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
29
|
The potential of artemisinins as anti-obesity agents via modulating the immune system. Pharmacol Ther 2020; 216:107696. [PMID: 33022301 DOI: 10.1016/j.pharmthera.2020.107696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
Abstract
Artemisinin and its derivatives are the most effective antimalarial drugs. Besides anti-malarial activity, artemisinin and its derivatives have displayed wide-spectrum bioactivities such as anti-parasite, anti-tumor, and anti-obesity effects. Obesity is an epidemic worldwide which is a big threat to human health, but there are only a few approved anti-obesity drugs in the world. Also, these drugs are efficient to limited patients partly because their safety and efficacy are questioned. Anti-inflammatory therapies may be valuable in obesity treatment since growing evidence shows chronic metabolic inflammation is implicated in metabolic disease pathogenesis. As artemisinin and its derivatives display effective anti-inflammatory and immunoregulatory properties with less toxicity, it provides an insight for novel drug development in obesity therapeutic strategies via immune-regulatory mechanisms. In this review, the potential of artemisinin and its derivatives to treat various metabolic diseases such as obesity and diabetes is discussed.
Collapse
|
30
|
Pillat MM, Krüger A, Guimarães LMF, Lameu C, de Souza EE, Wrenger C, Ulrich H. Insights in Chloroquine Action: Perspectives and Implications in Malaria and COVID-19. Cytometry A 2020; 97:872-881. [PMID: 32686260 PMCID: PMC7404934 DOI: 10.1002/cyto.a.24190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022]
Abstract
Malaria is a threat to human mankind and kills about half a million people every year. On the other hand, COVID-19 resulted in several hundred thousand deaths since December 2019 and remains without an efficient and safe treatment. The antimalarials chloroquine (CQ) and its analog, hydroxychloroquine (HCQ), have been tested for COVID-19 treatment, and several conflicting evidence has been obtained. Therefore, the aim of this review was to summarize the evidence regarding action mechanisms of these compounds against Plasmodium and SARS-CoV-2 infection, together with cytometry applications. CQ and HCQ act on the renin angiotensin system, with possible implications on the cardiorespiratory system. In this context, flow and image cytometry emerge as powerful technologies to investigate the mechanism of therapeutic candidates, as well as for the identification of the immune response and prognostics of disease severity. Data from the large randomized trials support the conclusion that CQ and HCQ do not provide any clinical improvements in disease severity and progression of SARS-CoV-2 patients, as well as they do not present any solid evidence of increased serious side effects. These drugs are safe and effective antimalarials agents, but in SARS-CoV-2 patients, they need further studies in the context of clinical trials. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Micheli Mainardi Pillat
- Department of Microbiology and ParasitologyHealth Sciences Center, Federal University of Santa MariaSanta MariaRio Grande do SulBrazil
| | - Arne Krüger
- Department of Parasitology, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
| | | | - Claudiana Lameu
- Department of BiochemistryInstitute of Chemistry, University of São PauloSão PauloBrazil
| | - Edmarcia Elisa de Souza
- Department of Parasitology, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
| | - Carsten Wrenger
- Department of Parasitology, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
| | - Henning Ulrich
- Department of BiochemistryInstitute of Chemistry, University of São PauloSão PauloBrazil
| |
Collapse
|
31
|
Bonepally KR, Takahashi N, Matsuoka N, Koi H, Mizoguchi H, Hiruma T, Ochiai K, Suzuki S, Yamagishi Y, Oikawa H, Ishiyama A, Hokari R, Iwatsuki M, Otoguro K, O Mura S, Kato N, Oguri H. Rapid and Systematic Exploration of Chemical Space Relevant to Artemisinins: Anti-malarial Activities of Skeletally Diversified Tetracyclic Peroxides and 6-Aza-artemisinins. J Org Chem 2020; 85:9694-9712. [PMID: 32610901 DOI: 10.1021/acs.joc.0c01017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To achieve both structural changes and rapid synthesis of the tetracyclic scaffold relevant to artemisinins, we explored two kinds of de novo synthetic approaches that generate both skeletally diversified tetracyclic peroxides and 6-aza-artemisinins. The anti-malarial activities of the tetracyclic peroxides with distinct skeletal arrays, however, were moderate and far inferior to artemisinins. Given the privileged scaffold of artemisinins, we next envisioned element implantation at the C6 position with a nitrogen without the trimmings of substituents and functional groups. This molecular design allowed the deep-seated structural modification of the hitherto unexplored cyclohexane moiety (C-ring) while keeping the three-dimensional structure of artemisinins. Notably, this approach induced dramatic changes of retrosynthetic transforms that allow an expeditious catalytic asymmetric synthesis with generation of substitutional variations at three sites (N6, C9, and C3) of the 6-aza-artemisinins. These de novo synthetic approaches led to the lead discovery with substantial intensification of the in vivo activities, which undermine the prevailing notion that the C-ring of artemisinins appears to be merely a structural unit but to be a functional area as the anti-malarial pharmacophore. Furthermore, we unexpectedly found that racemic 6-aza-artemisinin (33) exerted exceedingly potent in vivo efficacies superior to the chiral one and the first-line drug, artesunate.
Collapse
Affiliation(s)
- Karunakar Reddy Bonepally
- Division of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Norihito Takahashi
- Division of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Naoya Matsuoka
- Division of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Hikari Koi
- Division of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Haruki Mizoguchi
- Division of Chemistry, Graduate School of Science, Hokkaido University, North 10 West 8, Kitaku, Sapporo 060-0810, Japan
| | - Takahisa Hiruma
- Division of Chemistry, Graduate School of Science, Hokkaido University, North 10 West 8, Kitaku, Sapporo 060-0810, Japan
| | - Kyohei Ochiai
- Division of Chemistry, Graduate School of Science, Hokkaido University, North 10 West 8, Kitaku, Sapporo 060-0810, Japan
| | - Shun Suzuki
- Division of Chemistry, Graduate School of Science, Hokkaido University, North 10 West 8, Kitaku, Sapporo 060-0810, Japan
| | - Yutaka Yamagishi
- Division of Chemistry, Graduate School of Science, Hokkaido University, North 10 West 8, Kitaku, Sapporo 060-0810, Japan
| | - Hideaki Oikawa
- Division of Chemistry, Graduate School of Science, Hokkaido University, North 10 West 8, Kitaku, Sapporo 060-0810, Japan
| | - Aki Ishiyama
- Research Center for Tropical Diseases, O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Rei Hokari
- Research Center for Tropical Diseases, O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masato Iwatsuki
- Research Center for Tropical Diseases, O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kazuhiko Otoguro
- Research Center for Tropical Diseases, O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Satoshi O Mura
- Research Center for Tropical Diseases, O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Nobutaka Kato
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Hiroki Oguri
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
32
|
Rosenthal MR, Ng CL. Plasmodium falciparum Artemisinin Resistance: The Effect of Heme, Protein Damage, and Parasite Cell Stress Response. ACS Infect Dis 2020; 6:1599-1614. [PMID: 32324369 DOI: 10.1021/acsinfecdis.9b00527] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite a significant decline in morbidity and mortality over the last two decades, in 2018 there were 228 million reported cases of malaria and 405000 malaria-related deaths. Artemisinin, the cornerstone of artemisinin-based combination therapies, is the most potent drug in the antimalarial armamentarium against falciparum malaria. Heme-mediated activation of artemisinin and its derivatives results in widespread parasite protein alkylation, which is thought to lead to parasite death. Alarmingly, cases of decreased artemisinin efficacy have been widely detected across Cambodia and in neighboring countries, and a few cases have been reported in the Guiana Shield, India, and Africa. The grim prospect of widespread artemisinin resistance propelled a concerted effort to understand the mechanisms of artemisinin action and resistance. The identification of genetic markers and the knowledge of molecular mechanisms underpinning artemisinin resistance allow prospective surveillance and inform future drug development strategies, respectively. Here, we highlight recent advances in our understanding of how parasite vesicle trafficking, hemoglobin digestion, and cell stress responses contribute to artemisinin resistance.
Collapse
Affiliation(s)
- Melissa R. Rosenthal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Caroline L. Ng
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
33
|
Chowdhury P, Ray S, Chakraborty A, Sen S, Dasgupta AK, Sengupta S. Non-synonymous amino acid alterations in PfEBA-175 modulate the merozoite ligand's ability to interact with host's Glycophorin A receptor. INFECTION GENETICS AND EVOLUTION 2020; 85:104418. [PMID: 32561295 DOI: 10.1016/j.meegid.2020.104418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/03/2020] [Accepted: 06/07/2020] [Indexed: 11/24/2022]
Abstract
The pathological outcome of malaria due to Plasmodium falciparum infection depends largely on erythrocyte invasion by blood-stage merozoites which employ a cascade of interactions occurring between parasite ligands and RBC receptors. In a previous study exploring the genetic diversity of region-II of PfEBA-175, a ligand that plays a crucial part in parasite's RBC entry through Glycophorin A (GPA) receptor, we demonstrated that F2 domain of region-II underwent positive selection in Indian P. falciparum population through the accumulation of non-synonymous polymorphisms. Here, we examine the functional impact of two highly prevalent non-synonymous alterations in F2, namely Q584E & E592A, using a battery of molecular, biophysical and in-silico techniques. Application of circular dichroism, FTIR, fluorescence spectroscopy reveals that secondary and three-dimensional folding of recombinant-F2 protein carrying 584E and 592A residues (F2-Mut) differs significantly from that carrying 584Q and 592E (F2-3D7). A comparison of spectroscopic and thermodynamic parameters shows that F2-Mut is capable of forming a complex with GPA with higher efficiency compared to F2-3D7. In silico docking predicts both artemisinin and artesunate possess the capacity of slipping into the GPA binding crevices of PfEBA-175 and disrupt PfEBA-GPA association. However, the estimated affinity of artesunate towards PfEBA-175 with 584E and 592A residues is higher than that of artemisinin. Thermodynamic parameters computed using isotherms are concordant with this in-silico prediction. Together, our data suggest that the presence of amino acid alterations in F2 provide structural and functional stability favoring PfEBA-GPA interaction and artesunate can efficiently disrupt the interaction between GPA and PfEBA-175 even carrying altered amino acid residues. The present study alerts the malaria research community by presenting evidence that the parasite is gaining evolutionary fitness by cultivating genetic alterations in many of its proteins.
Collapse
Affiliation(s)
- Pramita Chowdhury
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, West Bengal, India
| | - Sanhita Ray
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, West Bengal, India
| | - Ayan Chakraborty
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, West Bengal, India
| | - Srikanta Sen
- Mitra Tower, Lake Town, Block-A, Kolkata 700 089, India
| | - Anjan Kr Dasgupta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, West Bengal, India
| | - Sanghamitra Sengupta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, West Bengal, India.
| |
Collapse
|
34
|
Sylvestre-Gonon E, Schwartz M, Girardet JM, Hecker A, Rouhier N. Is there a role for tau glutathione transferases in tetrapyrrole metabolism and retrograde signalling in plants? Philos Trans R Soc Lond B Biol Sci 2020; 375:20190404. [PMID: 32362257 DOI: 10.1098/rstb.2019.0404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In plants, tetrapyrrole biosynthesis occurs in chloroplasts, the reactions being catalysed by stromal and membrane-bound enzymes. The tetrapyrrole moiety is a backbone for chlorophylls and cofactors such as sirohaems, haems and phytochromobilins. Owing to this diversity, the potential cytotoxicity of some precursors and the associated synthesis costs, a tight control exists to adjust the demand and the fluxes for each molecule. After synthesis, haems and phytochromobilins are incorporated into proteins found in other subcellular compartments. However, there is only very limited information about the chaperones and membrane transporters involved in the trafficking of these molecules. After summarizing evidence indicating that glutathione transferases (GST) may be part of the transport and/or degradation processes of porphyrin derivatives, we provide experimental data indicating that tau glutathione transferases (GSTU) bind protoporphyrin IX and haem moieties and use structural modelling to identify possible residues responsible for their binding in the active site hydrophobic pocket. Finally, we discuss the possible roles associated with the binding, catalytic transformation (i.e. glutathione conjugation) and/or transport of tetrapyrroles by GSTUs, considering their subcellular localization and capacity to interact with ABC transporters. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
| | | | | | - Arnaud Hecker
- Université de Lorraine, INRAE, IAM, 54000 Nancy, France
| | | |
Collapse
|
35
|
Hentzschel F, Mitesser V, Fraschka SAK, Krzikalla D, Carrillo EH, Berkhout B, Bártfai R, Mueller AK, Grimm D. Gene knockdown in malaria parasites via non-canonical RNAi. Nucleic Acids Res 2020; 48:e2. [PMID: 31680162 PMCID: PMC7145648 DOI: 10.1093/nar/gkz927] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022] Open
Abstract
The lack of endogenous RNAi machinery in the malaria parasite Plasmodium hampers gene annotation and hence antimalarial drug and vaccine development. Here, we engineered rodent Plasmodium berghei to express a minimal, non-canonical RNAi machinery that solely requires Argonaute 2 (Ago2) and a modified short hairpin RNA, so-called AgoshRNA. Using this strategy, we achieved robust and specific gene knockdown throughout the entire parasite life cycle. We also successfully silenced the endogenous gene perforin-like protein 2, phenocopying a full gene knockout. Transcriptionally restricting Ago2 expression to the liver stage further enabled us to perform a stage-specific gene knockout. The RNAi-competent Plasmodium lines reported here will be a valuable resource for loss-of-function phenotyping of the many uncharacterized genes of Plasmodium in low or high throughput, without the need to engineer the target gene locus. Thereby, our new strategy and transgenic Plasmodium lines will ultimately benefit the discovery of urgently needed antimalarial drug and vaccine candidates. Generally, the ability to render RNAi-negative organisms RNAi-competent by mere introduction of two components, Ago2 and AgoshRNA, is a unique paradigm that should find broad applicability in other species.
Collapse
Affiliation(s)
- Franziska Hentzschel
- Heidelberg University Hospital, Center for Infectious Diseases / Parasitology, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.,Heidelberg University Hospital, Center for Infectious Diseases / Virology, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.,BioQuant Center, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Vera Mitesser
- Heidelberg University Hospital, Center for Infectious Diseases / Parasitology, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.,Heidelberg University Hospital, Center for Infectious Diseases / Virology, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.,BioQuant Center, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | | | - Daria Krzikalla
- Heidelberg University Hospital, Center for Infectious Diseases / Parasitology, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.,Heidelberg University Hospital, Center for Infectious Diseases / Virology, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.,BioQuant Center, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Elena Herrera Carrillo
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Meibergdreef 15, K3-110, 1105 AZ Amsterdam, The Netherlands
| | - Ben Berkhout
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Meibergdreef 15, K3-110, 1105 AZ Amsterdam, The Netherlands
| | - Richárd Bártfai
- Radboud University, Dept. of Molecular Biology, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Ann-Kristin Mueller
- Heidelberg University Hospital, Center for Infectious Diseases / Parasitology, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.,German Center for Infection Research (DZIF), partner site Heidelberg
| | - Dirk Grimm
- Heidelberg University Hospital, Center for Infectious Diseases / Virology, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.,BioQuant Center, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.,German Center for Infection Research (DZIF), partner site Heidelberg.,German Center for Cardiovascular Research (DZHK), partner site Heidelberg
| |
Collapse
|
36
|
Colón-Lorenzo EE, Colón-López DD, Vega-Rodríguez J, Dupin A, Fidock DA, Baerga-Ortiz A, Ortiz JG, Bosch J, Serrano AE. Structure-Based Screening of Plasmodium berghei Glutathione S-Transferase Identifies CB-27 as a Novel Antiplasmodial Compound. Front Pharmacol 2020; 11:246. [PMID: 32256353 PMCID: PMC7090221 DOI: 10.3389/fphar.2020.00246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/24/2020] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum parasites are increasingly drug-resistant, requiring the search for novel antimalarials with distinct modes of action. Enzymes in the glutathione pathway, including glutathione S-transferase (GST), show promise as novel antimalarial targets. This study aims to better understand the biological function of Plasmodium GST, assess its potential as a drug target, and identify novel antiplasmodial compounds using the rodent model P. berghei. By using reverse genetics, we provided evidence that GST is essential for survival of P. berghei intra-erythrocytic stages and is a valid target for drug development. A structural model of the P. berghei glutathione S-transferase (PbGST) protein was generated and used in a structure-based screening of 900,000 compounds from the ChemBridge Hit2Lead library. Forty compounds were identified as potential inhibitors and analyzed in parasite in vitro drug susceptibility assays. One compound, CB-27, exhibited antiplasmodial activity with an EC50 of 0.5 μM toward P. berghei and 0.9 μM toward P. falciparum multidrug-resistant Dd2 clone B2 parasites. Moreover, CB-27 showed a concentration-dependent inhibition of the PbGST enzyme without inhibiting the human ortholog. A shape similarity screening using CB-27 as query resulted in the identification of 24 novel chemical scaffolds, with six of them showing antiplasmodial activity ranging from EC50 of 0.6-4.9 μM. Pharmacokinetic and toxicity predictions suggest that the lead compounds have drug-likeness properties. The antiplasmodial potency, the absence of hemolytic activity, and the predicted drug-likeness properties position these compounds for lead optimization and further development as antimalarials.
Collapse
Affiliation(s)
- Emilee E. Colón-Lorenzo
- Department of Microbiology and Medical Zoology, University of Puerto Rico School of Medicine, San Juan, PR, United States
| | - Daisy D. Colón-López
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Joel Vega-Rodríguez
- Department of Microbiology and Medical Zoology, University of Puerto Rico School of Medicine, San Juan, PR, United States
| | - Alice Dupin
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, United States
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, United States
- Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, United States
| | - Abel Baerga-Ortiz
- Department of Biochemistry, University of Puerto Rico School of Medicine, San Juan, PR, United States
| | - José G. Ortiz
- Department of Pharmacology and Toxicology, University of Puerto Rico School of Medicine, San Juan, PR, United States
| | - Jürgen Bosch
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Division of Pediatric Pulmonology and Allergy/Immunology, Case Western Reserve University, Cleveland, OH, United States
- InterRayBio, LLC, Baltimore, MD, United States
| | - Adelfa E. Serrano
- Department of Microbiology and Medical Zoology, University of Puerto Rico School of Medicine, San Juan, PR, United States
| |
Collapse
|
37
|
Yang W, Chen X, Li Y, Guo S, Wang Z, Yu X. Advances in Pharmacological Activities of Terpenoids. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20903555] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Terpenoids, the most abundant compounds in natural products, are a set of important secondary metabolites in plants with diverse structures. Terpenoids play key roles in plant growth and development, response to the environment, and physiological processes. As raw materials, terpenoids were also widely used in pharmaceuticals, food, and cosmetics industries. Terpenoids possess antitumor, anti-inflammatory, antibacterial, antiviral, antimalarial effects, promote transdermal absorption, prevent and treat cardiovascular diseases, and have hypoglycemic activities. In addition, previous studies have also found that terpenoids have many potential applications, such as insect resistance, immunoregulation, antioxidation, antiaging, and neuroprotection. Terpenoids have a complex structure with diverse effects and different mechanisms of action. Activities and mechanisms of terpenoids were reviewed in this paper. The development and application prospect of terpenoid compounds were also prospected, which provides a useful reference for new drug discovery and drug design based on terpenoids.
Collapse
Affiliation(s)
| | - Xu Chen
- School of Pharmacy, Linyi University, P. R. China
| | - Yanli Li
- School of Pharmacy, Linyi University, P. R. China
| | - Shaofen Guo
- School of Pharmacy, Linyi University, P. R. China
| | - Zhen Wang
- School of Pharmacy, Linyi University, P. R. China
| | - Xiuling Yu
- School of Pharmacy, Linyi University, P. R. China
| |
Collapse
|
38
|
Nessel T, Beck JM, Rayatpisheh S, Jami-Alahmadi Y, Wohlschlegel JA, Goldberg DE, Beck JR. EXP1 is required for organisation of EXP2 in the intraerythrocytic malaria parasite vacuole. Cell Microbiol 2020; 22:e13168. [PMID: 31990132 DOI: 10.1111/cmi.13168] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/04/2019] [Accepted: 01/07/2020] [Indexed: 12/17/2022]
Abstract
Intraerythrocytic malaria parasites reside within a parasitophorous vacuole membrane (PVM) that closely overlays the parasite plasma membrane. Although the PVM is the site of several transport activities essential to parasite survival, the basis for organisation of this membrane system is unknown. Here, we performed proximity labeling at the PVM with BioID2, which highlighted a group of single-pass integral membrane proteins that constitute a major component of the PVM proteome but whose function remains unclear. We investigated EXP1, the longest known member of this group, by adapting a CRISPR/Cpf1 genome editing system to install the TetR-DOZI-aptamers system for conditional translational control. Importantly, although EXP1 was required for intraerythrocytic development, a previously reported in vitro glutathione S-transferase activity could not account for this essential EXP1 function in vivo. EXP1 knockdown was accompanied by profound changes in vacuole ultrastructure, including apparent increased separation of the PVM from the parasite plasma membrane and formation of abnormal membrane structures. Furthermore, although activity of the Plasmodium translocon of exported proteins was not impacted by depletion of EXP1, the distribution of the translocon pore-forming protein EXP2 but not the HSP101 unfoldase was substantially altered. Collectively, our results reveal a novel PVM defect that indicates a critical role for EXP1 in maintaining proper organisation of EXP2 within the PVM.
Collapse
Affiliation(s)
- Timothy Nessel
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa
| | - John M Beck
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa
| | - Shima Rayatpisheh
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California
| | - Daniel E Goldberg
- Departments of Medicine and Molecular Microbiology, Washington University, St. Louis, Missouri
| | - Josh R Beck
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa.,Departments of Medicine and Molecular Microbiology, Washington University, St. Louis, Missouri
| |
Collapse
|
39
|
Lee YS, Kalimuthu K, Seok Park Y, Makala H, Watkins SC, Choudry MHA, Bartlett DL, Tae Kwon Y, Lee YJ. Ferroptotic agent-induced endoplasmic reticulum stress response plays a pivotal role in the autophagic process outcome. J Cell Physiol 2020; 235:6767-6778. [PMID: 31985039 DOI: 10.1002/jcp.29571] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/13/2020] [Indexed: 01/17/2023]
Abstract
Ferroptosis has been reported as a unique form of cell death. However, in recent years, researchers have increasingly challenged the uniqueness of ferroptosis compared to other types of cell death. In this study, we examined whether ferroptosis shares cell death pathways with other types of cell death, especially autophagy, via the autophagic process. Here, we observed that ferroptosis inducers (artesunate [ART] and erastin [ERA]) and autophagy inducers (bortezomib [BOR] and XIE62-1004) led to autophagosome formation via the endoplasmic reticulum (ER) stress response. Unlike XIE62-1004, ART, ERA, and BOR, which affect glutathione production or utilization, induced oxidative stress responses-an increase in the levels of heme oxygenase-1 and lipid peroxidation. Oxidative stress responses were attenuated by deletion of autophagy-related gene-5 or treatment with autophagy inhibitors (bafilomycin and chloroquine). Our studies provide an overview of common death pathways-the ER stress response-associated autophagic process in ferroptosis and autophagy. We also highlight the role played by glutathione redox system in the outcome of the autophagic process.
Collapse
Affiliation(s)
- Young-Sun Lee
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kalishwaralal Kalimuthu
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yong Seok Park
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hima Makala
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - M Haroon A Choudry
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David L Bartlett
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center and Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yong J Lee
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
40
|
The parasitophorous vacuole of the blood-stage malaria parasite. Nat Rev Microbiol 2020; 18:379-391. [PMID: 31980807 DOI: 10.1038/s41579-019-0321-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2019] [Indexed: 12/31/2022]
Abstract
The pathology of malaria is caused by infection of red blood cells with unicellular Plasmodium parasites. During blood-stage development, the parasite replicates within a membrane-bound parasitophorous vacuole. A central nexus for host-parasite interactions, this unique parasite shelter functions in nutrient acquisition, subcompartmentalization and the export of virulence factors, making its functional molecules attractive targets for the development of novel intervention strategies to combat the devastating impact of malaria. In this Review, we explore the origin, development, molecular composition and functions of the parasitophorous vacuole of Plasmodium blood stages. We also discuss the relevance of the malaria parasite's intravacuolar lifestyle for successful erythrocyte infection and provide perspectives for future research directions in parasitophorous vacuole biology.
Collapse
|
41
|
Reeder SM, Reuschel EL, Bah MA, Yun K, Tursi NJ, Kim KY, Chu J, Zaidi FI, Yilmaz I, Hart RJ, Perrin B, Xu Z, Humeau L, Weiner DB, Aly ASI. Synthetic DNA Vaccines Adjuvanted with pIL-33 Drive Liver-Localized T Cells and Provide Protection from Plasmodium Challenge in a Mouse Model. Vaccines (Basel) 2020; 8:vaccines8010021. [PMID: 31936739 PMCID: PMC7157753 DOI: 10.3390/vaccines8010021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 12/11/2022] Open
Abstract
The need for a malaria vaccine is indisputable. A single vaccine for Plasmodium pre-erythrocytic stages targeting the major sporozoite antigen circumsporozoite protein (CSP) has had partial success. Additionally, CD8+ T cells targeting liver-stage (LS) antigens induced by live attenuated sporozoite vaccines were associated with protection in human challenge experiments. To further evaluate protection mediated by LS antigens, we focused on exported pre-erythrocytic proteins (exported protein 1 (EXP1), profilin (PFN), exported protein 2 (EXP2), inhibitor of cysteine proteases (ICP), transmembrane protein 21 (TMP21), and upregulated in infective sporozoites-3 (UIS3)) expressed in all Plasmodium species and designed optimized, synthetic DNA (synDNA) immunogens. SynDNA antigen cocktails were tested with and without the molecular adjuvant plasmid IL-33. Immunized animals developed robust T cell responses including induction of antigen-specific liver-localized CD8+ T cells, which were enhanced by the co-delivery of plasmid IL-33. In total, 100% of mice in adjuvanted groups and 71%–88% in non-adjuvanted groups were protected from blood-stage disease following Plasmodium yoelii sporozoite challenge. This study supports the potential of synDNA LS antigens as vaccine components for malaria parasite infection.
Collapse
Affiliation(s)
- Sophia M. Reeder
- The Vaccine Center, Wistar Institute, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emma L. Reuschel
- The Vaccine Center, Wistar Institute, Philadelphia, PA 19104, USA
| | - Mamadou A. Bah
- The Vaccine Center, Wistar Institute, Philadelphia, PA 19104, USA
| | - Kun Yun
- The Vaccine Center, Wistar Institute, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Kevin Y. Kim
- The Vaccine Center, Wistar Institute, Philadelphia, PA 19104, USA
| | - Jacqueline Chu
- The Vaccine Center, Wistar Institute, Philadelphia, PA 19104, USA
| | - Faraz I. Zaidi
- The Vaccine Center, Wistar Institute, Philadelphia, PA 19104, USA
| | - Ilknur Yilmaz
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul 34820, Turkey
| | - Robert J. Hart
- Department of Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Benjamin Perrin
- Department of Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Ziyang Xu
- The Vaccine Center, Wistar Institute, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laurent Humeau
- Inovio Pharmaceuticals, Inc., Plymouth Meeting, PA 19462, USA
| | - David B. Weiner
- The Vaccine Center, Wistar Institute, Philadelphia, PA 19104, USA
- Correspondence: (D.B.W.); (A.S.I.A.)
| | - Ahmed S. I. Aly
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul 34820, Turkey
- Department of Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
- Correspondence: (D.B.W.); (A.S.I.A.)
| |
Collapse
|
42
|
Pham M, Lichtarge O. Graph-based information diffusion method for prioritizing functionally related genes in protein-protein interaction networks. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2020; 25:439-450. [PMID: 31797617 PMCID: PMC7043368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Shortest path length methods are routinely used to validate whether genes of interest are functionally related to each other based on biological network information. However, the methods are computationally intensive, impeding extensive utilization of network information. In addition, non-weighted shortest path length approach, which is more frequently used, often treat all network connections equally without taking into account of confidence levels of the associations. On the other hand, graph-based information diffusion method, which employs both the presence and confidence weights of network edges, can efficiently explore large networks and has previously detected meaningful biological patterns. Therefore, in this study, we hypothesized that the graph-based information diffusion method could prioritize genes with relevant functions more efficiently and accurately than the shortest path length approaches. We demonstrated that the graph-based information diffusion method substantially differentiated not only genes participating in same biological pathways (p << 0.0001) but also genes associated with specific human drug-induced clinical symptoms (p << 0.0001) from random. Furthermore, the diffusion method prioritized these functionally related genes faster and more accurately than the shortest path length approaches (pathways: p = 2.7e-28, clinical symptoms: p = 0.032). These data show the graph-based information diffusion method can be routinely used for robust prioritization of functionally related genes, facilitating efficient network validation and hypothesis generation, especially for human phenotype-specific genes.
Collapse
Affiliation(s)
- Minh Pham
- Integrative Molecular and Biomedical Sciences Graduate Program, and Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA,
| | | |
Collapse
|
43
|
Kagan VE, Tyurina YY, Vlasova II, Kapralov AA, Amoscato AA, Anthonymuthu TS, Tyurin VA, Shrivastava IH, Cinemre FB, Lamade A, Epperly MW, Greenberger JS, Beezhold DH, Mallampalli RK, Srivastava AK, Bayir H, Shvedova AA. Redox Epiphospholipidome in Programmed Cell Death Signaling: Catalytic Mechanisms and Regulation. Front Endocrinol (Lausanne) 2020; 11:628079. [PMID: 33679610 PMCID: PMC7933662 DOI: 10.3389/fendo.2020.628079] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/21/2020] [Indexed: 01/16/2023] Open
Abstract
A huge diversification of phospholipids, forming the aqueous interfaces of all biomembranes, cannot be accommodated within a simple concept of their role as membrane building blocks. Indeed, a number of signaling functions of (phospho)lipid molecules has been discovered. Among these signaling lipids, a particular group of oxygenated polyunsaturated fatty acids (PUFA), so called lipid mediators, has been thoroughly investigated over several decades. This group includes oxygenated octadecanoids, eicosanoids, and docosanoids and includes several hundreds of individual species. Oxygenation of PUFA can occur when they are esterified into major classes of phospholipids. Initially, these events have been associated with non-specific oxidative injury of biomembranes. An alternative concept is that these post-synthetically oxidatively modified phospholipids and their adducts with proteins are a part of a redox epiphospholipidome that represents a rich and versatile language for intra- and inter-cellular communications. The redox epiphospholipidome may include hundreds of thousands of individual molecular species acting as meaningful biological signals. This review describes the signaling role of oxygenated phospholipids in programs of regulated cell death. Although phospholipid peroxidation has been associated with almost all known cell death programs, we chose to discuss enzymatic pathways activated during apoptosis and ferroptosis and leading to peroxidation of two phospholipid classes, cardiolipins (CLs) and phosphatidylethanolamines (PEs). This is based on the available LC-MS identification and quantitative information on the respective peroxidation products of CLs and PEs. We focused on molecular mechanisms through which two proteins, a mitochondrial hemoprotein cytochrome c (cyt c), and non-heme Fe lipoxygenase (LOX), change their catalytic properties to fulfill new functions of generating oxygenated CL and PE species. Given the high selectivity and specificity of CL and PE peroxidation we argue that enzymatic reactions catalyzed by cyt c/CL complexes and 15-lipoxygenase/phosphatidylethanolamine binding protein 1 (15LOX/PEBP1) complexes dominate, at least during the initiation stage of peroxidation, in apoptosis and ferroptosis. We contrast cell-autonomous nature of CLox signaling in apoptosis correlating with its anti-inflammatory functions vs. non-cell-autonomous ferroptotic signaling facilitating pro-inflammatory (necro-inflammatory) responses. Finally, we propose that small molecule mechanism-based regulators of enzymatic phospholipid peroxidation may lead to highly specific anti-apoptotic and anti-ferroptotic therapeutic modalities.
Collapse
Affiliation(s)
- Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Irina I Vlasova
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander A Kapralov
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew A Amoscato
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tamil S Anthonymuthu
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vladimir A Tyurin
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Indira H Shrivastava
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
- Office of the Director, Health Effects Laboratory Division, NIOSH/CDC, Morgantown, WV, United States
| | - Fatma B Cinemre
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew Lamade
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Donald H Beezhold
- Office of the Director, Health Effects Laboratory Division, NIOSH/CDC, Morgantown, WV, United States
| | - Rama K Mallampalli
- Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Apurva K Srivastava
- Laboratory of Human Toxicology and Pharmacology, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Hulya Bayir
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anna A Shvedova
- Exposure Assessment Branch, The National Institute for Occupational Safety and Health/Centers for Disease Control and Prevention (NIOSH/CDC), Morgantown, WV, United States
| |
Collapse
|
44
|
Jourdan J, Walz A, Matile H, Schmidt A, Wu J, Wang X, Dong Y, Vennerstrom JL, Schmidt RS, Wittlin S, Mäser P. Stochastic Protein Alkylation by Antimalarial Peroxides. ACS Infect Dis 2019; 5:2067-2075. [PMID: 31626733 DOI: 10.1021/acsinfecdis.9b00264] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antimalarial peroxides such as the phytochemical artemisinin or the synthetic ozonides arterolane and artefenomel undergo reductive cleavage of the pharmacophoric peroxide bond by ferrous heme, released by parasite hemoglobin digestion. The generated carbon-centered radicals alkylate heme in an intramolecular reaction and proteins in an intermolecular reaction. Here, we determine the proteinaceous alkylation signatures of artemisinin and synthetic ozonides in Plasmodium falciparum using alkyne click chemistry probes to identify target proteins by affinity purification and mass spectrometry-based proteomics. Using stringent controls and purification procedures, we identified 25 P. falciparum proteins that were alkylated by the antimalarial peroxides in a peroxide-dependent manner, but the alkylation patterns were more random than we had anticipated. Moreover, there was little overlap in the alkylation signatures identified in this work and those disclosed in previous studies. Our findings suggest that alkylation of parasite proteins by antimalarial peroxides is likely to be a nonspecific, stochastic process.
Collapse
Affiliation(s)
- Joëlle Jourdan
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Annabelle Walz
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Hugues Matile
- F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Alexander Schmidt
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Jianbo Wu
- College of Pharmacy, University of Nebraska Medical Center, 42nd and Emile, Omaha, Nebraska 68198-6125, United States
| | - Xiaofang Wang
- College of Pharmacy, University of Nebraska Medical Center, 42nd and Emile, Omaha, Nebraska 68198-6125, United States
| | - Yuxiang Dong
- College of Pharmacy, University of Nebraska Medical Center, 42nd and Emile, Omaha, Nebraska 68198-6125, United States
| | - Jonathan L. Vennerstrom
- College of Pharmacy, University of Nebraska Medical Center, 42nd and Emile, Omaha, Nebraska 68198-6125, United States
| | - Remo S. Schmidt
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| |
Collapse
|
45
|
Antiplasmodial Activity Assay of 3-Chloro-4-(4-chlorophenoxy) Aniline Combinations with Artesunate or Chloroquine In Vitro and in a Mouse Model. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5153482. [PMID: 31781619 PMCID: PMC6855074 DOI: 10.1155/2019/5153482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/20/2019] [Accepted: 09/11/2019] [Indexed: 11/18/2022]
Abstract
Malaria is the eighth highest contributor to global disease burden with 212 million cases and 429,000 deaths reported in 2015. There is an urgent need to develop multiple target drug to curb growing resistance by Plasmodia due to use of single target drugs and lack of vaccines. Based on a previous study, 3-chloro-4-(4-chlorophenoxy) aniline (ANI) inhibits Plasmodia enoyl acyl carrier protein reductase. This study aimed at evaluating the antiplasmodial activity of ANI combinations with artesunate (AS) or chloroquine (CQ) against P. falciparum in vitro based on the semiautomated microdilution assay and P. berghei in vivo based on Peters' 4-day test. Data were analysed by linear regression using version 5.5 of Statistica, 2000. From the results, on the one hand, a combination of 1.1 ng/ml AS and 3.3 μg/ml of ANI inhibited 50% growth of W2, while a combination of 0.8 ng/ml of AS and 2.6 μg/ml of ANI inhibited 50% growth of 3D7. On the other hand, a combination of 22 ng/ml CQ and 3.7 μg/ml of ANI inhibited 50% growth of W2, while a combination of 4.6 ng/ml CQ and 3.1 μg/ml of ANI inhibited 50% growth of 3D7. In in vivo assays, a combination of ED50 concentrations of AS and ANI cleared all parasites, while 1/2 and 1/4 ED50 combinations inhibited 67.0% and 35.4% parasite growth, respectively. ED50 combinations of CQ and ANI inhibited 81.0% growth of parasites, while 1/2 and 1/4 ED50 combinations inhibited 27.3% and 10.2% parasite growth. Assuming a linear relationship between percentage chemosuppression and combination ratios, only 0.88 mg/kg of AS combined with 1.68 mg/kg of ANI or 1.78 mg/kg of CQ with 3.15 mg/kg of ANI inhibited 50% parasite growth in vivo. ANI combinations with AS or CQ are thus potential antimalarial drug combinations if their clinical efficacy and safety are ascertained.
Collapse
|
46
|
Mesén-Ramírez P, Bergmann B, Tran TT, Garten M, Stäcker J, Naranjo-Prado I, Höhn K, Zimmerberg J, Spielmann T. EXP1 is critical for nutrient uptake across the parasitophorous vacuole membrane of malaria parasites. PLoS Biol 2019; 17:e3000473. [PMID: 31568532 PMCID: PMC6786648 DOI: 10.1371/journal.pbio.3000473] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/10/2019] [Accepted: 09/10/2019] [Indexed: 12/02/2022] Open
Abstract
Intracellular malaria parasites grow in a vacuole delimited by the parasitophorous vacuolar membrane (PVM). This membrane fulfils critical roles for survival of the parasite in its intracellular niche such as in protein export and nutrient acquisition. Using a conditional knockout (KO), we here demonstrate that the abundant integral PVM protein exported protein 1 (EXP1) is essential for parasite survival but that this is independent of its previously postulated function as a glutathione S-transferase (GST). Patch-clamp experiments indicated that EXP1 is critical for the nutrient-permeable channel activity at the PVM. Loss of EXP1 abolished the correct localisation of EXP2, a pore-forming protein required for the nutrient-permeable channel activity and protein export at the PVM. Unexpectedly, loss of EXP1 affected only the nutrient-permeable channel activity of the PVM but not protein export. Parasites with low levels of EXP1 became hypersensitive to low nutrient conditions, indicating that EXP1 indeed is needed for nutrient uptake and experimentally confirming the long-standing hypothesis that the channel activity measured at the PVM is required for parasite nutrient acquisition. Hence, EXP1 is specifically required for the functional expression of EXP2 as the nutrient-permeable channel and is critical for the metabolite supply of malaria parasites. Intracellular malaria parasites reside in a vacuole that is formed by the parasitophorous vacuolar membrane (PVM) that separates the parasite from the host cell. Conditional knock-out reveals that the major integral PVM protein EXP1 is essential for the nutrient permeable channel activity of the PVM, and implicates this channel in parasite nutrient acquisition.
Collapse
Affiliation(s)
- Paolo Mesén-Ramírez
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Bärbel Bergmann
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Thuy Tuyen Tran
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Matthias Garten
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jan Stäcker
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Isabel Naranjo-Prado
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Katharina Höhn
- Electron Microscopy Unit, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tobias Spielmann
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- * E-mail:
| |
Collapse
|
47
|
Wolanin K, Fontinha D, Sanches-Vaz M, Nyboer B, Heiss K, Mueller AK, Prudêncio M. A crucial role for the C-terminal domain of exported protein 1 during the mosquito and hepatic stages of the Plasmodium berghei life cycle. Cell Microbiol 2019; 21:e13088. [PMID: 31364224 PMCID: PMC6771729 DOI: 10.1111/cmi.13088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/25/2019] [Accepted: 07/28/2019] [Indexed: 12/19/2022]
Abstract
Intracellular Plasmodium parasites develop inside a parasitophorous vacuole (PV), a specialised compartment enclosed by a membrane (PVM) that contains proteins of both host and parasite origin. Although exported protein 1 (EXP1) is one of the earliest described parasitic PVM proteins, its function throughout the Plasmodium life cycle remains insufficiently understood. Here, we show that whereas the N-terminus of Plasmodium berghei EXP1 (PbEXP1) is essential for parasite survival in the blood, parasites lacking PbEXP1's entire C-terminal (CT) domain replicate normally in the blood but cause less severe pathology than their wild-type counterparts. Moreover, truncation of PbEXP1's CT domain not only impairs parasite development in the mosquito but also abrogates PbEXP1 localization to the PVM of intrahepatic parasites, severely limiting their replication and preventing their egress into the blood. Our findings highlight the importance of EXP1 during the Plasmodium life cycle and identify this protein as a promising target for antiplasmodial intervention.
Collapse
Affiliation(s)
- Kamil Wolanin
- Parasitology Unit, Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Diana Fontinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Margarida Sanches-Vaz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Britta Nyboer
- Parasitology Unit, Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Kirsten Heiss
- Parasitology Unit, Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany.,German Centre for Infection Research, Heidelberg Division, Heidelberg, Germany.,PEPperPRINT GmbH, Research & Development Division, Heidelberg, Germany
| | - Ann-Kristin Mueller
- Parasitology Unit, Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany.,German Centre for Infection Research, Heidelberg Division, Heidelberg, Germany
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
48
|
Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting Ferroptosis to Iron Out Cancer. Cancer Cell 2019; 35:830-849. [PMID: 31105042 DOI: 10.1016/j.ccell.2019.04.002] [Citation(s) in RCA: 1553] [Impact Index Per Article: 258.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/18/2019] [Accepted: 04/05/2019] [Indexed: 02/06/2023]
Abstract
One of the key challenges in cancer research is how to effectively kill cancer cells while leaving the healthy cells intact. Cancer cells often have defects in cell death executioner mechanisms, which is one of the main reasons for therapy resistance. To enable growth, cancer cells exhibit an increased iron demand compared with normal, non-cancer cells. This iron dependency can make cancer cells more vulnerable to iron-catalyzed necrosis, referred to as ferroptosis. The identification of FDA-approved drugs as ferroptosis inducers creates high expectations for the potential of ferroptosis to be a new promising way to kill therapy-resistant cancers.
Collapse
Affiliation(s)
- Behrouz Hassannia
- VIB Center for Inflammation Research (IRC), Ghent, Belgium; Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- VIB Center for Inflammation Research (IRC), Ghent, Belgium; Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium; Methusalem Program, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- VIB Center for Inflammation Research (IRC), Ghent, Belgium; Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium; Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; Ferroptosis And Inflammation Research (FAIR), VIB-Ghent University and University of Antwerp, Belgium.
| |
Collapse
|
49
|
Lin CH, Konecki DM, Liu M, Wilson SJ, Nassar H, Wilkins AD, Gleich DF, Lichtarge O. Multimodal network diffusion predicts future disease-gene-chemical associations. Bioinformatics 2019; 35:1536-1543. [PMID: 30304494 PMCID: PMC6499233 DOI: 10.1093/bioinformatics/bty858] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/14/2018] [Accepted: 10/08/2018] [Indexed: 01/05/2023] Open
Abstract
MOTIVATION Precision medicine is an emerging field with hopes to improve patient treatment and reduce morbidity and mortality. To these ends, computational approaches have predicted associations among genes, chemicals and diseases. Such efforts, however, were often limited to using just some available association types. This lowers prediction coverage and, since prior evidence shows that integrating heterogeneous data is likely beneficial, it may limit accuracy. Therefore, we systematically tested whether using more association types improves prediction. RESULTS We study multimodal networks linking diseases, genes and chemicals (drugs) by applying three diffusion algorithms and varying information content. Ten-fold cross-validation shows that these networks are internally consistent, both within and across association types. Also, diffusion methods recovered missing edges, even if all the edges from an entire mode of association were removed. This suggests that information is transferable between these association types. As a realistic validation, time-stamped experiments simulated the predictions of future associations based solely on information known prior to a given date. The results show that many future published results are predictable from current associations. Moreover, in most cases, using more association types increases prediction coverage without significantly decreasing sensitivity and specificity. In case studies, literature-supported validation shows that these predictions mimic human-formulated hypotheses. Overall, this study suggests that diffusion over a more comprehensive multimodal network will generate more useful hypotheses of associations among diseases, genes and chemicals, which may guide the development of precision therapies. AVAILABILITY AND IMPLEMENTATION Code and data are available at https://github.com/LichtargeLab/multimodal-network-diffusion. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Chih-Hsu Lin
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
| | - Daniel M Konecki
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
| | - Meng Liu
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Stephen J Wilson
- Department of Biochemistry and Molecular Biology, Houston, TX, USA
| | - Huda Nassar
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Angela D Wilkins
- Departments of Molecular and Human Genetics, and Pharmacology, Houston, TX, USA
- Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, TX, USA
| | - David F Gleich
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Olivier Lichtarge
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Houston, TX, USA
- Departments of Molecular and Human Genetics, and Pharmacology, Houston, TX, USA
- Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
50
|
Gotsbacher MP, Cho SM, Kim NH, Liu F, Kwon HJ, Karuso P. Reverse Chemical Proteomics Identifies an Unanticipated Human Target of the Antimalarial Artesunate. ACS Chem Biol 2019; 14:636-643. [PMID: 30840434 DOI: 10.1021/acschembio.8b01004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Artemisinins are the most potent and safe antimalarials available. Despite their clinical potential, no human target for the artemisinins is known. The unbiased interrogation of several human cDNA libraries, displayed on bacteriophage T7, revealed a single human target of artesunate; the intrinsically disordered Bcl-2 antagonist of cell death promoter (BAD). We show that artesunate inhibits the phosphorylation of BAD, thereby promoting the formation of the proapoptotic BAD/Bcl-xL complex and the subsequent intrinsic apoptotic cascade involving cytochrome c release, PARP cleavage, caspase activation, and ultimately cell death. This unanticipated role of BAD as a possible drug target of artesunate points to direct clinical exploitation of artemisinins in the Bcl-xL life/death switch and that artesunate's anticancer activity is, at least in part, independent of reactive oxygen species.
Collapse
Affiliation(s)
| | - Sung Min Cho
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science & Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea
| | - Nam Hee Kim
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science & Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea
| | - Fei Liu
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ho Jeong Kwon
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science & Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea
| | - Peter Karuso
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|