1
|
Li Z, Lyu C, Xu C, Hu Y, Luginbuhl DJ, Lehovic AB, Priest JM, Özkan E, Luo L. Repulsive interactions instruct synaptic partner matching in an olfactory circuit. RESEARCH SQUARE 2025:rs.3.rs-6099208. [PMID: 40162214 PMCID: PMC11952656 DOI: 10.21203/rs.3.rs-6099208/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Neurons exhibit extraordinary precision in selecting synaptic partners. Whereas cell-surface proteins (CSPs) mediating attractive interactions between developing axons and dendrites have been shown to instruct synaptic partner matching1,2, it is less clear the degree to which repulsive interactions play a role. Here, using a genetic screen guided by single cell transcriptomes3,4, we identified three CSP pairs-Toll2-Ptp10D, Fili-Kek1, and Hbs/Sns-Kirre-in mediating repulsive interactions between non-partner olfactory receptor neuron (ORN) axons and projection neuron (PN) dendrites in the developing Drosophila olfactory circuit. Each CSP pair exhibits inverse expression patterns in the select PN-ORN partners. Loss of each CSP in ORNs led to similar synaptic partner matching deficits as the loss of its partner CSP in PNs, and mistargeting phenotypes caused by overexpressing one CSP could be suppressed by loss of its partner CSP. Each CSP pair is also differentially expressed in other brain regions. Together, our data reveal that multiple repulsive CSP pairs work together to ensure precise synaptic partner matching during development by preventing neurons from forming connections with non-cognate partners.
Collapse
Affiliation(s)
- Zhuoran Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
- These authors contributed equally
| | - Cheng Lyu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- These authors contributed equally
| | - Chuanyun Xu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Ying Hu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - David J. Luginbuhl
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Asaf B. Lehovic
- Department of Biochemistry and Molecular Biology, The Neuroscience Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Jessica M. Priest
- Department of Biochemistry and Molecular Biology, The Neuroscience Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, The Neuroscience Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Carrier Y, Quintana Rio L, Formicola N, de Sousa-Xavier V, Tabet M, Chen YCD, Ali AH, Wislez M, Orts L, Borst A, Pinto-Teixeira F. Biased cell adhesion organizes the Drosophila visual motion integration circuit. Dev Cell 2025; 60:762-779.e7. [PMID: 39549704 DOI: 10.1016/j.devcel.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/27/2024] [Accepted: 10/23/2024] [Indexed: 11/18/2024]
Abstract
Layer-specific brain computations depend on neurons synapsing with specific partners in distinct laminae. In the Drosophila lobula plate, axons of the four subtypes of T4 and T5 visual motion direction-selective neurons segregate into four layers, where they synapse with distinct subsets of postsynaptic neurons. Here, we identify a layer-specific expression of different receptor-ligand pairs of the Beat and Side families of cell adhesion molecules between T4/T5s and their postsynaptic partners. Developmental genetic analysis demonstrate that Beat/Side-mediated interactions are required to restrict innervation of T4/T5 axons and the dendrites of their partners to a single layer. We show that Beat/Side interactions are not required for synaptogenesis. Instead, they contribute to synaptic specificity by biasing cellular adjacency, causing neurons to segregate in discrete layers, restricting partner availability before synaptogenesis. We propose that the emergence of synaptic specificity relies on a competitive dynamic among postsynaptic partners with shared Beat/Side expression to adhere with T4/T5s.
Collapse
Affiliation(s)
- Yannick Carrier
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Laura Quintana Rio
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Nadia Formicola
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Vicente de Sousa-Xavier
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Maha Tabet
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | | | - Aicha Haji Ali
- Max-Planck-Institute for Biological Intelligence, Martinsried, Germany
| | - Maëva Wislez
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Lisa Orts
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Alexander Borst
- Max-Planck-Institute for Biological Intelligence, Martinsried, Germany
| | - Filipe Pinto-Teixeira
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France.
| |
Collapse
|
3
|
Li Z, Lyu C, Xu C, Hu Y, Luginbuhl DJ, Caspi-Lebovic AB, Priest JM, Özkan E, Luo L. Repulsive interactions instruct synaptic partner matching in an olfactory circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.01.640985. [PMID: 40060423 PMCID: PMC11888401 DOI: 10.1101/2025.03.01.640985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Neurons exhibit extraordinary precision in selecting synaptic partners. Whereas cell-surface proteins (CSPs) mediating attractive interactions between developing axons and dendrites have been shown to instruct synaptic partner matching1,2, it is less clear the degree to which repulsive interactions play a role. Here, using a genetic screen guided by single cell transcriptomes3,4, we identified three CSP pairs-Toll2-Ptp10D, Fili-Kek1, and Hbs/Sns-Kirre-in mediating repulsive interactions between non-partner olfactory receptor neuron (ORN) axons and projection neuron (PN) dendrites in the developing Drosophila olfactory circuit. Each CSP pair exhibits inverse expression patterns in the select PN-ORN partners. Loss of each CSP in ORNs led to similar synaptic partner matching deficits as the loss of its partner CSP in PNs, and mistargeting phenotypes caused by overexpressing one CSP could be suppressed by loss of its partner CSP. Each CSP pair is also differentially expressed in other brain regions. Together, our data reveal that multiple repulsive CSP pairs work together to ensure precise synaptic partner matching during development by preventing neurons from forming connections with non-cognate partners.
Collapse
Affiliation(s)
- Zhuoran Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
- These authors contributed equally
| | - Cheng Lyu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- These authors contributed equally
| | - Chuanyun Xu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Ying Hu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - David J Luginbuhl
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Asaf B Caspi-Lebovic
- Department of Biochemistry and Molecular Biology, The Neuroscience Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Jessica M Priest
- Department of Biochemistry and Molecular Biology, The Neuroscience Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, The Neuroscience Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Morano NC, Lopez DH, Meltzer H, Sergeeva AP, Katsamba PS, Rostam KD, Gupta HP, Becker JE, Bornstein B, Cosmanescu F, Schuldiner O, Honig B, Mann RS, Shapiro L. Members of the DIP and Dpr adhesion protein families use cis inhibition to shape neural development in Drosophila. PLoS Biol 2025; 23:e3003030. [PMID: 40029885 DOI: 10.1371/journal.pbio.3003030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/19/2025] [Accepted: 01/22/2025] [Indexed: 03/21/2025] Open
Abstract
In Drosophila, two interacting adhesion protein families, Defective proboscis responses (Dprs) and Dpr interacting proteins (DIPs), coordinate the assembly of neural networks. While intercellular DIP::Dpr interactions have been well characterized, DIPs and Dprs are often co-expressed within the same cells, raising the question as to whether they also interact in cis. We show, in cultured cells and in vivo, that DIP-α and DIP-δ can interact in cis with their ligands, Dpr6/10 and Dpr12, respectively. When co-expressed in cis with their cognate partners, these Dprs regulate the extent of trans binding, presumably through competitive cis interactions. We demonstrate the neurodevelopmental effects of cis inhibition in fly motor neurons and in the mushroom body. We further show that a long disordered region of DIP-α at the C-terminus is required for cis but not trans interactions, likely because it alleviates geometric constraints on cis binding. Thus, the balance between cis and trans interactions plays a role in controlling neural development.
Collapse
Affiliation(s)
- Nicholas C Morano
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Aaron Diamond AIDS Research Center, Columbia University, New York, New York, United States of America
| | - Davys H Lopez
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
| | - Hagar Meltzer
- Department of Molecular Cell Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Alina P Sergeeva
- Department of Systems Biology, Columbia University, New York, New York, United States of America
| | - Phinikoula S Katsamba
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
| | - Kevin D Rostam
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| | - Himanshu Pawankumar Gupta
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
| | - Jordan E Becker
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Aaron Diamond AIDS Research Center, Columbia University, New York, New York, United States of America
| | - Bavat Bornstein
- Department of Molecular Cell Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Filip Cosmanescu
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
| | - Oren Schuldiner
- Department of Molecular Cell Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Barry Honig
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Department of Systems Biology, Columbia University, New York, New York, United States of America
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
- Department of Medicine, Columbia University, New York, New York, United States of America
| | - Richard S Mann
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Department of Systems Biology, Columbia University, New York, New York, United States of America
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Aaron Diamond AIDS Research Center, Columbia University, New York, New York, United States of America
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| |
Collapse
|
5
|
Rostam KD, Morano NC, Menon KP, Lopez DH, Shapiro L, Zinn K, Feng S, Mann RS. FETCH enables fluorescent labeling of membrane proteins in vivo with spatiotemporal control in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.635819. [PMID: 39975162 PMCID: PMC11838484 DOI: 10.1101/2025.01.31.635819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Fluorescent labeling approaches are crucial for elucidating protein function and dynamics. While enhancer trapping in Drosophila has been useful for the characterization of gene transcription, protein-specific visualization in vivo has been more elusive. To overcome these limitations, we developed Fluorescent Endogenous Tagging with a Covalent Hook (FETCH) to label cell surface proteins (CSPs) in vivo through a stable covalent bond mediated by the DogTag-DogCatcher peptide partner system 1 . FETCH leverages a spontaneous covalent isopeptide bond that forms between the 23-amino acid DogTag and the 15-kDa DogCatcher. Unlike most tags that work best at protein termini, DogTag is optimized for function in protein loops, expanding the range of sites that can be targeted in proteins. In FETCH, DogTag is introduced into extracellular loops of CSPs through genome engineering, enabling covalent bond formation with a genetically encoded DogCatcher-GFP fusion protein that can be secreted from a variety of cell types. We describe a flow cytometry-based platform for the identification of efficient DogTag insertion sites in vitro and demonstrate the ability to visualize both tagged DIP-α and Dpr10 in vivo , two immunoglobulin superfamily proteins that facilitate neuronal target recognition at Drosophila neuromuscular junctions and brain synapses. The versatility of FETCH enables fluorescent labeling with precise temporal and spatial control in vivo , enabling applications previously unfeasible.
Collapse
|
6
|
Mialon M, Patrash L, Weinreb A, Özkan E, Bessereau JL, Pinan-Lucarre B. A trans-synaptic IgLON adhesion molecular complex directly contacts and clusters a nicotinic receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611427. [PMID: 39314492 PMCID: PMC11418930 DOI: 10.1101/2024.09.05.611427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The localization and clustering of neurotransmitter receptors at appropriate postsynaptic sites is a key step in the control of synaptic transmission. Here, we identify a novel paradigm for the synaptic localization of an ionotropic acetylcholine receptor (AChR) based on the direct interaction of its extracellular domain with a cell adhesion molecule of the IgLON family. Our results show that RIG-5 and ZIG-8, which encode the sole IgLONs in C. elegans, are tethered in the pre- and postsynaptic membranes, respectively, and interact in vivo through their first immunoglobulin-like (Ig) domains. In addition, ZIG-8 traps ACR-16 via a direct cis- interaction between the ZIG-8 Ig2 domain and the base of the large extracellular AChR domain. Such mechanism has never been reported, but all these molecules are conserved during evolution. Similar interactions may directly couple Ig superfamily adhesion molecules and members of the large family of Cys-loop ionotropic receptors, including AChRs, in the mammalian nervous system, and may be relevant in the context of IgLON-associated brain diseases.
Collapse
|
7
|
Aldrich JC, Vanderlinden LA, Jacobsen TL, Wood C, Saba LM, Britt SG. Genome-Wide Association Study and transcriptome analysis reveals a complex gene network that regulates opsin gene expression and cell fate determination in Drosophila R7 photoreceptor cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606616. [PMID: 39149333 PMCID: PMC11326169 DOI: 10.1101/2024.08.05.606616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Background An animal's ability to discriminate between differing wavelengths of light (i.e., color vision) is mediated, in part, by a subset of photoreceptor cells that express opsins with distinct absorption spectra. In Drosophila R7 photoreceptors, expression of the rhodopsin molecules, Rh3 or Rh4, is determined by a stochastic process mediated by the transcription factor spineless. The goal of this study was to identify additional factors that regulate R7 cell fate and opsin choice using a Genome Wide Association Study (GWAS) paired with transcriptome analysis via RNA-Seq. Results We examined Rh3 and Rh4 expression in a subset of fully-sequenced inbred strains from the Drosophila Genetic Reference Panel and performed a GWAS to identify 42 naturally-occurring polymorphisms-in proximity to 28 candidate genes-that significantly influence R7 opsin expression. Network analysis revealed multiple potential interactions between the associated candidate genes, spineless and its partners. GWAS candidates were further validated in a secondary RNAi screen which identified 12 lines that significantly reduce the proportion of Rh3 expressing R7 photoreceptors. Finally, using RNA-Seq, we demonstrated that all but four of the GWAS candidates are expressed in the pupal retina at a critical developmental time point and that five are among the 917 differentially expressed genes in sevenless mutants, which lack R7 cells. Conclusions Collectively, these results suggest that the relatively simple, binary cell fate decision underlying R7 opsin expression is modulated by a larger, more complex network of regulatory factors. Of particular interest are a subset of candidate genes with previously characterized neuronal functions including neurogenesis, neurodegeneration, photoreceptor development, axon growth and guidance, synaptogenesis, and synaptic function.
Collapse
Affiliation(s)
- John C. Aldrich
- Department of Neurology, Department of Ophthalmology, Dell Medical School; University of Texas at Austin, Austin, TX 78712
- Department of Psychology, University of Texas at Austin, Austin, TX 78712
| | - Lauren A. Vanderlinden
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Thomas L. Jacobsen
- Department of Neurology, Department of Ophthalmology, Dell Medical School; University of Texas at Austin, Austin, TX 78712
| | - Cheyret Wood
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Laura M. Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Steven G. Britt
- Department of Neurology, Department of Ophthalmology, Dell Medical School; University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
8
|
Thornton-Kolbe EM, Ahmed M, Gordon FR, Sieriebriennikov B, Williams DL, Kurmangaliyev YZ, Clowney EJ. Spatial constraints and cell surface molecule depletion structure a randomly connected learning circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603956. [PMID: 39071296 PMCID: PMC11275898 DOI: 10.1101/2024.07.17.603956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The brain can represent almost limitless objects to "categorize an unlabeled world" (Edelman, 1989). This feat is supported by expansion layer circuit architectures, in which neurons carrying information about discrete sensory channels make combinatorial connections onto much larger postsynaptic populations. Combinatorial connections in expansion layers are modeled as randomized sets. The extent to which randomized wiring exists in vivo is debated, and how combinatorial connectivity patterns are generated during development is not understood. Non-deterministic wiring algorithms could program such connectivity using minimal genomic information. Here, we investigate anatomic and transcriptional patterns and perturb partner availability to ask how Kenyon cells, the expansion layer neurons of the insect mushroom body, obtain combinatorial input from olfactory projection neurons. Olfactory projection neurons form their presynaptic outputs in an orderly, predictable, and biased fashion. We find that Kenyon cells accept spatially co-located but molecularly heterogeneous inputs from this orderly map, and ask how Kenyon cell surface molecule expression impacts partner choice. Cell surface immunoglobulins are broadly depleted in Kenyon cells, and we propose that this allows them to form connections with molecularly heterogeneous partners. This model can explain how developmentally identical neurons acquire diverse wiring identities.
Collapse
Affiliation(s)
- Emma M. Thornton-Kolbe
- Neurosciences Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maria Ahmed
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Finley R. Gordon
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | | - Donnell L. Williams
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | | - E. Josephine Clowney
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Morano NC, Lopez DH, Meltzer H, Sergeeva AP, Katsamba PS, Rostam KD, Gupta HP, Becker JE, Bornstein B, Cosmanescu F, Schuldiner O, Honig B, Mann RS, Shapiro L. Cis inhibition of co-expressed DIPs and Dprs shapes neural development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583391. [PMID: 38895375 PMCID: PMC11185508 DOI: 10.1101/2024.03.04.583391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In Drosophila , two interacting adhesion protein families, Dprs and DIPs, coordinate the assembly of neural networks. While intercellular DIP/Dpr interactions have been well characterized, DIPs and Dprs are often co-expressed within the same cells, raising the question as to whether they also interact in cis . We show, in cultured cells and in vivo, that DIP-α and DIP-δ can interact in cis with their ligands, Dpr6/10 and Dpr12, respectively. When co-expressed in cis with their cognate partners, these Dprs regulate the extent of trans binding, presumably through competitive cis interactions. We demonstrate the neurodevelopmental effects of cis inhibition in fly motor neurons and in the mushroom body. We further show that a long disordered region of DIP-α at the C-terminus is required for cis but not trans interactions, likely because it alleviates geometric constraints on cis binding. Thus, the balance between cis and trans interactions plays a role in controlling neural development.
Collapse
|
10
|
Wang Y, Salazar RJ, Simonetta LT, Sorrentino V, Gatton TJ, Wu B, Vecsey CG, Carrillo RA. hkb is required for DIP-α expression and target recognition in the Drosophila neuromuscular circuit. Commun Biol 2024; 7:507. [PMID: 38678127 PMCID: PMC11055905 DOI: 10.1038/s42003-024-06184-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
Our nervous system contains billions of neurons that form precise connections with each other through interactions between cell surface proteins. In Drosophila, the Dpr and DIP immunoglobulin protein subfamilies form homophilic or heterophilic interactions to instruct synaptic connectivity, synaptic growth, and cell survival. However, the upstream regulatory mechanisms of Dprs and DIPs are not clear. On the other hand, while transcription factors have been implicated in target recognition, their downstream cell surface proteins remain mostly unknown. We conduct an F1 dominant modifier genetic screen to identify regulators of Dprs and DIPs. We identify huckebein (hkb), a transcription factor previously implicated in target recognition of the dorsal Is motor neuron. We show that hkb genetically interacts with DIP-α and loss of hkb leads to complete removal of DIP-α expression specifically in dorsal Is motor neurons. We then confirm that this specificity is through the dorsal Is motor neuron specific transcription factor, even-skipped (eve), which acts downstream of hkb. Analysis of the genetic interaction between hkb and eve reveals that they act in the same pathway to regulate dorsal Is motor neuron connectivity. Our study provides insight into the transcriptional regulation of DIP-α and suggests that distinct regulatory mechanisms exist for the same CSP in different neurons.
Collapse
Affiliation(s)
- Yupu Wang
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL, 60637, USA.
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA.
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, 20147, USA.
| | - Rio J Salazar
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
- Program in Cell and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Luciano T Simonetta
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
| | - Violet Sorrentino
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
| | - Terrence J Gatton
- Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - Bill Wu
- Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - Christopher G Vecsey
- Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - Robert A Carrillo
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL, 60637, USA.
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA.
- Program in Cell and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
11
|
Draper IR, Roberts MA, Gailloud M, Jackson FR. Drosophila noktochor regulates night sleep via a local mushroom body circuit. iScience 2024; 27:109106. [PMID: 38380256 PMCID: PMC10877950 DOI: 10.1016/j.isci.2024.109106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/22/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
We show that a sleep-regulating, Ig-domain protein (NKT) is secreted from Drosophila mushroom body (MB) α'/β' neurons to act locally on other MB cell types. Pan-neuronal or broad MB expression of membrane-tethered NKT (tNkt) protein reduced sleep, like that of an NKT null mutant, suggesting blockade of a receptor mediating endogenous NKT action. In contrast, expression in neurons requiring NKT (the MB α'/β' cells), or non-MB sleep-regulating centers, did not reduce night sleep, indicating the presence of a local MB sleep-regulating circuit consisting of communicating neural subtypes. We suggest that the leucocyte-antigen-related like (Lar) transmembrane receptor may mediate NKT action. Knockdown or overexpression of Lar in the MB increased or decreased sleep, respectively, indicating the receptor promotes wakefulness. Surprisingly, selective expression of tNkt or knockdown of Lar in MB wake-promoting cells increased rather than decreased sleep, suggesting that NKT acts on wake- as well as sleep-promoting cell types to regulate sleep.
Collapse
Affiliation(s)
- Isabelle R Draper
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| | - Mary A Roberts
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Matthew Gailloud
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - F Rob Jackson
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| |
Collapse
|
12
|
Zhu YJ, Deng CY, Fan L, Wang YQ, Zhou H, Xu HT. Combinatorial expression of γ-protocadherins regulates synaptic connectivity in the mouse neocortex. eLife 2024; 12:RP89532. [PMID: 38470230 DOI: 10.7554/elife.89532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
In the process of synaptic formation, neurons must not only adhere to specific principles when selecting synaptic partners but also possess mechanisms to avoid undesirable connections. Yet, the strategies employed to prevent unwarranted associations have remained largely unknown. In our study, we have identified the pivotal role of combinatorial clustered protocadherin gamma (γ-PCDH) expression in orchestrating synaptic connectivity in the mouse neocortex. Through 5' end single-cell sequencing, we unveiled the intricate combinatorial expression patterns of γ-PCDH variable isoforms within neocortical neurons. Furthermore, our whole-cell patch-clamp recordings demonstrated that as the similarity in this combinatorial pattern among neurons increased, their synaptic connectivity decreased. Our findings elucidate a sophisticated molecular mechanism governing the construction of neural networks in the mouse neocortex.
Collapse
Affiliation(s)
- Yi-Jun Zhu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cai-Yun Deng
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Liu Fan
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Ya-Qian Wang
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Hui Zhou
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Hua-Tai Xu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| |
Collapse
|
13
|
Osaka J, Ishii A, Wang X, Iwanaga R, Kawamura H, Akino S, Sugie A, Hakeda-Suzuki S, Suzuki T. Complex formation of immunoglobulin superfamily molecules Side-IV and Beat-IIb regulates synaptic specificity. Cell Rep 2024; 43:113798. [PMID: 38381608 DOI: 10.1016/j.celrep.2024.113798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/03/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
Neurons establish specific synapses based on the adhesive properties of cell-surface proteins while also retaining the ability to form synapses in a relatively non-selective manner. However, comprehensive understanding of the underlying mechanism reconciling these opposing characteristics remains incomplete. Here, we have identified Side-IV/Beat-IIb, members of the Drosophila immunoglobulin superfamily, as a combination of cell-surface recognition molecules inducing synapse formation. The Side-IV/Beat-IIb combination transduces bifurcated signaling with Side-IV's co-receptor, Kirre, and a synaptic scaffold protein, Dsyd-1. Genetic experiments and subcellular protein localization analyses showed the Side-IV/Beat-IIb/Kirre/Dsyd-1 complex to have two essential functions. First, it narrows neuronal binding specificity through Side-IV/Beat-IIb extracellular interactions. Second, it recruits synapse formation factors, Kirre and Dsyd-1, to restrict synaptic loci and inhibit miswiring. This dual function explains how the combinations of cell-surface molecules enable the ranking of preferred interactions among neuronal pairs to achieve synaptic specificity in complex circuits in vivo.
Collapse
Affiliation(s)
- Jiro Osaka
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan; Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Arisa Ishii
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Xu Wang
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Riku Iwanaga
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hinata Kawamura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Shogo Akino
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Atsushi Sugie
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Satoko Hakeda-Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan; Research Initiatives and Promotion Organization, Yokohama National University, Yokohama 240-8501, Japan
| | - Takashi Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan.
| |
Collapse
|
14
|
Wolterhoff N, Hiesinger PR. Synaptic promiscuity in brain development. Curr Biol 2024; 34:R102-R116. [PMID: 38320473 PMCID: PMC10849093 DOI: 10.1016/j.cub.2023.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Precise synaptic connectivity is a prerequisite for the function of neural circuits, yet individual neurons, taken out of their developmental context, readily form unspecific synapses. How does the genome encode brain wiring in light of this apparent contradiction? Synaptic specificity is the outcome of a long series of developmental processes and mechanisms before, during and after synapse formation. How much promiscuity is permissible or necessary at the moment of synaptic partner choice depends on the extent to which prior development restricts available partners or subsequent development corrects initially made synapses. Synaptic promiscuity at the moment of choice can thereby play important roles in the development of precise connectivity, but also facilitate developmental flexibility and robustness. In this review, we assess the experimental evidence for the prevalence and roles of promiscuous synapse formation during brain development. Many well-established experimental approaches are based on developmental genetic perturbation and an assessment of synaptic connectivity only in the adult; this can make it difficult to pinpoint when a given defect or mechanism occurred. In many cases, such studies reveal mechanisms that restrict partner availability already prior to synapse formation. Subsequently, at the moment of choice, factors including synaptic competency, interaction dynamics and molecular recognition further restrict synaptic partners. The discussion of the development of synaptic specificity through the lens of synaptic promiscuity suggests an algorithmic process based on neurons capable of promiscuous synapse formation that are continuously prevented from making the wrong choices, with no single mechanism or developmental time point sufficient to explain the outcome.
Collapse
Affiliation(s)
- Neele Wolterhoff
- Division of Neurobiology, Free University Berlin, 14195 Berlin, Germany
| | - P Robin Hiesinger
- Division of Neurobiology, Free University Berlin, 14195 Berlin, Germany.
| |
Collapse
|
15
|
Xu C, Ramos TB, Marshall OJ, Doe CQ. Notch signaling and Bsh homeodomain activity are integrated to diversify Drosophila lamina neuron types. eLife 2024; 12:RP90136. [PMID: 38193901 PMCID: PMC10945509 DOI: 10.7554/elife.90136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Notch signaling is an evolutionarily conserved pathway for specifying binary neuronal fates, yet how it specifies different fates in different contexts remains elusive. In our accompanying paper, using the Drosophila lamina neuron types (L1-L5) as a model, we show that the primary homeodomain transcription factor (HDTF) Bsh activates secondary HDTFs Ap (L4) and Pdm3 (L5) and specifies L4/L5 neuronal fates. Here we test the hypothesis that Notch signaling enables Bsh to differentially specify L4 and L5 fates. We show asymmetric Notch signaling between newborn L4 and L5 neurons, but they are not siblings; rather, Notch signaling in L4 is due to Delta expression in adjacent L1 neurons. While Notch signaling and Bsh expression are mutually independent, Notch is necessary and sufficient for Bsh to specify L4 fate over L5. The NotchON L4, compared to NotchOFF L5, has a distinct open chromatin landscape which allows Bsh to bind distinct genomic loci, leading to L4-specific identity gene transcription. We propose a novel model in which Notch signaling is integrated with the primary HDTF activity to diversify neuron types by directly or indirectly generating a distinct open chromatin landscape that constrains the pool of genes that a primary HDTF can activate.
Collapse
Affiliation(s)
- Chundi Xu
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| | - Tyler B Ramos
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| | - Owen J Marshall
- Menzies Institute for Medical Research, University of TasmaniaHobartAustralia
| | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| |
Collapse
|
16
|
Xu C, Ramos TB, Rogers EM, Reiser MB, Doe CQ. Homeodomain proteins hierarchically specify neuronal diversity and synaptic connectivity. eLife 2024; 12:RP90133. [PMID: 38180023 PMCID: PMC10942767 DOI: 10.7554/elife.90133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
How our brain generates diverse neuron types that assemble into precise neural circuits remains unclear. Using Drosophila lamina neuron types (L1-L5), we show that the primary homeodomain transcription factor (HDTF) brain-specific homeobox (Bsh) is initiated in progenitors and maintained in L4/L5 neurons to adulthood. Bsh activates secondary HDTFs Ap (L4) and Pdm3 (L5) and specifies L4/L5 neuronal fates while repressing the HDTF Zfh1 to prevent ectopic L1/L3 fates (control: L1-L5; Bsh-knockdown: L1-L3), thereby generating lamina neuronal diversity for normal visual sensitivity. Subsequently, in L4 neurons, Bsh and Ap function in a feed-forward loop to activate the synapse recognition molecule DIP-β, thereby bridging neuronal fate decision to synaptic connectivity. Expression of a Bsh:Dam, specifically in L4, reveals Bsh binding to the DIP-β locus and additional candidate L4 functional identity genes. We propose that HDTFs function hierarchically to coordinate neuronal molecular identity, circuit formation, and function. Hierarchical HDTFs may represent a conserved mechanism for linking neuronal diversity to circuit assembly and function.
Collapse
Affiliation(s)
- Chundi Xu
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| | - Tyler B Ramos
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| | - Edward M Rogers
- Janelia Research Campus, Howard Hughes Medical Institute, Helix DriveAshburnUnited States
| | - Michael B Reiser
- Janelia Research Campus, Howard Hughes Medical Institute, Helix DriveAshburnUnited States
| | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| |
Collapse
|
17
|
Carrier Y, Rio LQ, Formicola N, de Sousa-Xavier V, Tabet M, Chen YCD, Wislez M, Orts L, Pinto-Teixeira F. Biased cell adhesion organizes a circuit for visual motion integration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.11.571076. [PMID: 38168373 PMCID: PMC10760042 DOI: 10.1101/2023.12.11.571076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Layer specific computations in the brain rely on neuronal processes establishing synaptic connections with specific partners in distinct laminae. In the Drosophila lobula plate neuropile, the axons of the four subtypes of T4 and T5 visual motion direction-selective neurons segregate into four layers, based on their directional preference, and form synapses with distinct subsets of postsynaptic neurons. Four bi-stratified inhibitory lobula plate intrinsic cells exhibit a consistent synaptic pattern, receiving excitatory T4/T5 inputs in one layer, and conveying inhibitory signals to an adjacent layer. This layered arrangement establishes motion opponency. Here, we identify layer-specific expression of different receptor-ligand pairs belonging to the Beat and Side families of Cell Adhesion Molecules (CAMs) between T4/T5 neurons and their postsynaptic partners. Genetic analysis reveals that Beat/Side mediated interactions are required to restrict T4/T5 axonal innervation to a single layer. We propose that Beat/Side contribute to synaptic specificity by biasing adhesion between synaptic partners before synaptogenesis.
Collapse
Affiliation(s)
- Yannick Carrier
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Laura Quintana Rio
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Nadia Formicola
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Vicente de Sousa-Xavier
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Maha Tabet
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | | | - Maëva Wislez
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Lisa Orts
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Filipe Pinto-Teixeira
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| |
Collapse
|
18
|
Tanaka R, Zhou B, Agrochao M, Badwan BA, Au B, Matos NCB, Clark DA. Neural mechanisms to incorporate visual counterevidence in self-movement estimation. Curr Biol 2023; 33:4960-4979.e7. [PMID: 37918398 PMCID: PMC10848174 DOI: 10.1016/j.cub.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023]
Abstract
In selecting appropriate behaviors, animals should weigh sensory evidence both for and against specific beliefs about the world. For instance, animals measure optic flow to estimate and control their own rotation. However, existing models of flow detection can be spuriously triggered by visual motion created by objects moving in the world. Here, we show that stationary patterns on the retina, which constitute evidence against observer rotation, suppress inappropriate stabilizing rotational behavior in the fruit fly Drosophila. In silico experiments show that artificial neural networks (ANNs) that are optimized to distinguish observer movement from external object motion similarly detect stationarity and incorporate negative evidence. Employing neural measurements and genetic manipulations, we identified components of the circuitry for stationary pattern detection, which runs parallel to the fly's local motion and optic-flow detectors. Our results show how the fly brain incorporates negative evidence to improve heading stability, exemplifying how a compact brain exploits geometrical constraints of the visual world.
Collapse
Affiliation(s)
- Ryosuke Tanaka
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Baohua Zhou
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Statistics and Data Science, Yale University, New Haven, CT 06511, USA
| | - Margarida Agrochao
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Bara A Badwan
- School of Engineering and Applied Science, Yale University, New Haven, CT 06511, USA
| | - Braedyn Au
- Department of Physics, Yale University, New Haven, CT 06511, USA
| | - Natalia C B Matos
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Damon A Clark
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Physics, Yale University, New Haven, CT 06511, USA; Department of Neuroscience, Yale University, New Haven, CT 06511, USA; Wu Tsai Institute, Yale University, New Haven, CT 06511, USA; Quantitative Biology Institute, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
19
|
Wang Y, Salazar R, Simonetta L, Sorrentino V, Gatton TJ, Wu B, Vecsey CG, Carrillo RA. hkb is required for DIP-α expression and target recognition in the Drosophila neuromuscular circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.15.562341. [PMID: 37905128 PMCID: PMC10614772 DOI: 10.1101/2023.10.15.562341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Our nervous system contains billions of neurons that form precise connections with each other through interactions between cell surface proteins (CSPs). In Drosophila, the Dpr and DIP immunoglobulin protein subfamilies form homophilic or heterophilic interactions to instruct synaptic connectivity, synaptic growth and cell survival. However, the upstream regulation and downstream signaling mechanisms of Dprs and DIPs are not clear. In the Drosophila larval neuromuscular system, DIP-α is expressed in the dorsal and ventral type-Is motor neurons (MNs). We conducted an F1 dominant modifier genetic screen to identify regulators of Dprs and DIPs. We found that the transcription factor, huckebein (hkb), genetically interacts with DIP-α and is important for target recognition specifically in the dorsal Is MN, but not the ventral Is MN. Loss of hkb led to complete removal of DIP-α expression. We then confirmed that this specificity is through the dorsal Is MN specific transcription factor, even-skipped (eve), which acts downstream of hkb. Genetic interaction between hkb and eve revealed that they act in the same pathway to regulate dorsal Is MN connectivity. Our study provides insight into the transcriptional regulation of DIP-α and suggests that distinct regulatory mechanisms exist for the same CSP in different neurons.
Collapse
Affiliation(s)
- Yupu Wang
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL 60637
- Neuroscience Institute, University of Chicago, Chicago, IL 60637
- Current address: Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147
- Co-first author
| | - Rio Salazar
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL 60637
- Neuroscience Institute, University of Chicago, Chicago, IL 60637
- Program in Cell and Molecular Biology, University of Chicago, Chicago, IL 60637
- Co-first author
| | - Luciano Simonetta
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL 60637
- Neuroscience Institute, University of Chicago, Chicago, IL 60637
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL 60637
| | - Violet Sorrentino
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL 60637
- Neuroscience Institute, University of Chicago, Chicago, IL 60637
- Current address: Molecular and Cell Biology Graduate Program, University of Washington, Seattle, Washington 98195
| | - Terrence J. Gatton
- Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866
| | - Bill Wu
- Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866
| | | | - Robert A. Carrillo
- Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL 60637
- Neuroscience Institute, University of Chicago, Chicago, IL 60637
- Program in Cell and Molecular Biology, University of Chicago, Chicago, IL 60637
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
20
|
Corthals K, Andersson V, Churcher A, Reimegård J, Enjin A. Genetic atlas of hygro-and thermosensory cells in the vinegar fly Drosophila melanogaster. Sci Rep 2023; 13:15202. [PMID: 37709909 PMCID: PMC10502013 DOI: 10.1038/s41598-023-42506-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
The ability of animals to perceive and respond to sensory information is essential for their survival in diverse environments. While much progress has been made in understanding various sensory modalities, the sense of hygrosensation, which involves the detection and response to humidity, remains poorly understood. In this study, we focused on the hygrosensory, and closely related thermosensory, systems in the vinegar fly Drosophila melanogaster to unravel the molecular profile of the cells of these senses. Using a transcriptomic analysis of over 37,000 nuclei, we identified twelve distinct clusters of cells corresponding to temperature-sensing arista neurons, humidity-sensing sacculus neurons, and support cells relating to these neurons. By examining the expression of known and novel marker genes, we validated the identity of these clusters and characterized their gene expression profiles. We found that each cell type could be characterized by a unique expression profile of ion channels, GPCR signaling molecules, synaptic vesicle cycle proteins, and cell adhesion molecules. Our findings provide valuable insights into the molecular basis of hygro- and thermosensation. Understanding the mechanisms underlying hygro- and thermosensation may shed light on the broader understanding of sensory systems and their adaptation to different environmental conditions in animals.
Collapse
Affiliation(s)
- Kristina Corthals
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Vilma Andersson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Allison Churcher
- Department of Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Umeå University, 901 87, Umeå, Sweden
| | - Johan Reimegård
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Anders Enjin
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
21
|
Tanaka R, Zhou B, Agrochao M, Badwan BA, Au B, Matos NCB, Clark DA. Neural mechanisms to incorporate visual counterevidence in self motion estimation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.04.522814. [PMID: 36711843 PMCID: PMC9881891 DOI: 10.1101/2023.01.04.522814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In selecting appropriate behaviors, animals should weigh sensory evidence both for and against specific beliefs about the world. For instance, animals measure optic flow to estimate and control their own rotation. However, existing models of flow detection can confuse the movement of external objects with genuine self motion. Here, we show that stationary patterns on the retina, which constitute negative evidence against self rotation, are used by the fruit fly Drosophila to suppress inappropriate stabilizing rotational behavior. In silico experiments show that artificial neural networks optimized to distinguish self and world motion similarly detect stationarity and incorporate negative evidence. Employing neural measurements and genetic manipulations, we identified components of the circuitry for stationary pattern detection, which runs parallel to the fly's motion- and optic flow-detectors. Our results exemplify how the compact brain of the fly incorporates negative evidence to improve heading stability, exploiting geometrical constraints of the visual world.
Collapse
Affiliation(s)
- Ryosuke Tanaka
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
- Present Address: Institute of Neuroscience, Technical University of Munich, Munich 80802, Germany
| | - Baohua Zhou
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT 06511, USA
| | - Margarida Agrochao
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Bara A. Badwan
- School of Engineering and Applied Science, Yale University, New Haven, CT 06511, USA
| | - Braedyn Au
- Department of Physics, Yale University, New Haven, CT 06511, USA
| | - Natalia C. B. Matos
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Damon A. Clark
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Department of Physics, Yale University, New Haven, CT 06511, USA
- Department of Neuroscience, Yale University, New Haven, CT 06511, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
22
|
Hopkins BR, Barmina O, Kopp A. A single-cell atlas of the sexually dimorphic Drosophila foreleg and its sensory organs during development. PLoS Biol 2023; 21:e3002148. [PMID: 37379332 DOI: 10.1371/journal.pbio.3002148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/03/2023] [Indexed: 06/30/2023] Open
Abstract
To respond to the world around them, animals rely on the input of a network of sensory organs distributed throughout the body. Distinct classes of sensory organs are specialized for the detection of specific stimuli such as strain, pressure, or taste. The features that underlie this specialization relate both to the neurons that innervate sensory organs and the accessory cells they comprise. To understand the genetic basis of this diversity of cell types, both within and between sensory organs, we performed single-cell RNA sequencing on the first tarsal segment of the male Drosophila melanogaster foreleg during pupal development. This tissue displays a wide variety of functionally and structurally distinct sensory organs, including campaniform sensilla, mechanosensory bristles, and chemosensory taste bristles, as well as the sex comb, a recently evolved male-specific structure. In this study, we characterize the cellular landscape in which the sensory organs reside, identify a novel cell type that contributes to the construction of the neural lamella, and resolve the transcriptomic differences among support cells within and between sensory organs. We identify the genes that distinguish between mechanosensory and chemosensory neurons, resolve a combinatorial transcription factor code that defines 4 distinct classes of gustatory neurons and several types of mechanosensory neurons, and match the expression of sensory receptor genes to specific neuron classes. Collectively, our work identifies core genetic features of a variety of sensory organs and provides a rich, annotated resource for studying their development and function.
Collapse
Affiliation(s)
- Ben R Hopkins
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Olga Barmina
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| |
Collapse
|
23
|
Bonanno SL, Krantz DE. Transcriptional changes in specific subsets of Drosophila neurons following inhibition of the serotonin transporter. Transl Psychiatry 2023; 13:226. [PMID: 37355701 DOI: 10.1038/s41398-023-02521-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023] Open
Abstract
The transcriptional effects of SSRIs and other serotonergic drugs remain unclear, in part due to the heterogeneity of postsynaptic cells, which may respond differently to changes in serotonergic signaling. Relatively simple model systems such as Drosophila afford more tractable microcircuits in which to investigate these changes in specific cell types. Here, we focus on the mushroom body, an insect brain structure heavily innervated by serotonin and comprised of multiple different but related subtypes of Kenyon cells. We use fluorescence-activated cell sorting of Kenyon cells, followed by either bulk or single-cell RNA sequencing to explore the transcriptomic response of these cells to SERT inhibition. We compared the effects of two different Drosophila Serotonin Transporter (dSERT) mutant alleles as well as feeding the SSRI citalopram to adult flies. We find that the genetic architecture associated with one of the mutants contributed to significant artefactual changes in expression. Comparison of differential expression caused by loss of SERT during development versus aged, adult flies, suggests that changes in serotonergic signaling may have relatively stronger effects during development, consistent with behavioral studies in mice. Overall, our experiments revealed limited transcriptomic changes in Kenyon cells, but suggest that different subtypes may respond differently to SERT loss-of-function. Further work exploring the effects of SERT loss-of-function in other circuits may be used help to elucidate how SSRIs differentially affect a variety of different neuronal subtypes both during development and in adults.
Collapse
Affiliation(s)
- Shivan L Bonanno
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - David E Krantz
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
24
|
Currier TA, Pang MM, Clandinin TR. Visual processing in the fly, from photoreceptors to behavior. Genetics 2023; 224:iyad064. [PMID: 37128740 PMCID: PMC10213501 DOI: 10.1093/genetics/iyad064] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023] Open
Abstract
Originally a genetic model organism, the experimental use of Drosophila melanogaster has grown to include quantitative behavioral analyses, sophisticated perturbations of neuronal function, and detailed sensory physiology. A highlight of these developments can be seen in the context of vision, where pioneering studies have uncovered fundamental and generalizable principles of sensory processing. Here we begin with an overview of vision-guided behaviors and common methods for probing visual circuits. We then outline the anatomy and physiology of brain regions involved in visual processing, beginning at the sensory periphery and ending with descending motor control. Areas of focus include contrast and motion detection in the optic lobe, circuits for visual feature selectivity, computations in support of spatial navigation, and contextual associative learning. Finally, we look to the future of fly visual neuroscience and discuss promising topics for further study.
Collapse
Affiliation(s)
- Timothy A Currier
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle M Pang
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
25
|
Marques GS, Teles-Reis J, Konstantinides N, Brito PH, Homem CCF. Asynchronous transcription and translation of neurotransmitter-related genes characterize the initial stages of neuronal maturation in Drosophila. PLoS Biol 2023; 21:e3002115. [PMID: 37205703 PMCID: PMC10234549 DOI: 10.1371/journal.pbio.3002115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 06/01/2023] [Accepted: 04/06/2023] [Indexed: 05/21/2023] Open
Abstract
Neuron specification and maturation are essential for proper central nervous system development. However, the precise mechanisms that govern neuronal maturation, essential to shape and maintain neuronal circuitry, remain poorly understood. Here, we analyse early-born secondary neurons in the Drosophila larval brain, revealing that the early maturation of secondary neurons goes through 3 consecutive phases: (1) Immediately after birth, neurons express pan-neuronal markers but do not transcribe terminal differentiation genes; (2) Transcription of terminal differentiation genes, such as neurotransmitter-related genes VGlut, ChAT, or Gad1, starts shortly after neuron birth, but these transcripts are, however, not translated; (3) Translation of neurotransmitter-related genes only begins several hours later in mid-pupa stages in a coordinated manner with animal developmental stage, albeit in an ecdysone-independent manner. These results support a model where temporal regulation of transcription and translation of neurotransmitter-related genes is an important mechanism to coordinate neuron maturation with brain development.
Collapse
Affiliation(s)
- Graça S. Marques
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa; Lisboa, Portugal
| | - José Teles-Reis
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa; Lisboa, Portugal
| | | | - Patrícia H. Brito
- Applied Molecular Biosciences Unit-UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Catarina C. F. Homem
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa; Lisboa, Portugal
| |
Collapse
|
26
|
Bonanno SL, Krantz DE. Transcriptional changes in specific subsets of Drosophila neurons following inhibition of the serotonin transporter. RESEARCH SQUARE 2023:rs.3.rs-2626506. [PMID: 36993644 PMCID: PMC10055553 DOI: 10.21203/rs.3.rs-2626506/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The transcriptional effects of SSRIs and other serotonergic drugs remain unclear, in part due to the heterogeneity of postsynaptic cells, which may respond differently to changes in serotonergic signaling. Relatively simple model systems such as Drosophila afford more tractable microcircuits in which to investigate these changes in specific cell types. Here, we focus on the mushroom body, an insect brain structure heavily innervated by serotonin and comprised of multiple different but related subtypes of Kenyon cells. We use fluorescence activated cell sorting of Kenyon cells, followed by either or bulk or single cell RNA sequencing to explore the transcriptomic response of these cells to SERT inhibition. We compared the effects of two different Drosophila Serotonin Transporter (dSERT) mutant alleles as well as feeding the SSRI citalapram to adult flies. We find that the genetic architecture associated with one of the mutants contributed to significant artefactual changes in expression. Comparison of differential expression caused by loss of SERT during development versus aged, adult flies, suggests that changes in serotonergic signaling may have relatively stronger effects during development, consistent with behavioral studies in mice. Overall, our experiments revealed limited transcriptomic changes in Kenyon cells, but suggest that different subtypes may respond differently to SERT loss-of-function. Further work exploring the effects of SERT loss-of-function in other Drosophila circuits may be used help to elucidate how SSRIs differentially affect a variety of different neuronal subtypes both during development and in adults.
Collapse
Affiliation(s)
- Shivan L. Bonanno
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - David E. Krantz
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
27
|
Cortés E, Pak JS, Özkan E. Structure and evolution of neuronal wiring receptors and ligands. Dev Dyn 2023; 252:27-60. [PMID: 35727136 PMCID: PMC10084454 DOI: 10.1002/dvdy.512] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/04/2023] Open
Abstract
One of the fundamental properties of a neuronal circuit is the map of its connections. The cellular and developmental processes that allow for the growth of axons and dendrites, selection of synaptic targets, and formation of functional synapses use neuronal surface receptors and their interactions with other surface receptors, secreted ligands, and matrix molecules. Spatiotemporal regulation of the expression of these receptors and cues allows for specificity in the developmental pathways that wire stereotyped circuits. The families of molecules controlling axon guidance and synapse formation are generally conserved across animals, with some important exceptions, which have consequences for neuronal connectivity. Here, we summarize the distribution of such molecules across multiple taxa, with a focus on model organisms, evolutionary processes that led to the multitude of such molecules, and functional consequences for the diversification or loss of these receptors.
Collapse
Affiliation(s)
- Elena Cortés
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Joseph S Pak
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
28
|
Lee Y, Wang M, Imamura K, Sato M. Quantitative analysis of the roles of IRM cell adhesion molecules in column formation in the fly brain. Dev Growth Differ 2023; 65:37-47. [PMID: 36534021 DOI: 10.1111/dgd.12834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
The Drosophila visual center shows columnar structures, basic structural and functional units of the brain, that are shared with the mammalian cerebral cortex. Visual information received in the ommatidia in the compound eye is transmitted to the columns in the brain. However, the developmental mechanisms of column formation are largely unknown. The Irre Cell Recognition Module (IRM) proteins are a family of immunoglobulin cell adhesion molecules. The four Drosophila IRM proteins are localized to the developing columns, the structure of which is affected in IRM mutants, suggesting that IRM proteins are essential for column formation. Since IRM proteins are cell adhesion molecules, they may regulate cell adhesion between columnar neurons. To test this possibility, we specifically knocked down IRM genes in columnar neurons and examined the defects in column formation. We developed a system that automatically extracts the individual column images and quantifies the column shape. Using this system, we demonstrated that IRM genes play critical roles in regulating column shape in a core columnar neuron, Mi1. We also show that their expression in the other columnar neurons, Mi4 and T4/5, is essential, suggesting that the interactions between IRM proteins and multiple neurons shape the columns in the fly brain.
Collapse
Affiliation(s)
- Yunfei Lee
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Miaoxing Wang
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa, Japan
| | - Kousuke Imamura
- Faculty of Electrical, Information and Communication Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan
| | - Makoto Sato
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.,Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa, Japan
| |
Collapse
|
29
|
Chatterjee D, Deng WM. Standardization of Single-Cell RNA-Sequencing Analysis Workflow to Study Drosophila Ovary. Methods Mol Biol 2023; 2677:151-171. [PMID: 37464241 DOI: 10.1007/978-1-0716-3259-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Developments in single-cell technology have considerably changed the way we study biology. Significant efforts have been made over the last few years to build comprehensive cell-type-specific transcriptomic atlases for a wide range of tissues in several model organisms in order to discover cell-type-specific markers and drivers of gene expression. One such tissue is the ovary of the fruit-fly Drosophila melanogaster, which is a popular model system with wide-ranging applications in the study of both development and disease. Three independent studies have recently produced comprehensive maps of cell-type-specific gene expression that describe both spatiotemporal regulation of the process of oogenesis and unique transcriptomic profiles of different cell types that constitute the ovary. In this chapter, we outlined the wet-lab protocol that was followed in our recent study for sample preparation and reanalyze the resultant dataset to discuss the benchmarks in data analysis, which are fundamental to comprehensive curation of the single-cell dataset representing the fly ovary.
Collapse
Affiliation(s)
- Deeptiman Chatterjee
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA.
- Current address: Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| | - Wu-Min Deng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA.
| |
Collapse
|
30
|
Heymann C, Paul C, Huang N, Kinold JC, Dietrich AC, Aberle H. Molecular insights into the axon guidance molecules Sidestep and Beaten path. Front Physiol 2022; 13:1057413. [PMID: 36518105 PMCID: PMC9743010 DOI: 10.3389/fphys.2022.1057413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/10/2022] [Indexed: 09/14/2023] Open
Abstract
The transmembrane protein Sidestep (Side) functions as a substrate-bound attractant for motor axons in Drosophila. Outgrowing motor axons recognize Side via Beaten path Ia (Beat) and migrate along Side-expressing tissues. Here, we report a structure-function analysis of these guidance molecules using a variety of mutant lines and transgenic constructs. Investigation of Side mutants shows that the exchange of a single amino acid (L241H) in the second immunoglobulin domain disturbs Side function and subcellular localization. Overexpression of Side and Beat deletion constructs in S2 cells and muscles demonstrate that the first Ig domains of both proteins are necessary for their interaction. Furthermore, subcellular distributions of several Beat constructs identify functional domains and suggest a potential posttranslational processing step in ER compartments. In fact, fusing full-length Beat at both the N- and C-terminus with GFP and mCherry, respectively, shows that the N-terminal domain is transported to the plasma membrane and exposed on the cell surface, while the C-terminal domain accumulated in the nucleus. Taken together, these results give insights into the interaction of Side and Beat and imply that Beat might be subject to proteolytic cleavage during maturation.
Collapse
Affiliation(s)
- Caroline Heymann
- Department of Biology, Institute for Functional Cell Morphology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christine Paul
- Department of Biology, Institute for Functional Cell Morphology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Na Huang
- Department of Biology, Institute for Functional Cell Morphology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jaqueline C. Kinold
- Department of Biology, Institute for Functional Cell Morphology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Hermann Aberle
- Department of Biology, Institute for Functional Cell Morphology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
31
|
Prasad AR, Lago-Baldaia I, Bostock MP, Housseini Z, Fernandes VM. Differentiation signals from glia are fine-tuned to set neuronal numbers during development. eLife 2022; 11:78092. [PMID: 36094172 PMCID: PMC9507125 DOI: 10.7554/elife.78092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/11/2022] [Indexed: 11/13/2022] Open
Abstract
Neural circuit formation and function require that diverse neurons are specified in appropriate numbers. Known strategies for controlling neuronal numbers involve regulating either cell proliferation or survival. We used the Drosophila visual system to probe how neuronal numbers are set. Photoreceptors from the eye-disc induce their target field, the lamina, such that for every unit eye there is a corresponding lamina unit (column). Although each column initially contains ~6 post-mitotic lamina precursors, only 5 differentiate into neurons, called L1-L5; the 'extra' precursor, which is invariantly positioned above the L5 neuron in each column, undergoes apoptosis. Here, we showed that a glial population called the outer chiasm giant glia (xgO), which resides below the lamina, secretes multiple ligands to induce L5 differentiation in response to EGF from photoreceptors. By forcing neuronal differentiation in the lamina, we uncovered that though fated to die, the 'extra' precursor is specified as an L5. Therefore, two precursors are specified as L5s but only one differentiates during normal development. We found that the row of precursors nearest to xgO differentiate into L5s and, in turn, antagonise differentiation signalling to prevent the 'extra' precursors from differentiating, resulting in their death. Thus, an intricate interplay of glial signals and feedback from differentiating neurons defines an invariant and stereotyped pattern of neuronal differentiation and programmed cell death to ensure that lamina columns each contain exactly one L5 neuron.
Collapse
Affiliation(s)
- Anadika R Prasad
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Inês Lago-Baldaia
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Matthew P Bostock
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Zaynab Housseini
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Vilaiwan M Fernandes
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
32
|
Bostock MP, Prasad AR, Donoghue A, Fernandes VM. Photoreceptors generate neuronal diversity in their target field through a Hedgehog morphogen gradient in Drosophila. eLife 2022; 11:78093. [PMID: 36004721 PMCID: PMC9507128 DOI: 10.7554/elife.78093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Defining the origin of neuronal diversity is a major challenge in developmental neurobiology. The Drosophila visual system is an excellent paradigm to study how cellular diversity is generated. Photoreceptors from the eye disc grow their axons into the optic lobe and secrete Hedgehog (Hh) to induce the lamina, such that for every unit eye there is a corresponding lamina unit made up of post-mitotic precursors stacked into columns. Each differentiated column contains five lamina neuron types (L1-L5), making it the simplest neuropil in the optic lobe, yet how this diversity is generated was unknown. Here, we found that Hh pathway activity is graded along the distal-proximal axis of lamina columns and further determined that this gradient in pathway activity arises from a gradient of Hh ligand. We manipulated Hh pathway activity cell-autonomously in lamina precursors and non-cell autonomously by inactivating the Hh ligand, and by knocking it down in photoreceptors. These manipulations showed that different thresholds of activity specify unique cell identities, with more proximal cell types specified in response to progressively lower Hh levels. Thus, our data establish that Hh acts as a morphogen to pattern the lamina. Although, this is the first such report during Drosophila nervous system development, our work uncovers a remarkable similarity with the vertebrate neural tube, which is patterned by Sonic Hedgehog. Altogether, we show that differentiating neurons can regulate the neuronal diversity of their distant target fields through morphogen gradients.
Collapse
Affiliation(s)
- Matthew P Bostock
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Anadika R Prasad
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Alicia Donoghue
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Vilaiwan M Fernandes
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
33
|
Dillon N, Cocanougher B, Sood C, Yuan X, Kohn AB, Moroz LL, Siegrist SE, Zlatic M, Doe CQ. Single cell RNA-seq analysis reveals temporally-regulated and quiescence-regulated gene expression in Drosophila larval neuroblasts. Neural Dev 2022; 17:7. [PMID: 36002894 PMCID: PMC9404614 DOI: 10.1186/s13064-022-00163-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/19/2022] [Indexed: 12/12/2022] Open
Abstract
The mechanisms that generate neural diversity during development remains largely unknown. Here, we use scRNA-seq methodology to discover new features of the Drosophila larval CNS across several key developmental timepoints. We identify multiple progenitor subtypes - both stem cell-like neuroblasts and intermediate progenitors - that change gene expression across larval development, and report on new candidate markers for each class of progenitors. We identify a pool of quiescent neuroblasts in newly hatched larvae and show that they are transcriptionally primed to respond to the insulin signaling pathway to exit from quiescence, including relevant pathway components in the adjacent glial signaling cell type. We identify candidate "temporal transcription factors" (TTFs) that are expressed at different times in progenitor lineages. Our work identifies many cell type specific genes that are candidates for functional roles, and generates new insight into the differentiation trajectory of larval neurons.
Collapse
Affiliation(s)
- Noah Dillon
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, OR, 97403, Eugene, USA
| | - Ben Cocanougher
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Chhavi Sood
- Department of Biology, University of Virginia, VA, 22904, Charlottesville, USA
| | - Xin Yuan
- Department of Biology, University of Virginia, VA, 22904, Charlottesville, USA
| | - Andrea B Kohn
- Whitney Laboratory for Marine Biosciences, University of Florida, FL, 32080, St. Augustine, USA
| | - Leonid L Moroz
- Whitney Laboratory for Marine Biosciences, University of Florida, FL, 32080, St. Augustine, USA
| | - Sarah E Siegrist
- Department of Biology, University of Virginia, VA, 22904, Charlottesville, USA
| | - Marta Zlatic
- MRC Laboratory of Molecular Biology, Dept of Zoology, University of Cambridge, Cambridge, UK
- Janelia Research Campus, VA, Ashburn, USA
| | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, OR, 97403, Eugene, USA.
| |
Collapse
|
34
|
Nandigrami P, Szczepaniak F, Boughter CT, Dehez F, Chipot C, Roux B. Computational Assessment of Protein-Protein Binding Specificity within a Family of Synaptic Surface Receptors. J Phys Chem B 2022; 126:7510-7527. [PMID: 35787023 DOI: 10.1021/acs.jpcb.2c02173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Atomic-level information is essential to explain the formation of specific protein complexes in terms of structure and dynamics. The set of Dpr and DIP proteins, which play a key role in the neuromorphogenesis in the nervous system of Drosophila melanogaster, offer a rich paradigm to learn about protein-protein recognition. Many members of the DIP subfamily cross-react with several members of the Dpr family and vice versa. While there exists a total of 231 possible Dpr-DIP heterodimer complexes from the 21 Dpr and 11 DIP proteins, only 57 "cognate" pairs have been detected by surface plasmon resonance (SPR) experiments, suggesting that the remaining 174 pairs have low or unreliable binding affinity. Our goal is to assess the performance of computational approaches to characterize the global set of interactions between Dpr and DIP proteins and identify the specificity of binding between each DIP with their corresponding Dpr binding partners. In addition, we aim to characterize how mutations influence the specificity of the binding interaction. In this work, a wide range of knowledge-based and physics-based approaches are utilized, including mutual information, linear discriminant analysis, homology modeling, molecular dynamics simulations, Poisson-Boltzmann continuum electrostatics calculations, and alchemical free energy perturbation to decipher the origin of binding specificity of the Dpr-DIP complexes examined. Ultimately, the results show that those two broad strategies are complementary, with different strengths and limitations. Biological inter-relations are more clearly revealed through knowledge-based approaches combining evolutionary and structural features, the molecular determinants controlling binding specificity can be predicted accurately with physics-based approaches based on atomic models.
Collapse
Affiliation(s)
- Prithviraj Nandigrami
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, United States
| | - Florence Szczepaniak
- Unité Mixte de Recherche No. 7019, Université de Lorraine, B.P. 70239, 54506 Vandœuvre-lès-Nancy cedex, France
| | - Christopher T Boughter
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, United States
| | - François Dehez
- Unité Mixte de Recherche No. 7019, Université de Lorraine, B.P. 70239, 54506 Vandœuvre-lès-Nancy cedex, France
| | - Christophe Chipot
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States.,Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche No. 7019, Université de Lorraine, B.P. 70239, 54506 Vandœuvre-lès-Nancy cedex, France.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
35
|
Duhart JC, Mosca TJ. Genetic regulation of central synapse formation and organization in Drosophila melanogaster. Genetics 2022; 221:6597078. [PMID: 35652253 DOI: 10.1093/genetics/iyac078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/29/2022] [Indexed: 01/04/2023] Open
Abstract
A goal of modern neuroscience involves understanding how connections in the brain form and function. Such a knowledge is essential to inform how defects in the exquisite complexity of nervous system growth influence neurological disease. Studies of the nervous system in the fruit fly Drosophila melanogaster enabled the discovery of a wealth of molecular and genetic mechanisms underlying development of synapses-the specialized cell-to-cell connections that comprise the essential substrate for information flow and processing in the nervous system. For years, the major driver of knowledge was the neuromuscular junction due to its ease of examination. Analogous studies in the central nervous system lagged due to a lack of genetic accessibility of specific neuron classes, synaptic labels compatible with cell-type-specific access, and high resolution, quantitative imaging strategies. However, understanding how central synapses form remains a prerequisite to understanding brain development. In the last decade, a host of new tools and techniques extended genetic studies of synapse organization into central circuits to enhance our understanding of synapse formation, organization, and maturation. In this review, we consider the current state-of-the-field. We first discuss the tools, technologies, and strategies developed to visualize and quantify synapses in vivo in genetically identifiable neurons of the Drosophila central nervous system. Second, we explore how these tools enabled a clearer understanding of synaptic development and organization in the fly brain and the underlying molecular mechanisms of synapse formation. These studies establish the fly as a powerful in vivo genetic model that offers novel insights into neural development.
Collapse
Affiliation(s)
- Juan Carlos Duhart
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Timothy J Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
36
|
Wang Y, Lobb-Rabe M, Ashley J, Chatterjee P, Anand V, Bellen HJ, Kanca O, Carrillo RA. Systematic expression profiling of Dpr and DIP genes reveals cell surface codes in Drosophila larval motor and sensory neurons. Development 2022; 149:dev200355. [PMID: 35502740 PMCID: PMC9188756 DOI: 10.1242/dev.200355] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/20/2022] [Indexed: 07/26/2023]
Abstract
In complex nervous systems, neurons must identify their correct partners to form synaptic connections. The prevailing model to ensure correct recognition posits that cell-surface proteins (CSPs) in individual neurons act as identification tags. Thus, knowing what cells express which CSPs would provide insights into neural development, synaptic connectivity, and nervous system evolution. Here, we investigated expression of Dpr and DIP genes, two CSP subfamilies belonging to the immunoglobulin superfamily, in Drosophila larval motor neurons (MNs), muscles, glia and sensory neurons (SNs) using a collection of GAL4 driver lines. We found that Dpr genes are more broadly expressed than DIP genes in MNs and SNs, and each examined neuron expresses a unique combination of Dpr and DIP genes. Interestingly, many Dpr and DIP genes are not robustly expressed, but are found instead in gradient and temporal expression patterns. In addition, the unique expression patterns of Dpr and DIP genes revealed three uncharacterized MNs. This study sets the stage for exploring the functions of Dpr and DIP genes in Drosophila MNs and SNs and provides genetic access to subsets of neurons.
Collapse
Affiliation(s)
- Yupu Wang
- Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, IL 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60637, USA
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Meike Lobb-Rabe
- Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, IL 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60637, USA
- Program in Cell and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - James Ashley
- Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, IL 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60637, USA
| | - Purujit Chatterjee
- Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, IL 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60637, USA
| | - Veera Anand
- Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, IL 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60637, USA
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics and Jan and Dan Duncan Neurobiological Research Institute, Baylor College of Medicine (BCM), Houston, TX 77030, USA
- Department of Neuroscience and Howard Hughes Medical Institute, Baylor College of Medicine (BCM), Houston, TX 77030, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics and Jan and Dan Duncan Neurobiological Research Institute, Baylor College of Medicine (BCM), Houston, TX 77030, USA
| | - Robert A. Carrillo
- Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, IL 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60637, USA
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
- Program in Cell and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
37
|
Xu S, Sergeeva AP, Katsamba PS, Mannepalli S, Bahna F, Bimela J, Zipursky SL, Shapiro L, Honig B, Zinn K. Affinity requirements for control of synaptic targeting and neuronal cell survival by heterophilic IgSF cell adhesion molecules. Cell Rep 2022; 39:110618. [PMID: 35385751 PMCID: PMC9078203 DOI: 10.1016/j.celrep.2022.110618] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 02/01/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022] Open
Abstract
Neurons in the developing brain express many different cell adhesion molecules (CAMs) on their surfaces. CAM-binding affinities can vary by more than 200-fold, but the significance of these variations is unknown. Interactions between the immunoglobulin superfamily CAM DIP-α and its binding partners, Dpr10 and Dpr6, control synaptic targeting and survival of Drosophila optic lobe neurons. We design mutations that systematically change interaction affinity and analyze function in vivo. Reducing affinity causes loss-of-function phenotypes whose severity scales with the magnitude of the change. Synaptic targeting is more sensitive to affinity reduction than is cell survival. Increasing affinity rescues neurons that would normally be culled by apoptosis. By manipulating CAM expression together with affinity, we show that the key parameter controlling circuit assembly is surface avidity, which is the strength of adherence between cell surfaces. We conclude that CAM binding affinities and expression levels are finely tuned for function during development.
Collapse
Affiliation(s)
- Shuwa Xu
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, CA 91125, USA.
| | - Alina P Sergeeva
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Phinikoula S Katsamba
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Seetha Mannepalli
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Fabiana Bahna
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Jude Bimela
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - S Lawrence Zipursky
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Lawrence Shapiro
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Barry Honig
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA; Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Kai Zinn
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, CA 91125, USA.
| |
Collapse
|
38
|
Bali N, Lee HK(P, Zinn K. Sticks and Stones, a conserved cell surface ligand for the Type IIa RPTP Lar, regulates neural circuit wiring in Drosophila. eLife 2022; 11:e71469. [PMID: 35356892 PMCID: PMC9000958 DOI: 10.7554/elife.71469] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Type IIa receptor-like protein tyrosine phosphatases (RPTPs) are essential for neural development. They have cell adhesion molecule (CAM)-like extracellular domains that interact with cell-surface ligands and coreceptors. We identified the immunoglobulin superfamily CAM Sticks and Stones (Sns) as a new partner for the Drosophila Type IIa RPTP Lar. Lar and Sns bind to each other in embryos and in vitro, and the human Sns ortholog, Nephrin, binds to human Type IIa RPTPs. Genetic analysis shows that Lar and Sns function together to regulate larval neuromuscular junction development, axon guidance in the mushroom body (MB), and innervation of the optic lobe (OL) medulla by R7 photoreceptors. In the neuromuscular system, Lar and Sns are both required in motor neurons, and may function as coreceptors. In the MB and OL, however, the relevant Lar-Sns interactions are in trans (between neurons), so Sns functions as a Lar ligand in these systems.
Collapse
Affiliation(s)
- Namrata Bali
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Hyung-Kook (Peter) Lee
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Kai Zinn
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
39
|
Ketkar MD, Gür B, Molina-Obando S, Ioannidou M, Martelli C, Silies M. First-order visual interneurons distribute distinct contrast and luminance information across ON and OFF pathways to achieve stable behavior. eLife 2022; 11:74937. [PMID: 35263247 PMCID: PMC8967382 DOI: 10.7554/elife.74937] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/03/2022] [Indexed: 11/26/2022] Open
Abstract
The accurate processing of contrast is the basis for all visually guided behaviors. Visual scenes with rapidly changing illumination challenge contrast computation because photoreceptor adaptation is not fast enough to compensate for such changes. Yet, human perception of contrast is stable even when the visual environment is quickly changing, suggesting rapid post receptor luminance gain control. Similarly, in the fruit fly Drosophila, such gain control leads to luminance invariant behavior for moving OFF stimuli. Here, we show that behavioral responses to moving ON stimuli also utilize a luminance gain, and that ON-motion guided behavior depends on inputs from three first-order interneurons L1, L2, and L3. Each of these neurons encodes contrast and luminance differently and distributes information asymmetrically across both ON and OFF contrast-selective pathways. Behavioral responses to both ON and OFF stimuli rely on a luminance-based correction provided by L1 and L3, wherein L1 supports contrast computation linearly, and L3 non-linearly amplifies dim stimuli. Therefore, L1, L2, and L3 are not specific inputs to ON and OFF pathways but the lamina serves as a separate processing layer that distributes distinct luminance and contrast information across ON and OFF pathways to support behavior in varying conditions.
Collapse
Affiliation(s)
- Madhura D Ketkar
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Burak Gür
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Sebastian Molina-Obando
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Maria Ioannidou
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Carlotta Martelli
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Marion Silies
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
40
|
Velten J, Gao X, Van Nierop y Sanchez P, Domsch K, Agarwal R, Bognar L, Paulsen M, Velten L, Lohmann I. Single‐cell RNA sequencing of motoneurons identifies regulators of synaptic wiring in
Drosophila
embryos. Mol Syst Biol 2022; 18:e10255. [PMID: 35225419 PMCID: PMC8883443 DOI: 10.15252/msb.202110255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
The correct wiring of neuronal circuits is one of the most complex processes in development, since axons form highly specific connections out of a vast number of possibilities. Circuit structure is genetically determined in vertebrates and invertebrates, but the mechanisms guiding each axon to precisely innervate a unique pre‐specified target cell are poorly understood. We investigated Drosophila embryonic motoneurons using single‐cell genomics, imaging, and genetics. We show that a cell‐specific combination of homeodomain transcription factors and downstream immunoglobulin domain proteins is expressed in individual cells and plays an important role in determining cell‐specific connections between differentiated motoneurons and target muscles. We provide genetic evidence for a functional role of five homeodomain transcription factors and four immunoglobulins in the neuromuscular wiring. Knockdown and ectopic expression of these homeodomain transcription factors induces cell‐specific synaptic wiring defects that are partly phenocopied by genetic modulations of their immunoglobulin targets. Taken together, our data suggest that homeodomain transcription factor and immunoglobulin molecule expression could be directly linked and function as a crucial determinant of neuronal circuit structure.
Collapse
Affiliation(s)
- Jessica Velten
- Department of Developmental Biology Centre for Organismal Studies (COS) Heidelberg Heidelberg Germany
- The Barcelona Institute of Science and Technology Centre for Genomic Regulation (CRG) Barcelona Spain
- Flow Cytometry Core Facility European Molecular Biology Laboratory (EMBL) Heidelberg Germany
| | - Xuefan Gao
- Department of Developmental Biology Centre for Organismal Studies (COS) Heidelberg Heidelberg Germany
| | | | - Katrin Domsch
- Department of Developmental Biology Centre for Organismal Studies (COS) Heidelberg Heidelberg Germany
- Developmental Biology Erlangen‐Nürnberg University Erlangen Germany
| | - Rashi Agarwal
- Department of Developmental Biology Centre for Organismal Studies (COS) Heidelberg Heidelberg Germany
| | - Lena Bognar
- Department of Developmental Biology Centre for Organismal Studies (COS) Heidelberg Heidelberg Germany
| | - Malte Paulsen
- Flow Cytometry Core Facility European Molecular Biology Laboratory (EMBL) Heidelberg Germany
| | - Lars Velten
- The Barcelona Institute of Science and Technology Centre for Genomic Regulation (CRG) Barcelona Spain
- Universitat Pompeu Fabra (UPF) Barcelona Spain
| | - Ingrid Lohmann
- Department of Developmental Biology Centre for Organismal Studies (COS) Heidelberg Heidelberg Germany
| |
Collapse
|
41
|
A global timing mechanism regulates cell-type-specific wiring programmes. Nature 2022; 603:112-118. [PMID: 35197627 DOI: 10.1038/s41586-022-04418-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/10/2022] [Indexed: 01/04/2023]
Abstract
The assembly of neural circuits is dependent on precise spatiotemporal expression of cell recognition molecules1-5. Factors controlling cell type specificity have been identified6-8, but how timing is determined remains unknown. Here we describe induction of a cascade of transcription factors by a steroid hormone (ecdysone) in all fly visual system neurons spanning target recognition and synaptogenesis. We demonstrate through single-cell sequencing that the ecdysone pathway regulates the expression of a common set of targets required for synaptic maturation and cell-type-specific targets enriched for cell-surface proteins regulating wiring specificity. Transcription factors in the cascade regulate the expression of the same wiring genes in complex ways, including activation in one cell type and repression in another. We show that disruption of the ecdysone pathway generates specific defects in dendritic and axonal processes and synaptic connectivity, with the order of transcription factor expression correlating with sequential steps in wiring. We also identify shared targets of a cell-type-specific transcription factor and the ecdysone pathway that regulate specificity. We propose that neurons integrate a global temporal transcriptional module with cell-type-specific transcription factors to generate different cell-type-specific patterns of cell recognition molecules regulating wiring.
Collapse
|
42
|
Rounds JC, Corgiat EB, Ye C, Behnke JA, Kelly SM, Corbett AH, Moberg KH. The disease-associated proteins Drosophila Nab2 and Ataxin-2 interact with shared RNAs and coregulate neuronal morphology. Genetics 2022; 220:iyab175. [PMID: 34791182 PMCID: PMC8733473 DOI: 10.1093/genetics/iyab175] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/27/2021] [Indexed: 01/05/2023] Open
Abstract
Nab2 encodes the Drosophila melanogaster member of a conserved family of zinc finger polyadenosine RNA-binding proteins (RBPs) linked to multiple steps in post-transcriptional regulation. Mutation of the Nab2 human ortholog ZC3H14 gives rise to an autosomal recessive intellectual disability but understanding of Nab2/ZC3H14 function in metazoan nervous systems is limited, in part because no comprehensive identification of metazoan Nab2/ZC3H14-associated RNA transcripts has yet been conducted. Moreover, many Nab2/ZC3H14 functional protein partnerships remain unidentified. Here, we present evidence that Nab2 genetically interacts with Ataxin-2 (Atx2), which encodes a neuronal translational regulator, and that these factors coordinately regulate neuronal morphology, circadian behavior, and adult viability. We then present the first high-throughput identifications of Nab2- and Atx2-associated RNAs in Drosophila brain neurons using RNA immunoprecipitation-sequencing (RIP-Seq). Critically, the RNA interactomes of each RBP overlap, and Nab2 exhibits high specificity in its RNA associations in neurons in vivo, associating with a small fraction of all polyadenylated RNAs. The identities of shared associated transcripts (e.g., drk, me31B, stai) and of transcripts specific to Nab2 or Atx2 (e.g., Arpc2 and tea) promise insight into neuronal functions of, and genetic interactions between, each RBP. Consistent with prior biochemical studies, Nab2-associated neuronal RNAs are overrepresented for internal A-rich motifs, suggesting these sequences may partially mediate Nab2 target selection. These data support a model where Nab2 functionally opposes Atx2 in neurons, demonstrate Nab2 shares associated neuronal RNAs with Atx2, and reveal Drosophila Nab2 associates with a more specific subset of polyadenylated mRNAs than its polyadenosine affinity alone may suggest.
Collapse
Affiliation(s)
- J Christopher Rounds
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Edwin B Corgiat
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Changtian Ye
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Joseph A Behnke
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Seth M Kelly
- Department of Biology, The College of Wooster, Wooster, OH 44691, USA
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
43
|
Sengupta T, Koonce NL, Vázquez-Martínez N, Moyle MW, Duncan LH, Emerson SE, Han X, Shao L, Wu Y, Santella A, Fan L, Bao Z, Mohler W, Shroff H, Colón-Ramos DA. Differential adhesion regulates neurite placement via a retrograde zippering mechanism. eLife 2021; 10:71171. [PMID: 34783657 PMCID: PMC8843091 DOI: 10.7554/elife.71171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
During development, neurites and synapses segregate into specific neighborhoods or layers within nerve bundles. The developmental programs guiding placement of neurites in specific layers, and hence their incorporation into specific circuits, are not well understood. We implement novel imaging methods and quantitative models to document the embryonic development of the C. elegans brain neuropil, and discover that differential adhesion mechanisms control precise placement of single neurites onto specific layers. Differential adhesion is orchestrated via developmentally-regulated expression of the IgCAM SYG-1, and its partner ligand SYG-2. Changes in SYG-1 expression across neuropil layers result in changes in adhesive forces, which sort SYG-2-expressing neurons. Sorting to layers occurs, not via outgrowth from the neurite tip, but via an alternate mechanism of retrograde zippering, involving interactions between neurite shafts. Our study indicates that biophysical principles from differential adhesion govern neurite placement and synaptic specificity in vivo in developing neuropil bundles.
Collapse
Affiliation(s)
- Titas Sengupta
- Yale University School of Medicine, New Haven, United States
| | - Noelle L Koonce
- Yale University School of Medicine, New Haven, United States
| | | | - Mark W Moyle
- Yale University School of Medicine, New Haven, United States
| | | | - Sarah E Emerson
- Yale University School of Medicine, New Haven, United States
| | - Xiaofei Han
- National Institutes of Health, Bethesda, United States
| | - Lin Shao
- Yale University School of Medicine, New Haven, United States
| | - Yicong Wu
- National Institutes of Health, Bethesda, United States
| | - Anthony Santella
- Developmental Biology Program, Molecular Cytology Core, Sloan-Kettering Institute, New York, United States
| | - Li Fan
- Helen and Robert Appel Alzheimer's Disease Institute, Weill Cornell Medicine, New York, United States
| | - Zhirong Bao
- Developmental Biology Program, Sloan-Kettering Institute, New York, United States
| | - William Mohler
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, United States
| | - Hari Shroff
- National Institutes of Health, Bethesda, United States
| | | |
Collapse
|
44
|
Hildebrandt K, Kübel S, Minet M, Fürst N, Klöppel C, Steinmetz E, Walldorf U. Enhancer analysis of the Drosophila zinc finger transcription factor Earmuff by gene targeting. Hereditas 2021; 158:41. [PMID: 34732265 PMCID: PMC8567707 DOI: 10.1186/s41065-021-00209-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Many transcription factors are involved in the formation of the brain during the development of Drosophila melanogaster. The transcription factor Earmuff (Erm), a member of the forebrain embryonic zinc finger family (Fezf), is one of these important factors for brain development. One major function of Earmuff is the regulation of proliferation within type II neuroblast lineages in the brain; here, Earmuff is expressed in intermediate neural progenitor cells (INPs) and balances neuronal differentiation versus stem cell maintenance. Erm expression during development is regulated by several enhancers. RESULTS In this work we show a functional analysis of erm and some of its enhancers. We generated a new erm mutant allele by gene targeting and reintegrated Gal4 to make an erm enhancer trap strain that could also be used on an erm mutant background. The deletion of three of the previously analysed enhancers showing the most prominent expression patterns of erm by gene targeting resulted in specific temporal and spatial defects in defined brain structures. These defects were already known but here could be assigned to specific enhancer regions. CONCLUSION This analysis is to our knowledge the first systematic analysis of several large enhancer deletions of a Drosophila gene by gene targeting and will enable deeper analysis of erm enhancer functions in the future.
Collapse
Affiliation(s)
- Kirsten Hildebrandt
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
| | - Sabrina Kübel
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
- Present address: Clinical and Molecular Virology, Friedrich-Alexander University, 91054, Erlangen, Germany
| | - Marie Minet
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
- Present address: Human Genetics, Saarland University, Building 60, 66421, Homburg/Saar, Germany
| | - Nora Fürst
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
- Present address: Genetics/Epigenetics, Saarland University, Building A2.4, 66123, Saarbrücken, Germany
| | - Christine Klöppel
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
| | - Eva Steinmetz
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
- Present address: Zoology and Physiology, Saarland University, Building B2.1, 66123, Saarbrücken, Germany
| | - Uwe Walldorf
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany.
| |
Collapse
|
45
|
Rochon PL, Theriault C, Rangel Olguin AG, Krishnaswamy A. The cell adhesion molecule Sdk1 shapes assembly of a retinal circuit that detects localized edges. eLife 2021; 10:e70870. [PMID: 34545809 PMCID: PMC8514235 DOI: 10.7554/elife.70870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/11/2021] [Indexed: 01/10/2023] Open
Abstract
Nearly 50 different mouse retinal ganglion cell (RGC) types sample the visual scene for distinct features. RGC feature selectivity arises from their synapses with a specific subset of amacrine (AC) and bipolar cell (BC) types, but how RGC dendrites arborize and collect input from these specific subsets remains poorly understood. Here we examine the hypothesis that RGCs employ molecular recognition systems to meet this challenge. By combining calcium imaging and type-specific histological stains, we define a family of circuits that express the recognition molecule Sidekick-1 (Sdk1), which include a novel RGC type (S1-RGC) that responds to local edges. Genetic and physiological studies revealed that Sdk1 loss selectively disrupts S1-RGC visual responses, which result from a loss of excitatory and inhibitory inputs and selective dendritic deficits on this neuron. We conclude that Sdk1 shapes dendrite growth and wiring to help S1-RGCs become feature selective.
Collapse
|
46
|
Simon F, Konstantinides N. Single-cell transcriptomics in the Drosophila visual system: Advances and perspectives on cell identity regulation, connectivity, and neuronal diversity evolution. Dev Biol 2021; 479:107-122. [PMID: 34375653 DOI: 10.1016/j.ydbio.2021.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/10/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022]
Abstract
The Drosophila visual system supports complex behaviors and shares many of its anatomical and molecular features with the vertebrate brain. Yet, it contains a much more manageable number of neurons and neuronal types. In addition to the extensive Drosophila genetic toolbox, this relative simplicity has allowed decades of work to yield a detailed account of its neuronal type diversity, morphology, connectivity and specification mechanisms. In the past three years, numerous studies have applied large scale single-cell transcriptomic approaches to the Drosophila visual system and have provided access to the complete gene expression profile of most neuronal types throughout development. This makes the fly visual system particularly well suited to perform detailed studies of the genetic mechanisms underlying the evolution and development of neuronal systems. Here, we highlight how these transcriptomic resources allow exploring long-standing biological questions under a new light. We first present the efforts made to characterize neuronal diversity in the Drosophila visual system and suggest ways to further improve this description. We then discuss current advances allowed by the single-cell datasets, and envisage how these datasets can be further leveraged to address fundamental questions regarding the regulation of neuronal identity, neuronal circuit development and the evolution of neuronal diversity.
Collapse
Affiliation(s)
- Félix Simon
- Department of Biology, New York University, New York, NY, 10003, USA.
| | - Nikolaos Konstantinides
- Department of Biology, New York University, New York, NY, 10003, USA; Institut Jacques Monod, Centre National de la Recherche Scientifique-UMR 7592, Université Paris Diderot, Paris, France.
| |
Collapse
|
47
|
Neural specification, targeting, and circuit formation during visual system assembly. Proc Natl Acad Sci U S A 2021; 118:2101823118. [PMID: 34183440 DOI: 10.1073/pnas.2101823118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Like other sensory systems, the visual system is topographically organized: Its sensory neurons, the photoreceptors, and their targets maintain point-to-point correspondence in physical space, forming a retinotopic map. The iterative wiring of circuits in the visual system conveniently facilitates the study of its development. Over the past few decades, experiments in Drosophila have shed light on the principles that guide the specification and connectivity of visual system neurons. In this review, we describe the main findings unearthed by the study of the Drosophila visual system and compare them with similar events in mammals. We focus on how temporal and spatial patterning generates diverse cell types, how guidance molecules distribute the axons and dendrites of neurons within the correct target regions, how vertebrates and invertebrates generate their retinotopic map, and the molecules and mechanisms required for neuronal migration. We suggest that basic principles used to wire the fly visual system are broadly applicable to other systems and highlight its importance as a model to study nervous system development.
Collapse
|
48
|
Bornstein B, Meltzer H, Adler R, Alyagor I, Berkun V, Cummings G, Reh F, Keren‐Shaul H, David E, Riemensperger T, Schuldiner O. Transneuronal Dpr12/DIP-δ interactions facilitate compartmentalized dopaminergic innervation of Drosophila mushroom body axons. EMBO J 2021; 40:e105763. [PMID: 33847376 PMCID: PMC8204868 DOI: 10.15252/embj.2020105763] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 12/31/2022] Open
Abstract
The mechanisms controlling wiring of neuronal networks are not completely understood. The stereotypic architecture of the Drosophila mushroom body (MB) offers a unique system to study circuit assembly. The adult medial MB γ-lobe is comprised of a long bundle of axons that wire with specific modulatory and output neurons in a tiled manner, defining five distinct zones. We found that the immunoglobulin superfamily protein Dpr12 is cell-autonomously required in γ-neurons for their developmental regrowth into the distal γ4/5 zones, where both Dpr12 and its interacting protein, DIP-δ, are enriched. DIP-δ functions in a subset of dopaminergic neurons that wire with γ-neurons within the γ4/5 zone. During metamorphosis, these dopaminergic projections arrive to the γ4/5 zone prior to γ-axons, suggesting that γ-axons extend through a prepatterned region. Thus, Dpr12/DIP-δ transneuronal interaction is required for γ4/5 zone formation. Our study sheds light onto molecular and cellular mechanisms underlying circuit formation within subcellular resolution.
Collapse
Affiliation(s)
- Bavat Bornstein
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Hagar Meltzer
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Ruth Adler
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Idan Alyagor
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Victoria Berkun
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Gideon Cummings
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Fabienne Reh
- Institute of ZoologyUniversity of CologneKölnGermany
| | - Hadas Keren‐Shaul
- Department of ImmunologyWeizmann Institute of ScienceRehovotIsrael
- Life Science Core FacilityWeizmann Institute of ScienceRehovotIsrael
| | - Eyal David
- Department of ImmunologyWeizmann Institute of ScienceRehovotIsrael
| | | | - Oren Schuldiner
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
49
|
Genetic basis of variation in cocaine and methamphetamine consumption in outbred populations of Drosophila melanogaster. Proc Natl Acad Sci U S A 2021; 118:2104131118. [PMID: 34074789 PMCID: PMC8201854 DOI: 10.1073/pnas.2104131118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We used Drosophila melanogaster to map the genetic basis of naturally occurring variation in voluntary consumption of cocaine and methamphetamine. We derived an outbred advanced intercross population (AIP) from 37 sequenced inbred wild-derived lines of the Drosophila melanogaster Genetic Reference Panel (DGRP), which are maximally genetically divergent, have minimal residual heterozygosity, are not segregating for common inversions, and are not infected with Wolbachia pipientis We assessed consumption of sucrose, methamphetamine-supplemented sucrose, and cocaine-supplemented sucrose and found considerable phenotypic variation for consumption of both drugs, in both sexes. We performed whole-genome sequencing and extreme quantitative trait locus (QTL) mapping on the top 10% of consumers for each replicate, sex, and condition and an equal number of randomly selected flies. We evaluated changes in allele frequencies among high consumers and control flies and identified 3,033 variants significantly (P < 1.9 × 10-8) associated with increased consumption, located in or near 1,962 genes. Many of these genes are associated with nervous system development and function, and 77 belong to a known gene-gene interaction subnetwork. We assessed the effects of RNA interference (RNAi) on drug consumption for 22 candidate genes; 17 had a significant effect in at least one sex. We constructed allele-specific AIPs that were homozygous for alternative candidate alleles for 10 single-nucleotide polymorphisms (SNPs) and measured average consumption for each population; 9 SNPs had significant effects in at least one sex. The genetic basis of voluntary drug consumption in Drosophila is polygenic and implicates genes with human orthologs and associated variants with sex- and drug-specific effects.
Collapse
|
50
|
Drosophila Fezf functions as a transcriptional repressor to direct layer-specific synaptic connectivity in the fly visual system. Proc Natl Acad Sci U S A 2021; 118:2025530118. [PMID: 33766917 PMCID: PMC8020669 DOI: 10.1073/pnas.2025530118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Functionally relevant neuronal connections are often organized within discrete layers of neuropil to ensure proper connectivity and information processing. While layer-specific assembly of neuronal connectivity is a dynamic process involving stepwise interactions between different neuron types, the mechanisms underlying this critical developmental process are not well understood. Here, we investigate the role of the transcription factor dFezf in layer selection within the Drosophila visual system, which is important for synaptic specificity. Our findings show that dFezf functions as a transcriptional repressor governing the precise temporal expression pattern of downstream genes, including other transcription factors required for proper connectivity. Layer-specific assembly of neuronal connectivity in the fly visual system is thus orchestrated by precise, temporally controlled transcriptional cascades. The layered compartmentalization of synaptic connections, a common feature of nervous systems, underlies proper connectivity between neurons and enables parallel processing of neural information. However, the stepwise development of layered neuronal connections is not well understood. The medulla neuropil of the Drosophila visual system, which comprises 10 discrete layers (M1 to M10), where neural computations underlying distinct visual features are processed, serves as a model system for understanding layered synaptic connectivity. The first step in establishing layer-specific connectivity in the outer medulla (M1 to M6) is the innervation by lamina (L) neurons of one of two broad, primordial domains that will subsequently expand and transform into discrete layers. We previously found that the transcription factor dFezf cell-autonomously directs L3 lamina neurons to their proper primordial broad domain before they form synapses within the developing M3 layer. Here, we show that dFezf controls L3 broad domain selection through temporally precise transcriptional repression of the transcription factor slp1 (sloppy paired 1). In wild-type L3 neurons, slp1 is transiently expressed at a low level during broad domain selection. When dFezf is deleted, slp1 expression is up-regulated, and ablation of slp1 fully rescues the defect of broad domain selection in dFezf-null L3 neurons. Although the early, transient expression of slp1 is expendable for broad domain selection, it is surprisingly necessary for the subsequent L3 innervation of the M3 layer. DFezf thus functions as a transcriptional repressor to coordinate the temporal dynamics of a transcriptional cascade that orchestrates sequential steps of layer-specific synapse formation.
Collapse
|