1
|
Lu Y, Gao J, Xie RC, Su H, Zhang Y, Wang W. Inheritance of extraordinary metabolic activity from parental bacteria individuals. Proc Natl Acad Sci U S A 2025; 122:e2502818122. [PMID: 40343988 DOI: 10.1073/pnas.2502818122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/08/2025] [Indexed: 05/11/2025] Open
Abstract
Many phenotypic traits, such as fermentation activity, have been shown to be instable due to stochastic gene expression and environmental influence. While previous studies only have obtained understanding at the level of the microbial community, the fate of extraordinary traits of an individual through generations of reproduction has yet to be adequately investigated. This work uses the lactic acid bacteri Lactiplantibacillus plantarum as a research model to study the activity inheritance between parental generations and filial generations. An integrated single-cell manipulation strategy is established, including fluorescent screening using an extracellular pH probe and a microwell array, micropicking using a micropipette, and amplifying an individual bacterium via single-cell culture. Consequently, it is found that daughter bacteria can well inherit the strong acid-producing activity from their parental bacterial individuals, although as the reproduction proceeds over 30 generations, the offspring gradually regresses to the mediocre, thus setting a caveat for the limiting generations for desired inheritance. This is likely due to the deterioration of the cell living environment. This work illustrates the inheritable features of bacterial metabolic traits at the level of individual bacteria and is therefore fundamentally insightful for biotechnological applications like bioenergy production that require consistent or at least predictable metabolic performance.
Collapse
Affiliation(s)
- Yuyang Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jia Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Ruo-Chen Xie
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Hua Su
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yaoyao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
2
|
Godden AM, Silva WTAF, Kiehl B, Jolly C, Folkes L, Alavioon G, Immler S. Environmentally induced variation in sperm sRNAs is linked to gene expression and transposable elements in zebrafish offspring. Heredity (Edinb) 2025; 134:234-246. [PMID: 40121340 PMCID: PMC11977266 DOI: 10.1038/s41437-025-00752-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 03/25/2025] Open
Abstract
Environmental factors affect not only paternal condition but may translate into the following generations where sperm-mediated small RNAs (sRNAs) can contribute to the transmission of paternal effects. sRNAs play a key role in the male germ line in genome maintenance and repair, and particularly in response to environmental stress and the resulting increase in transposable element (TE) activity. Here, we investigated how the social environment (high competition, low competition) of male zebrafish Danio rerio affects sRNAs in sperm and how these are linked to gene expression and TE activity in their offspring. In a first experiment, we collected sperm samples after exposing males to each social environment for 2 weeks to test for differentially expressed sperm micro- (miRNA) and piwi-interacting RNAs (piRNA). In a separate experiment, we performed in vitro fertilisations after one 2-week period using a split-clutch design to control for maternal effects and collected embryos at 24 h to test for differentially expressed genes and TEs. We developed new computational prediction tools to link sperm sRNAs with differentially expressed TEs and genes in the embryos. Our results support the idea that the molecular stress response in the male germ line has significant down-stream effects on the molecular pathways, and we provide a direct link between sRNAs, TEs and gene expression.
Collapse
Affiliation(s)
- Alice M Godden
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Willian T A F Silva
- Uppsala University, Department of Evolutionary Biology, Norbyvägen 18D, 75310, Uppsala, Sweden
- Department of Physics, Chemistry and Biology, Linköping University, 58183, Linköping, Sweden
| | - Berrit Kiehl
- Uppsala University, Department of Evolutionary Biology, Norbyvägen 18D, 75310, Uppsala, Sweden
| | - Cécile Jolly
- Uppsala University, Department of Evolutionary Biology, Norbyvägen 18D, 75310, Uppsala, Sweden
| | - Leighton Folkes
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Ghazal Alavioon
- Uppsala University, Department of Evolutionary Biology, Norbyvägen 18D, 75310, Uppsala, Sweden
| | - Simone Immler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
- Uppsala University, Department of Evolutionary Biology, Norbyvägen 18D, 75310, Uppsala, Sweden.
| |
Collapse
|
3
|
Quiobe SP, Kalirad A, Röseler W, Witte H, Wang Y, Rödelsperger C, Sommer RJ. EBAX-1/ZSWIM8 destabilizes miRNAs, resulting in transgenerational inheritance of a predatory trait. SCIENCE ADVANCES 2025; 11:eadu0875. [PMID: 40073139 PMCID: PMC11900880 DOI: 10.1126/sciadv.adu0875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025]
Abstract
Environmental influences on traits and associated transgenerational epigenetic inheritance have widespread implications but remain controversial and underlying mechanisms poorly understood. We introduce long-term environmental induction experiments on alternative diets in Pristionchus pacificus, a nematode exhibiting mouth-form plasticity including predation, by propagating 110 isogenic lines for 101 generations with associated food-reversal experiments. We found dietary induction and subsequent transgenerational inheritance of the predatory morph and identified a role of ubiquitin ligase EBAX-1/ZSWIM8 in this process. Ppa-ebax-1 mutants are transgenerational inheritance defective, and Ppa-EBAX-1 destabilizes the clustered microRNA family miR-2235a/miR-35. Deletions of a cluster of 44 identical miR-2235a copies resulted in precocious and extended transgenerational inheritance of the predatory morph. These findings indicate that EBAX-1/ZSWIM8 destabilizes miRNAs, resulting in transgenerational inheritance, suggesting a role for target-directed miRNA degradation.
Collapse
Affiliation(s)
- Shiela Pearl Quiobe
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen, 72076, Germany
| | - Ata Kalirad
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen, 72076, Germany
| | - Waltraud Röseler
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen, 72076, Germany
| | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen, 72076, Germany
| | - Yinan Wang
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen, 72076, Germany
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen, 72076, Germany
| | - Ralf J. Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen, 72076, Germany
| |
Collapse
|
4
|
Filipowicz A, Allard P. Caenorhabditis Elegans as a Model for Environmental Epigenetics. Curr Environ Health Rep 2025; 12:6. [PMID: 39828873 PMCID: PMC11743352 DOI: 10.1007/s40572-025-00472-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
PURPOSE OF REVIEW The burgeoning field of environmental epigenetics has revealed the malleability of the epigenome and uncovered numerous instances of its sensitivity to environmental influences; however, pinpointing specific mechanisms that tie together environmental triggers, epigenetic pathways, and organismal responses has proven difficult. This article describes how Caenorhabditis elegans can fill this gap, serving as a useful model for the discovery of molecular epigenetic mechanisms that are conserved in humans. RECENT FINDINGS Recent results show that environmental stressors such as methylmercury, arsenite, starvation, heat, bacterial infection, and mitochondrial inhibitors can all have profound effects on the epigenome, with some insults showing epigenetic and organismal effects for multiple generations. In some cases, the pathways connecting the stressor to epigenetic pathways and organismal responses have been elucidated. For example, a small RNA from the bacterial pathogen Pseudomonas aeruginosa induces transgenerational learned avoidance by activating the RNA interference PIWI-interacting RNA pathways across generations to downregulate, via Cer1 retrotransposon particles and histone methylation, maco-1, a gene that functions in sensory neurons to regulate chemotaxis. Mitochondrial inhibitors seem to have a profound effect on both the DNA methylation mark 6mA and histone methylation, and may act within mitochondrial DNA (mtDNA) to regulate mitochondrial stress response genes. Transgenerational transcriptional responses to alcohol have also been worked out at the single-nucleus resolution in C. elegans, demonstrating its utility when combined with modern sequencing technologies. These recent studies highlight how C. elegans can serve as a bridge between biochemical in vitro experiments and the more associative findings of epidemiological studies in humans to unveil possible mechanisms of environmental influence on the epigenome. The nematode is particularly well-suited to transgenerational experiments thanks to its rapid generation time and ability to self-fertilize. These studies have revealed connections between the various epigenetic mechanisms, and so studies in C. elegans that take advantage of recent advancements in sequencing technologies, including single-cell techniques, to gain unprecedented resolution of the whole epigenome across development and generations will be critical.
Collapse
Affiliation(s)
- Adam Filipowicz
- Institute for Society and Genetics, University of California, Boyer Hall, Room 332, 611 Charles E Young Dr E., UCLA, Los Angeles, CA, 90095, USA
- Environmental and Molecular Toxicology Program, University of California, Los Angeles, USA
| | - Patrick Allard
- Institute for Society and Genetics, University of California, Boyer Hall, Room 332, 611 Charles E Young Dr E., UCLA, Los Angeles, CA, 90095, USA.
- Environmental and Molecular Toxicology Program, University of California, Los Angeles, USA.
| |
Collapse
|
5
|
McDonald JF. Adaptive Significance of Non-coding RNAs: Insights from Cancer Biology. Mol Biol Evol 2025; 42:msae269. [PMID: 39761690 PMCID: PMC11725524 DOI: 10.1093/molbev/msae269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/20/2024] [Accepted: 12/18/2024] [Indexed: 01/15/2025] Open
Abstract
The molecular basis of adaptive evolution and cancer progression are both complex processes that share many striking similarities. The potential adaptive significance of environmentally-induced epigenetic changes is currently an area of great interest in both evolutionary and cancer biology. In the field of cancer biology intense effort has been focused on the contribution of stress-induced non-coding RNAs (ncRNAs) in the activation of epigenetic changes associated with elevated mutation rates and the acquisition of environmentally adaptive traits. Examples of this process are presented and combined with more recent findings demonstrating that stress-induced ncRNAs are transferable from somatic to germline cells leading to cross-generational inheritance of acquired adaptive traits. The fact that ncRNAs have been implicated in the transient adaptive response of various plants and animals to environmental stress is consistent with findings in cancer biology. Based on these collective observations, a general model as well as specific and testable hypotheses are proposed on how transient ncRNA-mediated adaptive responses may facilitate the transition to long-term biological adaptation in both cancer and evolution.
Collapse
Affiliation(s)
- John F McDonald
- Professor Emeritus, School of Biological Sciences, Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
6
|
Kisliouk T, Ravi PM, Rosenberg T, Meiri N. Embryonic manipulations shape life-long, heritable stress responses through complex epigenetic mechanisms: a review. Front Neurosci 2024; 18:1435065. [PMID: 39099633 PMCID: PMC11294202 DOI: 10.3389/fnins.2024.1435065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
Enhancing an organism's likelihood of survival hinges on fostering a balanced and adaptable development of robust stress response systems. This critical process is significantly influenced by the embryonic environment, which plays a pivotal role in shaping neural circuits that define the stress response set-point. While certain embryonic conditions offer advantageous outcomes, others can lead to maladaptive responses. The establishment of this response set-point during embryonic development can exert life-long and inheritable effects on an organism's physiology and behavior. This review highlights the significance of multilevel epigenetic regulation and the intricate cross-talk among these layers in response to heat stress during the embryonic period, with a particular focus on insights gained from the avian model.
Collapse
Affiliation(s)
- Tatiana Kisliouk
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon Leziyyon, Israel
| | - Padma Malini Ravi
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon Leziyyon, Israel
| | - Tali Rosenberg
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Noam Meiri
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon Leziyyon, Israel
| |
Collapse
|
7
|
Zhu YN, He J, Wang J, Guo W, Liu H, Song Z, Kang L. Parental experiences orchestrate locust egg hatching synchrony by regulating nuclear export of precursor miRNA. Nat Commun 2024; 15:4328. [PMID: 38773155 PMCID: PMC11109280 DOI: 10.1038/s41467-024-48658-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 05/08/2024] [Indexed: 05/23/2024] Open
Abstract
Parental experiences can affect the phenotypic plasticity of offspring. In locusts, the population density that adults experience regulates the number and hatching synchrony of their eggs, contributing to locust outbreaks. However, the pathway of signal transmission from parents to offspring remains unclear. Here, we find that transcription factor Forkhead box protein N1 (FOXN1) responds to high population density and activates the polypyrimidine tract-binding protein 1 (Ptbp1) in locusts. FOXN1-PTBP1 serves as an upstream regulator of miR-276, a miRNA to control egg-hatching synchrony. PTBP1 boosts the nucleo-cytoplasmic transport of pre-miR-276 in a "CU motif"-dependent manner, by collaborating with the primary exportin protein exportin 5 (XPO5). Enhanced nuclear export of pre-miR-276 elevates miR-276 expression in terminal oocytes, where FOXN1 activates Ptbp1 and leads to egg-hatching synchrony in response to high population density. Additionally, PTBP1-prompted nuclear export of pre-miR-276 is conserved in insects, implying a ubiquitous mechanism to mediate transgenerational effects.
Collapse
Affiliation(s)
- Ya Nan Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing He
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiawen Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongran Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhuoran Song
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Science, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
8
|
Pliota P, Marvanova H, Koreshova A, Kaufman Y, Tikanova P, Krogull D, Hagmüller A, Widen SA, Handler D, Gokcezade J, Duchek P, Brennecke J, Ben-David E, Burga A. Selfish conflict underlies RNA-mediated parent-of-origin effects. Nature 2024; 628:122-129. [PMID: 38448590 PMCID: PMC10990930 DOI: 10.1038/s41586-024-07155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
Genomic imprinting-the non-equivalence of maternal and paternal genomes-is a critical process that has evolved independently in many plant and mammalian species1,2. According to kinship theory, imprinting is the inevitable consequence of conflictive selective forces acting on differentially expressed parental alleles3,4. Yet, how these epigenetic differences evolve in the first place is poorly understood3,5,6. Here we report the identification and molecular dissection of a parent-of-origin effect on gene expression that might help to clarify this fundamental question. Toxin-antidote elements (TAs) are selfish elements that spread in populations by poisoning non-carrier individuals7-9. In reciprocal crosses between two Caenorhabditis tropicalis wild isolates, we found that the slow-1/grow-1 TA is specifically inactive when paternally inherited. This parent-of-origin effect stems from transcriptional repression of the slow-1 toxin by the PIWI-interacting RNA (piRNA) host defence pathway. The repression requires PIWI Argonaute and SET-32 histone methyltransferase activities and is transgenerationally inherited via small RNAs. Remarkably, when slow-1/grow-1 is maternally inherited, slow-1 repression is halted by a translation-independent role of its maternal mRNA. That is, slow-1 transcripts loaded into eggs-but not SLOW-1 protein-are necessary and sufficient to counteract piRNA-mediated repression. Our findings show that parent-of-origin effects can evolve by co-option of the piRNA pathway and hinder the spread of selfish genes that require sex for their propagation.
Collapse
Affiliation(s)
- Pinelopi Pliota
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Hana Marvanova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Alevtina Koreshova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Yotam Kaufman
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Polina Tikanova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Daniel Krogull
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Andreas Hagmüller
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Sonya A Widen
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Dominik Handler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Joseph Gokcezade
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Peter Duchek
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Julius Brennecke
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Eyal Ben-David
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
- Illumina Artificial Intelligence Laboratory, Illumina, San Diego, CA, USA
| | - Alejandro Burga
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
9
|
Chou HT, Valencia F, Alexander JC, Bell AD, Deb D, Pollard DA, Paaby AB. Diversification of small RNA pathways underlies germline RNA interference incompetence in wild Caenorhabditis elegans strains. Genetics 2024; 226:iyad191. [PMID: 37865119 PMCID: PMC10763538 DOI: 10.1093/genetics/iyad191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/09/2023] [Accepted: 08/12/2023] [Indexed: 10/23/2023] Open
Abstract
The discovery that experimental delivery of dsRNA can induce gene silencing at target genes revolutionized genetics research, by both uncovering essential biological processes and creating new tools for developmental geneticists. However, the efficacy of exogenous RNA interference (RNAi) varies dramatically within the Caenorhabditis elegans natural population, raising questions about our understanding of RNAi in the lab relative to its activity and significance in nature. Here, we investigate why some wild strains fail to mount a robust RNAi response to germline targets. We observe diversity in mechanism: in some strains, the response is stochastic, either on or off among individuals, while in others, the response is consistent but delayed. Increased activity of the Argonaute PPW-1, which is required for germline RNAi in the laboratory strain N2, rescues the response in some strains but dampens it further in others. Among wild strains, genes known to mediate RNAi exhibited very high expression variation relative to other genes in the genome as well as allelic divergence and strain-specific instances of pseudogenization at the sequence level. Our results demonstrate functional diversification in the small RNA pathways in C. elegans and suggest that RNAi processes are evolving rapidly and dynamically in nature.
Collapse
Affiliation(s)
- Han Ting Chou
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Francisco Valencia
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jacqueline C Alexander
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Avery Davis Bell
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Diptodip Deb
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Janelia Research Campus, Ashburn, VA 20147, USA
| | - Daniel A Pollard
- Department of Biology, Western Washington University, Bellingham, WA 98225, USA
| | - Annalise B Paaby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
10
|
Ow MC, Hall SE. Inheritance of Stress Responses via Small Non-Coding RNAs in Invertebrates and Mammals. EPIGENOMES 2023; 8:1. [PMID: 38534792 DOI: 10.3390/epigenomes8010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 03/28/2024] Open
Abstract
While reports on the generational inheritance of a parental response to stress have been widely reported in animals, the molecular mechanisms behind this phenomenon have only recently emerged. The booming interest in epigenetic inheritance has been facilitated in part by the discovery that small non-coding RNAs are one of its principal conduits. Discovered 30 years ago in the Caenorhabditis elegans nematode, these small molecules have since cemented their critical roles in regulating virtually all aspects of eukaryotic development. Here, we provide an overview on the current understanding of epigenetic inheritance in animals, including mice and C. elegans, as it pertains to stresses such as temperature, nutritional, and pathogenic encounters. We focus on C. elegans to address the mechanistic complexity of how small RNAs target their cohort mRNAs to effect gene expression and how they govern the propagation or termination of generational perdurance in epigenetic inheritance. Presently, while a great amount has been learned regarding the heritability of gene expression states, many more questions remain unanswered and warrant further investigation.
Collapse
Affiliation(s)
- Maria C Ow
- Department of Biology, Syracuse University, Syracuse, NY 13210, USA
| | - Sarah E Hall
- Department of Biology and Program in Neuroscience, Syracuse University, Syracuse, NY 13210, USA
| |
Collapse
|
11
|
Fallet M, Wilson R, Sarkies P. Cisplatin exposure alters tRNA-derived small RNAs but does not affect epimutations in C. elegans. BMC Biol 2023; 21:276. [PMID: 38031056 PMCID: PMC10688063 DOI: 10.1186/s12915-023-01767-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND The individual lifestyle and environment of an organism can influence its phenotype and potentially the phenotype of its offspring. The different genetic and non-genetic components of the inheritance system and their mutual interactions are key mechanisms to generate inherited phenotypic changes. Epigenetic changes can be transmitted between generations independently from changes in DNA sequence. In Caenorhabditis elegans, epigenetic differences, i.e. epimutations, mediated by small non-coding RNAs, particularly 22G-RNAs, as well as chromatin have been identified, and their average persistence is three to five generations. In addition, previous research showed that some epimutations had a longer duration and concerned genes that were enriched for multiple components of xenobiotic response pathways. These results raise the possibility that environmental stresses might change the rate at which epimutations occur, with potential significance for adaptation. RESULTS In this work, we explore this question by propagating C. elegans lines either in control conditions or in moderate or high doses of cisplatin, which introduces genotoxic stress by damaging DNA. Our results show that cisplatin has a limited effect on global small non-coding RNA epimutations and epimutations in gene expression levels. However, cisplatin exposure leads to increased fluctuations in the levels of small non-coding RNAs derived from tRNA cleavage. We show that changes in tRNA-derived small RNAs may be associated with gene expression changes. CONCLUSIONS Our work shows that epimutations are not substantially altered by cisplatin exposure but identifies transient changes in tRNA-derived small RNAs as a potential source of variation induced by genotoxic stress.
Collapse
Affiliation(s)
- Manon Fallet
- Department of Biochemistry, Evolutionary Epigenetics Group, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd., Oxford, OX1 3QU, UK.
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182, Örebro, Sweden.
| | - Rachel Wilson
- Department of Biochemistry, Evolutionary Epigenetics Group, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd., Oxford, OX1 3QU, UK
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Peter Sarkies
- Department of Biochemistry, Evolutionary Epigenetics Group, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd., Oxford, OX1 3QU, UK.
| |
Collapse
|
12
|
Rieger I, Weintraub G, Lev I, Goldstein K, Bar-Zvi D, Anava S, Gingold H, Shaham S, Rechavi O. Nucleus-independent transgenerational small RNA inheritance in Caenorhabditis elegans. SCIENCE ADVANCES 2023; 9:eadj8618. [PMID: 37878696 PMCID: PMC10599617 DOI: 10.1126/sciadv.adj8618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023]
Abstract
In Caenorhabditis elegans worms, epigenetic information transmits transgenerationally. Still, it is unknown whether the effects transfer to the next generation inside or outside of the nucleus. Here, we use the tractability of gene-specific double-stranded RNA-induced silencing to demonstrate that RNA interference can be inherited independently of any nuclear factors via mothers that are genetically engineered to transmit only their ooplasm but not the oocytes' nuclei to the next generation. We characterize the mechanisms and, using RNA sequencing, chimeric worms, and sequence polymorphism between different isolates, identify endogenous small RNAs which, similarly to exogenous siRNAs, are inherited in a nucleus-independent manner. From a historical perspective, these results might be regarded as partial vindication of discredited cytoplasmic inheritance theories from the 19th century, such as Darwin's "pangenesis" theory.
Collapse
Affiliation(s)
- Itai Rieger
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Guy Weintraub
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Itamar Lev
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Kesem Goldstein
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Dana Bar-Zvi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Sarit Anava
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Hila Gingold
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
13
|
Liberman N, Rothi MH, Gerashchenko MV, Zorbas C, Boulias K, MacWhinnie FG, Ying AK, Flood Taylor A, Al Haddad J, Shibuya H, Roach L, Dong A, Dellacona S, Lafontaine DLJ, Gladyshev VN, Greer EL. 18S rRNA methyltransferases DIMT1 and BUD23 drive intergenerational hormesis. Mol Cell 2023; 83:3268-3282.e7. [PMID: 37689068 PMCID: PMC11990152 DOI: 10.1016/j.molcel.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/25/2023] [Accepted: 08/10/2023] [Indexed: 09/11/2023]
Abstract
Heritable non-genetic information can regulate a variety of complex phenotypes. However, what specific non-genetic cues are transmitted from parents to their descendants are poorly understood. Here, we perform metabolic methyl-labeling experiments to track the heritable transmission of methylation from ancestors to their descendants in the nematode Caenorhabditis elegans (C. elegans). We find heritable methylation in DNA, RNA, proteins, and lipids. We find that parental starvation elicits reduced fertility, increased heat stress resistance, and extended longevity in fed, naïve progeny. This intergenerational hormesis is accompanied by a heritable increase in N6'-dimethyl adenosine (m6,2A) on the 18S ribosomal RNA at adenosines 1735 and 1736. We identified DIMT-1/DIMT1 as the m6,2A and BUD-23/BUD23 as the m7G methyltransferases in C. elegans that are both required for intergenerational hormesis, while other rRNA methyltransferases are dispensable. This study labels and tracks heritable non-genetic material across generations and demonstrates the importance of rRNA methylation for regulating epigenetic inheritance.
Collapse
Affiliation(s)
- Noa Liberman
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - M Hafiz Rothi
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Maxim V Gerashchenko
- Division of Genetics, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christiane Zorbas
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Biopark Campus, 6041 Gosselies, Belgium
| | - Konstantinos Boulias
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Fiona G MacWhinnie
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Albert Kejun Ying
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Anya Flood Taylor
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Joseph Al Haddad
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Hiroki Shibuya
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Lara Roach
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Anna Dong
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Scarlett Dellacona
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Biopark Campus, 6041 Gosselies, Belgium
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eric Lieberman Greer
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
14
|
Liu L, Wang X, Zhao W, Li Q, Li J, Chen H, Shan G. Systematic characterization of small RNAs associated with C. elegans Argonautes. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-022-2304-8. [PMID: 37154856 DOI: 10.1007/s11427-022-2304-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/28/2022] [Indexed: 05/10/2023]
Abstract
Argonaute proteins generally play regulatory roles by forming complexes with the corresponding small RNAs (sRNAs). An expanded Argonaute family with 20 potentially functional members has been identified in Caenorhabditis elegans. Canonical sRNAs in C. elegans are miRNAs, small interfering RNAs including 22G-RNAs and 26G-RNAs, and 21U-RNAs, which are C. elegans piRNAs. Previous studies have only covered some of these Argonautes for their sRNA partners, and thus, a systematic study is needed to reveal the comprehensive regulatory networks formed by C. elegans Argonautes and their associated sRNAs. We obtained in situ knockin (KI) strains of all C. elegans Argonautes with fusion tags by CRISPR/Cas9 technology. RNA immunoprecipitation against these endogenously expressed Argonautes and high-throughput sequencing acquired the sRNA profiles of individual Argonautes. The sRNA partners for each Argonaute were then analyzed. We found that there were 10 Argonautes enriched miRNAs, 17 Argonautes bound to 22G-RNAs, 8 Argonautes bound to 26G-RNAs, and 1 Argonaute PRG-1 bound to piRNAs. Uridylated 22G-RNAs were bound by four Argonautes HRDE-1, WAGO-4, CSR-1, and PPW-2. We found that all four Argonautes played a role in transgenerational epigenetic inheritance. Regulatory roles of the corresponding Argonaute-sRNA complex in managing levels of long transcripts and interspecies regulation were also demonstrated. In this study, we portrayed the sRNAs bound to each functional Argonaute in C. elegans. Bioinformatics analyses together with experimental investigations provided perceptions in the overall view of the regulatory network formed by C. elegans Argonautes and sRNAs. The sRNA profiles bound to individual Argonautes reported here will be valuable resources for further studies.
Collapse
Affiliation(s)
- Lei Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Xiaolin Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Wenfang Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Qiqi Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Jingxin Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - He Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Ge Shan
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
15
|
Sabarís G, Fitz‐James MH, Cavalli G. Epigenetic inheritance in adaptive evolution. Ann N Y Acad Sci 2023. [DOI: 10.1111/nyas.14992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Affiliation(s)
- Gonzalo Sabarís
- Institute of Human Genetics, CNRS Montpellier France
- University of Montpellier Montpellier France
| | - Maximilian H. Fitz‐James
- Institute of Human Genetics, CNRS Montpellier France
- University of Montpellier Montpellier France
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS Montpellier France
- University of Montpellier Montpellier France
| |
Collapse
|
16
|
Ewe CK, Rechavi O. The third barrier to transgenerational inheritance in animals: somatic epigenetic resetting. EMBO Rep 2023; 24:e56615. [PMID: 36862326 PMCID: PMC10074133 DOI: 10.15252/embr.202256615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 03/03/2023] Open
Abstract
After early controversy, it is now increasingly clear that acquired responses to environmental factors may perpetuate across multiple generations-a phenomenon termed transgenerational epigenetic inheritance (TEI). Experiments with Caenorhabditis elegans, which exhibits robust heritable epigenetic effects, demonstrated small RNAs as key factors of TEI. Here, we discuss three major barriers to TEI in animals, two of which, the "Weismann barrier" and germline epigenetic reprogramming, have been known for decades. These are thought to effectively prevent TEI in mammals but not to the same extent in C. elegans. We argue that a third barrier-that we termed "somatic epigenetic resetting"-may further inhibit TEI and, unlike the other two, restricts TEI in C. elegans as well. While epigenetic information can overcome the Weismann barrier and transmit from the soma to the germline, it usually cannot "travel back" directly from the germline to the soma in subsequent generations. Nevertheless, heritable germline memory may still influence the animal's physiology by indirectly modifying gene expression in somatic tissues.
Collapse
Affiliation(s)
- Chee Kiang Ewe
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
17
|
Wilson R, Le Bourgeois M, Perez M, Sarkies P. Fluctuations in chromatin state at regulatory loci occur spontaneously under relaxed selection and are associated with epigenetically inherited variation in C. elegans gene expression. PLoS Genet 2023; 19:e1010647. [PMID: 36862744 PMCID: PMC10013927 DOI: 10.1371/journal.pgen.1010647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/14/2023] [Accepted: 02/01/2023] [Indexed: 03/03/2023] Open
Abstract
Some epigenetic information can be transmitted between generations without changes in the underlying DNA sequence. Changes in epigenetic regulators, termed epimutations, can occur spontaneously and be propagated in populations in a manner reminiscent of DNA mutations. Small RNA-based epimutations occur in C. elegans and persist for around 3-5 generations on average. Here, we explored whether chromatin states also undergo spontaneous change and whether this could be a potential alternative mechanism for transgenerational inheritance of gene expression changes. We compared the chromatin and gene expression profiles at matched time points from three independent lineages of C. elegans propagated at minimal population size. Spontaneous changes in chromatin occurred in around 1% of regulatory regions each generation. Some were heritable epimutations and were significantly enriched for heritable changes in expression of nearby protein-coding genes. Most chromatin-based epimutations were short-lived but a subset had longer duration. Genes subject to long-lived epimutations were enriched for multiple components of xenobiotic response pathways. This points to a possible role for epimutations in adaptation to environmental stressors.
Collapse
Affiliation(s)
- Rachel Wilson
- MRC London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London, United Kingdom.,Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Marcos Perez
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Peter Sarkies
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Seroussi U, Lugowski A, Wadi L, Lao RX, Willis AR, Zhao W, Sundby AE, Charlesworth AG, Reinke AW, Claycomb JM. A comprehensive survey of C. elegans argonaute proteins reveals organism-wide gene regulatory networks and functions. eLife 2023; 12:e83853. [PMID: 36790166 PMCID: PMC10101689 DOI: 10.7554/elife.83853] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/14/2023] [Indexed: 02/16/2023] Open
Abstract
Argonaute (AGO) proteins associate with small RNAs to direct their effector function on complementary transcripts. The nematode Caenorhabditis elegans contains an expanded family of 19 functional AGO proteins, many of which have not been fully characterized. In this work, we systematically analyzed every C. elegans AGO using CRISPR-Cas9 genome editing to introduce GFP::3xFLAG tags. We have characterized the expression patterns of each AGO throughout development, identified small RNA binding complements, and determined the effects of ago loss on small RNA populations and developmental phenotypes. Our analysis indicates stratification of subsets of AGOs into distinct regulatory modules, and integration of our data led us to uncover novel stress-induced fertility and pathogen response phenotypes due to ago loss.
Collapse
Affiliation(s)
- Uri Seroussi
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Andrew Lugowski
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Lina Wadi
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Robert X Lao
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | | | - Winnie Zhao
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Adam E Sundby
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | | | - Aaron W Reinke
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Julie M Claycomb
- Department of Molecular Genetics, University of TorontoTorontoCanada
| |
Collapse
|
19
|
Karin O, Miska EA, Simons BD. Epigenetic inheritance of gene silencing is maintained by a self-tuning mechanism based on resource competition. Cell Syst 2023; 14:24-40.e11. [PMID: 36657390 PMCID: PMC7614883 DOI: 10.1016/j.cels.2022.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/05/2022] [Accepted: 12/12/2022] [Indexed: 01/19/2023]
Abstract
Biological systems can maintain memories over long timescales, with examples including memories in the brain and immune system. It is unknown how functional properties of memory systems, such as memory persistence, can be established by biological circuits. To address this question, we focus on transgenerational epigenetic inheritance in Caenorhabditis elegans. In response to a trigger, worms silence a target gene for multiple generations, resisting strong dilution due to growth and reproduction. Silencing may also be maintained indefinitely upon selection according to silencing levels. We show that these properties imply the fine-tuning of biochemical rates in which the silencing system is positioned near the transition to bistability. We demonstrate that this behavior is consistent with a generic mechanism based on competition for synthesis resources, which leads to self-organization around a critical state with broad silencing timescales. The theory makes distinct predictions and offers insights into the design principles of long-term memory systems.
Collapse
Affiliation(s)
- Omer Karin
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, CB3 0WA, UK; Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK; Department of Mathematics, Imperial College London, London, SW7 2AZ, UK.
| | - Eric A Miska
- Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Benjamin D Simons
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, CB3 0WA, UK; Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK.
| |
Collapse
|
20
|
Renaud MS, Seroussi U, Claycomb JM. Analysis of C. elegans Germline Small RNA Pathways. Methods Mol Biol 2023; 2677:37-59. [PMID: 37464234 DOI: 10.1007/978-1-0716-3259-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Sequence-specific gene regulation by small RNA (sRNA) pathways is essential for the development and function of organisms in all domains of life. These regulatory complexes, containing an Argonaute protein (AGO) guided by a bound sRNA, have the potential to regulate thousands of individual target transcripts at both the co- and post-transcriptional level. Determining the repertoire of transcripts that an AGO is capable of regulating in a particular context is essential to understanding the function of these regulatory modules. Immunoprecipitation (IP) of AGOs and subsequent RNA sequencing of their bound sRNAs allows for the inference of their target transcripts by mapping the sequences of the co-precipitated sRNAs back to their complementary target transcripts. This approach can be complemented by sequencing sRNAs from ago mutants as sRNA transcripts are degraded in the absence of their AGO binding partner. Here, we describe a framework for analyzing AGO/sRNA pathways in the germline, from using CRISPR-Cas9 to tag or mutate AGOs, through protocols for the extraction, sequencing, and analysis of sRNAs from AGO IPs and ago mutants.
Collapse
Affiliation(s)
- Mathias S Renaud
- Department of Molecular Genetics, University of Toronto, Toronto, ON, USA
| | - Uri Seroussi
- Department of Molecular Genetics, University of Toronto, Toronto, ON, USA
| | - Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, Toronto, ON, USA.
| |
Collapse
|
21
|
Raj V, Thekkuveettil A. Dopamine plays a critical role in the olfactory adaptive learning pathway in Caenorhabditis elegans. J Neurosci Res 2022; 100:2028-2043. [PMID: 35906758 DOI: 10.1002/jnr.25112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/26/2022] [Accepted: 07/16/2022] [Indexed: 11/11/2022]
Abstract
Encoding and consolidating information through learning and memory is vital in adaptation and survival. Dopamine (DA) is a critical neurotransmitter that modulates behavior. However, the role of DA in learning and memory processes is not well defined. Herein, we used the olfactory adaptive learning paradigm in Caenorhabditis elegans to elucidate the role of DA in the memory pathway. Cat-2 mutant worms with low DA synthesis showed a significant reduction in chemotaxis index (CI) compared to the wild type (WT) after short-term conditioning. In dat-1::ICE worms, having degeneration of DA neurons, there was a significant reduction in adaptive learning and memory. When the worms were trained in the presence of exogenous DA (10 mM) instead of food, a substantial increase in CI value was observed. Furthermore, our results suggest that both dop-1 and dop-3 DA receptors are involved in memory retention. The release of DA during conditioning is essential to initiate the learning pathway. We also noted an enhanced cholinergic receptor activity in the absence of dopaminergic neurons. The strains expressing GCaMP6 in DA neurons (pdat-1::GCaMP-6::mCherry) showed a rise in intracellular calcium influx in the presence of the conditional stimulus after training, suggesting DA neurons are activated during memory recall. These results reveal the critical role of DA in adaptive learning and memory, indicating that DA neurons play a crucial role in the effective processing of cognitive function.
Collapse
Affiliation(s)
- Vishnu Raj
- Division of Molecular Medicine, Sree Chitra Tirunal Institute for Medical Sciences and Technology, BMT Wing, Trivandrum, India
| | - Anoopkumar Thekkuveettil
- Division of Molecular Medicine, Sree Chitra Tirunal Institute for Medical Sciences and Technology, BMT Wing, Trivandrum, India
| |
Collapse
|
22
|
Lombardo SD, Wangsaputra IF, Menche J, Stevens A. Network Approaches for Charting the Transcriptomic and Epigenetic Landscape of the Developmental Origins of Health and Disease. Genes (Basel) 2022; 13:764. [PMID: 35627149 PMCID: PMC9141211 DOI: 10.3390/genes13050764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/04/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
The early developmental phase is of critical importance for human health and disease later in life. To decipher the molecular mechanisms at play, current biomedical research is increasingly relying on large quantities of diverse omics data. The integration and interpretation of the different datasets pose a critical challenge towards the holistic understanding of the complex biological processes that are involved in early development. In this review, we outline the major transcriptomic and epigenetic processes and the respective datasets that are most relevant for studying the periconceptional period. We cover both basic data processing and analysis steps, as well as more advanced data integration methods. A particular focus is given to network-based methods. Finally, we review the medical applications of such integrative analyses.
Collapse
Affiliation(s)
- Salvo Danilo Lombardo
- Max Perutz Labs, Department of Structural and Computational Biology, University of Vienna, 1030 Vienna, Austria;
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Ivan Fernando Wangsaputra
- Maternal and Fetal Health Research Group, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, UK;
| | - Jörg Menche
- Max Perutz Labs, Department of Structural and Computational Biology, University of Vienna, 1030 Vienna, Austria;
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1030 Vienna, Austria
- Faculty of Mathematics, University of Vienna, 1030 Vienna, Austria
| | - Adam Stevens
- Maternal and Fetal Health Research Group, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, UK;
| |
Collapse
|
23
|
Drews F, Boenigk J, Simon M. Paramecium epigenetics in development and proliferation. J Eukaryot Microbiol 2022; 69:e12914. [PMID: 35363910 DOI: 10.1111/jeu.12914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The term epigenetics is used for any layer of genetic information aside from the DNA base-sequence information. Mammalian epigenetic research increased our understanding of chromatin dynamics in terms of cytosine methylation and histone modification during differentiation, aging, and disease. Instead, ciliate epigenetics focused more on small RNA-mediated effects. On the one hand, these do concern the transport of RNA from parental to daughter nuclei, representing a regulated transfer of epigenetic information across generations. On the other hand, studies of Paramecium, Tetrahymena, Oxytricha, and Stylonychia revealed an almost unique function of transgenerational RNA. Rather than solely controlling chromatin dynamics, they control sexual progeny's DNA content quantitatively and qualitatively. Thus epigenetics seems to control genetics, at least genetics of the vegetative macronucleus. This combination offers ciliates, in particular, an epigenetically controlled genetic variability. This review summarizes the epigenetic mechanisms that contribute to macronuclear heterogeneity and relates these to nuclear dimorphism. This system's adaptive and evolutionary possibilities raise the critical question of whether such a system is limited to unicellular organisms or binuclear cells. We discuss here the relevance of ciliate genetics and epigenetics to multicellular organisms.
Collapse
Affiliation(s)
- Franziska Drews
- Molecular Cell Biology and Microbiology, School of Mathematics and Natural Sciences, University of Wuppertal
| | | | - Martin Simon
- Molecular Cell Biology and Microbiology, School of Mathematics and Natural Sciences, University of Wuppertal
| |
Collapse
|
24
|
Toker IA, Lev I, Mor Y, Gurevich Y, Fisher D, Houri-Zeevi L, Antonova O, Doron H, Anava S, Gingold H, Hadany L, Shaham S, Rechavi O. Transgenerational inheritance of sexual attractiveness via small RNAs enhances evolvability in C. elegans. Dev Cell 2022; 57:298-309.e9. [PMID: 35134343 PMCID: PMC8826646 DOI: 10.1016/j.devcel.2022.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 09/12/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022]
Abstract
It is unknown whether transient transgenerational epigenetic responses to environmental challenges affect the process of evolution, which typically unfolds over many generations. Here, we show that in C. elegans, inherited small RNAs control genetic variation by regulating the crucial decision of whether to self-fertilize or outcross. We found that under stressful temperatures, younger hermaphrodites secrete a male-attracting pheromone. Attractiveness transmits transgenerationally to unstressed progeny via heritable small RNAs and the Argonaute Heritable RNAi Deficient-1 (HRDE-1). We identified an endogenous small interfering RNA pathway, enriched in endo-siRNAs that target sperm genes, that transgenerationally regulates sexual attraction, male prevalence, and outcrossing rates. Multigenerational mating competition experiments and mathematical simulations revealed that over generations, animals that inherit attractiveness mate more and their alleles spread in the population. We propose that the sperm serves as a "stress-sensor" that, via small RNA inheritance, promotes outcrossing in challenging environments when increasing genetic variation is advantageous.
Collapse
Affiliation(s)
- Itai Antoine Toker
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Itamar Lev
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Yael Mor
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Yael Gurevich
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Doron Fisher
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Leah Houri-Zeevi
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Olga Antonova
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Hila Doron
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Sarit Anava
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Hila Gingold
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Lilach Hadany
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA
| | - Oded Rechavi
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
25
|
SETDB1-like MET-2 promotes transcriptional silencing and development independently of its H3K9me-associated catalytic activity. Nat Struct Mol Biol 2022; 29:85-96. [PMID: 35102319 PMCID: PMC8850192 DOI: 10.1038/s41594-021-00712-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 12/02/2021] [Indexed: 12/30/2022]
Abstract
Transcriptionally silenced heterochromatin bearing methylation of histone H3 on lysine 9 (H3K9me) is critical for maintaining organismal viability and tissue integrity. Here we show that in addition to ensuring H3K9me, MET-2, the Caenorhabditis elegans homolog of the SETDB1 histone methyltransferase, has a noncatalytic function that contributes to gene repression. Subnuclear foci of MET-2 coincide with H3K9me deposition, yet these foci also form when MET-2 is catalytically deficient and H3K9me is compromised. Whereas met-2 deletion triggers a loss of silencing and increased histone acetylation, foci of catalytically deficient MET-2 maintain silencing of a subset of genes, blocking acetylation on H3K9 and H3K27. In normal development, this noncatalytic MET-2 activity helps to maintain fertility. Under heat stress MET-2 foci disperse, coinciding with increased acetylation and transcriptional derepression. Our study suggests that the noncatalytic, focus-forming function of this SETDB1-like protein and its intrinsically disordered cofactor LIN-65 is physiologically relevant. Genetic and genome-wide analysis of a catalytically deficient SETDB1-like enzyme, MET-2, in Caenorhabditiselegans reveals that MET-2 promotes transcriptional silencing and fertility through both H3K9 methylation and focus formation, which blocks histone acetylation.
Collapse
|
26
|
Andersen EC, Rockman MV. Natural genetic variation as a tool for discovery in Caenorhabditis nematodes. Genetics 2022; 220:iyab156. [PMID: 35134197 PMCID: PMC8733454 DOI: 10.1093/genetics/iyab156] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/11/2021] [Indexed: 11/12/2022] Open
Abstract
Over the last 20 years, studies of Caenorhabditis elegans natural diversity have demonstrated the power of quantitative genetic approaches to reveal the evolutionary, ecological, and genetic factors that shape traits. These studies complement the use of the laboratory-adapted strain N2 and enable additional discoveries not possible using only one genetic background. In this chapter, we describe how to perform quantitative genetic studies in Caenorhabditis, with an emphasis on C. elegans. These approaches use correlations between genotype and phenotype across populations of genetically diverse individuals to discover the genetic causes of phenotypic variation. We present methods that use linkage, near-isogenic lines, association, and bulk-segregant mapping, and we describe the advantages and disadvantages of each approach. The power of C. elegans quantitative genetic mapping is best shown in the ability to connect phenotypic differences to specific genes and variants. We will present methods to narrow genomic regions to candidate genes and then tests to identify the gene or variant involved in a quantitative trait. The same features that make C. elegans a preeminent experimental model animal contribute to its exceptional value as a tool to understand natural phenotypic variation.
Collapse
Affiliation(s)
- Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Matthew V Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
27
|
Seroussi U, Li C, Sundby AE, Lee TL, Claycomb JM, Saltzman AL. Mechanisms of epigenetic regulation by C. elegans nuclear RNA interference pathways. Semin Cell Dev Biol 2021; 127:142-154. [PMID: 34876343 DOI: 10.1016/j.semcdb.2021.11.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/17/2021] [Accepted: 11/17/2021] [Indexed: 01/06/2023]
Abstract
RNA interference (RNAi) is a highly conserved gene regulatory phenomenon whereby Argonaute/small RNA (AGO/sRNA) complexes target transcripts by antisense complementarity to modulate gene expression. While initially appreciated as a cytoplasmic process, RNAi can also occur in the nucleus where AGO/sRNA complexes are recruited to nascent transcripts. Nuclear AGO/sRNA complexes recruit co-factors that regulate transcription by inhibiting RNA Polymerase II, modifying histones, compacting chromatin and, in some organisms, methylating DNA. C. elegans has a longstanding history in unveiling the mechanisms of RNAi and has become an outstanding model to delineate the mechanisms underlying nuclear RNAi. In this review we highlight recent discoveries in the field of nuclear RNAi in C. elegans and the roles of nuclear RNAi in the regulation of gene expression, chromatin organization, genome stability, and transgenerational epigenetic inheritance.
Collapse
Affiliation(s)
- Uri Seroussi
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Chengyin Li
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Adam E Sundby
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Tammy L Lee
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Arneet L Saltzman
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
28
|
Cecere G. Small RNAs in epigenetic inheritance: from mechanisms to trait transmission. FEBS Lett 2021; 595:2953-2977. [PMID: 34671979 PMCID: PMC9298081 DOI: 10.1002/1873-3468.14210] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 01/02/2023]
Abstract
Inherited information is transmitted to progeny primarily by the genome through the gametes. However, in recent years, epigenetic inheritance has been demonstrated in several organisms, including animals. Although it is clear that certain post‐translational histone modifications, DNA methylation, and noncoding RNAs regulate epigenetic inheritance, the molecular mechanisms responsible for epigenetic inheritance are incompletely understood. This review focuses on the role of small RNAs in transmitting epigenetic information across generations in animals. Examples of documented cases of transgenerational epigenetic inheritance are discussed, from the silencing of transgenes to the inheritance of complex traits, such as fertility, stress responses, infections, and behavior. Experimental evidence supporting the idea that small RNAs are epigenetic molecules capable of transmitting traits across generations is highlighted, focusing on the mechanisms by which small RNAs achieve such a function. Just as the role of small RNAs in epigenetic processes is redefining the concept of inheritance, so too our understanding of the molecular pathways and mechanisms that govern epigenetic inheritance in animals is radically changing.
Collapse
Affiliation(s)
- Germano Cecere
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR3738, CNRS, Paris, France
| |
Collapse
|
29
|
Burton NO, Willis A, Fisher K, Braukmann F, Price J, Stevens L, Baugh LR, Reinke A, Miska EA. Intergenerational adaptations to stress are evolutionarily conserved, stress-specific, and have deleterious trade-offs. eLife 2021; 10:e73425. [PMID: 34622777 PMCID: PMC8570697 DOI: 10.7554/elife.73425] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
Despite reports of parental exposure to stress promoting physiological adaptations in progeny in diverse organisms, there remains considerable debate over the significance and evolutionary conservation of such multigenerational effects. Here, we investigate four independent models of intergenerational adaptations to stress in Caenorhabditis elegans - bacterial infection, eukaryotic infection, osmotic stress, and nutrient stress - across multiple species. We found that all four intergenerational physiological adaptations are conserved in at least one other species, that they are stress -specific, and that they have deleterious tradeoffs in mismatched environments. By profiling the effects of parental bacterial infection and osmotic stress exposure on progeny gene expression across species, we established a core set of 587 genes that exhibited a greater than twofold intergenerational change in expression in response to stress in C. elegans and at least one other species, as well as a set of 37 highly conserved genes that exhibited a greater than twofold intergenerational change in expression in all four species tested. Furthermore, we provide evidence suggesting that presumed adaptive and deleterious intergenerational effects are molecularly related at the gene expression level. Lastly, we found that none of the effects we detected of these stresses on C. elegans F1 progeny gene expression persisted transgenerationally three generations after stress exposure. We conclude that intergenerational responses to stress play a substantial and evolutionarily conserved role in regulating animal physiology and that the vast majority of the effects of parental stress on progeny gene expression are reversible and not maintained transgenerationally.
Collapse
Affiliation(s)
- Nicholas O Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
- Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
- Van Andel InstituteGrand RapidsUnited States
| | - Alexandra Willis
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Kinsey Fisher
- Department of Biology, Duke UniversityDurhamUnited States
| | - Fabian Braukmann
- Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
| | - Jonathan Price
- Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
| | - Lewis Stevens
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
- Wellcome Sanger Institute, Wellcome Genome CampusCambridgeUnited Kingdom
| | - L Ryan Baugh
- Department of Biology, Duke UniversityDurhamUnited States
- Center for Genomic and Computational Biology, Duke UniversityDurhamUnited States
| | - Aaron Reinke
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Eric A Miska
- Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
- Wellcome Sanger Institute, Wellcome Genome CampusCambridgeUnited Kingdom
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
30
|
Finch CE, Haghani A. Gene-Environment Interactions and Stochastic Variations in the Gero-Exposome. J Gerontol A Biol Sci Med Sci 2021; 76:1740-1747. [PMID: 33580247 PMCID: PMC8436990 DOI: 10.1093/gerona/glab045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
The limited heritability of human life spans suggests an important role for gene-environment (G × E) interactions across the life span (T), from gametes to geronts. Multilevel G × E × T interactions of aging phenotypes are conceptualized in the Gero-Exposome as Exogenous and Endogenous domains. Stochastic variations in the Endogenous domain contribute to the diversity of aging phenotypes, shown for the diversity of inbred Caenorhabditis elegans life spans in the same culture environment, and for variegated gene expression of somatic cells in nematodes and mammals. These phenotypic complexities can be analyzed as 3-way interactions of gene, environment, and stochastic variations, the Tripartite Phenotype of Aging. Single-cell analyses provide tools to explore this broadening frontier of biogerontology.
Collapse
Affiliation(s)
- Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
- Dornsife College, University of Southern California, Los Angeles, CA
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA
| |
Collapse
|
31
|
Wahba L, Hansen L, Fire AZ. An essential role for the piRNA pathway in regulating the ribosomal RNA pool in C. elegans. Dev Cell 2021; 56:2295-2312.e6. [PMID: 34388368 PMCID: PMC8387450 DOI: 10.1016/j.devcel.2021.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/11/2021] [Accepted: 07/15/2021] [Indexed: 01/08/2023]
Abstract
Piwi-interacting RNAs (piRNAs) are RNA effectors with key roles in maintaining genome integrity and promoting fertility in metazoans. In Caenorhabditis elegans loss of piRNAs leads to a transgenerational sterility phenotype. The plethora of piRNAs and their ability to silence transcripts with imperfect complementarity have raised several (non-exclusive) models for the underlying drivers of sterility. Here, we report the extranuclear and transferable nature of the sterility driver, its suppression via mutations disrupting the endogenous RNAi and poly-uridylation machinery, and copy-number amplification at the ribosomal DNA locus. In piRNA-deficient animals, several small interfering RNA (siRNA) populations become increasingly overabundant in the generations preceding loss of germline function, including ribosomal siRNAs (risiRNAs). A concomitant increase in uridylated sense rRNA fragments suggests that poly-uridylation may potentiate RNAi-mediated gene silencing of rRNAs. We conclude that loss of the piRNA machinery allows for unchecked amplification of siRNA populations, originating from abundant highly structured RNAs, to deleterious levels.
Collapse
Affiliation(s)
- Lamia Wahba
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Loren Hansen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew Z Fire
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
32
|
Burton NO, Greer EL. Multigenerational epigenetic inheritance: Transmitting information across generations. Semin Cell Dev Biol 2021; 127:121-132. [PMID: 34426067 DOI: 10.1016/j.semcdb.2021.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 01/07/2023]
Abstract
Inherited epigenetic information has been observed to regulate a variety of complex organismal phenotypes across diverse taxa of life. This continually expanding body of literature suggests that epigenetic inheritance plays a significant, and potentially fundamental, role in inheritance. Despite the important role these types of effects play in biology, the molecular mediators of this non-genetic transmission of information are just now beginning to be deciphered. Here we provide an intellectual framework for interpreting these findings and how they can interact with each other. We also define the different types of mechanisms that have been found to mediate epigenetic inheritance and to regulate whether epigenetic information persists for one or many generations. The field of epigenetic inheritance is entering an exciting phase, in which we are beginning to understand the mechanisms by which non-genetic information is transmitted to, and deciphered by, subsequent generations to maintain essential environmental information without permanently altering the genetic code. A more complete understanding of how and when epigenetic inheritance occurs will advance our understanding of numerous different aspects of biology ranging from how organisms cope with changing environments to human pathologies influenced by a parent's environment.
Collapse
Affiliation(s)
- Nicholas O Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| | - Eric L Greer
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Harvard Medical School Initiative for RNA Medicine, Boston, MA 02115, USA.
| |
Collapse
|
33
|
The role of the Cer1 transposon in horizontal transfer of transgenerational memory. Cell 2021; 184:4697-4712.e18. [PMID: 34363756 DOI: 10.1016/j.cell.2021.07.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/21/2021] [Accepted: 07/19/2021] [Indexed: 01/01/2023]
Abstract
Animals face both external and internal dangers: pathogens threaten from the environment, and unstable genomic elements threaten from within. C. elegans protects itself from pathogens by "reading" bacterial small RNAs, using this information to both induce avoidance and transmit memories for four generations. Here, we found that memories can be transferred from either lysed animals or from conditioned media to naive animals via Cer1 retrotransposon-encoded virus-like particles. Moreover, Cer1 functions internally at the step of transmission of information from the germline to neurons and is required for learned avoidance. The presence of the Cer1 retrotransposon in wild C. elegans strains correlates with the ability to learn and inherit small-RNA-induced pathogen avoidance. Together, these results suggest that C. elegans has co-opted a potentially dangerous retrotransposon to instead protect itself and its progeny from a common pathogen through its inter-tissue signaling ability, hijacking this genomic element for its own adaptive immunity benefit.
Collapse
|
34
|
Bellver-Sanchis A, Pallàs M, Griñán-Ferré C. The Contribution of Epigenetic Inheritance Processes on Age-Related Cognitive Decline and Alzheimer's Disease. EPIGENOMES 2021; 5:15. [PMID: 34968302 PMCID: PMC8594669 DOI: 10.3390/epigenomes5020015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
During the last years, epigenetic processes have emerged as important factors for many neurodegenerative diseases, such as Alzheimer's disease (AD). These complex diseases seem to have a heritable component; however, genome-wide association studies failed to identify the genetic loci involved in the etiology. So, how can these changes be transmitted from one generation to the next? Answering this question would allow us to understand how the environment can affect human populations for multiple generations and explain the high prevalence of neurodegenerative diseases, such as AD. This review pays particular attention to the relationship among epigenetics, cognition, and neurodegeneration across generations, deepening the understanding of the relevance of heritability in neurodegenerative diseases. We highlight some recent examples of EI induced by experiences, focusing on their contribution of processes in learning and memory to point out new targets for therapeutic interventions. Here, we first describe the prominent role of epigenetic factors in memory processing. Then, we briefly discuss aspects of EI. Additionally, we summarize evidence of how epigenetic marks inherited by experience and/or environmental stimuli contribute to cognitive status offspring since better knowledge of EI can provide clues in the appearance and development of age-related cognitive decline and AD.
Collapse
Affiliation(s)
| | | | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028 Barcelona, Spain; (A.B.-S.); (M.P.)
| |
Collapse
|
35
|
Manterola M, Palominos MF, Calixto A. The Heritability of Behaviors Associated With the Host Gut Microbiota. Front Immunol 2021; 12:658551. [PMID: 34054822 PMCID: PMC8155505 DOI: 10.3389/fimmu.2021.658551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
What defines whether the interaction between environment and organism creates a genetic memory able to be transferred to subsequent generations? Bacteria and the products of their metabolism are the most ubiquitous biotic environments to which every living organism is exposed. Both microbiota and host establish a framework where environmental and genetic factors are integrated to produce adaptive life traits, some of which can be inherited. Thus, the interplay between host and microbe is a powerful model to study how phenotypic plasticity is inherited. Communication between host and microbe can occur through diverse molecules such as small RNAs (sRNAs) and the RNA interference machinery, which have emerged as mediators and carriers of heritable environmentally induced responses. Notwithstanding, it is still unclear how the organism integrates sRNA signaling between different tissues to orchestrate a systemic bacterially induced response that can be inherited. Here we discuss current evidence of heritability produced by the intestinal microbiota from several species. Neurons and gut are the sensing systems involved in transmitting changes through transcriptional and post-transcriptional modifications to the gonads. Germ cells express inflammatory receptors, and their development and function are regulated by host and bacterial metabolites and sRNAs thus suggesting that the dynamic interplay between host and microbe underlies the host's capacity to transmit heritable behaviors. We discuss how the host detects changes in the microbiota that can modulate germ cells genomic functions. We also explore the nature of the interactions that leave permanent or long-term memory in the host and propose mechanisms by which the microbiota can regulate the development and epigenetic reprogramming of germ cells, thus influencing the inheritance of the host. We highlight the vast contribution of the bacterivore nematode C. elegans and its commensal and pathogenic bacteria to the understanding on how behavioral adaptations can be inter and transgenerational inherited.
Collapse
Affiliation(s)
- Marcia Manterola
- Programa de Genética Humana, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - M. Fernanda Palominos
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
- Programa de Doctorado en Ciencias, mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| | - Andrea Calixto
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| |
Collapse
|
36
|
Moran KL, Shlyakhtina Y, Portal MM. The role of non-genetic information in evolutionary frameworks. Crit Rev Biochem Mol Biol 2021; 56:255-283. [PMID: 33970731 DOI: 10.1080/10409238.2021.1908949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The evolution of organisms has been a subject of paramount debate for hundreds of years and though major advances in the field have been made, the precise mechanisms underlying evolutionary processes remain fragmentary. Strikingly, the majority of the core principles accepted across the many fields of biology only consider genetic information as the major - if not exclusive - biological information carrier and thus consider it as the main evolutionary avatar. However, the real picture appears far more complex than originally anticipated, as compelling data suggest that nongenetic information steps up when highly dynamic evolutionary frameworks are explored. In light of recent evidence, we discuss herein the dynamic nature and complexity of nongenetic information carriers, and their emerging relevance in the evolutionary process. We argue that it is possible to overcome the historical arguments which dismissed these carriers, and instead consider that they are indeed core to life itself as they support a sustainable, continuous source of rapid adaptation in ever-changing environments. Ultimately, we will address the intricacies of genetic and non-genetic networks underlying evolutionary models to build a framework where both core biological information concepts are considered non-negligible and equally fundamental.
Collapse
Affiliation(s)
- Katherine L Moran
- Cell Plasticity & Epigenetics Lab, Cancer Research UK - Manchester Institute, The University of Manchester, Manchester, UK
| | - Yelyzaveta Shlyakhtina
- Cell Plasticity & Epigenetics Lab, Cancer Research UK - Manchester Institute, The University of Manchester, Manchester, UK
| | - Maximiliano M Portal
- Cell Plasticity & Epigenetics Lab, Cancer Research UK - Manchester Institute, The University of Manchester, Manchester, UK
| |
Collapse
|
37
|
Abstract
Memories encoded in the parent's brain should not be able to transfer to the progeny. This assumption, which is compatible with the tenets of modern neuroscience and genetics, is challenged by new insights regarding inheritance of transgenerational epigenetic responses. Here we reflect on new discoveries regarding "molecular memories" in light of older and scandalous work on "Memory transfer" spearheaded by James V. McConnell and Georges Ungar. While the history of this field is filled with controversies, mechanisms for transmission of information across generations are being elucidated in different organisms. Most strikingly, it is now clear that in Caenorhabditis elegans nematodes, somatic responses can control gene activity in descendants via heritable small RNA molecules, and that this type of inheritance is tightly regulated by dedicated machinery. In this perspective we will focus mostly on studies conducted using C. elegans, and examine recent work on the connection between small RNAs in the nervous system and germline. We will discuss the evidence for the inheritance of brain-orchestrated behavior, and its possible significance.
Collapse
Affiliation(s)
- Eric A Miska
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom; Department of Genetics, University of Cambridge, Cambridge, United Kingdom.
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
38
|
Catania F, Baedke J, Fábregas-Tejeda A, Nieves Delgado A, Vitali V, Long LAN. Global climate change, diet, and the complex relationship between human host and microbiome: Towards an integrated picture. Bioessays 2021; 43:e2100049. [PMID: 33829521 DOI: 10.1002/bies.202100049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023]
Abstract
Dietary changes can alter the human microbiome with potential detrimental consequences for health. Given that environment, health, and evolution are interconnected, we ask: Could diet-driven microbiome perturbations have consequences that extend beyond their immediate impact on human health? We address this question in the context of the urgent health challenges posed by global climate change. Drawing on recent studies, we propose that not only can diet-driven microbiome changes lead to dysbiosis, they can also shape life-history traits and fuel human evolution. We posit that dietary shifts prompt mismatched microbiome-host genetics configurations that modulate human longevity and reproductive success. These mismatches can also induce a heritable intra-holobiont stress response, which encourages the holobiont to re-establish equilibrium within the changed nutritional environment. Thus, while mismatches between climate change-related genetic and epigenetic configurations within the holobiont increase the risk and severity of diseases, they may also affect life-history traits and facilitate adaptive responses. These propositions form a framework that can help systematize and address climate-related dietary challenges for policy and health interventions.
Collapse
Affiliation(s)
- Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Jan Baedke
- Department of Philosophy I, Ruhr University Bochum, Bochum, Germany
| | | | - Abigail Nieves Delgado
- Knowledge, Technology & Innovation, Wageningen University, Wageningen, The Netherlands.,Freudenthal Institute, Utrecht University, Utrecht, The Netherlands
| | - Valerio Vitali
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Le Anh Nguyen Long
- Department of Public Administration, University of Twente, Enschede, The Netherlands
| |
Collapse
|
39
|
Moore RS, Kaletsky R, Murphy CT. Protocol for transgenerational learned pathogen avoidance behavior assays in Caenorhabditis elegans. STAR Protoc 2021; 2:100384. [PMID: 33748786 PMCID: PMC7960678 DOI: 10.1016/j.xpro.2021.100384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Animal experiences, including learned behaviors, can be passed down to several generations of progeny in a phenomenon known as transgenerational epigenetic inheritance. Yet, little is known regarding the molecular mechanisms regulating physiologically relevant transgenerational memories. Here, we present a method for Caenorhabditis elegans in which worms learn to avoid the pathogen Pseudomonas aeruginosa (PA14). Unlike previous protocols, this training paradigm, either using PA14 lawns or through exposure to a PA14 small RNA (P11), induces memory in four generations of progeny. For complete details on the use and execution of this protocol, please refer to Moore et al. (2019) and Kaletsky et al. (2020).
Collapse
Affiliation(s)
- Rebecca S. Moore
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Rachel Kaletsky
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Coleen T. Murphy
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
40
|
Houri-Zeevi L, Teichman G, Gingold H, Rechavi O. Stress resets ancestral heritable small RNA responses. eLife 2021; 10:e65797. [PMID: 33729152 PMCID: PMC8021399 DOI: 10.7554/elife.65797] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
Transgenerational inheritance of small RNAs challenges basic concepts of heredity. In Caenorhabditis elegans nematodes, small RNAs are transmitted across generations to establish a transgenerational memory trace of ancestral environments and distinguish self-genes from non-self-elements. Carryover of aberrant heritable small RNA responses was shown to be maladaptive and to lead to sterility. Here, we show that various types of stress (starvation, high temperatures, and high osmolarity) induce resetting of ancestral small RNA responses and a genome-wide reduction in heritable small RNA levels. We found that mutants that are defective in various stress pathways exhibit irregular RNAi inheritance dynamics even in the absence of stress. Moreover, we discovered that resetting of ancestral RNAi responses is specifically orchestrated by factors that function in the p38 MAPK pathway and the transcription factor SKN-1/Nrf2. Stress-dependent termination of small RNA inheritance could protect from run-on of environment-irrelevant heritable gene regulation.
Collapse
Affiliation(s)
- Leah Houri-Zeevi
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv UniversityTel AvivIsrael
| | - Guy Teichman
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv UniversityTel AvivIsrael
| | - Hila Gingold
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv UniversityTel AvivIsrael
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv UniversityTel AvivIsrael
| |
Collapse
|
41
|
Sundby AE, Molnar RI, Claycomb JM. Connecting the Dots: Linking Caenorhabditis elegans Small RNA Pathways and Germ Granules. Trends Cell Biol 2021; 31:387-401. [PMID: 33526340 DOI: 10.1016/j.tcb.2020.12.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022]
Abstract
Germ granules are non-membrane bound, phase-separated organelles, composed of RNAs and proteins. Germ granules are present only within the germ cells of animals, including model systems such as Caenorhabditis elegans, Drosophila, mice, and zebrafish, where they play critical roles in specifying the germ lineage, the inheritance of epigenetic information, and post-transcriptional gene regulation. Across species, conserved germ granule proteins reflect these essential functions. A significant proportion of proteins that localize to germ granules are components of RNA metabolism and small RNA (sRNA) gene regulatory pathways. Here we synthesize our current knowledge of the roles that germ granules and their components play in sRNA pathway functions, transgenerational inheritance, and fertility in the C. elegans germline.
Collapse
Affiliation(s)
- Adam E Sundby
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ruxandra I Molnar
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
42
|
Abstract
Recognizing and remembering dangerous pathogens is of the utmost importance for an animal's survival. Nematodes use a digested bacterial small RNA molecule as a cue of pathogenicity. Inheritance of this RNA even protects the progeny from infection.
Collapse
|
43
|
Lev I, Rechavi O. Germ Granules Allow Transmission of Small RNA-Based Parental Responses in the "Germ Plasm". iScience 2020; 23:101831. [PMID: 33305186 PMCID: PMC7718480 DOI: 10.1016/j.isci.2020.101831] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the recent decade small RNA-based inheritance has been implicated in a variety of transmitted physiological responses to the environment. In Caenorhabditis elegans, heritable small RNAs rely on RNA-dependent RNA polymerases, RNA-processing machinery, chromatin modifiers, and argonauts for their biogenesis and gene-regulatory effects. Importantly, many of these factors reside in evolutionary conserved germ granules that are required for maintaining germ cell identity and gene expression. Recent literature demonstrated that transient disturbance to the stability of the germ granules leads to changes in the pools of heritable small RNAs and the physiology of the progeny. In this piece, we discuss the heritable consequences of transient destabilization of germ granules and elaborate on the various small RNA-related processes that act in the germ granules. We further propose that germ granules may serve as environment sensors that translate environmental changes to inheritable small RNA-based responses.
Collapse
Affiliation(s)
- Itamar Lev
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Neurobiology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|