1
|
Beneker O, Molinaro L, Guellil M, Sasso S, Kabral H, Bonucci B, Gaens N, D'Atanasio E, Mezzavilla M, Delbrassine H, Braet L, Lambert B, Deckers P, Biagini SA, Hui R, Becelaere S, Geypen J, Hoebreckx M, Berk B, Driesen P, Pijpelink A, van Damme P, Vanhoutte S, De Winter N, Saag L, Pagani L, Tambets K, Scheib CL, Larmuseau MHD, Kivisild T. Urbanization and genetic homogenization in the medieval Low Countries revealed through a ten-century paleogenomic study of the city of Sint-Truiden. Genome Biol 2025; 26:127. [PMID: 40390081 PMCID: PMC12090598 DOI: 10.1186/s13059-025-03580-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 04/16/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Processes shaping the formation of the present-day population structure in highly urbanized Northern Europe are still poorly understood. Gaps remain in our understanding of when and how currently observable regional differences emerged and what impact city growth, migration, and disease pandemics during and after the Middle Ages had on these processes. RESULTS We perform low-coverage sequencing of the genomes of 338 individuals spanning the eighth to the eighteenth centuries in the city of Sint-Truiden in Flanders, in the northern part of Belgium. The early/high medieval Sint-Truiden population was more heterogeneous, having received migrants from Scotland or Ireland, and displayed less genetic relatedness than observed today between individuals in present-day Flanders. We find differences in gene variants associated with high vitamin D blood levels between individuals with Gaulish or Germanic ancestry. Although we find evidence of a Yersinia pestis infection in 5 of the 58 late medieval burials, we were unable to detect a major population-scale impact of the second plague pandemic on genetic diversity or on the elevated differentiation of immunity genes. CONCLUSIONS This study reveals that the genetic homogenization process in a medieval city population in the Low Countries was protracted for centuries. Over time, the Sint-Truiden population became more similar to the current population of the surrounding Limburg province, likely as a result of reduced long-distance migration after the high medieval period, and the continuous process of local admixture of Germanic and Gaulish ancestries which formed the genetic cline observable today in the Low Countries.
Collapse
Affiliation(s)
- Owyn Beneker
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
| | | | - Meriam Guellil
- Department for Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Stefania Sasso
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Helja Kabral
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Noah Gaens
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | | | | | - Linde Braet
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Bart Lambert
- SHOC Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Simone Andrea Biagini
- Department of Archaeology and Museology, Masaryk University, Brno, Czech Republic
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | | - Sara Becelaere
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | | | - Birgit Berk
- Birgit Berk Fysische Anthropologie, Meerssen, Netherlands
| | | | - April Pijpelink
- Crematie en Inhumatie Analyse (CRINA) Fysische Antropologie, 's-Hertogenbosch, Netherlands
| | - Philip van Damme
- Department of Neurology, University Hospitals Leuven and Department of Neuroscience, KU Leuven, Leuven, Belgium
| | | | | | - Lehti Saag
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Luca Pagani
- Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Biology, University of Padova, Padova, Italy
| | | | | | | | - Toomas Kivisild
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Institute of Genomics, University of Tartu, Tartu, Estonia.
| |
Collapse
|
2
|
Chen Y, Xu Y, Zhu K, Wang CC. ADGAP: a user-friendly online Ancient DNA Database and Genome Analysis Platform. J Genet Genomics 2025:S1673-8527(25)00150-X. [PMID: 40383374 DOI: 10.1016/j.jgg.2025.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2025] [Revised: 05/08/2025] [Accepted: 05/11/2025] [Indexed: 05/20/2025]
Affiliation(s)
- Yanwei Chen
- Institute of Artificial Intelligence, Xiamen University, Xiamen, Fujian 361102, China
| | - Yu Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chuan-Chao Wang
- Institute of Artificial Intelligence, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, Institute of Anthropology, Xiamen University, Xiamen, Fujian 361005, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China; State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
3
|
Zhang X, Zhang F. Island ancient genomes reveal dynamic populations interactions in the northern China. Front Microbiol 2025; 16:1584315. [PMID: 40309111 PMCID: PMC12040904 DOI: 10.3389/fmicb.2025.1584315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 03/24/2025] [Indexed: 05/02/2025] Open
Abstract
The Longshan period (2500-1900 BC) was a transformative era in central China, marked by the emergence of complex social structures and early state formation. While human mobility likely played a role in these developments, the scale and nature of migration during this period remain poorly understood. Previous ancient DNA studies on Longshan culture populations have focused on individuals from inland Shandong, with no ancient DNA data available from island populations. In this study, we present the first ancient DNA analysis from individuals associated with the Longshan and subsequent Yueshi cultures on the Tuoji Island. Our findings indicate that, despite the widespread cultural influence of the inland Longshan culture in Shandong, the genetic ancestry of the Tuoji Island individuals primarily reflects connections to the preceding Dawenkou culture, with additional ancestry linked to the coastal regions of southern China. This suggests an earlier population movement into Tuoji Island before the Longshan period. However, during the Longshan period, the spread of Longshan cultural materials on Tuoji Island appears to represent the diffusion of ideas rather than significant population admixture from the inland. Additionally, our study shows genetic continuity of Longshan and Yueshi cultures in Tuoji Island highlighting the dynamic nature of coastal migration, as the Tuoji Island populations exhibit more genetic influence from coastal regions than from the inland. In contrast, inland populations during the Longshan period show no significant genetic influx from neighboring regions. This study not only advances our understanding of the prehistoric populations in Neolithic China but also provides new insights into patterns of migration and cultural exchange during this critical period.
Collapse
Affiliation(s)
- Xu Zhang
- Key Laboratory of Archaeological Sciences and Cultural Heritage, Chinese Academy of Social Sciences, Beijing, China
| | - Fan Zhang
- School of Archaeology and Museology, Sichuan University, Chengdu, China
- Center for Archaeological Science, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Chen H, Xu S. Population genomics advances in frontier ethnic minorities in China. SCIENCE CHINA. LIFE SCIENCES 2025; 68:961-973. [PMID: 39643831 DOI: 10.1007/s11427-024-2659-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/18/2024] [Indexed: 12/09/2024]
Abstract
China, with its large geographic span, possesses rich genetic diversity across vast frontier regions in addition to the Han Chinese majority. Importantly, demographic events and various natural and cultural environments in Chinese frontier regions have shaped the genomic diversity of ethnic minorities via local adaptations. Thus, insights into the genetic diversity and adaptive evolution of these under-represented ethnic groups are crucial for understanding evolutionary scenarios and biomedical implications in East Asian populations. Here, we focus on ethnic minorities in Chinese frontier regions and review research advances regarding genomic diversity, genetic structure, population history, genetic admixture, and local adaptation. We first provide an overview of the extensive genetic diversity across populations in different Chinese frontier regions. Next, we summarize research progress regarding genetic ancestry, demographic history, the adaptive process, and the archaic identification of multiple ethnic minorities in different Chinese frontier regions. Finally, we discuss the gaps and opportunities in genomic studies of Chinese populations and the need for a more comprehensive understanding of genomic diversity and the evolution of populations of East Asian ancestry in the post-genomic era.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shuhua Xu
- Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
5
|
Shen Q, Wu Z, Zan J, Yang X, Guo J, Ji Z, Wang B, Liu Y, Mao X, Wang X, Zou X, Zhou H, Peng Y, Ma H, He H, Bai T, Xu M, Wen S, Jin L, Zhang Q, Wang CC. Ancient genomes illuminate the demographic history of Shandong over the past two millennia. J Genet Genomics 2025; 52:494-501. [PMID: 39009303 DOI: 10.1016/j.jgg.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
Shandong province, located in the Lower Yellow River, is one of the birthplaces of ancient Chinese civilization. However, the comprehensive genetic histories of this region have remained largely unknown until now due to a lack of ancient human genomes. Here, we present 21 ancient genomes from Shandong dating from the Warring States period to the Northern Dynasties. Unlike the early Neolithic samples from Shandong, the historical samples are most closely related to post-Late Neolithic populations of the Middle Yellow River Basin, suggesting a population turnover in Shandong from the Neolithic Age to the Historical era. In addition, we detect a close genetic affinity between the historical samples in Shandong and present-day Han Chinese, showing long-term genetic stability in Han Chinese, at least since the Warring States period.
Collapse
Affiliation(s)
- Qu Shen
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhigang Wu
- Shandong Provincial Institute of Cultural Relics and Archaeology, Jinan, Shandong 250012, China.
| | - Jinguo Zan
- Shandong Provincial Institute of Cultural Relics and Archaeology, Jinan, Shandong 250012, China
| | - Xiaomin Yang
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, Fujian 361005, China.
| | - Jianxin Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zhi Ji
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, Fujian 361005, China
| | - Baitong Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, Fujian 361005, China
| | - Yilan Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361002, China
| | - Xiaolu Mao
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, Fujian 361005, China
| | - Xinyi Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, Fujian 361005, China
| | - Xinyue Zou
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, Fujian 361005, China
| | - Hongming Zhou
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, Fujian 361005, China
| | - Yanying Peng
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, Fujian 361005, China
| | - Hao Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361002, China
| | - Haifeng He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361002, China
| | - Tianyou Bai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361002, China
| | - Mengting Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361002, China
| | - Shaoqing Wen
- Institute of Archaeological Science, Fudan University, Shanghai 200438, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 200433, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qun Zhang
- Department of Archaeology, School of History, Wuhan University, Wuhan, Hubei 430072, China.
| | - Chuan-Chao Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, Fujian 361005, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361002, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China.
| |
Collapse
|
6
|
Wang M, Sun Q, Feng Y, Wei LH, Liu K, Luo L, Huang Y, Zhou K, Yuan H, Lv H, Lu Y, Cheng J, Wen S, Wang CC, Tang R, Bu F, Liu C, Yuan H, Wang Z, He G. Paleolithic divergence and multiple Neolithic expansions of ancestral nomadic emperor-related paternal lineages. J Genet Genomics 2025; 52:502-512. [PMID: 39608672 DOI: 10.1016/j.jgg.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
The reconstruction of demographic history using ancient and modern genomic resources reveals extensive interactions and admixture between ancient nomadic pastoralists and the social organizations of the Chinese Central Plain. However, the extent to which Y-chromosome genetic legacies from nomadic emperor-related ancestral lineages influence the Chinese paternal gene pool remains unclear. Here, we genotype 2717 ethnolinguistically diverse samples belonging to C2a lineages, perform whole-genome sequencing on 997 representative samples, and integrate these data with ancient genomic sequences. We reconstruct the evolutionary histories of Northern Zhou-, Qing emperor-, and pastoralist-related lineages to assess their genetic impact on modern Chinese populations. This reassembled fine-scale Y-chromosome phylogeny identifies deep divergence and five Neolithic expansion events contributing differently to the formation of northern Chinese populations. Phylogeographic modeling indicates that the nomadic empires of the Northern Zhou and Qing dynasties genetically originated from the Mongolian Plateau. Phylogenetic topology and shared haplotype patterns show that three upstream ancestors of Northern Zhou (C2a1a1b1a2a1b-FGC28857), Donghu tribe (C2a1a1b1-F1756), and Qing (C2a1a3a2-F10283) emperor-related lineages expanded during the middle Neolithic, contributing significantly to genetic flow between ancient northeastern Asians and modern East Asians. Notably, this study reveals limited direct contributions of Emperor Wu of Northern Zhou's lineages to modern East Asians.
Collapse
Affiliation(s)
- Mengge Wang
- Institute of Rare Diseases, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China; Anti-Drug Technology Center of Guangdong Province, Guangzhou, Guangdong 510230, China; Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China; Human Genetics and Forensic Genomics Research Institute, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China.
| | - Qiuxia Sun
- Institute of Rare Diseases, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China; Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China; Human Genetics and Forensic Genomics Research Institute, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Yuhang Feng
- Institute of Rare Diseases, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China
| | - Lan-Hai Wei
- Institute of Humanities and Human Sciences, Inner Mongolia Normal University, Hohhot, Inner Mongolia 010022, China
| | - Kaijun Liu
- Institute of 23Mofang, Tianfu Software Park, Chengdu, Sichuan 610042, China
| | - Lintao Luo
- Institute of Rare Diseases, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China; Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China; Human Genetics and Forensic Genomics Research Institute, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Yuguo Huang
- Institute of Rare Diseases, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China
| | - Kun Zhou
- Institute of 23Mofang, Tianfu Software Park, Chengdu, Sichuan 610042, China
| | - Haibing Yuan
- Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China
| | - Hongliang Lv
- Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China
| | - Yu Lu
- Institute of Rare Diseases, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Jing Cheng
- Institute of Rare Diseases, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China
| | - Shaoqing Wen
- MOE Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai 200433, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China; Human Genetics and Forensic Genomics Research Institute, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Fengxiao Bu
- Institute of Rare Diseases, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China.
| | - Chao Liu
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, Guangdong 510230, China.
| | - Huijun Yuan
- Institute of Rare Diseases, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China.
| | - Zhiyong Wang
- Institute of Rare Diseases, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China; Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China; Human Genetics and Forensic Genomics Research Institute, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China.
| | - Guanglin He
- Institute of Rare Diseases, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China; Anti-Drug Technology Center of Guangdong Province, Guangzhou, Guangdong 510230, China.
| |
Collapse
|
7
|
Tabin D, Patterson N, Mah M, Reich D. Concerns about ancient DNA sequences reported from a Late Pleistocene individual from Southeast Asia. Curr Biol 2025; 35:R212-R213. [PMID: 40132550 PMCID: PMC12037273 DOI: 10.1016/j.cub.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 03/27/2025]
Abstract
In a 2022 Current Biology paper, Zhang et al.1 reported DNA sequences from an approximately 14-thousand-year-old female skeleton from Red Deer Cave referred to as 'Mengzi Ren' (MZR). MZR's data are the first DNA sequences reported from pre-Holocene Southeast Asia, revealing genetic affinities dissimilar to all previously published ancient DNA data. Here, we show extremely high error rates, an abnormal error distribution and evidence of contamination by modern human sequences in the published DNA sequences of MZR. Even ignoring these issues, we fail to replicate key population genetic findings of Zhang et al.1, namely that Native Americans are equally related to MZR and ancient Northeast Asians. These results raise concerns regarding the paper's conclusions about population history, such as the claim that there was "an express northward expansion of AMHs starting in southern East Asia through the coastal line of China … eventually crossing the Bering Strait and reaching the Americas," and also about the general usability of the published sequences.
Collapse
Affiliation(s)
- Daniel Tabin
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Nick Patterson
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Matthew Mah
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - David Reich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Ma X, Lu Y, Stoneking M, Xu S. Neanderthal adaptive introgression shaped LCT enhancer region diversity without linking to lactase persistence in East Asian populations. Proc Natl Acad Sci U S A 2025; 122:e2404393122. [PMID: 40063818 PMCID: PMC11929401 DOI: 10.1073/pnas.2404393122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 02/08/2025] [Indexed: 03/25/2025] Open
Abstract
Positive selection at the 2q21.3 enhancer region for lactase gene (LCT) expression in Europeans and Africans has long been attributed to selection for lactase persistence (LP), the capacity of adults to digest lactose in milk, presumably because of the benefits associated with milk consumption. While considered a classic example of gene-culture coevolution, recently doubts have been raised about the link between selection at 2q21.3 and LP. Analysis of additional populations could shed further light; here, we demonstrate that a haplotype spanning ~467 kb at the 2q21.3 locus has risen to high frequency in East Asians (~25%) but is absent from Africans and Europeans. This haplotype likely derived from Neanderthals and has been under positive selection in East Asians. The East Asian-specific haplotype is associated with alterations in LCT expression and promoter methylation in certain cell types, similar to what is observed with LP-associated haplotypes in Europeans. Moreover, its frequency is comparable to that of LP in East Asians, suggesting a potential association with LP in East Asians. However, it is highly unlikely that selection in East Asians was related to milk-drinking habits. We find that this haplotype impacts the expression of UBXN4, DARS1, and DARS1-AS1 in immune cells and is associated with neutrophil and white blood cell counts. Hence, the selection might be linked to certain aspects of immune function. This implies that selection on 2q21.3 has thus either occurred for different reasons in different populations or the selection observed in other populations is also not due to LP.
Collapse
Affiliation(s)
- Xixian Ma
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen518055, China
| | - Yan Lu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai200032, China
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, LeipzigD04103, Germany
- Biométrie et Biologie Évolutive, Unité mixte de recherche 5558, CNRS & Université de Lyon, Lyon69622, France
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai200032, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai200032, China
| |
Collapse
|
9
|
Fang H, Liang F, Ma H, Wang R, He H, Qiu L, Tao L, Zhu K, Wu W, Ma L, Zhang H, Chen S, Zhu C, Chen H, Xu Y, Zhao Y, Liu H, Wang CC. Dynamic history of the Central Plain and Haidai region inferred from Late Neolithic to Iron Age ancient human genomes. Cell Rep 2025; 44:115262. [PMID: 39893638 DOI: 10.1016/j.celrep.2025.115262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/04/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
The peopling history of the Yellow River basin (YR) remains largely unexplored due to the limited number of ancient genomes. Our study sheds light on the dynamic demographic history of the YR by co-analyzing previously published genomes and 31 newly generated Late Neolithic to Iron Age genomes from Shandong in the lower YR and the Central Plain in the middle YR. Our analysis reveals the population structure in Shandong and the Central Plain in the Late Neolithic Longshan cultural period. We provide a genetic parallel to the observation of a significant increase in rice farming in the middle and lower YR in the Longshan period. However, the rice-farmer-related gene flow in the Longshan period did not arrive in groups from the Yuzhuang sites in the Central Plain or previously published groups in Shandong. The Bronze Age Erlitou culture genomes validate the genetic stability in the Central Plain and the relative genetic homogeneity between the Central Plain and Shandong.
Collapse
Affiliation(s)
- Hui Fang
- Institute of Cultural Heritage, Shandong University, Qingdao 266237, China.
| | - Fawei Liang
- Henan Provincial Institute of Cultural Heritage and Archaeology, Zhengzhou 450000, China
| | - Hao Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University, Xiamen 361005, China
| | - Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University, Xiamen 361005, China.
| | - Haifeng He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University, Xiamen 361005, China
| | - Limin Qiu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Le Tao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Weihua Wu
- Henan Provincial Institute of Cultural Heritage and Archaeology, Zhengzhou 450000, China
| | - Long Ma
- Henan Provincial Institute of Cultural Heritage and Archaeology, Zhengzhou 450000, China
| | - Huazhen Zhang
- Henan Provincial Institute of Cultural Heritage and Archaeology, Zhengzhou 450000, China
| | - Shuqing Chen
- Institute of Cultural Heritage, Shandong University, Qingdao 266237, China; Ministry of Education Key Laboratory of Archaeological Sciences and Technology, Shandong University, Qingdao 266237, China
| | - Chao Zhu
- Shandong Provincial Institute of Cultural Relics and Archaeology, Jinan 250012, China
| | - Haodong Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yu Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yongsheng Zhao
- Institute of Cultural Heritage, Shandong University, Qingdao 266237, China; Ministry of Education Key Laboratory of Archaeological Sciences and Technology, Shandong University, Qingdao 266237, China.
| | - Haiwang Liu
- Henan Provincial Institute of Cultural Heritage and Archaeology, Zhengzhou 450000, China.
| | - Chuan-Chao Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
10
|
Liu J, Liu Y, Zhao Y, Zhu C, Wang T, Zeng W, Sun B, Wang F, Han H, Li Z, Feng X, Cao P, Luan F, Liu F, Dai Q, Guo J, Wang Z, Wei C, Wei Q, Yang R, Hou W, Ping W, Bai F, Miao B, Wang W, Yang MA, Fu Q. East Asian Gene flow bridged by northern coastal populations over past 6000 years. Nat Commun 2025; 16:1322. [PMID: 39900598 PMCID: PMC11791043 DOI: 10.1038/s41467-025-56555-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/17/2025] [Indexed: 02/05/2025] Open
Abstract
Coastal areas of northern East Asia in the ShanDong region, which show complex cultural transitions in the last 10,000 years, have helped to facilitate population interactions between more inland regions of mainland East Asia and islands such as those in the Japanese archipelago. To examine how ShanDong populations changed over time and interacted with island and inland East Asian populations, we sequenced 85 individuals from 11 ancient sites in the ShanDong region dating to ~6000-1500 BP. We found that ancestry related to ShanDong populations likely explains the mainland East Asian ancestry observed in post-Yayoi populations from the Japanese archipelago, particularly recent populations who lived in the Ryukyu Islands after ~2800 BP. In the ShanDong region, we observed gene flow from populations to the north and south of this region by at least ~7700 BP, and two waves of gene flow associated with the inland Yellow River populations into the ShanDong region during the DaWenKou cultural period (6000-4600 BP) and in the early dynastic period (3500-1500 BP). Reconstructing the genetic history of the Neolithic, Bronze, and Iron Age populations of coastal northern East Asia shows gene flow on both a north-south and an east-west (inland-coastal-island) scale.
Collapse
Affiliation(s)
- Juncen Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yichen Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Yongsheng Zhao
- Institute of Cultural Heritage, Shandong University, Qingdao, China
| | - Chao Zhu
- Shandong Provincial Institute of Cultural Relics and Archaeology, Jinan, China
| | - Tianyi Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wen Zeng
- Institute of Cultural Heritage, Shandong University, Qingdao, China
| | - Bo Sun
- Shandong Provincial Institute of Cultural Relics and Archaeology, Jinan, China
| | - Fen Wang
- School of Archaeology, Shandong University, Jinan, China
| | - Hui Han
- Shandong Provincial Institute of Cultural Relics and Archaeology, Jinan, China
| | - Zhenguang Li
- Shandong Provincial Institute of Cultural Relics and Archaeology, Jinan, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Fengshi Luan
- School of Archaeology, Shandong University, Jinan, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Junfeng Guo
- Jinan Municipal Institute of Archaeology, Jinan, China
| | - Zimeng Wang
- Shandong Provincial Institute of Cultural Relics and Archaeology, Jinan, China
| | - Chengmin Wei
- Shandong Provincial Institute of Cultural Relics and Archaeology, Jinan, China
| | - Qiaowei Wei
- Department of History, Shanghai University, Shanghai, China
| | - Ruowei Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Weihong Hou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Wanjing Ping
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Fan Bai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bo Miao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Northwest University, Xi'an, China
| | - Wenjun Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- Science and Technology Archaeology, National Centre for Archaeology, Beijing, China
| | - Melinda A Yang
- Department of Biology, University of Richmond, Richmond, VA, USA.
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
11
|
Piffer D. Directional Selection and Evolution of Polygenic Traits in Eastern Eurasia: Insights from Ancient DNA. Twin Res Hum Genet 2025:1-20. [PMID: 39881595 DOI: 10.1017/thg.2024.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
This study explores directional selection on physical and psychosocial phenotypes in Eastern Eurasian populations, utilizing a dataset of 1245 ancient genomes. By analyzing polygenic scores (PGS) for traits including height, educational attainment (EA), IQ, autism, schizophrenia, and others, we observed significant temporal trends spanning the Holocene era. The results suggest positive selection for cognitive-related traits such as IQ, EA and autism spectrum disorder (ASD), alongside negative selection for anxiety and depression. The results for height were mixed and showed nonlinear relationships with Years Before Present (BP). These trends were partially mediated by genetic components linked to distinct ancestral populations. Regression models incorporating admixture, geography, and temporal variables were used to account for biases in population composition over time. Latitude showed a positive effect on ASD PGS, EA and height, while it had a negative effect on skin pigmentation scores. Additionally, latitude exhibited significant nonlinear effects on multiple phenotypes. The observed patterns highlight the influence of climate-mediated selection pressures on trait evolution. Spline regression revealed that several polygenic scores had nonlinear relationships with years BP. The findings provide evidence for complex evolutionary dynamics, with distinct selective pressures shaping phenotypic diversity across different timescales and environments.
Collapse
|
12
|
Wang M, Duan S, Sun Q, Liu K, Liu Y, Wang Z, Li X, Wei L, Liu Y, Nie S, Zhou K, Ma Y, Yuan H, Liu B, Hu L, Liu C, He G. YHSeqY3000 panel captures all founding lineages in the Chinese paternal genomic diversity database. BMC Biol 2025; 23:18. [PMID: 39838386 PMCID: PMC11752814 DOI: 10.1186/s12915-025-02122-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND The advancements in second-/third-generation sequencing technologies, alongside computational innovations, have significantly enhanced our understanding of the genomic structure of Y-chromosomes and their unique phylogenetic characteristics. These researches, despite the challenges posed by the lack of population-scale genomic databases, have the potential to revolutionize our approach to high-resolution, population-specific Y-chromosome panels and databases for anthropological and forensic applications. OBJECTIVES This study aimed to develop the highest-resolution Y-targeted sequencing panel, utilizing time-stamped, core phylogenetic informative mutations identified from high-coverage sequences in the YanHuang cohort. This panel is intended to provide a new tool for forensic complex pedigree search and paternal biogeographical ancestry inference, as well as explore the general patterns of the fine-scale paternal evolutionary history of ethnolinguistically diverse Chinese populations. RESULTS The sequencing performance of the East Asian-specific Y-chromosomal panel, including 2999-core SNP variants, was found to be robust and reliable. The YHSeqY3000 panel was designed to capture the genetic diversity of Chinese paternal lineages from 3500 years ago, identifying 408 terminal lineages in 2097 individuals across 41 genetically and geographically distinct populations. We identified a fine-scale paternal substructure that was correlating with ancient population migrations and expansions. New evidence was provided for extensive gene flow events between minority ethnic groups and Han Chinese people, based on the integrative Chinese Paternal Genomic Diversity Database. CONCLUSIONS This work successfully integrated Y-chromosome-related basic genomic science with forensic and anthropological translational applications, emphasizing the necessity of comprehensively characterizing Y-chromosome genomic diversity from genomically under-representative populations. This is particularly important in the second phase of our population-specific medical or anthropological genomic cohorts, where dense sampling strategies are employed.
Collapse
Affiliation(s)
- Mengge Wang
- Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
- Department of Oto-Rhino-Laryngology, West China Hospital of Sichuan University, Chengdu, 610000, China.
| | - Shuhan Duan
- Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637100, China
- Department of Oto-Rhino-Laryngology, West China Hospital of Sichuan University, Chengdu, 610000, China
| | - Qiuxia Sun
- Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Kaijun Liu
- School of International Tourism and Culture, Guizhou Normal University, Guiyang, 550025, China
- MoFang Human Genome Research Institute, Tianfu Software Park, Chengdu, 610042, Sichuan, China
| | - Yan Liu
- Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637100, China
| | - Zhiyong Wang
- Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Xiangping Li
- Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Lanhai Wei
- School of Ethnology and Anthropology, Inner Mongolia Normal University, Hohhot, 010028, Inner Mongolia, China
| | - Yunhui Liu
- Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Kun Zhou
- MoFang Human Genome Research Institute, Tianfu Software Park, Chengdu, 610042, Sichuan, China
| | - Yongxin Ma
- Department of Medical Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Huijun Yuan
- Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
| | - Bing Liu
- Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Lan Hu
- Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Chao Liu
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Guanglin He
- Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
| |
Collapse
|
13
|
Scott GR, Navega D, Vlemincq-Mendieta T, Dern LL, O'Rourke DH, Hlusko LJ, Hoffecker JF. Peopling of the Americas: A new approach to assessing dental morphological variation in Asian and Native American populations. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2025; 186:e24878. [PMID: 38018312 DOI: 10.1002/ajpa.24878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023]
Abstract
OBJECTIVES Through biodistance analyses, anthropologists have used dental morphology to elucidate how people moved into and throughout the Americas. Here, we apply a method that focuses on individuals rather than sample frequencies through the application rASUDAS2, based on a naïve Bayes' algorithm. MATERIALS AND METHODS Using the database of C.G. Turner II, we calculated the probability that an individual could be assigned to one of seven biogeographic groups (American Arctic, North & South America, East Asia, Southeast Asia & Polynesia, Australo-Melanesia, Western Eurasia, & Sub-Saharan Africa) through rASUDAS2. The frequency of classifications for each biogeographic group was determined for 1418 individuals from six regions across Asia and the Americas. RESULTS Southeast Asians show mixed assignments but rarely to American Arctic or "American Indian." East Asians are assigned to East Asia half the time while 30% are assigned as Native American. People from the American Arctic and North & South America are assigned to Arctic America or non-Arctic America 75%-80% of the time, with 10%-15% classified as East Asian. DISCUSSION All Native American groups have a similar degree of morphological affinity to East Asia, as 10%-15% are classified as East Asian. East Asians are classified as Native American in 30% of cases. Individuals in the Western Hemisphere are decreasingly classified as Arctic the farther south they are located. Equivalent levels of classification as East Asian across all Native American groups suggests one divergence between East Asians and the population ancestral to all Native Americans. Non-arctic Native American groups are derived from the Arctic population, which represents the Native American founder group.
Collapse
Affiliation(s)
- G Richard Scott
- Department of Anthropology, University of Nevada Reno, Reno, Nevada, USA
| | - David Navega
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | | | - Laresa L Dern
- Department of Anthropology, University of Nevada Reno, Reno, Nevada, USA
| | - Dennis H O'Rourke
- Department of Anthropology, University of Kansas, Lawrence, Kansas, USA
| | | | - John F Hoffecker
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
14
|
Wang B, Hao D, Xu Y, Zhu K, Wang R, Yang X, Shen Q, Xu M, Bai T, Ma H, Zheng J, Wang X, Zou X, Zhou H, Mao X, Tang J, Peng Y, Tao L, He H, Chen H, Guo J, Ji Z, Liu Y, Wen S, Jin L, Zhang Q, Wang CC. Population expansion from central plain to northern coastal China inferred from ancient human genomes. iScience 2024; 27:111405. [PMID: 39697594 PMCID: PMC11652891 DOI: 10.1016/j.isci.2024.111405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/06/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
The population history of the northern coastal Chinese is largely unknown due to the lack of ancient human genomes from the Neolithic to historical periods. In this study, we reported 14 newly generated ancient genomes from Linzi, one of China's densely populated and economically prosperous cities from the Zhou to Han Dynasties. The ancient samples in this study were dated to the Warring States period to the Eastern Han Dynasty (∼2,000 BP). We found the samples derived all their ancestry from Late Bronze Age to Iron Age Middle Yellow River farmers rather than local Neolithic populations. They were genetically homogeneous with present-day Han Chinese of Shandong, suggesting 2,000 years of genetic stability. Our results highlight the role of the eastward migration of Yellow River farmers in the Central Plain to northern coastal China in forming the present-day genetic structure of Han Chinese.
Collapse
Affiliation(s)
- Baitong Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University Xiamen 361005, China
| | - Daohua Hao
- Shandong Provincial Institute of Cultural Relics and Archaeology, Jinan 250012, China
| | - Yu Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiaomin Yang
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University Xiamen 361005, China
| | - Qu Shen
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University Xiamen 361005, China
| | - Mengting Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Tianyou Bai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Hao Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jiajing Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xinyi Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University Xiamen 361005, China
| | - Xinyue Zou
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University Xiamen 361005, China
| | - Hongming Zhou
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University Xiamen 361005, China
| | - Xiaolu Mao
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University Xiamen 361005, China
| | - Jiaxin Tang
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University Xiamen 361005, China
| | - Yanying Peng
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University Xiamen 361005, China
| | - Le Tao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Haifeng He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Haodong Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jianxin Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Zhi Ji
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University Xiamen 361005, China
| | - Yilan Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shaoqing Wen
- Institute of Archaeological Science, Fudan University, Shanghai 200438, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 200433, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qun Zhang
- Department of Archaeology, School of History, Wuhan University, Wuhan, China
| | - Chuan-Chao Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University Xiamen 361005, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
15
|
Wang M, Liu Y, Luo L, Feng Y, Wang Z, Yang T, Yuan H, Liu C, He G. Genomic insights into Neolithic founding paternal lineages around the Qinghai-Xizang Plateau using integrated YanHuang resource. iScience 2024; 27:111456. [PMID: 39759003 PMCID: PMC11696643 DOI: 10.1016/j.isci.2024.111456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/16/2024] [Accepted: 11/19/2024] [Indexed: 01/07/2025] Open
Abstract
Indigenous populations of the Qinghai-Xizang Plateau exhibit unique high-altitude adaptations, especially within Tibeto-Burman (TB) groups. However, the paternal genetic heritage of eastern Plateau regions remains less explored. We present one integrative Y chromosome dataset of 9,901 modern and ancient individuals, including whole Y chromosome sequences from 1,297 individuals and extensive Y-SNP/STR genotype data. We reveal the Paleolithic common origin and following divergence of Qinghai-Xizang Plateau ancestors from East Asian lowlands, marked by subsequent isolation and Holocene expansion involving local hunter-gatherers and millet-farming communities. We identified two key TB-related founding lineages, D-Z31591 and O-CTS4658, which underwent significant expansions around 5,000 years ago on the Qinghai-Xizang Plateau and its eastern Tibetan-Yi Corridor. The genetic legacy of these TB lineages highlights crucial migration pathways linking the Plateau and lowland southwestern China. Our findings align paternal genetic structures with East Asian geography and linguistic groups, underscoring the utility of Y chromosome analyses in unraveling complex paternal histories.
Collapse
Affiliation(s)
- Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
- Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, China
| | - Yunhui Liu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Lintao Luo
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Yuhang Feng
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
| | - Zhiyong Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Ting Yang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
| | - Huijun Yuan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
| | - Chao Liu
- Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, China
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
- Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, China
| |
Collapse
|
16
|
Wang F, Wang R, Ma H, Zeng W, Zhao Y, Wu H, Tang Z, He H, Fang H, Wang CC. Neolithization of Dawenkou culture in the lower Yellow River involved the demic diffusion from the Central Plain. Sci Bull (Beijing) 2024; 69:3677-3681. [PMID: 39198092 DOI: 10.1016/j.scib.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024]
Affiliation(s)
- Fen Wang
- School of Archaeology, Shandong University, Jinan 250100, China.
| | - Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Hao Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Wen Zeng
- School of Archaeology, Shandong University, Jinan 250100, China
| | - Yongsheng Zhao
- School of Archaeology, Shandong University, Jinan 250100, China
| | - Hao Wu
- School of Archaeology, Shandong University, Jinan 250100, China
| | - Zhongming Tang
- School of Archaeology, Shandong University, Jinan 250100, China
| | - Haifeng He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Hui Fang
- School of Archaeology, Shandong University, Jinan 250100, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
17
|
Hou J, Guan X, Xia X, Lyu Y, Liu X, Mazei Y, Xie P, Chang F, Zhang X, Chen J, Li X, Zhang F, Jin L, Luo X, Sinding MHS, Sun X, Achilli A, Migliore NR, Zhang D, Lenstra JA, Han J, Fu Q, Liu X, Zhang X, Chen N, Lei C, Zhang H. Evolution and legacy of East Asian aurochs. Sci Bull (Beijing) 2024; 69:3425-3433. [PMID: 39322456 DOI: 10.1016/j.scib.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Aurochs (Bos primigenius), once widely distributed in Afro-Eurasia, became extinct in the early 1600 s. However, their phylogeography and relative contributions to domestic cattle remain unknown. In this study, we analyzed 16 genomes of ancient aurochs and three mitogenomes of ancient bison (Bison priscus) excavated in East Asia, dating from 43,000 to 3,590 years ago. These newly generated data with previously published genomic information on aurochs as well as ancient/extant domestic cattle worldwide through genome analysis. Our findings revealed significant genetic divergence between East Asian aurochs and their European, Near Eastern, and African counterparts on the basis of both mitochondrial and nuclear genomic data. Furthermore, we identified evidence of gene flow from East Asian aurochs into ancient and present-day taurine cattle, suggesting their potential role in facilitating the environmental adaptation of domestic cattle.
Collapse
Affiliation(s)
- Jiawen Hou
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiwen Guan
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaoting Xia
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yang Lyu
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xin Liu
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yuri Mazei
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Fengqin Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Xiaonan Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Jialei Chen
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xinyi Li
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Fengwei Zhang
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Liangliang Jin
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaoyu Luo
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Mikkel-Holger S Sinding
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen DK-1350, Denmark
| | - Xin Sun
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen DK-1350, Denmark
| | - Alessandro Achilli
- Department of Biology and Biotechnology, L. Spallanzani University of Pavia, Pavia 27100, Italy
| | | | - Dongju Zhang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CS, the Netherlands
| | - Jianlin Han
- Yazhouwan National Laboratory, Sanya 572024, China; CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Xinyi Liu
- Anthropology Department, Washington University in St. Louis, Missouri, MO 63130, USA
| | - Xiaoming Zhang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China.
| | - Ningbo Chen
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; Southwest United Graduate School, Kunming 650500, China.
| |
Collapse
|
18
|
Jiang H, Wang Z, Zhai X, Ma G, Wang T, Kong F, Luo W, Yu Z, Li H, Ren Y, Guo R, Jian L, Zhao L, Zuo Z, Pan S, Qi Z, Zhang Y, Liu Z, Rao D, Li Y, Wang J. Chromosome-level genome of diamondback terrapin provides insight into the genetic basis of salinity adaptation. Integr Zool 2024. [PMID: 39391967 DOI: 10.1111/1749-4877.12898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Diamondback terrapins (Malaclemys terrapin centrata) exhibit strong environmental adaptability and live in both freshwater and saltwater. However, the genetic basis of this adaptability has not been the focus of research. In this study, we successfully constructed a ∼2.21-Gb chromosome-level genome assembly for M. t. centrata using high-coverage and high-depth genomic sequencing data generated on multiple platforms. The M. t. centrata genome contains 25 chromosomes and the scaffold N50 of ∼143.75 Mb, demonstrating high continuity and accuracy. In total, 53.82% of the genome assembly was composed of repetitive sequences, and 22 435 protein-coding genes were predicted. Our phylogenetic analysis indicated that M. t. centrata was closely related to the red-eared slider turtle (Trachemys scripta elegans), with divergence approximately ∼23.6 million years ago (Mya) during the early Neogene period of the Cenozoic era. The population size of M. t. centrata decreased significantly over the past ∼14 Mya during the Cenozoic era. Comparative genomic analysis indicated that 36 gene families related to ion transport were expanded and several genes (AQP3, solute carrier subfamily, and potassium channel genes) underwent specific amino acid site mutations in the M. t. centrata genome. Changes to these ion transport-related genes may have contributed to the remarkable salinity adaptability of diamondback terrapin. The results of this study not only provide a high-quality reference genome for M. t. centrata but also elucidate the possible genetic basis for salinity adaptation in this species.
Collapse
Affiliation(s)
- Hui Jiang
- College of Life Science, Hainan Normal University, Haikou, China
| | - Zhongkai Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Xiaofei Zhai
- College of Life Science, Hainan Normal University, Haikou, China
| | - Guangwei Ma
- College of Life Science, Hainan Normal University, Haikou, China
| | - Tongliang Wang
- College of Life Science, Hainan Normal University, Haikou, China
| | - Fei Kong
- Shaanxi Institute of Zoology, Xian, China
| | - Wenkai Luo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Ziwei Yu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Haorong Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yandong Ren
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Rui Guo
- College of Life Science, Hainan Normal University, Haikou, China
| | - Li Jian
- College of Life Science, Hainan Normal University, Haikou, China
| | - Longhui Zhao
- College of Life Science, Hainan Normal University, Haikou, China
| | - Ziye Zuo
- College of Life Science, Hainan Normal University, Haikou, China
| | - Shoupeng Pan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Zan Qi
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yuxin Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Zhuoya Liu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Dingqi Rao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yongxin Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Jichao Wang
- College of Life Science, Hainan Normal University, Haikou, China
| |
Collapse
|
19
|
van de Loosdrecht MS, Pinas NM, Dongstra E, Tjoe Awie JR, Becker FFM, Maat H, van Velzen R, van Andel T, Schranz ME. Maroon Rice Genomic Diversity Reflects 350 Years of Colonial History. Mol Biol Evol 2024; 41:msae204. [PMID: 39462521 PMCID: PMC11495330 DOI: 10.1093/molbev/msae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/01/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Maroons in Suriname and French Guiana descend from enslaved Africans who escaped the plantations during colonial times. Maroon farmers still cultivate a large diversity of rice, their oldest staple crop. The oral history and written records of Maroons by colonial authorities provide contrasting perspectives on the origins of Maroon rice. Here, we analyzed the genomic ancestry of 136 newly sequenced Maroon rice varieties and found seven genomic groups that differ in their geographical associations. We interpreted these findings in light of ethnobotanical and archival investigations to reconstruct the historical contexts associated with the introduction of rice varieties to the Guianas. We found that two rice groups trace to West Africa, which we propose are linked to the transatlantic slave trade (c. 1526 to 1825). We posit that the Maroon rice stock additionally contains varieties that derive from rice introduced by indentured laborers from Java (1890 onwards), USA rice breeders (1932 onwards), and Hmong refugees who fled the Vietnam War (1991). Furthermore, on the Maroon fields, we found rice types never documented before that were derived from crosses. Overall, our results demonstrate that the Maroon farmers prioritize maintenance of a high stock diversity, which we posit reflects the expertise they inherited from their (African) ancestors. Ignored by agricultural modernization initiatives, Maroon farmers today are custodians of a unique cultural heritage. Notably, the genomic findings underline many Maroon stories about their past. We anticipate that a similar study approach can be applied to other heirloom crops of (Indigenous) communities that may have preserved their history on their farms to reconstruct, acknowledge, and honor the past.
Collapse
Affiliation(s)
| | - Nicholaas M Pinas
- Biosystematics Group, Wageningen University, Wageningen, The Netherlands
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Evanne Dongstra
- Biosystematics Group, Wageningen University, Wageningen, The Netherlands
| | - Jerry R Tjoe Awie
- Anne van Dijk Rijst Onderzoekscentrum Nickerie (SNRI/ADRON), Nickerie, Suriname
| | - Frank F M Becker
- Biosystematics Group, Wageningen University, Wageningen, The Netherlands
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| | - Harro Maat
- Knowledge, Technology & Innovation group, Wageningen University, Wageningen, The Netherlands
| | - Robin van Velzen
- Biosystematics Group, Wageningen University, Wageningen, The Netherlands
| | - Tinde van Andel
- Biosystematics Group, Wageningen University, Wageningen, The Netherlands
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Clusius chair in History of Botany and Gardens, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
20
|
Tsanova T, Delvigne V, Sirakova S, Anastasova E, Horta P, Krumov I, Marreiros J, Nacheva E, Rezek Z, Hublin JJ, Sirakov N. Curated character of the Initial Upper Palaeolithic lithic artefact assemblages in Bacho Kiro Cave (Bulgaria). PLoS One 2024; 19:e0307435. [PMID: 39231140 PMCID: PMC11373871 DOI: 10.1371/journal.pone.0307435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/05/2024] [Indexed: 09/06/2024] Open
Abstract
The dispersal of Homo sapiens across Eurasia during MIS 3 in the Late Pleistocene is marked by technological shifts and other behavioral changes, known in the archaeological record under the term of Initial Upper Paleolithic (IUP). Bacho Kiro Cave in north Bulgaria, re-excavated by us from 2015 to 2021, is one of the reference sites for this phenomenon. The newly excavated lithic assemblages dated by radiocarbon between 45,040 and 43,280 cal BP and attributed to Homo sapiens encompass more than two thousand lithic artifacts. The lithics, primarily from Layer N1-I, exist amid diverse fauna remains, human fossils, pierced animal teeth pendants, and sediment with high organic content. This article focuses on the technological aspects of the IUP lithics, covering raw material origin and use-life, blank production, on-site knapping activities, re-flaking of lithic implements, and the state of retouched lithic components. We apply petrography for the identification of silicites and other used stones. We employ chaîne opératoire and reduction sequence approaches to profile the lithics techno-typologically and explore the lithic economy, particularly blade production methods, knapping techniques, and artifact curation. Raw material analysis reveals Lower Cretaceous flints from Ludogorie and Upper Cretaceous flints from the Danube region, up to 190 km and 130 km, respectively, from Bacho Kiro Cave, indicating long-distance mobility and finished products transport. Imported lithic implements, were a result of unidirectional and bidirectional non-Levallois laminar technology, likely of volumetric concept. Systematic on-anvil techniques (bipolar knapping) and tool segmentation indicate re-flaking and reshaping of lithic implements, reflecting on-site curation and multifaceted lithic economy. A limited comparison with other IUP sites reveals certain shared features and also regional variations. Bacho Kiro Cave significantly contributes to understanding the technological and behavioral evolution of early Homo sapiens in western Eurasia.
Collapse
Affiliation(s)
- Tsenka Tsanova
- Department of Chemistry G. Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Vincent Delvigne
- CNRS, UMR 8068 TEMPS, University of Paris X-Nanterre, Nanterre, France
- Service de Préhistoire, University of Liège, Liège, Belgium
| | - Svoboda Sirakova
- National Institute of Archaeology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Elka Anastasova
- National Institute of Archaeology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Pedro Horta
- Department of History, University of Minho, Braga, Portugal
- Interdisciplinary Center for Archaeology and the Evolution of Human Behaviour, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Ivaylo Krumov
- Museum of History- Belogradchik, Belogradchik, Bulgaria
| | - João Marreiros
- TraCEr, Monrepos Archaeological Research Centre and Museum for Human Behavioural Evolution, LEIZA, Mainz, Germany
| | - Elena Nacheva
- Sofia University "St. Kliment Ohridski, Sofia, Bulgaria
| | - Zeljko Rezek
- Chaire de Paléoanthropologie, CIRB, Collège de France, Université PSL, CNRS, INSERM, Paris, France
| | - Jean-Jacques Hublin
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Chaire de Paléoanthropologie, CIRB, Collège de France, Université PSL, CNRS, INSERM, Paris, France
| | - Nikolay Sirakov
- National Institute of Archaeology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
21
|
Bergström A. Improving data archiving practices in ancient genomics. Sci Data 2024; 11:754. [PMID: 38987254 PMCID: PMC11236975 DOI: 10.1038/s41597-024-03563-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Abstract
Ancient DNA is producing a rich record of past genetic diversity in humans and other species. However, unless the primary data is appropriately archived, its long-term value will not be fully realised. I surveyed publicly archived data from 42 recent ancient genomics studies. Half of the studies archived incomplete datasets, preventing accurate replication and representing a loss of data of potential future use. No studies met all criteria that could be considered best practice. Based on these results, I make six recommendations for data producers: (1) archive all sequencing reads, not just those that aligned to a reference genome, (2) archive read alignments too, but as secondary analysis files, (3) provide correct experiment metadata on samples, libraries and sequencing runs, (4) provide informative sample metadata, (5) archive data from low-coverage and negative experiments, and (6) document archiving choices in papers, and peer review these. Given the reliance on destructive sampling of finite material, ancient genomics studies have a particularly strong responsibility to ensure the longevity and reusability of generated data.
Collapse
Affiliation(s)
- Anders Bergström
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| |
Collapse
|
22
|
Sarawad A, Hosagoudar S, Parvatikar P. Pan-genomics: Insight into the Functional Genome, Applications, Advancements, and Challenges. Curr Genomics 2024; 26:2-14. [PMID: 39911277 PMCID: PMC11793047 DOI: 10.2174/0113892029311541240627111506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 02/07/2025] Open
Abstract
A pan-genome is a compilation of the common and unique genomes found in a given species. It incorporates the genetic information from all of the genomes sampled, producing a big and diverse set of genetic material. Pan-genomic analysis has various advantages over typical genomics research. It creates a vast and varied spectrum of genetic material by combining the genetic data from all the sampled genomes. Comparing pan-genomics analysis to conventional genomic research, there are a number of benefits. Although the most recent era of pan-genomic studies has used cutting-edge sequencing technology to shed fresh light on biological variety and improvement, the potential uses of pan-genomics in improvement have not yet been fully realized. Pan-genome research in various organisms has demonstrated that missing genetic components and the detection of significant Structural Variants (SVs) can be investigated using pan-genomic methods. Many individual-specific sequences have been linked to biological adaptability, phenotypic, and key economic attributes. This study aims to focus on how pangenome analysis uncovers genetic differences in various organisms, including human, and their effects on phenotypes, as well as how this might help us comprehend the diversity of species. The review also concentrated on potential problems and the prospects for future pangenome research.
Collapse
Affiliation(s)
- Akansha Sarawad
- Department of Biotechnology, Applied School of Science and Technology, BLDE (DU), Vijayapura, Karnataka, India
| | - Spoorti Hosagoudar
- Department of Biotechnology, Applied School of Science and Technology, BLDE (DU), Vijayapura, Karnataka, India
| | - Prachi Parvatikar
- Department of Biotechnology, Applied School of Science and Technology, BLDE (DU), Vijayapura, Karnataka, India
| |
Collapse
|
23
|
Cooke NP, Murray M, Cassidy LM, Mattiangeli V, Okazaki K, Kasai K, Gakuhari T, Bradley DG, Nakagome S. Genomic imputation of ancient Asian populations contrasts local adaptation in pre- and post-agricultural Japan. iScience 2024; 27:110050. [PMID: 38883821 PMCID: PMC11176660 DOI: 10.1016/j.isci.2024.110050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/25/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Early modern humans lived as hunter-gatherers for millennia before agriculture, yet the genetic adaptations of these populations remain a mystery. Here, we investigate selection in the ancient hunter-gatherer-fisher Jomon and contrast pre- and post-agricultural adaptation in the Japanese archipelago. Building on the successful validation of imputation with ancient Asian genomes, we identify selection signatures in the Jomon, particularly robust signals from KITLG variants, which may have influenced dark pigmentation evolution. The Jomon lacks well-known adaptive variants (EDAR, ADH1B, and ALDH2), marking their emergence after the advent of farming in the archipelago. Notably, the EDAR and ADH1B variants were prevalent in the archipelago 1,300 years ago, whereas the ALDH2 variant could have emerged later due to its absence in other ancient genomes. Overall, our study underpins local adaptation unique to the Jomon population, which in turn sheds light on post-farming selection that continues to shape contemporary Asian populations.
Collapse
Affiliation(s)
- Niall P. Cooke
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | | - Lara M. Cassidy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - Kenji Okazaki
- Department of Anatomy, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Kenji Kasai
- Toyama Prefectural Center for Archaeological Operations, Toyama, Japan
| | - Takashi Gakuhari
- Institute for the Study of Ancient Civilizations and Cultural Resources, Kanazawa University, Kanazawa, Japan
| | - Daniel G. Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Shigeki Nakagome
- School of Medicine, Trinity College Dublin, Dublin, Ireland
- Institute for the Study of Ancient Civilizations and Cultural Resources, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
24
|
Bai F, Liu Y, Wangdue S, Wang T, He W, Xi L, Tsho Y, Tsering T, Cao P, Dai Q, Liu F, Feng X, Zhang M, Ran J, Ping W, Payon D, Mao X, Tong Y, Tsring T, Chen Z, Fu Q. Ancient genomes revealed the complex human interactions of the ancient western Tibetans. Curr Biol 2024; 34:2594-2605.e7. [PMID: 38781957 DOI: 10.1016/j.cub.2024.04.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/21/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
The western Tibetan Plateau is the crossroad between the Tibetan Plateau, Central Asia, and South Asia, and it is a potential human migration pathway connecting these regions. However, the population history of the western Tibetan Plateau remains largely unexplored due to the lack of ancient genomes covering a long-time interval from this area. Here, we reported genome-wide data of 65 individuals dated to 3,500-300 years before present (BP) in the Ngari prefecture. The ancient western Tibetan Plateau populations share the majority of their genetic components with the southern Tibetan Plateau populations and have maintained genetic continuity since 3,500 BP while maintaining interactions with populations within and outside the Tibetan Plateau. Within the Tibetan Plateau, the ancient western Tibetan Plateau populations were influenced by the additional expansion from the south to the southwest plateau before 1,800 BP. Outside the Tibetan Plateau, the western Tibetan Plateau populations interacted with both South and Central Asian populations at least 2,000 years ago, and the South Asian-related genetic influence, despite being very limited, was from the Indus Valley Civilization (IVC) migrants in Central Asia instead of the IVC populations from the Indus Valley. In light of the new genetic data, our study revealed the complex population interconnections across and within the Tibetan Plateau.
Collapse
Affiliation(s)
- Fan Bai
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yichen Liu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shargan Wangdue
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Tianyi Wang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei He
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Lin Xi
- Shaanxi Academy of Archaeology, Xi'an 710054, China
| | - Yang Tsho
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Tashi Tsering
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Ming Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Jingkun Ran
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanjing Ping
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Danzin Payon
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Xiaowei Mao
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Yan Tong
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Tinley Tsring
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Zehui Chen
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
25
|
Sun Y, Wang M, Sun Q, Liu Y, Duan S, Wang Z, Zhou Y, Zhong J, Huang Y, Huang X, Yang Q, Li X, Su H, Cai Y, Jiang X, Chen J, Yan J, Nie S, Hu L, Yang J, Tang R, Wang CC, Liu C, Deng X, Yun L, He G. Distinguished biological adaptation architecture aggravated population differentiation of Tibeto-Burman-speaking people. J Genet Genomics 2024; 51:517-530. [PMID: 37827489 DOI: 10.1016/j.jgg.2023.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
Tibeto-Burman (TB) people have endeavored to adapt to the hypoxic, cold, and high-UV high-altitude environments in the Tibetan Plateau and complex disease exposures in lowland rainforests since the late Paleolithic period. However, the full landscape of genetic history and biological adaptation of geographically diverse TB-speaking people, as well as their interaction mechanism, remain unknown. Here, we generate a whole-genome meta-database of 500 individuals from 39 TB-speaking populations and present a comprehensive landscape of genetic diversity, admixture history, and differentiated adaptative features of geographically different TB-speaking people. We identify genetic differentiation related to geography and language among TB-speaking people, consistent with their differentiated admixture process with incoming or indigenous ancestral source populations. A robust genetic connection between the Tibetan-Yi corridor and the ancient Yellow River people supports their Northern China origin hypothesis. We finally report substructure-related differentiated biological adaptative signatures between highland Tibetans and Loloish speakers. Adaptative signatures associated with the physical pigmentation (EDAR and SLC24A5) and metabolism (ALDH9A1) are identified in Loloish people, which differed from the high-altitude adaptative genetic architecture in Tibetan. TB-related genomic resources provide new insights into the genetic basis of biological adaptation and better reference for the anthropologically informed sampling design in biomedical and genomic cohort research.
Collapse
Affiliation(s)
- Yuntao Sun
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China; Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China; Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Guangzhou Forensic Science Institute, Guangzhou, Guangdong 510055, China.
| | - Qiuxia Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Yan Liu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; School of Clinical Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Shuhan Duan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Zhiyong Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yunyu Zhou
- School of Stomatology, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Jun Zhong
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Yuguo Huang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China
| | - Xinyu Huang
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qingxin Yang
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xiangping Li
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Haoran Su
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Yan Cai
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, China; Department of Medical Laboratory, North Sichuan Medical College, Nanchong, Sichuan 637007, China
| | - Xiucheng Jiang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Jing Chen
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030600, China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030600, China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Liping Hu
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Junbao Yang
- School of Clinical Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Chuan-Chao Wang
- School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Chao Liu
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, Guangdong 510230, China
| | - Xiaohui Deng
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Libing Yun
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China.
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China.
| |
Collapse
|
26
|
Duan S, Wang M, Wang Z, Liu Y, Jiang X, Su H, Cai Y, Sun Q, Sun Y, Li X, Chen J, Zhang Y, Yan J, Nie S, Hu L, Tang R, Yun L, Wang CC, Liu C, Yang J, He G. Malaria resistance-related biological adaptation and complex evolutionary footprints inferred from one integrative Tai-Kadai-related genomic resource. Heliyon 2024; 10:e29235. [PMID: 38665582 PMCID: PMC11043949 DOI: 10.1016/j.heliyon.2024.e29235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Pathogen‒host adaptative interactions and complex population demographical processes, including admixture, drift, and Darwen selection, have considerably shaped the Neolithic-to-Modern Western Eurasian population structure and genetic susceptibility to modern human diseases. However, the genetic footprints of evolutionary events in East Asia remain unknown due to the underrepresentation of genomic diversity and the design of large-scale population studies. We reported one aggregated database of genome-wide SNP variations from 796 Tai-Kadai (TK) genomes, including that of Bouyei first reported here, to explore the genetic history, population structure, and biological adaptative features of TK people from southern China and Southeast Asia. We found geography-related population substructure among TK people using the state-of-the-art population genetic structure reconstruction techniques based on the allele frequency spectrum and haplotype-resolved phased fragments. We found that the northern TK people from Guizhou harbored one TK-dominant ancestry maximized in the Bouyei people, and the southern TK people from Thailand were more influenced by Southeast Asians and indigenous people. We reconstructed fitted admixture models and demographic graphs, which showed that TK people received gene flow from ancient southern rice farmer-related lineages related to the Hmong-Mien and Austroasiatic people and from northern millet farmers associated with the Sino-Tibetan people. Biological adaptation focused on our identified unique TK lineages related to Bouyei, which showed many adaptive signatures conferring Malaria resistance and low-rate lipid metabolism. Further gene enrichment, the allele frequency distribution of derived alleles, and their correlation with the incidence of Malaria further confirmed that CR1 played an essential role in the resistance of Malaria in the ancient "Baiyue" tribes.
Collapse
Affiliation(s)
- Shuhan Duan
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637007, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
| | - Zhiyong Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Yan Liu
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637007, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
| | - Xiucheng Jiang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637007, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
| | - Haoran Su
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637007, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
| | - Yan Cai
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637007, China
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Qiuxia Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Yuntao Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiangping Li
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Jing Chen
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030001, China
| | - Yijiu Zhang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030001, China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Liping Hu
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Libing Yun
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Chao Liu
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China
| | - Junbao Yang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637007, China
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Guanglin He
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637007, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
| |
Collapse
|
27
|
Tian L, Xu R, Chen D, Ananjeva NB, Brown RM, Min MS, Cai B, Mijidsuren B, Zhang B, Guo X. Range-Wide Phylogeography and Ecological Niche Modeling Provide Insights into the Evolutionary History of the Mongolian Racerunner ( Eremias argus) in Northeast Asia. Animals (Basel) 2024; 14:1124. [PMID: 38612363 PMCID: PMC11011046 DOI: 10.3390/ani14071124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
The Mongolian racerunner, Eremias argus, is a small lizard endemic to Northeast Asia that can serve as an excellent model for investigating how geography and past climate change have jointly influenced the evolution of biodiversity in this region. To elucidate the processes underlying its diversification and demography, we reconstructed the range-wide phylogeographic pattern and evolutionary trajectory, using phylogenetic, population genetic, landscape genetic, Bayesian phylogeographic reconstruction and ecological niche modeling approaches. Phylogenetic analyses of the mtDNA cyt b gene revealed eight lineages that were unbounded by geographic region. The genetic structure of E. argus was mainly determined by geographic distance. Divergence dating indicated that E. argus and E. brenchleyi diverged during the Mid-Pliocene Warm Period. E. argus was estimated to have coalesced at~0.4351 Ma (Marine Isotope Stage 19). Bayesian phylogeographic diffusion analysis revealed out-of-Inner Mongolia and rapid colonization events from the end of the Last Interglacial to the Last Glacial Maximum, which is consistent with the expanded suitable range of the Last Glacial Maximum. Pre-Last Glacial Maximum growth of population is presented for most lineages of E. argus. The Glacial Maximum contraction model and the previous multiple glacial refugia hypotheses are rejected. This may be due to an increase in the amount of climatically favorable habitats in Northeast Asia. Furthermore, E. argus barbouri most likely represents an invalid taxon. The present study is the first to report a range-wide phylogeography of reptiles over such a large region in Northeast Asia. Our results make a significant contribution towards understanding the biogeography of the entire Northeast Asia.
Collapse
Affiliation(s)
- Lili Tian
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610223, China; (L.T.); (R.X.); (B.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610223, China; (L.T.); (R.X.); (B.C.)
| | - Dali Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China;
| | - Natalia B. Ananjeva
- Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russia;
| | - Rafe M. Brown
- Biodiversity Institute, Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA;
| | - Mi-Sook Min
- Conservation Genome Resource Bank for Korean Wildlife, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea;
| | - Bo Cai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610223, China; (L.T.); (R.X.); (B.C.)
| | - Byambasuren Mijidsuren
- Plant Protection Research Institute, Mongolian University of Life Sciences, Ulaanbaatar 210153, Mongolia;
| | - Bin Zhang
- College of Life Sciences and Technology, Inner Mongolia Normal University, Hohhot 010022, China;
| | - Xianguang Guo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610223, China; (L.T.); (R.X.); (B.C.)
| |
Collapse
|
28
|
Vallini L, Zampieri C, Shoaee MJ, Bortolini E, Marciani G, Aneli S, Pievani T, Benazzi S, Barausse A, Mezzavilla M, Petraglia MD, Pagani L. The Persian plateau served as hub for Homo sapiens after the main out of Africa dispersal. Nat Commun 2024; 15:1882. [PMID: 38528002 DOI: 10.1038/s41467-024-46161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/16/2024] [Indexed: 03/27/2024] Open
Abstract
A combination of evidence, based on genetic, fossil and archaeological findings, indicates that Homo sapiens spread out of Africa between ~70-60 thousand years ago (kya). However, it appears that once outside of Africa, human populations did not expand across all of Eurasia until ~45 kya. The geographic whereabouts of these early settlers in the timeframe between ~70-60 to 45 kya has been difficult to reconcile. Here we combine genetic evidence and palaeoecological models to infer the geographic location that acted as the Hub for our species during the early phases of colonisation of Eurasia. Leveraging on available genomic evidence we show that populations from the Persian Plateau carry an ancestry component that closely matches the population that settled the Hub outside Africa. With the paleoclimatic data available to date, we built ecological models showing that the Persian Plateau was suitable for human occupation and that it could sustain a larger population compared to other West Asian regions, strengthening this claim.
Collapse
Affiliation(s)
| | - Carlo Zampieri
- Department of Biology, University of Padova, Padova, Italy
| | - Mohamed Javad Shoaee
- Department of Archaeology, Max Planck Institute for Geoanthropology, Jena, Germany
| | - Eugenio Bortolini
- Department of Cultural Heritage, University of Bologna, Bologna, Italy
| | - Giulia Marciani
- Department of Cultural Heritage, University of Bologna, Bologna, Italy
- Research Unit Prehistory and Anthropology, Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy
| | - Serena Aneli
- Department of Public Health Sciences and Pediatrics, University of Turin, Turin, Italy
| | - Telmo Pievani
- Department of Biology, University of Padova, Padova, Italy
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Bologna, Italy
| | - Alberto Barausse
- Department of Biology, University of Padova, Padova, Italy
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | | | - Michael D Petraglia
- Human Origins Program, Smithsonian Institution, Washington, DC, 20560, USA
- School of Social Science, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Centre for Human Evolution, Griffith University, Brisbane, QLD, Australia
| | - Luca Pagani
- Department of Biology, University of Padova, Padova, Italy.
- Institute of Genomics, University of Tartu, Tartu, Estonia.
| |
Collapse
|
29
|
Gao Y, Zhang X, Chen H, Lu Y, Ma S, Yang Y, Zhang M, Xu S. Reconstructing the ancestral gene pool to uncover the origins and genetic links of Hmong-Mien speakers. BMC Biol 2024; 22:59. [PMID: 38475771 PMCID: PMC10935854 DOI: 10.1186/s12915-024-01838-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/01/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Hmong-Mien (HM) speakers are linguistically related and live primarily in China, but little is known about their ancestral origins or the evolutionary mechanism shaping their genomic diversity. In particular, the lack of whole-genome sequencing data on the Yao population has prevented a full investigation of the origins and evolutionary history of HM speakers. As such, their origins are debatable. RESULTS Here, we made a deep sequencing effort of 80 Yao genomes, and our analysis together with 28 East Asian populations and 968 ancient Asian genomes suggested that there is a strong genetic basis for the formation of the HM language family. We estimated that the most recent common ancestor dates to 5800 years ago, while the genetic divergence between the HM and Tai-Kadai speakers was estimated to be 8200 years ago. We proposed that HM speakers originated from the Yangtze River Basin and spread with agricultural civilization. We identified highly differentiated variants between HM and Han Chinese, in particular, a deafness-related missense variant (rs72474224) in the GJB2 gene is in a higher frequency in HM speakers than in others. CONCLUSIONS Our results indicated complex gene flow and medically relevant variants involved in the HM speakers' evolution history.
Collapse
Affiliation(s)
- Yang Gao
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaoxi Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hao Chen
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yan Lu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Sen Ma
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yajun Yang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
| | - Menghan Zhang
- Institute of Modern Languages and Linguistics, and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China.
| |
Collapse
|
30
|
Yang SX, Zhang JF, Yue JP, Wood R, Guo YJ, Wang H, Luo WG, Zhang Y, Raguin E, Zhao KL, Zhang YX, Huan FX, Hou YM, Huang WW, Wang YR, Shi JM, Yuan BY, Ollé A, Queffelec A, Zhou LP, Deng CL, d'Errico F, Petraglia M. Initial Upper Palaeolithic material culture by 45,000 years ago at Shiyu in northern China. Nat Ecol Evol 2024; 8:552-563. [PMID: 38238436 DOI: 10.1038/s41559-023-02294-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/28/2023] [Indexed: 03/13/2024]
Abstract
The geographic expansion of Homo sapiens populations into southeastern Europe occurred by ∼47,000 years ago (∼47 ka), marked by Initial Upper Palaeolithic (IUP) technology. H. sapiens was present in western Siberia by ∼45 ka, and IUP industries indicate early entries by ∼50 ka in the Russian Altai and 46-45 ka in northern Mongolia. H. sapiens was in northeastern Asia by ∼40 ka, with a single IUP site in China dating to 43-41 ka. Here we describe an IUP assemblage from Shiyu in northern China, dating to ∼45 ka. Shiyu contains a stone tool assemblage produced by Levallois and Volumetric Blade Reduction methods, the long-distance transfer of obsidian from sources in China and the Russian Far East (800-1,000 km away), increased hunting skills denoted by the selective culling of adult equids and the recovery of tanged and hafted projectile points with evidence of impact fractures, and the presence of a worked bone tool and a shaped graphite disc. Shiyu exhibits a set of advanced cultural behaviours, and together with the recovery of a now-lost human cranial bone, the record supports an expansion of H. sapiens into eastern Asia by about 45 ka.
Collapse
Affiliation(s)
- Shi-Xia Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.
- Australian Research Centre for Human Evolution, Griffith University, Brisbane, Queensland, Australia.
| | - Jia-Fu Zhang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China.
| | - Jian-Ping Yue
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- Department of History, Anhui University, Hefei, China
| | - Rachel Wood
- Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, UK
| | - Yu-Jie Guo
- Institute of Nihewan Archaeology, College of History and Culture, Hebei Normal University, Shijiazhuang, China
| | - Han Wang
- Department of Archaeology of Graduate School of Arts and Letters, Tohoku University, Sendai, Japan
| | - Wu-Gan Luo
- School of Humanities, University of Chinese Academy of Sciences, Beijing, China
| | - Yue Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Emeline Raguin
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Ke-Liang Zhao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Yu-Xiu Zhang
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fa-Xiang Huan
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Ya-Mei Hou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Wen Huang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Yi-Ren Wang
- Shanxi Provincial Institute of Archaeology, Taiyuan, China
| | | | - Bao-Yin Yuan
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Andreu Ollé
- Institut Català de Palaeoecologia Humana i Evolució Social (IPHES-CERCA), Tarragona, Spain
- Dept. d'Història i Història de l'Art, Universitat Rovira i Virgili, Tarragona, Spain
| | - Alain Queffelec
- Université de Bordeaux, PACEA UMR 5199, CNRS, Pessac, France
| | - Li-Ping Zhou
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Cheng-Long Deng
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Francesco d'Errico
- Université de Bordeaux, PACEA UMR 5199, CNRS, Pessac, France.
- Centre for Early Sapiens Behaviour (SapienCE), Department of Archaeology, History, Cultural Studies and Religion, University of Bergen, Bergen, Norway.
| | - Michael Petraglia
- Australian Research Centre for Human Evolution, Griffith University, Brisbane, Queensland, Australia.
- School of Social Science, University of Queensland, Brisbane, Queensland, Australia.
- Human Origins Program, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
| |
Collapse
|
31
|
Mallick S, Micco A, Mah M, Ringbauer H, Lazaridis I, Olalde I, Patterson N, Reich D. The Allen Ancient DNA Resource (AADR) a curated compendium of ancient human genomes. Sci Data 2024; 11:182. [PMID: 38341426 PMCID: PMC10858950 DOI: 10.1038/s41597-024-03031-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
More than two hundred papers have reported genome-wide data from ancient humans. While the raw data for the vast majority are fully publicly available testifying to the commitment of the paleogenomics community to open data, formats for both raw data and meta-data differ. There is thus a need for uniform curation and a centralized, version-controlled compendium that researchers can download, analyze, and reference. Since 2019, we have been maintaining the Allen Ancient DNA Resource (AADR), which aims to provide an up-to-date, curated version of the world's published ancient human DNA data, represented at more than a million single nucleotide polymorphisms (SNPs) at which almost all ancient individuals have been assayed. The AADR has gone through six public releases at the time of writing and review of this manuscript, and crossed the threshold of >10,000 individuals with published genome-wide ancient DNA data at the end of 2022. This note is intended as a citable descriptor of the AADR.
Collapse
Affiliation(s)
- Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
| | - Adam Micco
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Harald Ringbauer
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Iosif Lazaridis
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Iñigo Olalde
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- BIOMICs Research Group, University of the Basque Country, 01006, Vitoria-Gasteiz, Spain
| | - Nick Patterson
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
32
|
Huang S, Liu S, Huang M, He JR, Wang C, Wang T, Feng X, Kuang Y, Lu J, Gu Y, Xia X, Lin S, Zhou W, Fu Q, Xia H, Qiu X. The Born in Guangzhou Cohort Study enables generational genetic discoveries. Nature 2024; 626:565-573. [PMID: 38297123 DOI: 10.1038/s41586-023-06988-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 12/15/2023] [Indexed: 02/02/2024]
Abstract
Genomic research that targets large-scale, prospective birth cohorts constitutes an essential strategy for understanding the influence of genetics and environment on human health1. Nonetheless, such studies remain scarce, particularly in Asia. Here we present the phase I genome study of the Born in Guangzhou Cohort Study2 (BIGCS), which encompasses the sequencing and analysis of 4,053 Chinese individuals, primarily composed of trios or mother-infant duos residing in South China. Our analysis reveals novel genetic variants, a high-quality reference panel, and fine-scale local genetic structure within BIGCS. Notably, we identify previously unreported East Asian-specific genetic associations with maternal total bile acid, gestational weight gain and infant cord blood traits. Additionally, we observe prevalent age-specific genetic effects on lipid levels in mothers and infants. In an exploratory intergenerational Mendelian randomization analysis, we estimate the maternal putatively causal and fetal genetic effects of seven adult phenotypes on seven fetal growth-related measurements. These findings illuminate the genetic links between maternal and early-life traits in an East Asian population and lay the groundwork for future research into the intricate interplay of genetics, intrauterine exposures and early-life experiences in shaping long-term health.
Collapse
Affiliation(s)
- Shujia Huang
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Siyang Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Mingxi Huang
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jian-Rong He
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Provincial Clinical Research Center for Child Health, Guangzhou, China
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chengrui Wang
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tianyi Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yashu Kuang
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Jinhua Lu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Yuqin Gu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xiaoyan Xia
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Women's Health, Provincial Key Clinical Specialty of Woman and Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Shanshan Lin
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Women's Health, Provincial Key Clinical Specialty of Woman and Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wenhao Zhou
- Division of Neonatology and Center for Newborn Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Huimin Xia
- Provincial Clinical Research Center for Child Health, Guangzhou, China.
- Provincial Key Laboratory of Research in Structure Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| | - Xiu Qiu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
- Provincial Clinical Research Center for Child Health, Guangzhou, China.
- Department of Women's Health, Provincial Key Clinical Specialty of Woman and Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
33
|
He G, Wang P, Chen J, Liu Y, Sun Y, Hu R, Duan S, Sun Q, Tang R, Yang J, Wang Z, Yun L, Hu L, Yan J, Nie S, Wei L, Liu C, Wang M. Differentiated genomic footprints suggest isolation and long-distance migration of Hmong-Mien populations. BMC Biol 2024; 22:18. [PMID: 38273256 PMCID: PMC10809681 DOI: 10.1186/s12915-024-01828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The underrepresentation of Hmong-Mien (HM) people in Asian genomic studies has hindered our comprehensive understanding of the full landscape of their evolutionary history and complex trait architecture. South China is a multi-ethnic region and indigenously settled by ethnolinguistically diverse HM, Austroasiatic (AA), Tai-Kadai (TK), Austronesian (AN), and Sino-Tibetan (ST) people, which is regarded as East Asia's initial cradle of biodiversity. However, previous fragmented genetic studies have only presented a fraction of the landscape of genetic diversity in this region, especially the lack of haplotype-based genomic resources. The deep characterization of demographic history and natural-selection-relevant genetic architecture of HM people was necessary. RESULTS We reported one HM-specific genomic resource and comprehensively explored the fine-scale genetic structure and adaptative features inferred from the genome-wide SNP data of 440 HM individuals from 33 ethnolinguistic populations, including previously unreported She. We identified solid genetic differentiation between HM people and Han Chinese at 7.64‒15.86 years ago (kya) and split events between southern Chinese inland (Miao/Yao) and coastal (She) HM people in the middle Bronze Age period and the latter obtained more gene flow from Ancient Northern East Asians. Multiple admixture models further confirmed that extensive gene flow from surrounding ST, TK, and AN people entangled in forming the gene pool of Chinese coastal HM people. Genetic findings of isolated shared unique ancestral components based on the sharing alleles and haplotypes deconstructed that HM people from the Yungui Plateau carried the breadth of previously unknown genomic diversity. We identified a direct and recent genetic connection between Chinese inland and Southeast Asian HM people as they shared the most extended identity-by-descent fragments, supporting the long-distance migration hypothesis. Uniparental phylogenetic topology and network-based phylogenetic relationship reconstruction found ancient uniparental founding lineages in southwestern HM people. Finally, the population-specific biological adaptation study identified the shared and differentiated natural selection signatures among inland and coastal HM people associated with physical features and immune functions. The allele frequency spectrum of cancer susceptibility alleles and pharmacogenomic genes showed significant differences between HM and northern Chinese people. CONCLUSIONS Our extensive genetic evidence combined with the historical documents supported the view that ancient HM people originated from the Yungui regions associated with ancient "Three-Miao tribes" descended from the ancient Daxi-Qujialing-Shijiahe people. Then, some have recently migrated rapidly to Southeast Asia, and some have migrated eastward and mixed respectively with Southeast Asian indigenes, Liangzhu-related coastal ancient populations, and incoming southward ST people. Generally, complex population migration, admixture, and adaptation history contributed to the complicated patterns of population structure of geographically diverse HM people.
Collapse
Affiliation(s)
- Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China.
| | - Peixin Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Medical Information, Chongqing Medical University, Chongqing, 400331, China
| | - Jing Chen
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030001, China
| | - Yan Liu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000, China
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Yuntao Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- Institute of Forensic Medicine, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Rong Hu
- School of Sociology and Anthropology, Xiamen University, Xiamen, 361005, China
| | - Shuhan Duan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000, China
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Qiuxia Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Junbao Yang
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000, China
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Zhiyong Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Libing Yun
- Institute of Forensic Medicine, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Liping Hu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030001, China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Lanhai Wei
- School of Ethnology and Anthropology, Inner Mongolia Normal University, Inner Mongolia, 010028, China
| | - Chao Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510275, China.
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China.
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510275, China.
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China.
| |
Collapse
|
34
|
Xiao B, Rey-lglesia A, Yuan J, Hu J, Song S, Hou Y, Chen X, Germonpré M, Bao L, Wang S, Taogetongqimuge, Valentinovna LL, Lister AM, Lai X, Sheng G. Relationships of Late Pleistocene giant deer as revealed by Sinomegaceros mitogenomes from East Asia. iScience 2023; 26:108406. [PMID: 38047074 PMCID: PMC10690636 DOI: 10.1016/j.isci.2023.108406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/26/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
The giant deer, widespread in northern Eurasia during the Late Pleistocene, have been classified as western Megaloceros and eastern Sinomegaceros through morphological studies. While Megaloceros's evolutionary history has been unveiled through mitogenomes, Sinomegaceros remains molecularly unexplored. Herein, we generated mitogenomes of giant deer from East Asia. We find that, in contrast to the morphological differences between Megaloceros and Sinomegaceros, they are mixed in the mitochondrial phylogeny, and Siberian specimens suggest a range contact or overlap between these two groups. Meanwhile, one deep divergent clade and another surviving until 20.1 thousand years ago (ka) were detected in northeastern China, the latter implying this area as a potential refugium during the Last Glacial Maximum (LGM). Moreover, stable isotope analyses indicate correlations between climate-introduced vegetation changes and giant deer extinction. Our study demonstrates the genetic relationship between eastern and western giant deer and explores the promoters of their extirpation in northern East Asia.
Collapse
Affiliation(s)
- Bo Xiao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Alba Rey-lglesia
- Globe Institute, University of Copenhagen, Copenhagen, 1350 Copenhagen K, Denmark
| | - Junxia Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Jiaming Hu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Shiwen Song
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yamei Hou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Xi Chen
- Department of Cultural Heritage and Museology, Nanjing Normal University, Nanjing 210046, China
| | - Mietje Germonpré
- Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium
| | - Lei Bao
- Ordos Institute of Cultural Relics and Archaeology, Ordos 017010, China
| | | | | | - Lbova Liudmila Valentinovna
- Graduate School of International Relations, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Grazhdansky Av., 28, Russia
| | | | - Xulong Lai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Guilian Sheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
35
|
Luo H, Zhang P, Zhang W, Zheng Y, Hao D, Shi Y, Niu Y, Song T, Li Y, Zhao S, Chen H, Xu T, He S. Recent positive selection signatures reveal phenotypic evolution in the Han Chinese population. Sci Bull (Beijing) 2023; 68:2391-2404. [PMID: 37661541 DOI: 10.1016/j.scib.2023.08.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/08/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023]
Abstract
Characterizing natural selection signatures and relationships with phenotype spectra is important for understanding human evolution and both biological and pathological mechanisms. Here, we identified 24 genetic loci under recent selection by analyzing rare singletons in 3946 high-depth whole-genome sequencing data of Han Chinese. The loci include immune-related gene regions (MHC cluster, IGH cluster, STING1, and PSG), alcohol metabolism-related gene regions (ADH1B, ALDH2, and ALDH3B2), and the olfactory perception gene OR4C16, in which the MHC cluster, ADH1B, and ALDH2 were also identified by TOPMed and WestLake Biobank. Among the signals, the IGH cluster is particularly interesting, in which the favored allele of variant 14_105737776_C_T (rs117518546, IgG1-G396R) promotes immune response, but also increases the risk of an autoimmune disease systemic lupus erythematosus (SLE). It is also surprising that our newly discovered ALDH3B2 evolved in the opposite direction to ALDH2 for alcohol metabolism. Besides monogenic traits, we found that multiple complex traits experienced polygenic adaptation. Particularly, multi-methods consistently revealed that lower blood pressure was favored in natural selection. Finally, we built a database named RePoS (recent positive selection, http://bigdata.ibp.ac.cn/RePoS/) to integrate and display multi-population selection signals. Our study extended our understanding of natural evolution and phenotype adaptation in Han Chinese as well as other populations.
Collapse
Affiliation(s)
- Huaxia Luo
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Peng Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wanyu Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Zheng
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Hao
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yirong Shi
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiwei Niu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingrui Song
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanyan Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shilei Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; China National Center for Bioinformation, Beijing 100101, China
| | - Hua Chen
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; China National Center for Bioinformation, Beijing 100101, China.
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China.
| | - Shunmin He
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
36
|
Derenko M, Denisova G, Litvinov A, Dambueva I, Malyarchuk B. Mitogenomics of the Koryaks and Evens of the northern coast of the Sea of Okhotsk. J Hum Genet 2023; 68:705-712. [PMID: 37316650 DOI: 10.1038/s10038-023-01173-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Due to the geographical proximity of the northern coast of the Sea of Okhotsk and Kamchatka Peninsula to the Beringia, the indigenous populations of these territories are of great interest for elucidating the human settlement history of northern Asia and America. Meanwhile, there is a clear shortage of genetic studies of the indigenous populations of the northern coast of the Sea of Okhotsk. Here, in order to examine their fine-scale matrilineal genetic structure, ancestry and relationships with neighboring populations, we analyzed 203 complete mitogenomes (174 of which are new) from population samples of the Koryaks and Evens of the northern coast of the Sea of Okhotsk and the Chukchi of the extreme northeast Asia. The patterns observed underscore the reduced level of genetic diversity found in the Koryak, Even, and Chukchi populations, which, along with the high degree of interpopulation differentiation, may be the result of genetic drift. Our phylogeographic analysis reveals common Paleo-Asiatic ancestry for 51.1% of the Koryaks and 17.8% of the Evens. About third of the mitogenomes found in the Koryaks and Evens might be considered as ethno-specific, as these are virtually absent elsewhere in North, Central and East Asia. Coalescence ages of most of these lineages coincide well with the emergence and development of the Tokarev and Old Koryak archaeological cultures associated with the formation of the Koryaks, as well as with the period of separation and split of the North Tungusic groups migrated northwards from the Lake Baikal or the Amur River area.
Collapse
Affiliation(s)
- Miroslava Derenko
- Institute of Biological Problems of the North, Russian Academy of Sciences, Portovaya Street, 18, Magadan, 685000, Russia.
| | - Galina Denisova
- Institute of Biological Problems of the North, Russian Academy of Sciences, Portovaya Street, 18, Magadan, 685000, Russia
| | - Andrey Litvinov
- Institute of Biological Problems of the North, Russian Academy of Sciences, Portovaya Street, 18, Magadan, 685000, Russia
| | - Irina Dambueva
- Institute of Biological Problems of the North, Russian Academy of Sciences, Portovaya Street, 18, Magadan, 685000, Russia
| | - Boris Malyarchuk
- Institute of Biological Problems of the North, Russian Academy of Sciences, Portovaya Street, 18, Magadan, 685000, Russia
| |
Collapse
|
37
|
Aoki K, Takahata N, Oota H, Wakano JY, Feldman MW. Infectious diseases may have arrested the southward advance of microblades in Upper Palaeolithic East Asia. Proc Biol Sci 2023; 290:20231262. [PMID: 37644833 PMCID: PMC10465978 DOI: 10.1098/rspb.2023.1262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023] Open
Abstract
An unsolved archaeological puzzle of the East Asian Upper Palaeolithic is why the southward expansion of an innovative lithic technology represented by microblades stalled at the Qinling-Huaihe Line. It has been suggested that the southward migration of foragers with microblades stopped there, which is consistent with ancient DNA studies showing that populations to the north and south of this line had differentiated genetically by 19 000 years ago. Many infectious pathogens are believed to have been associated with hominins since the Palaeolithic, and zoonotic pathogens in particular are prevalent at lower latitudes, which may have produced a disease barrier. We propose a mathematical model to argue that mortality due to infectious diseases may have arrested the wave-of-advance of the technologically advantaged foragers from the north.
Collapse
Affiliation(s)
- Kenichi Aoki
- Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Naoyuki Takahata
- Graduate University for Advanced Studies, Hayama, Kanagawa 240-0116, Japan
| | - Hiroki Oota
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Joe Yuichiro Wakano
- School of Interdisciplinary Mathematical Sciences, Meiji University, Nakano, Tokyo 164-8525, Japan
| | | |
Collapse
|
38
|
Halili B, Yang X, Wang R, Zhu K, Hai X, Wang CC. Inferring the population history of Kyrgyz in Xinjiang, Northwest China from genome-wide array genotyping. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 181:611-625. [PMID: 37310136 DOI: 10.1002/ajpa.24794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 04/29/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023]
Abstract
OBJECTIVES Xinjiang plays a vital role in the trans-Eurasian population migration, language diffusion, and culture and technology exchange. However, the underrepresentation of Xinjiang's genomes has hindered a more comprehensive understanding of Xinjiang's genetic structure and population history. MATERIALS AND METHODS We collected and genotyped 70 southern Xinjiang's Kyrgyz (SXJK) individuals and combined the data with modern and ancient Eurasians published. We used allele-frequency methods, including PCA, ADMIXTURE, f-statistics, qpWave/qpAdm, ALDER, Treemix, and haplotype-shared methods including shared-IBD segments, fineSTRUCTURE, and GLOBETROTTER to unveil the fine-scale population structure and reconstruct admixture history. RESULTS We identified genetic substructure within the SXJK population with subgroups showing different genetic affinities to West and East Eurasians. All SXJK subgroups were suggested to have close genetic relationships with surrounding Turkic-speaking groups that is, Uyghur, Kyrgyz from north Xinjiang and Tajikistan, and Chinese Kazakh, suggesting a shared ancestry among those populations. Outgroup-f3 and symmetrical f4 statistics showed a high genetic affinity of SXJK to present-day Tungusic, Mongolic-speaking populations and Ancient Northeast Asian (ANA) related groups. Allele sharing and haplotype sharing profiles revealed the east-west admixture pattern of SXJK. The qpAdm-based admixture models showed that SXJK derived ancestry from East Eurasian (ANA and East Asian, 42.7%-83.3%) and West Eurasian (Western Steppe herders and Central Asian, 16.7%-57.3%), the recent east-west admixture event could be traced to 1000 years ago based on ALDER and GLOBETROTTER analysis. DISCUSSION The high genetic affinity of SXJK to present-day Tungusic and Mongolic-speaking populations and short-shared IBD segments indicated their shared common ancestry. SXJK harbored a close genetic affinity to ANA-related populations, indicating the Northeast Asian origin of SXJK. The West and East Eurasian admixture models observed in SXJK further provided evidence of the dynamic admixture history in Xinjiang. The east-west admixture pattern and the identified ancestral makeup of SXJK suggested a genetic continuity from some Iron Age Xinjiang populations to present-day SXJK.
Collapse
Affiliation(s)
- Bubibatima Halili
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
| | - Xiaomin Yang
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
| | - Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiangjun Hai
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Northwest Minzu University, Lanzhou, China
| | - Chuan-Chao Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- Institute of Artificial Intelligence, Xiamen University, Xiamen, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Gong Y, Li Y, Liu X, Ma Y, Jiang L. A review of the pangenome: how it affects our understanding of genomic variation, selection and breeding in domestic animals? J Anim Sci Biotechnol 2023; 14:73. [PMID: 37143156 PMCID: PMC10161434 DOI: 10.1186/s40104-023-00860-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/01/2023] [Indexed: 05/06/2023] Open
Abstract
As large-scale genomic studies have progressed, it has been revealed that a single reference genome pattern cannot represent genetic diversity at the species level. While domestic animals tend to have complex routes of origin and migration, suggesting a possible omission of some population-specific sequences in the current reference genome. Conversely, the pangenome is a collection of all DNA sequences of a species that contains sequences shared by all individuals (core genome) and is also able to display sequence information unique to each individual (variable genome). The progress of pangenome research in humans, plants and domestic animals has proved that the missing genetic components and the identification of large structural variants (SVs) can be explored through pangenomic studies. Many individual specific sequences have been shown to be related to biological adaptability, phenotype and important economic traits. The maturity of technologies and methods such as third-generation sequencing, Telomere-to-telomere genomes, graphic genomes, and reference-free assembly will further promote the development of pangenome. In the future, pangenome combined with long-read data and multi-omics will help to resolve large SVs and their relationship with the main economic traits of interest in domesticated animals, providing better insights into animal domestication, evolution and breeding. In this review, we mainly discuss how pangenome analysis reveals genetic variations in domestic animals (sheep, cattle, pigs, chickens) and their impacts on phenotypes and how this can contribute to the understanding of species diversity. Additionally, we also go through potential issues and the future perspectives of pangenome research in livestock and poultry.
Collapse
Affiliation(s)
- Ying Gong
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Yefang Li
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Xuexue Liu
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
- Centre d'Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier, 37 allées Jules Guesde, Toulouse, 31000, France
| | - Yuehui Ma
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| | - Lin Jiang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| |
Collapse
|
40
|
Li YC, Gao ZL, Liu KJ, Tian JY, Yang BY, Rahman ZU, Yang LQ, Zhang SH, Li CT, Achilli A, Semino O, Torroni A, Kong QP. Mitogenome evidence shows two radiation events and dispersals of matrilineal ancestry from northern coastal China to the Americas and Japan. Cell Rep 2023:112413. [PMID: 37164007 DOI: 10.1016/j.celrep.2023.112413] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/05/2023] [Accepted: 04/04/2023] [Indexed: 05/12/2023] Open
Abstract
Although it is widely recognized that the ancestors of Native Americans (NAs) primarily came from Siberia, the link between mitochondrial DNA (mtDNA) lineage D4h3a (typical of NAs) and D4h3b (found so far only in East China and Thailand) raises the possibility that the ancestral sources for early NAs were more variegated than hypothesized. Here, we analyze 216 contemporary (including 106 newly sequenced) D4h mitogenomes and 39 previously reported ancient D4h data. The results reveal two radiation events of D4h in northern coastal China, one during the Last Glacial Maximum and the other within the last deglaciation, which facilitated the dispersals of D4h sub-branches to different areas including the Americas and the Japanese archipelago. The coastal distributions of the NA (D4h3a) and Japanese lineages (D4h1a and D4h2), in combination with the Paleolithic archaeological similarities among Northern China, the Americas, and Japan, lend support to the coastal dispersal scenario of early NAs.
Collapse
Affiliation(s)
- Yu-Chun Li
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, 650223, China; Kunming Key Laboratory of Healthy Aging Study, Kunming, Yunnan 650223, China
| | - Zong-Liang Gao
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, 650223, China; Kunming Key Laboratory of Healthy Aging Study, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Kai-Jun Liu
- Chengdu 23Mofang Biotechnology Co., Ltd., Tianfu Software Park, Chengdu, Sichuan 610042, China
| | - Jiao-Yang Tian
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, 650223, China; Kunming Key Laboratory of Healthy Aging Study, Kunming, Yunnan 650223, China
| | - Bin-Yu Yang
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, 650223, China; Kunming Key Laboratory of Healthy Aging Study, Kunming, Yunnan 650223, China
| | - Zia Ur Rahman
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming Key Laboratory of Healthy Aging Study, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Li-Qin Yang
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, 650223, China; Kunming Key Laboratory of Healthy Aging Study, Kunming, Yunnan 650223, China
| | - Su-Hua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China
| | - Cheng-Tao Li
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China
| | - Alessandro Achilli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Ornella Semino
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Antonio Torroni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, 650223, China; Kunming Key Laboratory of Healthy Aging Study, Kunming, Yunnan 650223, China.
| |
Collapse
|
41
|
He G, Wang M, Miao L, Chen J, Zhao J, Sun Q, Duan S, Wang Z, Xu X, Sun Y, Liu Y, Liu J, Wang Z, Wei L, Liu C, Ye J, Wang L. Multiple founding paternal lineages inferred from the newly-developed 639-plex Y-SNP panel suggested the complex admixture and migration history of Chinese people. Hum Genomics 2023; 17:29. [PMID: 36973821 PMCID: PMC10045532 DOI: 10.1186/s40246-023-00476-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Non-recombining regions of the Y-chromosome recorded the evolutionary traces of male human populations and are inherited haplotype-dependently and male-specifically. Recent whole Y-chromosome sequencing studies have identified previously unrecognized population divergence, expansion and admixture processes, which promotes a better understanding and application of the observed patterns of Y-chromosome genetic diversity. RESULTS Here, we developed one highest-resolution Y-chromosome single nucleotide polymorphism (Y-SNP) panel targeted for uniparental genealogy reconstruction and paternal biogeographical ancestry inference, which included 639 phylogenetically informative SNPs. We genotyped these loci in 1033 Chinese male individuals from 33 ethnolinguistically diverse populations and identified 256 terminal Y-chromosomal lineages with frequency ranging from 0.0010 (singleton) to 0.0687. We identified six dominant common founding lineages associated with different ethnolinguistic backgrounds, which included O2a2b1a1a1a1a1a1a1-M6539, O2a1b1a1a1a1a1a1-F17, O2a2b1a1a1a1a1b1a1b-MF15397, O2a2b2a1b1-A16609, O1b1a1a1a1b2a1a1-F2517, and O2a2b1a1a1a1a1a1-F155. The AMOVA and nucleotide diversity estimates revealed considerable differences and high genetic diversity among ethnolinguistically different populations. We constructed one representative phylogenetic tree among 33 studied populations based on the haplogroup frequency spectrum and sequence variations. Clustering patterns in principal component analysis and multidimensional scaling results showed a genetic differentiation between Tai-Kadai-speaking Li, Mongolic-speaking Mongolian, and other Sinitic-speaking Han Chinese populations. Phylogenetic topology inferred from the BEAST and Network relationships reconstructed from the popART further showed the founding lineages from culturally/linguistically diverse populations, such as C2a/C2b was dominant in Mongolian people and O1a/O1b was dominant in island Li people. We also identified many lineages shared by more than two ethnolinguistically different populations with a high proportion, suggesting their extensive admixture and migration history. CONCLUSIONS Our findings indicated that our developed high-resolution Y-SNP panel included major dominant Y-lineages of Chinese populations from different ethnic groups and geographical regions, which can be used as the primary and powerful tool for forensic practice. We should emphasize the necessity and importance of whole sequencing of more ethnolinguistically different populations, which can help identify more unrecognized population-specific variations for the promotion of Y-chromosome-based forensic applications.
Collapse
Affiliation(s)
- Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China.
| | - Mengge Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Lei Miao
- National Engineering Laboratory for Forensic Science, Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Jing Chen
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030001, China
| | - Jie Zhao
- National Engineering Laboratory for Forensic Science, Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Qiuxia Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Shuhan Duan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000, China
| | - Zhiyong Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Xiaofei Xu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
| | - Yuntao Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yan Liu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000, China
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Lanhai Wei
- School of Ethnology and Anthropology, Inner Mongolia Normal University, Hohhot, 010028, Inner Mongolia, China
| | - Chao Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510275, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jian Ye
- National Engineering Laboratory for Forensic Science, Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China.
| | - Le Wang
- National Engineering Laboratory for Forensic Science, Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China.
| |
Collapse
|
42
|
Yu HX, Ao C, Wang XP, Zhang XP, Sun J, Li H, Liu KJ, Wei LH. The impacts of bronze age in the gene pool of Chinese: Insights from phylogeographics of Y-chromosomal haplogroup N1a2a-F1101. Front Genet 2023; 14:1139722. [PMID: 36968599 PMCID: PMC10036388 DOI: 10.3389/fgene.2023.1139722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
Objectives: Previous studies of archaeology and history suggested that the rise and prosperity of Bronze Age culture in East Asia had made essential contribution to the formation of early state and civilization in this region. However, the impacts in perspective of genetics remain ambiguous. Previous genetic researches indicated the Y-chromosome Q1a1a-M120 and N1a2a-F1101 may be the two most important paternal lineages among the Bronze Age people in ancient northwest China. Here, we investigated the 9,000-years history of haplogroup N1a2a-F1101 with revised phylogenetic tree and spatial autocorrelation analysis.Materials and Methods: In this study, 229 sequences of N1a2a-F1101 were analyzed. We developed a highly-revised phylogenetic tree with age estimates for N1a2a-F1101. In addition, we also explored the geographical distribution of sub-lineages of N1a2a-F1101, and spatial autocorrelation analysis was conducted for each sub-branch.Results: The initial differentiation location of N1a2a-F1101 and its most closely related branch, N1a2b-P43, a major lineage of Uralic-speaking populations in northern Eurasia, is likely the west part of northeast China. After ~4 thousand years of bottleneck effect period, haplgroup N1a2a-F1101 experienced continuous expansion during the Chalcolithic age (~ 4.5 kya to 4 kya) and Bronze age (~ 4 kya to 2.5 kya) in northern China. Ancient DNA evidence supported that this haplogroup is the lineage of ruling family of Zhou Dynasty (~ 3 kya-2.2 kya) of ancient China.Discussion: In general, we proposed that the Bronze Age people in the border area between the eastern Eurasian steppe and northern China not only played a key role in promoting the early state and civilization of China, but also left significant traces in the gene pool of Chinese people.
Collapse
Affiliation(s)
- Hui-Xin Yu
- School of Ethnology and Anthropology, Institute of Humanities and Human Sciences, Inner Mongolia Normal University, Hohhot, China
| | - Cheliger Ao
- School of Ethnology and Anthropology, Institute of Humanities and Human Sciences, Inner Mongolia Normal University, Hohhot, China
| | - Xiao-Peng Wang
- School of Management, Dalian University of Technology, Dalian, China
| | - Xian-Peng Zhang
- School of Ethnology and Anthropology, Institute of Humanities and Human Sciences, Inner Mongolia Normal University, Hohhot, China
| | - Jin Sun
- School of Literature and Media, Xingyi Normal University for Nationalities, Xingyi, China
| | - Hui Li
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- B&R International Joint Laboratory for Eurasian Anthropology, Fudan University, Shanghai, China
| | - Kai-Jun Liu
- School of International Tourism and culture, Guizhou Normal University, Guiyang, China
- *Correspondence: Kai-Jun Liu, ; Lan-Hai Wei,
| | - Lan-Hai Wei
- School of Ethnology and Anthropology, Institute of Humanities and Human Sciences, Inner Mongolia Normal University, Hohhot, China
- B&R International Joint Laboratory for Eurasian Anthropology, Fudan University, Shanghai, China
- *Correspondence: Kai-Jun Liu, ; Lan-Hai Wei,
| |
Collapse
|
43
|
Sun N, Tao L, Wang R, Zhu K, Hai X, Wang CC. The genetic structure and admixture of Manchus and Koreans in northeast China. Ann Hum Biol 2023; 50:161-171. [PMID: 36809229 DOI: 10.1080/03014460.2023.2182912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
BACKGROUND The fine-scale genetic profiles and population history of Manchus and Koreans remain unclear. AIM To infer a fine-scale genetic structure and admixture of Manchu and Korean populations. SUBJECTS AND METHODS We collected and genotyped 16 Manchus from Liaoning and 18 Koreans from Jilin province with about 700K genome-wide SNPs. We analysed the data using principal component analysis (PCA), ADMIXTURE, Fst, TreeMix, f-statistics, qpWave, and qpAdm. RESULTS Manchus and Koreans showed a genetic affinity with northern East Asians. Chinese Koreans showed a long-term genetic continuity with Bronze Age populations from the West Liao River and had a strong affinity with Koreans in South Korea and Japan. Manchus had a different genetic profile compared with other Tungusic populations since the Manchus received additional genetic influence from the southern Chinese but didn't have West Eurasian-related admixture. CONCLUSIONS The genetic formation of Manchus involving southern Chinese was consistent with the extensive interactions between Manchus and populations from central and southern China. The large-scale genetic continuity between ancient West Liao River farmers and Koreans highlighted the role farming expansion played in the peopling of the Korean Peninsula.
Collapse
Affiliation(s)
- Na Sun
- College of Foreign Languages, Huaqiao University, 362021, Quanzhou, China
| | - Le Tao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xiangjun Hai
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Northwest Minzu University, Lanzhou, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China.,Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University 361005, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China.,Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China.,Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
44
|
Hoffecker JF, Elias SA, Scott GR, O'Rourke DH, Hlusko LJ, Potapova O, Pitulko V, Pavlova E, Bourgeon L, Vachula RS. Beringia and the peopling of the Western Hemisphere. Proc Biol Sci 2023; 290:20222246. [PMID: 36629115 PMCID: PMC9832545 DOI: 10.1098/rspb.2022.2246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Did Beringian environments represent an ecological barrier to humans until less than 15 000 years ago or was access to the Americas controlled by the spatial-temporal distribution of North American ice sheets? Beringian environments varied with respect to climate and biota, especially in the two major areas of exposed continental shelf. The East Siberian Arctic Shelf ('Great Arctic Plain' (GAP)) supported a dry steppe-tundra biome inhabited by a diverse large-mammal community, while the southern Bering-Chukchi Platform ('Bering Land Bridge' (BLB)) supported mesic tundra and probably a lower large-mammal biomass. A human population with west Eurasian roots occupied the GAP before the Last Glacial Maximum (LGM) and may have accessed mid-latitude North America via an interior ice-free corridor. Re-opening of the corridor less than 14 000 years ago indicates that the primary ancestors of living First Peoples, who already had spread widely in the Americas at this time, probably dispersed from the NW Pacific coast. A genetic 'arctic signal' in non-arctic First Peoples suggests that their parent population inhabited the GAP during the LGM, before their split from the former. We infer a shift from GAP terrestrial to a subarctic maritime economy on the southern BLB coast before dispersal in the Americas from the NW Pacific coast.
Collapse
Affiliation(s)
- John F. Hoffecker
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80309, USA,Department of Anthropology, University of Kansas, 622 Fraser Hall, 1415 Jayhawk Blvd, Lawrence, KS 66045, USA
| | - Scott A. Elias
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80309, USA
| | - G. Richard Scott
- Department of Anthropology, University of Nevada-Reno, 1664 N. Virginia Street, Reno, NV 89557, USA
| | - Dennis H. O'Rourke
- Department of Anthropology, University of Kansas, 622 Fraser Hall, 1415 Jayhawk Blvd, Lawrence, KS 66045, USA
| | - Leslea J. Hlusko
- Human Evolution Research Center, University of California-Berkeley, 3101 Valley Life Sciences Building, Berkeley, CA 94720-3140, USA,Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain
| | - Olga Potapova
- Pleistocene Park Foundation, Philadelphia, PA 19006, USA,Department of Mammoth Fauna Studies, Academy of Sciences of Sakha, Yakutsk, Russia,The Mammoth Site of Hot Springs, Hot Springs, SD 57747, USA
| | - Vladimir Pitulko
- Institute of the History of Material Culture, Russian Academy of Sciences, Dvortsovaya nab., 18, 191186 St Petersburg, Russia,Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Sciences, 3, Universitetskaya nab., St Petersburg 199034, Russian Federation
| | - Elena Pavlova
- Arctic and Antarctic Research Institute, Russian Federal Service for Hydrometeorology and Environmental Monitoring, 38 Bering Street, 199397 St Petersburg, Russia
| | - Lauriane Bourgeon
- Kansas Geological Survey, University of Kansas, 1930 Constant Ave., Lawrence, KS 66047, USA
| | - Richard S. Vachula
- Department of Geosciences, Auburn University, 2050 Beard Eaves Coliseum, Auburn, AL 36849-5305, USA
| |
Collapse
|
45
|
Zhou J, Zhang X, Li X, Sui J, Zhang S, Zhong H, Zhang Q, Zhang X, Huang H, Wen Y. Genetic structure and demographic history of Northern Han people in Liaoning Province inferred from genome-wide array data. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1014024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we used typical and advanced population genetic analysis methods [principal component analysis (PCA), ADMIXTURE, FST, f3-statistics, f4-statistics, qpAdm/qpWave, qpGraph, ALDER (Admixture-induced Linkage Disequilibrium for Evolutionary Relationships) and TreeMix] to explore the genetic structure of 80 Han individuals from four different cities in Liaoning Province and reconstruct their demographic history based on the newly generated genome-wide data. We found that Liaoning Han people have genetic similarities with other northern Han people (Shandong, Henan, and Shanxi) and Liaoning Manchu people. Millet farmers in the Yellow River Basin (YRB) and the West Liao River Basin (WLRB) (57–98%) and hunter-gatherers in the Mongolian Plateau (MP) and the Amur River Basin (ARB) (40–43%) are the main ancestral sources of the Liaoning Han people. Our study further supports the “northern origin hypothesis”; YRB-related ancestry accounts for 83–98% of the genetic makeup of the Liaoning Han population. There are clear genetic influences of northern East Asian populations in the Liaoning Han people, ancient Northeast Asian-related ancestry is another dominant ancestral component, and large-scale population admixture has happened between Tungusic Manchu people and Han people. There are genetic differences among the Liaoning Han people, and we found that these differences are associated with different migration routes of Hans during the “Chuang Guandong” period in historical records.
Collapse
|
46
|
He G, Adnan A, Al-Qahtani WS, Safhi FA, Yeh HY, Hadi S, Wang CC, Wang M, Liu C, Yao J. Genetic admixture history and forensic characteristics of Tibeto-Burman-speaking Qiang people explored via the newly developed Y-STR panel and genome-wide SNP data. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.939659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fine-scale patterns of population genetic structure and diversity of ethnolinguistically diverse populations are important for biogeographical ancestry inference, kinship testing, and development and validation of new kits focused on forensic personal identification. Analyses focused on forensic markers and genome-wide single nucleotide polymorphism (SNP) data can provide new insights into the origin, admixture processes, and forensic characteristics of targeted populations. Qiang people had a large sample size among Tibeto-Burmanspeaking populations, which widely resided in the middle latitude of the Tibetan Plateau. However, their genetic structure and forensic features have remained uncharacterized because of the paucity of comprehensive genetic analyses. Here, we first developed and validated the forensic performance of the AGCU-Y30 Y-short tandem repeats (STR) panel, which contains slowly and moderately mutating Y-STRs, and then we conducted comprehensive population genetic analyses based on Y-STRs and genome-wide SNPs to explore the admixture history of Qiang people and their neighbors. The validated results of this panel showed that the new Y-STR kit was sensitive and robust enough for forensic applications. Haplotype diversity (HD) ranging from 0.9932 to 0.9996 and allelic frequencies ranging from 0.001946 to 0.8326 in 514 Qiang people demonstrated that all included markers were highly polymorphic in Tibeto-Burman people. Population genetic analyses based on Y-STRs [RST, FST, multidimensional scaling (MDS) analysis, neighboring-joining (NJ) tree, principal component analysis (PCA), and median-joining network (MJN)] revealed that the Qiang people harbored a paternally close relationship with lowland Tibetan-Yi corridor populations. Furthermore, we conducted a comprehensive population admixture analysis among modern and ancient Eurasian populations based on genome-wide shared SNPs. We found that the Qiang people were a genetically admixed population and showed closest relationship with Tibetan and Neolithic Yellow River farmers. Admixture modeling showed that Qiang people shared the primary ancestry related to Tibetan, supporting the hypothesis of common origin between Tibetan and Qiang people from North China.
Collapse
|
47
|
Hou X, Zhang X, Li X, Huang T, Li W, Zhang H, Huang H, Wen Y. Genomic insights into the genetic structure and population history of Mongolians in Liaoning Province. Front Genet 2022; 13:947758. [PMID: 36313460 PMCID: PMC9596793 DOI: 10.3389/fgene.2022.947758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
The Mongolian population exceeds six million and is the largest population among the Mongolic speakers in China. However, the genetic structure and admixture history of the Mongolians are still unclear due to the limited number of samples and lower coverage of single-nucleotide polymorphism (SNP). In this study, we genotyped genome-wide data of over 700,000 SNPs in 38 Mongolian individuals from Fuxin in Liaoning Province to explore the genetic structure and population history based on typical and advanced population genetic analysis methods [principal component analysis (PCA), admixture, FST, f3-statistics, f4-statistics, qpAdm/qpWave, qpGraph, ALDER, and TreeMix]. We found that Fuxin Mongolians had a close genetic relationship with Han people, northern Mongolians, other Mongolic speakers, and Tungusic speakers in East Asia. Also, we found that Neolithic millet farmers in the Yellow River Basin and West Liao River Basin and Neolithic hunter–gatherers in the Mongolian Plateau and Amur River Basin were the dominant ancestral sources, and there were additional gene flows related to Eurasian Steppe pastoralists and Neolithic Iranian farmers in the gene pool of Fuxin Mongolians. These results shed light on dynamic demographic history, complex population admixture, and multiple sources of genetic diversity in Fuxin Mongolians.
Collapse
|
48
|
Allen E, Yu Y, Yang X, Xu Y, Du P, Xiong J, Chen D, Tian X, Wu Y, Qin X, Sheng P, Wang CC, Wen S. Multidisciplinary lines of evidence reveal East/Northeast Asian origins of agriculturalist/pastoralist residents at a Han dynasty military outpost in ancient Xinjiang. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.932004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Han/non-Han interactions were engrained among the border regions of ancient Imperial China. Yet, little is known about either the genetic origins or the lifeways of these border peoples. Our study applies tools from ancient deoxyribonucleic acid (DNA) and stable isotope analysis to the study of a Han dynasty population at the Shichengzi site in modern-day Xinjiang. Isotopic analysis (δ13C and δ15N) of human (n = 8), animal (n = 26), and crop remains (n = 23) from Shichengzi indicated that dietary patterns among site inhabitants could be split among agro-pastoral and agricultural groups based on differences in the collagen 15N ratios. DNA analysis divided the four Shichengzi samples into two groups, with one group primarily harboring the ancient Northeast Asian (ANA) related ancestry, while the other showed a dominant Late Neolithic Yellow River (YR_LN) related ancestry. Both ancient DNA and stable isotope evidence point to the Northeast Asian origins of pastoralists and East Asian origins of Han agriculturalists, who, nonetheless, shared a single burial space at Shichengzi. This study thus provides clear evidence for the multiple origins and identities of populations across the porous border represented by the Han Empire and surrounding regions and proposes a new model for the interpretation of border culture in early Imperial China.
Collapse
|
49
|
Wang R, Wang CC. Human genetics: The dual origin of Three Kingdoms period Koreans. Curr Biol 2022; 32:R844-R847. [PMID: 35944486 DOI: 10.1016/j.cub.2022.06.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The genetic history of Koreans remains poorly understood due to a lack of ancient DNA. A new paleo-genomic study shows that population stratification in 4th-5th century South Korean populations was linked to a varied proportion of indigenous Jomon-related ancestry, which does not survive in present-day Koreans.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
50
|
Fu Q. Insights into evolutionary dynamics of East Asians through Ancient DNA. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|