1
|
Zhao T, Xue Y, Bai MS, Dong HY, Jia FY. Clinical Application of Risdiplam in 5q Spinal Muscular Atrophy: A Narrative Review. Br J Hosp Med (Lond) 2025; 86:1-25. [PMID: 40265545 DOI: 10.12968/hmed.2024.0808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
5q spinal muscular atrophy (SMA) is caused by mutations in the survival motor neuron (SMN) gene located on chromosome 5, leading to insufficient SMN protein levels. Risdiplam is an RNA splicing modifier that modifies pre-mRNA splicing of the SMN2 gene, thereby promoting the production of functional survival motor neuron protein (SMN-fl). This article reviews the drug trials of Risdiplam, summarizes the actual clinical data, and systematically evaluates the effectiveness and safety of this drug. By discussing the mechanism of action and economic cost of this drug and comparing it to other SMA drugs, this paper provides a reference for the clinical use of the drug and an idea for future clinical research.
Collapse
Affiliation(s)
- Tong Zhao
- Department of Developmental and Behavioral Pediatrics, Children's Medical Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Yang Xue
- Department of Developmental and Behavioral Pediatrics, Children's Medical Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Miao-Shui Bai
- Department of Developmental and Behavioral Pediatrics, Children's Medical Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Han-Yu Dong
- Department of Developmental and Behavioral Pediatrics, Children's Medical Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Fei-Yong Jia
- Department of Developmental and Behavioral Pediatrics, Children's Medical Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Jia Q, Sun X, Li H, Guo J, Niu K, Chan KM, Bernards R, Qin W, Jin H. Perturbation of mRNA splicing in liver cancer: insights, opportunities and challenges. Gut 2025; 74:840-852. [PMID: 39658264 DOI: 10.1136/gutjnl-2024-333127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024]
Abstract
Perturbation of mRNA splicing is commonly observed in human cancers and plays a role in various aspects of cancer hallmarks. Understanding the mechanisms and functions of alternative splicing (AS) not only enables us to explore the complex regulatory network involved in tumour initiation and progression but also reveals potential for RNA-based cancer treatment strategies. This review provides a comprehensive summary of the significance of AS in liver cancer, covering the regulatory mechanisms, cancer-related AS events, abnormal splicing regulators, as well as the interplay between AS and post-transcriptional and post-translational regulations. We present the current bioinformatic approaches and databases to detect and analyse AS in cancer, and discuss the implications and perspectives of AS in the treatment of liver cancer.
Collapse
Affiliation(s)
- Qi Jia
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxiao Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianglong Guo
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kongyan Niu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, China
| | - René Bernards
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Noord-Holland, The Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haojie Jin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Falcucci L, Dooley CM, Adamoski D, Juan T, Martinez J, Georgieva AM, Mamchaoui K, Cirzi C, Stainier DYR. Transcriptional adaptation upregulates utrophin in Duchenne muscular dystrophy. Nature 2025; 639:493-502. [PMID: 39939773 PMCID: PMC11903304 DOI: 10.1038/s41586-024-08539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 12/17/2024] [Indexed: 02/14/2025]
Abstract
Duchenne muscular dystrophy (DMD) is a muscle-degenerating disease caused by mutations in the DMD gene, which encodes the dystrophin protein1,2. Utrophin (UTRN), the genetic and functional paralogue of DMD, is upregulated in some DMD patients3-5. To further investigate this UTRN upregulation, we first developed an inducible messenger RNA (mRNA) degradation system for DMD by introducing a premature termination codon (PTC) in one of its alternatively spliced exons. Inclusion of the PTC-containing exon triggers DMD mutant mRNA decay and UTRN upregulation. Notably, blocking nonsense-mediated mRNA decay results in the reversal of UTRN upregulation, whereas overexpressing DMD does not. Furthermore, overexpressing DMDPTC minigenes in wild-type cells causes UTRN upregulation, as does a wild-type DMD minigene containing a self-cleaving ribozyme. To place these findings in a therapeutic context, we used splice-switching antisense oligonucleotides (ASOs) to induce the skipping of out-of-frame exons of DMD, aiming to introduce PTCs. We found that these ASOs cause UTRN upregulation. In addition, when using an ASO to restore the DMD reading frame in myotubes derived from a DMDΔE52 patient, an actual DMD treatment, UTRN upregulation was reduced. Altogether, these results indicate that an mRNA decay-based mechanism called transcriptional adaptation6-8 plays a key role in UTRN upregulation in DMDPTC patients, and they highlight an unexplored therapeutic application of ASOs, as well as ribozymes, in inducing genetic compensation via transcriptional adaptation.
Collapse
Affiliation(s)
- Lara Falcucci
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Christopher M Dooley
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Douglas Adamoski
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thomas Juan
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Bad Nauheim, Frankfurt, Giessen, Germany
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Justin Martinez
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Angelina M Georgieva
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Cansu Cirzi
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Bad Nauheim, Frankfurt, Giessen, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany.
- Excellence Cluster Cardio-Pulmonary Institute, Bad Nauheim, Frankfurt, Giessen, Germany.
| |
Collapse
|
4
|
Huang L, Zhao B, Wan Y. Disruption of RNA-binding proteins in neurological disorders. Exp Neurol 2025; 385:115119. [PMID: 39709152 DOI: 10.1016/j.expneurol.2024.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/30/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
RNA-binding proteins (RBPs) are multifunctional proteins essential for the regulation of RNA processing and metabolism, contributing to the maintenance of cell homeostasis by modulating the expression of target genes. Many RBPs have been associated with neuron-specific processes vital for neuronal development and survival. RBP dysfunction may result in aberrations in RNA processing, which subsequently initiate a cascade of effects. Notably, RBPs are involved in the onset and progression of neurological disorders via diverse mechanisms. Disruption of RBPs not only affects RNA processing, but also promotes the abnormal aggregation of proteins into toxic inclusion bodies, and contributes to immune responses that drive the progression of neurological diseases. In this review, we summarize recent discoveries relating to the roles of RBPs in neurological diseases, discuss their contributions to such conditions, and highlight the unique functions of these RBPs within the nervous system.
Collapse
Affiliation(s)
- Luyang Huang
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130062, Jilin, China
| | - Bo Zhao
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130062, Jilin, China
| | - Youzhong Wan
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130062, Jilin, China.
| |
Collapse
|
5
|
Ventura-Gomes A, Carmo-Fonseca M. The spatial choreography of mRNA biosynthesis. J Cell Sci 2025; 138:JCS263504. [PMID: 40019352 DOI: 10.1242/jcs.263504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025] Open
Abstract
Properly timed gene expression is essential for all aspects of organismal physiology. Despite significant progress, our understanding of the complex mechanisms governing the dynamics of gene regulation in response to internal and external signals remains incomplete. Over the past decade, advances in technologies like light and cryo-electron microscopy (Cryo-EM), cryo-electron tomography (Cryo-ET) and high-throughput sequencing have spurred new insights into traditional paradigms of gene expression. In this Review, we delve into recent concepts addressing 'where' and 'when' gene transcription and RNA splicing occur within cells, emphasizing the dynamic spatial and temporal organization of the cell nucleus.
Collapse
Affiliation(s)
- André Ventura-Gomes
- Gulbenkian Institute for Molecular Medicine, Av. Professor Egas Moniz, 1649-028 Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Maria Carmo-Fonseca
- Gulbenkian Institute for Molecular Medicine, Av. Professor Egas Moniz, 1649-028 Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisbon, Portugal
| |
Collapse
|
6
|
Brambilla L, Valori CF, Guidotti G, Martorana F, Sulmona C, De Martini LB, Canciani A, Fumagalli M, Talpo F, Biella G, Di Pasquale E, Iacobucci C, Forneris F, Zhou H, Rossi D. Recombinant SMN protein synergizes with spinal muscular atrophy therapy to counteract pathological motor neuron phenotypes. Transl Neurodegener 2024; 13:63. [PMID: 39681882 DOI: 10.1186/s40035-024-00455-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Affiliation(s)
- Liliana Brambilla
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - Chiara F Valori
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - Giulia Guidotti
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - Francesca Martorana
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - Claudia Sulmona
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - Lisa Benedetta De Martini
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - Anselmo Canciani
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Marco Fumagalli
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Francesca Talpo
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Gerardo Biella
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Elisa Di Pasquale
- Humanitas Cardio Center, IRCCS Humanitas Research Hospital, 20089, Rozzano, Milan, Italy
- Institute of Genetic and Biomedical Research (IRGB), UOS of Milan-National Research Council of Italy (CNR), 20138, Milan, Italy
| | - Claudio Iacobucci
- Department of Physical and Chemical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
- Fondazione IRCCS Policlinico San Matteo, 27100, Pavia, Italy
| | - Haiyan Zhou
- Dubowitz Neuromuscular Centre and National Institute for Health Research, Great Ormond Street Institute of Child Health, Biomedical Research Centre, University College London, London, UK
| | - Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy.
| |
Collapse
|
7
|
Karlebach G, Steinhaus R, Danis D, Devoucoux M, Anczuków O, Sheynkman G, Seelow D, Robinson PN. Alternative splicing is coupled to gene expression in a subset of variably expressed genes. NPJ Genom Med 2024; 9:54. [PMID: 39496626 PMCID: PMC11535429 DOI: 10.1038/s41525-024-00432-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/18/2024] [Indexed: 11/06/2024] Open
Abstract
Numerous factors regulate alternative splicing of human genes at a co-transcriptional level. However, how alternative splicing depends on the regulation of gene expression is poorly understood. We leveraged data from the Genotype-Tissue Expression (GTEx) project to show a significant association of gene expression and splicing for 6874 (4.9%) of 141,043 exons in 1106 (13.3%) of 8314 genes with substantially variable expression in nine GTEx tissues. About half of these exons demonstrate higher inclusion with higher gene expression, and half demonstrate higher exclusion, with the observed direction of coupling being highly consistent across different tissues and in external datasets. The exons differ with respect to multiple characteristics and are enriched for hundreds of isoform-specific Gene Ontology annotations suggesting an important regulatory mechanism. Notably, splicing-expression coupling of exons with roles in JUN and MAP kinase signalling could play an important role during cell division.
Collapse
Affiliation(s)
- Guy Karlebach
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
| | - Robin Steinhaus
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniel Danis
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Maeva Devoucoux
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| | - Gloria Sheynkman
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Dominik Seelow
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Peter N Robinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
8
|
Mathews EW, Coffey SR, Gärtner A, Belgrad J, Bragg RM, O’Reilly D, Cantle JP, McHugh C, Summers A, Fentz J, Schwagarus T, Cornelius A, Lingos I, Burch Z, Kovalenko M, Andrew MA, Frank Bennett C, Kordasiewicz HB, Marchionini DM, Wilkinson H, Vogt TF, Pinto RM, Khvorova A, Howland D, Wheeler VC, Carroll JB. Suppression of Huntington's Disease Somatic Instability by Transcriptional Repression and Direct CAG Repeat Binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.619693. [PMID: 39574582 PMCID: PMC11580907 DOI: 10.1101/2024.11.04.619693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Huntington's disease (HD) arises from a CAG expansion in the huntingtin (HTT) gene beyond a critical threshold. A major thrust of current HD therapeutic development is lowering levels of mutant HTT mRNA (mHTT) and protein (mHTT) with the aim of reducing the toxicity of these product(s). Human genetic data also support a key role for somatic instability (SI) in HTT's CAG repeat - whereby it lengthens with age in specific somatic cell types - as a key driver of age of motor dysfunction onset. Thus, an attractive HD therapy would address both mHTT toxicity and SI, but to date the relationship between SI and HTT lowering remains unexplored. Here, we investigated multiple therapeutically-relevant HTT-lowering modalities to establish the relationship between HTT lowering and SI in HD knock-in mice. We find that repressing transcription of mutant Htt (mHtt) provides robust protection from SI, using diverse genetic and pharmacological approaches (antisense oligonucleotides, CRISPR-Cas9 genome editing, the Lac repressor, and virally delivered zinc finger transcriptional repressor proteins, ZFPs). However, we find that small interfering RNA (siRNA), a potent HTT-lowering treatment, lowers HTT levels without influencing SI and that SI is also normal in mice lacking 50% of total HTT levels, suggesting HTT levels, per se, do not modulate SI in trans. Remarkably, modified ZFPs that bind the mHtt locus, but lack a repressive domain, robustly protect from SI, despite not reducing HTT mRNA or protein levels. These results have important therapeutic implications in HD, as they suggest that DNA-targeted HTT-lowering treatments may have significant advantages compared to other HTT-lowering approaches, and that interaction of a DNA-binding protein and HTT's CAG repeats may provide protection from SI while sparing HTT expression.
Collapse
Affiliation(s)
- Ella W. Mathews
- Department of Neurology, University of Washington, Seattle WA 98104, USA
- Department of Psychology, Western Washington University, Bellingham WA 98225, USA
| | - Sydney R. Coffey
- Department of Psychology, Western Washington University, Bellingham WA 98225, USA
| | | | - Jillian Belgrad
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Robert M. Bragg
- Department of Neurology, University of Washington, Seattle WA 98104, USA
- Department of Psychology, Western Washington University, Bellingham WA 98225, USA
| | - Daniel O’Reilly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jeffrey P. Cantle
- Department of Neurology, University of Washington, Seattle WA 98104, USA
- Department of Psychology, Western Washington University, Bellingham WA 98225, USA
| | - Cassandra McHugh
- Department of Psychology, Western Washington University, Bellingham WA 98225, USA
| | - Ashley Summers
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | | | | | | | | - Zoe Burch
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Marina Kovalenko
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Marissa A Andrew
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Deanna M. Marchionini
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation Inc., Princeton, NJ 08540, USA
| | - Hilary Wilkinson
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation Inc., Princeton, NJ 08540, USA
| | - Thomas F. Vogt
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation Inc., Princeton, NJ 08540, USA
| | - Ricardo M. Pinto
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - David Howland
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation Inc., Princeton, NJ 08540, USA
| | - Vanessa C. Wheeler
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts Hospital and Harvard Medical School, Boston, MA, USA
- Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Jeffrey B. Carroll
- Department of Neurology, University of Washington, Seattle WA 98104, USA
- Department of Psychology, Western Washington University, Bellingham WA 98225, USA
| |
Collapse
|
9
|
Merens HE, Choquet K, Baxter-Koenigs AR, Churchman LS. Timing is everything: advances in quantifying splicing kinetics. Trends Cell Biol 2024; 34:968-981. [PMID: 38777664 DOI: 10.1016/j.tcb.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 05/25/2024]
Abstract
Splicing is a highly regulated process critical for proper pre-mRNA maturation and the maintenance of a healthy cellular environment. Splicing events are impacted by ongoing transcription, neighboring splicing events, and cis and trans regulatory factors on the respective pre-mRNA transcript. Within this complex regulatory environment, splicing kinetics have the potential to influence splicing outcomes but have historically been challenging to study in vivo. In this review, we highlight recent technological advancements that have enabled measurements of global splicing kinetics and of the variability of splicing kinetics at single introns. We demonstrate how identifying features that are correlated with splicing kinetics has increased our ability to form potential models for how splicing kinetics may be regulated in vivo.
Collapse
Affiliation(s)
- Hope E Merens
- Harvard University, Department of Genetics, Boston, MA, USA
| | - Karine Choquet
- University of Sherbrooke, Department of Biochemistry and Functional Genomics, Sherbrooke, Québec, Canada
| | | | | |
Collapse
|
10
|
Chudakova D, Kuzenkova L, Fisenko A, Savostyanov K. In Search of Spinal Muscular Atrophy Disease Modifiers. Int J Mol Sci 2024; 25:11210. [PMID: 39456991 PMCID: PMC11508272 DOI: 10.3390/ijms252011210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
The 5q Spinal Muscular Atrophy (SMA) is a hereditary autosomal recessive disease caused by defects in the survival motor neuron (SMN1) gene encoding survival motor neuron (SMN) protein. Currently, it is the leading cause of infantile mortality worldwide. SMA is a progressive neurodegenerative disease with "continuum of clinical severity", which can be modulated by genetic and epigenetic factors known as disease modifiers (DMs). Individuals (even siblings) with the same defects in SMN1 gene might have strikingly different types of SMA, supposedly due to the impact of DMs. There are several therapeutic options for SMA, all of them focusing on the restoration of the SMN protein levels to normal. Determining DMs and the pathways in which they are involved might aid in enhancing existing curative approaches. Furthermore, DMs might become novel therapeutic targets or prognostic biomarkers of the disease. This narrative review provides a brief overview of the genetics and pathobiology of SMA, and its bona fide modifiers. We describe novel, emerging DMs, approaches and tools used to identify them, as well as their potential mechanisms of action and impact on disease severity. We also propose several disease-modifying molecular mechanisms which could provide a partial explanation of the staggering variability of SMA phenotypes.
Collapse
Affiliation(s)
| | | | | | - Kirill Savostyanov
- National Medical Research Center of Children’s Health of the Ministry of Health of the Russian Federation, 119991 Moscow, Russia
| |
Collapse
|
11
|
Wang Z, Zhang J, Zhou Y, Liu G, Tian Z, Song X. A De Novo Splicing Mutation of STXBP1 in Epileptic Encephalopathy Associated with Hypomyelinating Leukodystrophy. Int J Mol Sci 2024; 25:10983. [PMID: 39456768 PMCID: PMC11507417 DOI: 10.3390/ijms252010983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Deleterious variations in STXBP1 are responsible for early infantile epileptic encephalopathy type 4 (EIEE4, OMIM # 612164) because of its dysfunction in the central nervous system. The clinical spectrum of the neurodevelopmental delays associated with STXBP1 aberrations is collectively defined as STXBP1 encephalopathy (STXBP1-E), the conspicuous features of which are highlighted by early-onset epileptic seizures without structural brain anomalies. A girl was first diagnosed with unexplained disorders of movement and cognition, which later developed into STXBP1-E with unexpected leukoaraiosis and late onset of seizures. Genetic screening and molecular tests alongside neurological examinations were employed to investigate the genetic etiology and establish the diagnosis. A heterozygous mutation of c.37+2dupT at the STXBP1 splice site was identified as the pathogenic cause in the affected girl. The de novo mutation (DNM) did not result in any truncated proteins but immediately triggered mRNA degradation by nonsense-mediated mRNA decay (NMD), which led to the haploinsufficiency of STXBP1. The patient showed atypical phenotypes characterized by hypomyelinating leukodystrophy, and late onset of epileptic seizures, which had never previously been delineated in STXBP1-E. These findings strongly indicated that the haploinsufficiency of STXBP1 could also exhibit divergent clinical phenotypes because of the genetic heterogeneity in the subset of encephalopathies.
Collapse
Affiliation(s)
| | - Jun Zhang
- Department of Cell Biology, and Genetics, Institute of Molecular Medicine, and Oncology, Chongqing Medical University, Chongqing 400016, China; (Z.W.); (Y.Z.); (G.L.); (Z.T.); (X.S.)
| | | | | | | | | |
Collapse
|
12
|
Shimada A, Cahn J, Ernst E, Lynn J, Grimanelli D, Henderson I, Kakutani T, Martienssen RA. Retrotransposon addiction promotes centromere function via epigenetically activated small RNAs. NATURE PLANTS 2024; 10:1304-1316. [PMID: 39223305 PMCID: PMC11410651 DOI: 10.1038/s41477-024-01773-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Retrotransposons have invaded eukaryotic centromeres in cycles of repeat expansion and purging, but the function of centromeric retrotransposons has remained unclear. In Arabidopsis, centromeric ATHILA retrotransposons give rise to epigenetically activated short interfering RNAs in mutants in DECREASE IN DNA METHYLATION1 (DDM1). Here we show that mutants that lose both DDM1 and RNA-dependent RNA polymerase have pleiotropic developmental defects and mis-segregate chromosome 5 during mitosis. Fertility and segregation defects are epigenetically inherited with centromere 5, and can be rescued by directing artificial small RNAs to ATHILA5 retrotransposons that interrupt tandem satellite repeats. Epigenetically activated short interfering RNAs promote pericentromeric condensation, chromosome cohesion and chromosome segregation in mitosis. We propose that insertion of ATHILA silences centromeric transcription, while simultaneously making centromere function dependent on retrotransposon small RNAs in the absence of DDM1. Parallels are made with the fission yeast Schizosaccharomyces pombe, where chromosome cohesion depends on RNA interference, and with humans, where chromosome segregation depends on both RNA interference and HELLSDDM1.
Collapse
Affiliation(s)
- Atsushi Shimada
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, New York, NY, USA
| | - Jonathan Cahn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, New York, NY, USA
| | - Evan Ernst
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, New York, NY, USA
| | - Jason Lynn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, New York, NY, USA
| | | | - Ian Henderson
- Department of Plant Sciences, Cambridge University, Cambridge, UK
| | | | - Robert A Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, New York, NY, USA.
| |
Collapse
|
13
|
Kubaczka MG, Godoy Herz MA, Chen WC, Zheng D, Petrillo E, Tian B, Kornblihtt AR. Light regulates widespread plant alternative polyadenylation through the chloroplast. Proc Natl Acad Sci U S A 2024; 121:e2405632121. [PMID: 39150783 PMCID: PMC11348263 DOI: 10.1073/pnas.2405632121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/16/2024] [Indexed: 08/18/2024] Open
Abstract
Transcription of eukaryotic protein-coding genes generates immature mRNAs that are subjected to a series of processing events, including capping, splicing, cleavage, and polyadenylation (CPA), and chemical modifications of bases. Alternative polyadenylation (APA) greatly contributes to mRNA diversity in the cell. By determining the length of the 3' untranslated region, APA generates transcripts with different regulatory elements, such as miRNA and RBP binding sites, which can influence mRNA stability, turnover, and translation. In the model plant Arabidopsis thaliana, APA is involved in the control of seed dormancy and flowering. In view of the physiological importance of APA in plants, we decided to investigate the effects of light/dark conditions and compare the underlying mechanisms to those elucidated for alternative splicing (AS). We found that light controls APA in approximately 30% of Arabidopsis genes. Similar to AS, the effect of light on APA requires functional chloroplasts, is not affected in mutants of the phytochrome and cryptochrome photoreceptor pathways, and is observed in roots only when the communication with the photosynthetic tissues is not interrupted. Furthermore, mitochondrial and TOR kinase activities are necessary for the effect of light. However, unlike AS, coupling with transcriptional elongation does not seem to be involved since light-dependent APA regulation is neither abolished in mutants of the TFIIS transcript elongation factor nor universally affected by chromatin relaxation caused by histone deacetylase inhibition. Instead, regulation seems to correlate with changes in the abundance of constitutive CPA factors, also mediated by the chloroplast.
Collapse
Affiliation(s)
- M. Guillermina Kubaczka
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires1428, Argentina
| | - Micaela A. Godoy Herz
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires1428, Argentina
| | - Wei-Chun Chen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ07103
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ07103
| | - Ezequiel Petrillo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires1428, Argentina
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ07103
- Gene Expression and Regulation Program, and Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA19104
| | - Alberto R. Kornblihtt
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires1428, Argentina
| |
Collapse
|
14
|
Wan L, Kral AJ, Voss D, Schäfer B, Sudheendran K, Danielsen M, Caruthers MH, Krainer AR. Screening Splice-Switching Antisense Oligonucleotides in Pancreas-Cancer Organoids. Nucleic Acid Ther 2024; 34:188-198. [PMID: 38716830 PMCID: PMC11387002 DOI: 10.1089/nat.2023.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/15/2024] [Indexed: 05/21/2024] Open
Abstract
Aberrant alternative splicing is emerging as a cancer hallmark and a potential therapeutic target. It is the result of dysregulated or mutated splicing factors, or genetic alterations in splicing-regulatory cis-elements. Targeting individual altered splicing events associated with cancer-cell dependencies is a potential therapeutic strategy, but several technical limitations need to be addressed. Patient-derived organoids are a promising platform to recapitulate key aspects of disease states, and to facilitate drug development for precision medicine. Here, we report an efficient antisense-oligonucleotide (ASO) lipofection method to systematically evaluate and screen individual splicing events as therapeutic targets in pancreatic ductal adenocarcinoma organoids. This optimized delivery method allows fast and efficient screening of ASOs, e.g., those that reverse oncogenic alternative splicing. In combination with advances in chemical modifications of oligonucleotides and ASO-delivery strategies, this method has the potential to accelerate the discovery of antitumor ASO drugs that target pathological alternative splicing.
Collapse
Affiliation(s)
- Ledong Wan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- Stony Brook University, Stony Brook, New York, USA
| | - Alexander J. Kral
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- Stony Brook University, Stony Brook, New York, USA
| | - Dillon Voss
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- Stony Brook University, Stony Brook, New York, USA
| | - Balázs Schäfer
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA
| | | | - Mathias Danielsen
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA
| | | | | |
Collapse
|
15
|
Haque US, Yokota T. Recent Progress in Gene-Targeting Therapies for Spinal Muscular Atrophy: Promises and Challenges. Genes (Basel) 2024; 15:999. [PMID: 39202360 PMCID: PMC11353366 DOI: 10.3390/genes15080999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a severe genetic disorder characterized by the loss of motor neurons, leading to progressive muscle weakness, loss of mobility, and respiratory complications. In its most severe forms, SMA can result in death within the first two years of life if untreated. The condition arises from mutations in the SMN1 (survival of motor neuron 1) gene, causing a deficiency in the survival motor neuron (SMN) protein. Humans possess a near-identical gene, SMN2, which modifies disease severity and is a primary target for therapies. Recent therapeutic advancements include antisense oligonucleotides (ASOs), small molecules targeting SMN2, and virus-mediated gene replacement therapy delivering a functional copy of SMN1. Additionally, recognizing SMA's broader phenotype involving multiple organs has led to the development of SMN-independent therapies. Evidence now indicates that SMA affects multiple organ systems, suggesting the need for SMN-independent treatments along with SMN-targeting therapies. No single therapy can cure SMA; thus, combination therapies may be essential for comprehensive treatment. This review addresses the SMA etiology, the role of SMN, and provides an overview of the rapidly evolving therapeutic landscape, highlighting current achievements and future directions.
Collapse
Affiliation(s)
- Umme Sabrina Haque
- Department of Neuroscience, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada;
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Neuroscience, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada;
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Science Research, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
16
|
Best AJ, Braunschweig U, Wu M, Farhangmehr S, Pasculescu A, Lim JJ, Comsa LC, Jen M, Wang J, Datti A, Wrana JL, Cordes SP, Al-Awar R, Han H, Blencowe BJ. High-throughput sensitive screening of small molecule modulators of microexon alternative splicing using dual Nano and Firefly luciferase reporters. Nat Commun 2024; 15:6328. [PMID: 39068192 PMCID: PMC11283458 DOI: 10.1038/s41467-024-50399-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
Disruption of alternative splicing frequently causes or contributes to human diseases and disorders. Consequently, there is a need for efficient and sensitive reporter assays capable of screening chemical libraries for compounds with efficacy in modulating important splicing events. Here, we describe a screening workflow employing dual Nano and Firefly luciferase alternative splicing reporters that affords efficient, sensitive, and linear detection of small molecule responses. Applying this system to a screen of ~95,000 small molecules identified compounds that stimulate or repress the splicing of neuronal microexons, a class of alternative exons often disrupted in autism and activated in neuroendocrine cancers. One of these compounds rescues the splicing of several analyzed microexons in the cerebral cortex of an autism mouse model haploinsufficient for Srrm4, a major activator of brain microexons. We thus describe a broadly applicable high-throughput screening system for identifying candidate splicing therapeutics, and a resource of small molecule modulators of microexons with potential for further development in correcting aberrant splicing patterns linked to human disorders and disease.
Collapse
Affiliation(s)
- Andrew J Best
- Donnelly Centre, University of Toronto, Toronto, ON, Canada.
| | | | - Mingkun Wu
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Shaghayegh Farhangmehr
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Adrian Pasculescu
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Justin J Lim
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Lim Caden Comsa
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Mark Jen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Jenny Wang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Alessandro Datti
- Department of Agricultural, Food, and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Jeffrey L Wrana
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Sabine P Cordes
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Rima Al-Awar
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Hong Han
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Benjamin J Blencowe
- Donnelly Centre, University of Toronto, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
17
|
Ottesen EW, Singh NN, Seo J, Singh RN. U1 snRNA interactions with deep intronic sequences regulate splicing of multiple exons of spinal muscular atrophy genes. Front Neurosci 2024; 18:1412893. [PMID: 39086841 PMCID: PMC11289892 DOI: 10.3389/fnins.2024.1412893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction The U1 small nuclear RNA (snRNA) forms ribonucleoprotein particles (RNPs) such as U1 snRNP and U1-TAF15 snRNP. U1 snRNP is one of the most studied RNPs due to its critical role in pre-mRNA splicing in defining the 5' splice site (5'ss) of every exon through direct interactions with sequences at exon/intron junctions. Recent reports support the role of U1 snRNP in all steps of transcription, namely initiation, elongation, and termination. Functions of U1-TAF15 snRNP are less understood, though it associates with the transcription machinery and may modulate pre-mRNA splicing by interacting with the 5'ss and/or 5'ss-like sequences within the pre-mRNA. An anti-U1 antisense oligonucleotide (ASO) that sequesters the 5' end of U1 snRNA inhibits the functions of U1 snRNP, including transcription and splicing. However, it is not known if the inhibition of U1 snRNP influences post-transcriptional regulation of pre-mRNA splicing through deep intronic sequences. Methods We examined the effect of an anti-U1 ASO that sequesters the 5' end of U1 snRNA on transcription and splicing of all internal exons of the spinal muscular atrophy (SMA) genes, SMN1 and SMN2. Our study was enabled by the employment of a multi-exon-skipping detection assay (MESDA) that discriminates against prematurely terminated transcripts. We employed an SMN2 super minigene to determine if anti-U1 ASO differently affects splicing in the context of truncated introns. Results We observed substantial skipping of multiple internal exons of SMN1 and SMN2 triggered by anti-U1 treatment. Suggesting a role for U1 snRNP in interacting with deep intronic sequences, early exons of the SMN2 super minigene with truncated introns were resistant to anti-U1 induced skipping. Consistently, overexpression of engineered U1 snRNAs targeting the 5'ss of early SMN1 and SMN2 exons did not prevent exon skipping caused by anti-U1 treatment. Discussion Our results uncover a unique role of the U1 snRNA-associated RNPs in splicing regulation executed through deep intronic sequences. Findings are significant for developing novel therapies for SMA based on deep intronic targets.
Collapse
Affiliation(s)
| | | | | | - Ravindra N. Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| |
Collapse
|
18
|
Torri F, Mancuso M, Siciliano G, Ricci G. Beyond Motor Neurons in Spinal Muscular Atrophy: A Focus on Neuromuscular Junction. Int J Mol Sci 2024; 25:7311. [PMID: 39000416 PMCID: PMC11242411 DOI: 10.3390/ijms25137311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
5q-Spinal muscular atrophy (5q-SMA) is one of the most common neuromuscular diseases due to homozygous mutations in the SMN1 gene. This leads to a loss of function of the SMN1 gene, which in the end determines lower motor neuron degeneration. Since the generation of the first mouse models of SMA neuropathology, a complex degenerative involvement of the neuromuscular junction and peripheral axons of motor nerves, alongside lower motor neurons, has been described. The involvement of the neuromuscular junction in determining disease symptoms offers a possible parallel therapeutic target. This narrative review aims at providing an overview of the current knowledge about the pathogenesis and significance of neuromuscular junction dysfunction in SMA, circulating biomarkers, outcome measures and available or developing therapeutic approaches.
Collapse
Affiliation(s)
- Francesca Torri
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Michelangelo Mancuso
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
19
|
Riccardi F, Romano G, Licastro D, Pagani F. Age-dependent regulation of ELP1 exon 20 splicing in Familial Dysautonomia by RNA Polymerase II kinetics and chromatin structure. PLoS One 2024; 19:e0298965. [PMID: 38829854 PMCID: PMC11146744 DOI: 10.1371/journal.pone.0298965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/01/2024] [Indexed: 06/05/2024] Open
Abstract
Familial Dysautonomia (FD) is a rare disease caused by ELP1 exon 20 skipping. Here we clarify the role of RNA Polymerase II (RNAPII) and chromatin on this splicing event. A slow RNAPII mutant and chromatin-modifying chemicals that reduce the rate of RNAPII elongation induce exon skipping whereas chemicals that create a more relaxed chromatin exon inclusion. In the brain of a mouse transgenic for the human FD-ELP1 we observed on this gene an age-dependent decrease in the RNAPII density profile that was most pronounced on the alternative exon, a robust increase in the repressive marks H3K27me3 and H3K9me3 and a decrease of H3K27Ac, together with a progressive reduction in ELP1 exon 20 inclusion level. In HEK 293T cells, selective drug-induced demethylation of H3K27 increased RNAPII elongation on ELP1 and SMN2, promoted the inclusion of the corresponding alternative exons, and, by RNA-sequencing analysis, induced changes in several alternative splicing events. These data suggest a co-transcriptional model of splicing regulation in which age-dependent changes in H3K27me3/Ac modify the rate of RNAPII elongation and affect processing of ELP1 alternative exon 20.
Collapse
Affiliation(s)
- Federico Riccardi
- Human Molecular Genetics, International Centre for Genetic Engineering and Biotechnology, Padriciano, Trieste, Italy
| | - Giulia Romano
- Human Molecular Genetics, International Centre for Genetic Engineering and Biotechnology, Padriciano, Trieste, Italy
| | - Danilo Licastro
- Laboratorio di Genomica ed Epigenomica, AREA Science Park, Padriciano, Trieste, Italy
| | - Franco Pagani
- Human Molecular Genetics, International Centre for Genetic Engineering and Biotechnology, Padriciano, Trieste, Italy
| |
Collapse
|
20
|
Luo D, Ottesen EW, Lee JH, Singh RN. Transcriptome- and proteome-wide effects of a circular RNA encompassing four early exons of the spinal muscular atrophy genes. Sci Rep 2024; 14:10442. [PMID: 38714739 PMCID: PMC11076517 DOI: 10.1038/s41598-024-60593-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/25/2024] [Indexed: 05/10/2024] Open
Abstract
Spinal muscular atrophy (SMA) genes, SMN1 and SMN2 (hereinafter referred to as SMN1/2), produce multiple circular RNAs (circRNAs), including C2A-2B-3-4 that encompasses early exons 2A, 2B, 3 and 4. C2A-2B-3-4 is a universally and abundantly expressed circRNA of SMN1/2. Here we report the transcriptome- and proteome-wide effects of overexpression of C2A-2B-3-4 in inducible HEK293 cells. Our RNA-Seq analysis revealed altered expression of ~ 15% genes (4172 genes) by C2A-2B-3-4. About half of the affected genes by C2A-2B-3-4 remained unaffected by L2A-2B-3-4, a linear transcript encompassing exons 2A, 2B, 3 and 4 of SMN1/2. These findings underscore the unique role of the structural context of C2A-2B-3-4 in gene regulation. A surprisingly high number of upregulated genes by C2A-2B-3-4 were located on chromosomes 4 and 7, whereas many of the downregulated genes were located on chromosomes 10 and X. Supporting a cross-regulation of SMN1/2 transcripts, C2A-2B-3-4 and L2A-2B-3-4 upregulated and downregulated SMN1/2 mRNAs, respectively. Proteome analysis revealed 61 upregulated and 57 downregulated proteins by C2A-2B-3-4 with very limited overlap with those affected by L2A-2B-3-4. Independent validations confirmed the effect of C2A-2B-3-4 on expression of genes associated with chromatin remodeling, transcription, spliceosome function, ribosome biogenesis, lipid metabolism, cytoskeletal formation, cell proliferation and neuromuscular junction formation. Our findings reveal a broad role of C2A-2B-3-4, and expands our understanding of functions of SMN1/2 genes.
Collapse
Affiliation(s)
- Diou Luo
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Eric W Ottesen
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Ji Heon Lee
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Ravindra N Singh
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
21
|
Ferrer J, Dimitrova N. Transcription regulation by long non-coding RNAs: mechanisms and disease relevance. Nat Rev Mol Cell Biol 2024; 25:396-415. [PMID: 38242953 PMCID: PMC11045326 DOI: 10.1038/s41580-023-00694-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/21/2024]
Abstract
Long non-coding RNAs (lncRNAs) outnumber protein-coding transcripts, but their functions remain largely unknown. In this Review, we discuss the emerging roles of lncRNAs in the control of gene transcription. Some of the best characterized lncRNAs have essential transcription cis-regulatory functions that cannot be easily accomplished by DNA-interacting transcription factors, such as XIST, which controls X-chromosome inactivation, or imprinted lncRNAs that direct allele-specific repression. A growing number of lncRNA transcription units, including CHASERR, PVT1 and HASTER (also known as HNF1A-AS1) act as transcription-stabilizing elements that fine-tune the activity of dosage-sensitive genes that encode transcription factors. Genetic experiments have shown that defects in such transcription stabilizers often cause severe phenotypes. Other lncRNAs, such as lincRNA-p21 (also known as Trp53cor1) and Maenli (Gm29348) contribute to local activation of gene transcription, whereas distinct lncRNAs influence gene transcription in trans. We discuss findings of lncRNAs that elicit a function through either activation of their transcription, transcript elongation and processing or the lncRNA molecule itself. We also discuss emerging evidence of lncRNA involvement in human diseases, and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jorge Ferrer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Nadya Dimitrova
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
22
|
Ottesen EW, Seo J, Luo D, Singh NN, Singh RN. A super minigene with a short promoter and truncated introns recapitulates essential features of transcription and splicing regulation of the SMN1 and SMN2 genes. Nucleic Acids Res 2024; 52:3547-3571. [PMID: 38214229 DOI: 10.1093/nar/gkad1259] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024] Open
Abstract
Here we report a Survival Motor Neuron 2 (SMN2) super minigene, SMN2Sup, encompassing its own promoter, all exons, their flanking intronic sequences and the entire 3'-untranslated region. We confirm that the pre-mRNA generated from SMN2Sup undergoes splicing to produce a translation-competent mRNA. We demonstrate that mRNA generated from SMN2Sup produces more SMN than an identical mRNA generated from a cDNA clone. We uncover that overexpression of SMN triggers skipping of exon 3 of SMN1/SMN2. We define the minimal promoter and regulatory elements associated with the initiation and elongation of transcription of SMN2. The shortened introns within SMN2Sup preserved the ability of camptothecin, a transcription elongation inhibitor, to induce skipping of exons 3 and 7 of SMN2. We show that intron 1-retained transcripts undergo nonsense-mediated decay. We demonstrate that splicing factor SRSF3 and DNA/RNA helicase DHX9 regulate splicing of multiple exons in the context of both SMN2Sup and endogenous SMN1/SMN2. Prevention of SMN2 exon 7 skipping has implications for the treatment of spinal muscular atrophy (SMA). We validate the utility of the super minigene in monitoring SMN levels upon splicing correction. Finally, we demonstrate how the super minigene could be employed to capture the cell type-specific effects of a pathogenic SMN1 mutation.
Collapse
Affiliation(s)
- Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Joonbae Seo
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Diou Luo
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
23
|
Dhaka B, Zimmerli M, Hanhart D, Moser M, Guillen-Ramirez H, Mishra S, Esposito R, Polidori T, Widmer M, García-Pérez R, Julio MKD, Pervouchine D, Melé M, Chouvardas P, Johnson R. Functional identification of cis-regulatory long noncoding RNAs at controlled false discovery rates. Nucleic Acids Res 2024; 52:2821-2835. [PMID: 38348970 PMCID: PMC11014264 DOI: 10.1093/nar/gkae075] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 03/09/2024] Open
Abstract
A key attribute of some long noncoding RNAs (lncRNAs) is their ability to regulate expression of neighbouring genes in cis. However, such 'cis-lncRNAs' are presently defined using ad hoc criteria that, we show, are prone to false-positive predictions. The resulting lack of cis-lncRNA catalogues hinders our understanding of their extent, characteristics and mechanisms. Here, we introduce TransCistor, a framework for defining and identifying cis-lncRNAs based on enrichment of targets amongst proximal genes. TransCistor's simple and conservative statistical models are compatible with functionally defined target gene maps generated by existing and future technologies. Using transcriptome-wide perturbation experiments for 268 human and 134 mouse lncRNAs, we provide the first large-scale survey of cis-lncRNAs. Known cis-lncRNAs are correctly identified, including XIST, LINC00240 and UMLILO, and predictions are consistent across analysis methods, perturbation types and independent experiments. We detect cis-activity in a minority of lncRNAs, primarily involving activators over repressors. Cis-lncRNAs are detected by both RNA interference and antisense oligonucleotide perturbations. Mechanistically, cis-lncRNA transcripts are observed to physically associate with their target genes and are weakly enriched with enhancer elements. In summary, TransCistor establishes a quantitative foundation for cis-lncRNAs, opening a path to elucidating their molecular mechanisms and biological significance.
Collapse
Affiliation(s)
- Bhavya Dhaka
- School of Biology and Environmental Science, University College Dublin, Dublin D04 V1W8, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin D04 V1W8, Ireland
| | - Marc Zimmerli
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
| | - Daniel Hanhart
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
| | - Mario B Moser
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
| | - Hugo Guillen-Ramirez
- School of Biology and Environmental Science, University College Dublin, Dublin D04 V1W8, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin D04 V1W8, Ireland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sanat Mishra
- Indian Institute of Science Education and Research, Mohali, India
| | - Roberta Esposito
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
| | - Taisia Polidori
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
| | - Maro Widmer
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
| | - Raquel García-Pérez
- Department of Life Sciences, Barcelona Supercomputing Centre, Barcelona 08034, Spain
| | - Marianna Kruithof-de Julio
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Dmitri Pervouchine
- Center for Cellular and Molecular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Marta Melé
- Department of Life Sciences, Barcelona Supercomputing Centre, Barcelona 08034, Spain
| | - Panagiotis Chouvardas
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin D04 V1W8, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin D04 V1W8, Ireland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- FutureNeuro SFI Research Centre, University College Dublin, Dublin D04 V1W8, Ireland
| |
Collapse
|
24
|
Ishigami Y, Wong MS, Martí-Gómez C, Ayaz A, Kooshkbaghi M, Hanson SM, McCandlish DM, Krainer AR, Kinney JB. Specificity, synergy, and mechanisms of splice-modifying drugs. Nat Commun 2024; 15:1880. [PMID: 38424098 PMCID: PMC10904865 DOI: 10.1038/s41467-024-46090-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 02/10/2024] [Indexed: 03/02/2024] Open
Abstract
Drugs that target pre-mRNA splicing hold great therapeutic potential, but the quantitative understanding of how these drugs work is limited. Here we introduce mechanistically interpretable quantitative models for the sequence-specific and concentration-dependent behavior of splice-modifying drugs. Using massively parallel splicing assays, RNA-seq experiments, and precision dose-response curves, we obtain quantitative models for two small-molecule drugs, risdiplam and branaplam, developed for treating spinal muscular atrophy. The results quantitatively characterize the specificities of risdiplam and branaplam for 5' splice site sequences, suggest that branaplam recognizes 5' splice sites via two distinct interaction modes, and contradict the prevailing two-site hypothesis for risdiplam activity at SMN2 exon 7. The results also show that anomalous single-drug cooperativity, as well as multi-drug synergy, are widespread among small-molecule drugs and antisense-oligonucleotide drugs that promote exon inclusion. Our quantitative models thus clarify the mechanisms of existing treatments and provide a basis for the rational development of new therapies.
Collapse
Affiliation(s)
- Yuma Ishigami
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Mandy S Wong
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- Beam Therapeutics, Cambridge, MA, 02142, USA
| | | | - Andalus Ayaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Mahdi Kooshkbaghi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- The Estée Lauder Companies, New York, NY, 10153, USA
| | | | | | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
| | - Justin B Kinney
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
| |
Collapse
|
25
|
Luo D, Ottesen E, Lee JH, Singh R. Transcriptome- and proteome-wide effects of a circular RNA encompassing four early exons of the spinal muscular atrophy genes. RESEARCH SQUARE 2024:rs.3.rs-3818622. [PMID: 38464174 PMCID: PMC10925445 DOI: 10.21203/rs.3.rs-3818622/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Spinal muscular atrophy (SMA) genes, SMN1 and SMN2, produce multiple circular RNAs (circRNAs), including C2A-2B-3-4 that encompasses early exons 2A, 2B, 3 and 4. Here we report the transcriptome- and proteome-wide effects of overexpression of C2A-2B-3-4 in inducible HEK293 cells. Our RNA-Seq analysis revealed altered expression of ~ 15% genes (4,172 genes) by C2A-2B-3-4. About half of the affected genes by C2A-2B-3-4 remained unaffected by L2A-2B-3-4, a linear transcript encompassing exons 2A, 2B, 3 and 4 of SMN1/SMN2. These fifindings underscore the unique role of the structural context of C2A-2B-3-4 in gene regulation. A surprisingly high number of upregulated genes by C2A-2B-3-4 were located on chromosomes 4 and 7, whereas many of the downregulated genes were located on chromosomes 10 and X. Supporting a cross-regulation of SMN1/SMN2 transcripts, C2A-2B-3-4 and L2A-2B-3-4 upregulated and downregulated SMN1/SMN2 mRNAs, respectively. Proteome analysis revealed 61 upregulated and 57 downregulated proteins by C2A-2B-3-4 with very limited overlap with those affected by L2A-2B-3-4. Independent validations confirmed the effect of C2A-2B-3-4 on expression of genes associated with chromatin remodeling, transcription, spliceosome function, ribosome biogenesis, lipid metabolism, cytoskeletal formation, cell proliferation and neuromuscular junction formation. Our findings reveal a broad role of C2A-2B-3-4, a universally expressed circRNA produced by SMN1/SMN2.
Collapse
|
26
|
Kordala AJ, Stoodley J, Ahlskog N, Hanifi M, Garcia Guerra A, Bhomra A, Lim WF, Murray LM, Talbot K, Hammond SM, Wood MJA, Rinaldi C. PRMT inhibitor promotes SMN2 exon 7 inclusion and synergizes with nusinersen to rescue SMA mice. EMBO Mol Med 2023; 15:e17683. [PMID: 37724723 PMCID: PMC10630883 DOI: 10.15252/emmm.202317683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality. The advent of approved treatments for this devastating condition has significantly changed SMA patients' life expectancy and quality of life. Nevertheless, these are not without limitations, and research efforts are underway to develop new approaches for improved and long-lasting benefits for patients. Protein arginine methyltransferases (PRMTs) are emerging as druggable epigenetic targets, with several small-molecule PRMT inhibitors already in clinical trials. From a screen of epigenetic molecules, we have identified MS023, a potent and selective type I PRMT inhibitor able to promote SMN2 exon 7 inclusion in preclinical SMA models. Treatment of SMA mice with MS023 results in amelioration of the disease phenotype, with strong synergistic amplification of the positive effect when delivered in combination with the antisense oligonucleotide nusinersen. Moreover, transcriptomic analysis revealed that MS023 treatment has minimal off-target effects, and the added benefit is mainly due to targeting neuroinflammation. Our study warrants further clinical investigation of PRMT inhibition both as a stand-alone and add-on therapy for SMA.
Collapse
Affiliation(s)
- Anna J Kordala
- Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
| | - Jessica Stoodley
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
| | - Nina Ahlskog
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
| | | | - Antonio Garcia Guerra
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
| | - Amarjit Bhomra
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
| | - Wooi Fang Lim
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
| | - Lyndsay M Murray
- Centre for Discovery Brain Sciences, College of Medicine and Veterinary MedicineUniversity of EdinburghEdinburghUK
- Euan McDonald Centre for Motor Neuron Disease ResearchUniversity of EdinburghEdinburghUK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, John Radcliffe HospitalUniversity of OxfordOxfordUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordOxfordUK
| | | | - Matthew JA Wood
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
- MDUK Oxford Neuromuscular CentreOxfordUK
| | - Carlo Rinaldi
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
- MDUK Oxford Neuromuscular CentreOxfordUK
| |
Collapse
|
27
|
Zukher I, Dujardin G, Sousa-Luís R, Proudfoot NJ. Elongation roadblocks mediated by dCas9 across human genes modulate transcription and nascent RNA processing. Nat Struct Mol Biol 2023; 30:1536-1548. [PMID: 37783853 PMCID: PMC10584677 DOI: 10.1038/s41594-023-01090-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/04/2023] [Indexed: 10/04/2023]
Abstract
Non-cleaving Cas9 (dCas9) is widely employed to manipulate specific gene loci, often with scant regard for unintended transcriptional effects. We demonstrate here that dCas9 mediates precise RNA polymerase II transcriptional pausing followed by transcription termination and potential alternative polyadenylation. By contrast, alternative splicing is unaffected, likely requiring more sustained alteration to elongation speed. The effect on transcription is orientation specific, with pausing only being induced when dCas9-associated guide RNA anneals to the non-template strand. Targeting the template strand induces minimal effects on transcription elongation and thus provides a neutral approach to recruit dCas9-linked effector domains to specific gene regions. In essence, we evaluate molecular effects of targeting dCas9 to mammalian transcription units. In so doing, we also provide new information on elongation by RNA polymerase II and coupled pre-mRNA processing.
Collapse
Affiliation(s)
- Inna Zukher
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| | - Gwendal Dujardin
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Rui Sousa-Luís
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
28
|
Shenasa H, Bentley DL. Pre-mRNA splicing and its cotranscriptional connections. Trends Genet 2023; 39:672-685. [PMID: 37236814 PMCID: PMC10524715 DOI: 10.1016/j.tig.2023.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
Transcription of eukaryotic genes by RNA polymerase II (Pol II) yields RNA precursors containing introns that must be spliced out and the flanking exons ligated together. Splicing is catalyzed by a dynamic ribonucleoprotein complex called the spliceosome. Recent evidence has shown that a large fraction of splicing occurs cotranscriptionally as the RNA chain is extruded from Pol II at speeds of up to 5 kb/minute. Splicing is more efficient when it is tethered to the transcription elongation complex, and this linkage permits functional coupling of splicing with transcription. We discuss recent progress that has uncovered a network of connections that link splicing to transcript elongation and other cotranscriptional RNA processing events.
Collapse
Affiliation(s)
- Hossein Shenasa
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - David L Bentley
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA.
| |
Collapse
|
29
|
Shimada A, Cahn J, Ernst E, Lynn J, Grimanelli D, Henderson I, Kakutani T, Martienssen RA. Retrotransposon addiction promotes centromere function via epigenetically activated small RNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551486. [PMID: 37577592 PMCID: PMC10418216 DOI: 10.1101/2023.08.02.551486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Retrotransposons have invaded eukaryotic centromeres in cycles of repeat expansion and purging, but the function of centromeric retrotransposons, if any, has remained unclear. In Arabidopsis, centromeric ATHILA retrotransposons give rise to epigenetically activated short interfering RNAs (easiRNAs) in mutants in DECREASE IN DNA METHYLATION1 (DDM1), which promote histone H3 lysine-9 di-methylation (H3K9me2). Here, we show that mutants which lose both DDM1 and RNA dependent RNA polymerase (RdRP) have pleiotropic developmental defects and mis-segregation of chromosome 5 during mitosis. Fertility defects are epigenetically inherited with the centromeric region of chromosome 5, and can be rescued by directing artificial small RNAs to a single family of ATHILA5 retrotransposons specifically embedded within this centromeric region. easiRNAs and H3K9me2 promote pericentromeric condensation, chromosome cohesion and proper chromosome segregation in mitosis. Insertion of ATHILA silences transcription, while simultaneously making centromere function dependent on retrotransposon small RNAs, promoting the selfish survival and spread of centromeric retrotransposons. Parallels are made with the fission yeast S. pombe, where chromosome segregation depends on RNAi, and with humans, where chromosome segregation depends on both RNAi and HELLSDDM1.
Collapse
Affiliation(s)
- Atsushi Shimada
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Jonathan Cahn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Evan Ernst
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Jason Lynn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Daniel Grimanelli
- Epigenetic Regulations and Seed Development, UMR232, Institut de Recherche pour le Développement (IRD), Université de Montpellier, 34394 Montpellier, France
| | - Ian Henderson
- Department of Plant Sciences, Cambridge University, Cambridge UK
| | - Tetsuji Kakutani
- Faculty of Science, The University of Tokyo, Bunkyo-ku, Hongo, Tokyo 113-0033, Japan
| | - Robert A. Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
30
|
Nishio H, Niba ETE, Saito T, Okamoto K, Takeshima Y, Awano H. Spinal Muscular Atrophy: The Past, Present, and Future of Diagnosis and Treatment. Int J Mol Sci 2023; 24:11939. [PMID: 37569314 PMCID: PMC10418635 DOI: 10.3390/ijms241511939] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a lower motor neuron disease with autosomal recessive inheritance. The first cases of SMA were reported by Werdnig in 1891. Although the phenotypic variation of SMA led to controversy regarding the clinical entity of the disease, the genetic homogeneity of SMA was proved in 1990. Five years later, in 1995, the gene responsible for SMA, SMN1, was identified. Genetic testing of SMN1 has enabled precise epidemiological studies, revealing that SMA occurs in 1 of 10,000 to 20,000 live births and that more than 95% of affected patients are homozygous for SMN1 deletion. In 2016, nusinersen was the first drug approved for treatment of SMA in the United States. Two other drugs were subsequently approved: onasemnogene abeparvovec and risdiplam. Clinical trials with these drugs targeting patients with pre-symptomatic SMA (those who were diagnosed by genetic testing but showed no symptoms) revealed that such patients could achieve the milestones of independent sitting and/or walking. Following the great success of these trials, population-based newborn screening programs for SMA (more precisely, SMN1-deleted SMA) have been increasingly implemented worldwide. Early detection by newborn screening and early treatment with new drugs are expected to soon become the standards in the field of SMA.
Collapse
Affiliation(s)
- Hisahide Nishio
- Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Japan
| | - Emma Tabe Eko Niba
- Laboratory of Molecular and Biochemical Research, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Toshio Saito
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka 560-8552, Japan;
| | - Kentaro Okamoto
- Department of Pediatrics, Ehime Prefectural Imabari Hospital, 4-5-5 Ishi-cho, Imabari 794-0006, Japan;
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
| | - Hiroyuki Awano
- Organization for Research Initiative and Promotion, Research Initiative Center, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan;
| |
Collapse
|
31
|
Khorkova O, Stahl J, Joji A, Volmar CH, Zeier Z, Wahlestedt C. Long non-coding RNA-targeting therapeutics: discovery and development update. Expert Opin Drug Discov 2023; 18:1011-1029. [PMID: 37466388 DOI: 10.1080/17460441.2023.2236552] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
INTRODUCTION lncRNAs are major players in regulatory networks orchestrating multiple cellular functions, such as 3D chromosomal interactions, epigenetic modifications, gene expression and others. Due to progress in the development of nucleic acid-based therapeutics, lncRNAs potentially represent easily accessible therapeutic targets. AREAS COVERED Currently, significant efforts are directed at studies that can tap the enormous therapeutic potential of lncRNAs. This review describes recent developments in this field, particularly focusing on clinical applications. EXPERT OPINION Extensive druggable target range of lncRNA combined with high specificity and accelerated development process of nucleic acid-based therapeutics open new prospects for treatment in areas of extreme unmet medical need, such as genetic diseases, aggressive cancers, protein deficiencies, and subsets of common diseases caused by known mutations. Although currently wide acceptance of lncRNA-targeting nucleic acid-based therapeutics is impeded by the need for parenteral or direct-to-CNS administration, development of less invasive techniques and orally available/BBB-penetrant nucleic acid-based therapeutics is showing early successes. Recently, mRNA-based COVID-19 vaccines have demonstrated clinical safety of all aspects of nucleic acid-based therapeutic technology, including multiple chemical modifications of nucleic acids and nanoparticle delivery. These trends position lncRNA-targeting drugs as significant players in the future of drug development, especially in the area of personalized medicine.
Collapse
Affiliation(s)
- Olga Khorkova
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Jack Stahl
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Aswathy Joji
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Claude-Henry Volmar
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Zane Zeier
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Claes Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| |
Collapse
|
32
|
Lumpkin CJ, Harris AW, Connell AJ, Kirk RW, Whiting JA, Saieva L, Pellizzoni L, Burghes AHM, Butchbach MER. Evaluation of the orally bioavailable 4-phenylbutyrate-tethered trichostatin A analogue AR42 in models of spinal muscular atrophy. Sci Rep 2023; 13:10374. [PMID: 37365234 PMCID: PMC10293174 DOI: 10.1038/s41598-023-37496-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 06/22/2023] [Indexed: 06/28/2023] Open
Abstract
Proximal spinal muscular atrophy (SMA) is a leading genetic cause for infant death in the world and results from the selective loss of motor neurons in the spinal cord. SMA is a consequence of low levels of SMN protein and small molecules that can increase SMN expression are of considerable interest as potential therapeutics. Previous studies have shown that both 4-phenylbutyrate (4PBA) and trichostatin A (TSA) increase SMN expression in dermal fibroblasts derived from SMA patients. AR42 is a 4PBA-tethered TSA derivative that is a very potent histone deacetylase inhibitor. SMA patient fibroblasts were treated with either AR42, AR19 (a related analogue), 4PBA, TSA or vehicle for 5 days and then immunostained for SMN localization. AR42 as well as 4PBA and TSA increased the number of SMN-positive nuclear gems in a dose-dependent manner while AR19 did not show marked changes in gem numbers. While gem number was increased in AR42-treated SMA fibroblasts, there were no significant changes in FL-SMN mRNA or SMN protein. The neuroprotective effect of this compound was then assessed in SMNΔ7 SMA (SMN2+/+;SMNΔ7+/+;mSmn-/-) mice. Oral administration of AR42 prior to disease onset increased the average lifespan of SMNΔ7 SMA mice by ~ 27% (20.1 ± 1.6 days for AR42-treated mice vs. 15.8 ± 0.4 days for vehicle-treated mice). AR42 treatment also improved motor function in these mice. AR42 treatment inhibited histone deacetylase (HDAC) activity in treated spinal cord although it did not affect SMN protein expression in these mice. AKT and GSK3β phosphorylation were both significantly increased in SMNΔ7 SMA mouse spinal cords. In conclusion, presymptomatic administration of the HDAC inhibitor AR42 ameliorates the disease phenotype in SMNΔ7 SMA mice in a SMN-independent manner possibly by increasing AKT neuroprotective signaling.
Collapse
Affiliation(s)
- Casey J Lumpkin
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Ashlee W Harris
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA
| | - Andrew J Connell
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA
| | - Ryan W Kirk
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA
| | - Joshua A Whiting
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA
| | - Luciano Saieva
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Livio Pellizzoni
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
| | - Arthur H M Burghes
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Matthew E R Butchbach
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA.
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Uriostegui-Arcos M, Mick ST, Shi Z, Rahman R, Fiszbein A. Splicing activates transcription from weak promoters upstream of alternative exons. Nat Commun 2023; 14:3435. [PMID: 37301863 PMCID: PMC10256964 DOI: 10.1038/s41467-023-39200-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Transcription and splicing are intrinsically coupled. Alternative splicing of internal exons can fine-tune gene expression through a recently described phenomenon called exon-mediated activation of transcription starts (EMATS). However, the association of this phenomenon with human diseases remains unknown. Here, we develop a strategy to activate gene expression through EMATS and demonstrate its potential for treatment of genetic diseases caused by loss of expression of essential genes. We first identified a catalog of human EMATS genes and provide a list of their pathological variants. To test if EMATS can be used to activate gene expression, we constructed stable cell lines expressing a splicing reporter based on the alternative splicing of motor neuron 2 (SMN2) gene. Using small molecules and antisense oligonucleotides (ASOs) currently used for treatment of spinal muscular atrophy, we demonstrated that increase of inclusion of alternative exons can trigger an activation of gene expression up to 45-fold by enhancing transcription in EMATS-like genes. We observed the strongest effects in genes under the regulation of weak human promoters located proximal to highly included skipped exons.
Collapse
Affiliation(s)
| | - Steven T Mick
- Biology Department, Boston University, Boston, 02215, USA
| | - Zhuo Shi
- Biology Department, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | - Rufuto Rahman
- Biology Department, Boston University, Boston, 02215, USA
| | - Ana Fiszbein
- Biology Department, Boston University, Boston, 02215, USA.
| |
Collapse
|
34
|
Joglekar A, Foord C, Jarroux J, Pollard S, Tilgner HU. From words to complete phrases: insight into single-cell isoforms using short and long reads. Transcription 2023; 14:92-104. [PMID: 37314295 PMCID: PMC10807471 DOI: 10.1080/21541264.2023.2213514] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/24/2023] [Accepted: 05/07/2023] [Indexed: 06/15/2023] Open
Abstract
The profiling of gene expression patterns to glean biological insights from single cells has become commonplace over the last few years. However, this approach overlooks the transcript contents that can differ between individual cells and cell populations. In this review, we describe early work in the field of single-cell short-read sequencing as well as full-length isoforms from single cells. We then describe recent work in single-cell long-read sequencing wherein some transcript elements have been observed to work in tandem. Based on earlier work in bulk tissue, we motivate the study of combination patterns of other RNA variables. Given that we are still blind to some aspects of isoform biology, we suggest possible future avenues such as CRISPR screens which can further illuminate the function of RNA variables in distinct cell populations.
Collapse
Affiliation(s)
- Anoushka Joglekar
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Careen Foord
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Julien Jarroux
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Shaun Pollard
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Hagen U Tilgner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
35
|
Li W, Peng X, Mei X, Dong M, Li Y, Dong H. Multifunctional DNA Tetrahedron for Alzheimer's Disease Mitochondria-Targeted Therapy by MicroRNA Regulation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22977-22984. [PMID: 37145038 DOI: 10.1021/acsami.3c03181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The principal hallmark of Alzheimer's disease (AD) is neuron mitochondrial dysfunction, whereas mitochondrial miRNAs potentially play important roles. Nevertheless, efficacious mitochondria organelle therapeutic agents for treatment and management of AD are highly advisable. Herein, we report a multifunctional DNA tetrahedron-based mitochondria-targeted therapeutic platform, termed tetrahedral DNA framework-based nanoparticles (TDFNs), which was modified with triphenylphosphine (TPP) for mitochondria-targeting, cholesterol (Chol) for crossing the central nervous system, and functional antisense oligonucleotide (ASO) for both AD diagnosis and gene silencing therapy. After injecting intravenously through the tail vein of 3 × Tg-AD model mice, TDFNs can both easily cross the blood brain barrier and accurately arrive at the mitochondria. The functional ASO could not only be detected via the fluorescence signal for diagnosis but also mediate the apoptosis pathway through knocking miRNA-34a down, leading to recovery of the neuron cells. The superior performance of TDFNs suggests the great potential in mitochondria organelle therapeutics.
Collapse
Affiliation(s)
- Weiqun Li
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xin Peng
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Xuecui Mei
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Mingjie Dong
- Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Precision Medicine and Health Research Institute, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Yingchun Li
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Haifeng Dong
- Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Precision Medicine and Health Research Institute, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
36
|
Wan L, Kral AJ, Voss D, Krainer AR. Preclinical Screening of Splice-Switching Antisense Oligonucleotides in PDAC Organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.535161. [PMID: 37066201 PMCID: PMC10103938 DOI: 10.1101/2023.03.31.535161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Aberrant alternative splicing is emerging as a cancer hallmark and a potential therapeutic target. It is the result of dysregulated splicing factors or genetic alterations in splicing-regulatory cis -elements. Targeting individual altered splicing events associated with cancer-cell dependencies is a potential therapeutic strategy, but several technical limitations need to be addressed. Patient-derived organoids (PDOs) are a promising platform to recapitulate key aspects of disease states and to facilitate drug development for precision medicine. Here, we report an efficient antisense-oligonucleotide (ASO) transfection method to systematically evaluate and screen individual splicing events as therapeutic targets in pancreatic ductal adenocarcinoma (PDAC) organoids. This optimized delivery method allows fast and efficient screening of ASOs that reverse oncogenic alternative splicing. In combination with advancements in chemical modifications and ASO-delivery strategies, this method has the potential to accelerate the discovery of anti-tumor ASO drugs that target pathological alternative splicing.
Collapse
|
37
|
Rogalska ME, Vivori C, Valcárcel J. Regulation of pre-mRNA splicing: roles in physiology and disease, and therapeutic prospects. Nat Rev Genet 2023; 24:251-269. [PMID: 36526860 DOI: 10.1038/s41576-022-00556-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 12/23/2022]
Abstract
The removal of introns from mRNA precursors and its regulation by alternative splicing are key for eukaryotic gene expression and cellular function, as evidenced by the numerous pathologies induced or modified by splicing alterations. Major recent advances have been made in understanding the structures and functions of the splicing machinery, in the description and classification of physiological and pathological isoforms and in the development of the first therapies for genetic diseases based on modulation of splicing. Here, we review this progress and discuss important remaining challenges, including predicting splice sites from genomic sequences, understanding the variety of molecular mechanisms and logic of splicing regulation, and harnessing this knowledge for probing gene function and disease aetiology and for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Malgorzata Ewa Rogalska
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Claudia Vivori
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- The Francis Crick Institute, London, UK
| | - Juan Valcárcel
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
38
|
Marasco LE, Kornblihtt AR. The physiology of alternative splicing. Nat Rev Mol Cell Biol 2023; 24:242-254. [PMID: 36229538 DOI: 10.1038/s41580-022-00545-z] [Citation(s) in RCA: 205] [Impact Index Per Article: 102.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2022] [Indexed: 11/09/2022]
Abstract
Alternative splicing is a substantial contributor to the high complexity of transcriptomes of multicellular eukaryotes. In this Review, we discuss the accumulated evidence that most of this complexity is reflected at the protein level and fundamentally shapes the physiology and pathology of organisms. This notion is supported not only by genome-wide analyses but, mainly, by detailed studies showing that global and gene-specific modulations of alternative splicing regulate highly diverse processes such as tissue-specific and species-specific cell differentiation, thermal regulation, neuron self-avoidance, infrared sensing, the Warburg effect, maintenance of telomere length, cancer and autism spectrum disorders (ASD). We also discuss how mastering the control of alternative splicing paved the way to clinically approved therapies for hereditary diseases.
Collapse
Affiliation(s)
- Luciano E Marasco
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Moleculary Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Alberto R Kornblihtt
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Moleculary Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina.
| |
Collapse
|
39
|
Liu M, Chu B, Sun R, Ding J, Ye H, Yang Y, Wu Y, Shi H, Song B, He Y, Wang H, Hong J. Antisense Oligonucleotides Selectively Enter Human-Derived Antibiotic-Resistant Bacteria through Bacterial-Specific ATP-Binding Cassette Sugar Transporter. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300477. [PMID: 37002615 DOI: 10.1002/adma.202300477] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/24/2023] [Indexed: 05/28/2023]
Abstract
Current vehicles used to deliver antisense oligonucleotides (ASOs) cannot distinguish between bacterial and mammalian cells, greatly hindering the preclinical or clinical treatment of bacterial infections, especially those caused by antibiotic-resistant bacteria. Herein, bacteria-specific ATP-binding cassette (ABC) sugar transporters are leveraged to selectively internalize ASOs by hitchhiking them on α (1-4)-glucosidically linked glucose polymers. Compared with their cell-penetrating peptide counterparts, which are non-specifically engulfed by mammalian and bacterial cells, the presented therapeutics consisting of glucose polymer and antisense peptide nucleic-acid-modified nanoparticles are selectively internalized into the human-derived multidrug-resistant Escherichia coli and methicillin-resistant Staphylococcus aureus, and they display a much higher uptake rate (i.e., 51.6%). The developed strategy allows specific and efficient killing of nearly 100% of the antibiotic-resistant bacteria. Its significant curative efficacy against bacterial keratitis and endophthalmitis is also shown. This strategy will expand the focus of antisense technology to include bacterial cells other than mammalian cells.
Collapse
Affiliation(s)
- Mingzhu Liu
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
| | - Binbin Chu
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
| | - Rong Sun
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
| | - Jiali Ding
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
| | - Han Ye
- Department of Ophthalmology and Vision Science, Shanghai Eye Ear Nose and Throat Hospital, Fudan University, 83 Road Fenyang, Shanghai, 200031, China
| | - Yunmin Yang
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
| | - Yuqi Wu
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
| | - Haoliang Shi
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
| | - Bin Song
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
| | - Yao He
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
| | - Houyu Wang
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, 215123, China
| | - Jiaxu Hong
- Department of Ophthalmology and Vision Science, Shanghai Eye Ear Nose and Throat Hospital, Fudan University, 83 Road Fenyang, Shanghai, 200031, China
| |
Collapse
|
40
|
Histone deacetylase inhibitors improve antisense-mediated exon-skipping efficacy in mdx mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 30:606-620. [PMID: 36514350 PMCID: PMC9722397 DOI: 10.1016/j.omtn.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Antisense-mediated exon skipping is one of the most promising therapeutic strategies for Duchenne muscular dystrophy (DMD), and some antisense oligonucleotide (ASO) drugs have already been approved by the US FDA despite their low efficacy. The potential of this therapy is still limited by several challenges, including the reduced expression of the dystrophin transcript and the strong 5'-3' imbalance in mutated transcripts. We therefore hypothesize that increasing histone acetylation using histone deacetylase inhibitors (HDACi) could correct the transcript imbalance, offering more available pre-mRNA target and ultimately increasing dystrophin rescue. Here, we evaluated the impact of such a combined therapy on the Dmd transcript imbalance phenomenon and on dystrophin restoration levels in mdx mice. Analysis of the Dmd transcript levels at different exon-exon junctions revealed a tendency to correct the 5'-3' imbalance phenomenon following treatment with HDACi. Significantly higher levels of dystrophin restoration (up to 74% increase) were obtained with givinostat and valproic acid compared with mice treated with ASO alone. Additionally, we demonstrate an increase in H3K9 acetylation in human myocytes after treatment with valproic acid. These findings indicate that HDACi can improve the therapeutic potential of exon-skipping approaches, offering promising perspectives for the treatment of DMD.
Collapse
|
41
|
Butchbach MER, Scott RC. Biological networks and complexity in early-onset motor neuron diseases. Front Neurol 2022; 13:1035406. [PMID: 36341099 PMCID: PMC9634177 DOI: 10.3389/fneur.2022.1035406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Motor neuron diseases (MNDs) are neuromuscular disorders where the spinal motor neurons-either the cell bodies themselves or their axons-are the primary cells affected. To date, there are 120 different genes that are lost or mutated in pediatric-onset MNDs. Most of these childhood-onset disorders, aside from spinal muscular atrophy (SMA), lack viable therapeutic options. Previous research on MNDs has focused on understanding the pathobiology of a single, specific gene mutation and targeting therapies to that pathobiology. This reductionist approach has yielded therapeutic options for a specific disorder, in this case SMA. Unfortunately, therapies specific for SMA have not been effective against other pediatric-onset MNDs. Pursuing the same approach for the other defined MNDs would require development of at least 120 independent treatments raising feasibility issues. We propose an alternative to this this type of reductionist approach by conceptualizing MNDs in a complex adaptive systems framework that will allow identification of common molecular and cellular pathways which form biological networks that are adversely affected in early-onset MNDs and thus MNDs with similar phenotypes despite diverse genotypes. This systems biology approach highlights the complexity and self-organization of the motor system as well as the ways in which it can be affected by these genetic disorders. Using this integrated approach to understand early-onset MNDs, we would be better poised to expand the therapeutic repertoire for multiple MNDs.
Collapse
Affiliation(s)
- Matthew E. R. Butchbach
- Division of Neurology, Nemours Children's Hospital Delaware, Wilmington, DE, United States,Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States,Department of Biological Sciences, University of Delaware, Newark, DE, United States,*Correspondence: Matthew E. R. Butchbach
| | - Rod C. Scott
- Division of Neurology, Nemours Children's Hospital Delaware, Wilmington, DE, United States,Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States,Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States,Neurosciences Unit, Institute of Child Health, University College London, London, United Kingdom,Rod C. Scott
| |
Collapse
|
42
|
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disorder caused by mutations in SMN1 (encoding survival motor neuron protein (SMN)). Reduced expression of SMN leads to loss of α-motor neurons, severe muscle weakness and often early death. Standard-of-care recommendations for multidisciplinary supportive care of SMA were established in the past few decades. However, improved understanding of the pathogenetic mechanisms of SMA has led to the development of different therapeutic approaches. Three treatments that increase SMN expression by distinct molecular mechanisms, administration routes and tissue biodistributions have received regulatory approval with others in clinical development. The advent of the new therapies is redefining standards of care as in many countries most patients are treated with one of the new therapies, leading to the identification of emerging new phenotypes of SMA and a renewed characterization of demographics owing to improved patient survival.
Collapse
|
43
|
Improving efficacy of ASO therapy in SMA. Nat Rev Drug Discov 2022; 21:558. [PMID: 35787689 DOI: 10.1038/d41573-022-00115-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Khvorova A. Modulation of DNA transcription: The future of ASO therapeutics? Cell 2022; 185:2011-2013. [PMID: 35688130 DOI: 10.1016/j.cell.2022.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/24/2022]
Abstract
In this issue of Cell, Kornblihtt and colleagues report a strategy to improve antisense oligonucleotide spinal muscular atrophy therapy. They discover that the oligonucleotide drug nusinersen, which induces exon inclusion, also promotes repressive chromatin modifications, which in turn work against exon inclusion. Notably, co-administration of histone deacetylase inhibitors counteracted this effect to augment exon inclusion.
Collapse
Affiliation(s)
- Anastasia Khvorova
- RNA Therapeutic Institute, UMASS Chan Medical School, Worcester, MA 01581, USA.
| |
Collapse
|