1
|
Flavell SW, Oren-Suissa M, Stern S. Sources of behavioral variability in C. elegans: Sex differences, individuality, and internal states. Curr Opin Neurobiol 2025; 91:102984. [PMID: 39986247 DOI: 10.1016/j.conb.2025.102984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/04/2025] [Accepted: 01/31/2025] [Indexed: 02/24/2025]
Abstract
Animal behavior varies across different timescales. This includes rapid shifts in behavior as animals transition between states and long-term changes that develop throughout an organism's life. This review presents the contributions of sex differences, individuality, and internal states to behavioral variability in the roundworm Caenorhabditis elegans. Sex is determined by chromosome composition, which directs neuronal development through gene regulation and experience to shape dimorphic behaviors. Genetically identical individuals within the same sex and reared in the same conditions still display distinctive, long-lasting behavioral traits that are controlled by neuromodulatory systems. At all life stages, internal states within the individual, shaped by external factors like food and stress, modulate behavior over minutes to hours. The interplay between these factors gives rise to rich behavioral diversity in C. elegans. These factors impact behavior in a sequential manner, as genetic sex, individuality, and internal states influence behavior over progressively finer timescales.
Collapse
Affiliation(s)
- Steven W Flavell
- Howard Hughes Medical Institute, Picower Institute for Learning and Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Shay Stern
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
2
|
Tuckowski AM, Beydoun S, Kitto ES, Bhat A, Howington MB, Sridhar A, Bhandari M, Chambers K, Leiser SF. fmo-4 promotes longevity and stress resistance via ER to mitochondria calcium regulation in C. elegans. eLife 2025; 13:RP99971. [PMID: 39951337 PMCID: PMC11828484 DOI: 10.7554/elife.99971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025] Open
Abstract
Flavin-containing monooxygenases (FMOs) are a conserved family of xenobiotic enzymes upregulated in multiple longevity interventions, including nematode and mouse models. Previous work supports that C. elegans fmo-2 promotes longevity, stress resistance, and healthspan by rewiring endogenous metabolism. However, there are five C. elegans FMOs and five mammalian FMOs, and it is not known whether promoting longevity and health benefits is a conserved role of this gene family. Here, we report that expression of C. elegans fmo-4 promotes lifespan extension and paraquat stress resistance downstream of both dietary restriction and inhibition of mTOR. We find that overexpression of fmo-4 in just the hypodermis is sufficient for these benefits, and that this expression significantly modifies the transcriptome. By analyzing changes in gene expression, we find that genes related to calcium signaling are significantly altered downstream of fmo-4 expression. Highlighting the importance of calcium homeostasis in this pathway, fmo-4 overexpressing animals are sensitive to thapsigargin, an ER stressor that inhibits calcium flux from the cytosol to the ER lumen. This calcium/fmo-4 interaction is solidified by data showing that modulating intracellular calcium with either small molecules or genetics can change expression of fmo-4 and/or interact with fmo-4 to affect lifespan and stress resistance. Further analysis supports a pathway where fmo-4 modulates calcium homeostasis downstream of activating transcription factor-6 (atf-6), whose knockdown induces and requires fmo-4 expression. Together, our data identify fmo-4 as a longevity-promoting gene whose actions interact with known longevity pathways and calcium homeostasis.
Collapse
Affiliation(s)
- Angela M Tuckowski
- Cellular and Molecular Biology Program, University of MichiganAnn ArborUnited States
| | - Safa Beydoun
- Department of Molecular and Integrative Physiology, University of MichiganAnn ArborUnited States
| | - Elizabeth S Kitto
- Department of Molecular and Integrative Physiology, University of MichiganAnn ArborUnited States
| | - Ajay Bhat
- Department of Molecular and Integrative Physiology, University of MichiganAnn ArborUnited States
| | - Marshall B Howington
- Cellular and Molecular Biology Program, University of MichiganAnn ArborUnited States
| | - Aditya Sridhar
- Department of Molecular, Cellular, and Developmental Biology, University of MichiganAnn ArborUnited States
| | - Mira Bhandari
- Department of Molecular and Integrative Physiology, University of MichiganAnn ArborUnited States
| | - Kelly Chambers
- Department of Molecular and Integrative Physiology, University of MichiganAnn ArborUnited States
| | - Scott F Leiser
- Department of Molecular and Integrative Physiology, University of MichiganAnn ArborUnited States
- Department of Internal Medicine, University of MichiganAnn ArborUnited States
| |
Collapse
|
3
|
Mora I, Teixidó A, Vázquez-Manrique RP, Puiggròs F, Arola L. Docosahexaenoic Acid (DHA) Supplementation in a Triglyceride Form Prevents from Polyglutamine-Induced Dysfunctions in Caenorhabditis elegans. Int J Mol Sci 2024; 25:12594. [PMID: 39684306 DOI: 10.3390/ijms252312594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
A common hallmark of neurodegenerative diseases is the accumulation of polypeptide aggregates in neurons. Despite the primary cause of these diseases being inherently genetic, their development can be delayed with proper preventive treatments. Long-chain polyunsaturated fatty acids (ω-3 LCPUFA) are promising bioactive nutrients that are beneficial for brain health. In this study, the impact of an oil rich in a structured form of docosahexaenoic acid (DHA) triglyceride (TG) was assessed in a Caenorhabditis elegans model expressing long poly-glutamine (polyQ) chains, which mimics the symptomatology of polyQ-related neurodegenerative diseases such as Huntington's disease (HD), among others. The lifespan, the motility, the number of polyQ aggregates, the oxidative stress resistance, and the cognitive performance associated with sensitive stimuli was measured in mutant nematodes with polyQ aggregates. Overall, DHA-TG at 0.5 µM improved the lifespan, the motility, the oxidative stress resistance, and the cognitive performance of the nematodes, emphasizing the protection against serotonergic synapse dysfunction. Furthermore, the treatment reduced the polyQ aggregates in the nematodes. The data described herein shed light on the connection between DHA and the cognitive performance in neurodegenerative diseases and demonstrated the potential of DHA-TG as nutritional co-adjuvant to prevent the development of polyQ-associated dysfunctions.
Collapse
Affiliation(s)
- Ignasi Mora
- Brudy Technology S.L., 08006 Barcelona, Spain
- Universitat Rovira i Virgili, 43003 Tarragona, Spain
| | - Alex Teixidó
- Eurecat, Centre Tecnològic de Catalunya, Nutrition and Health Unit, 43204 Reus, Spain
| | - Rafael P Vázquez-Manrique
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Joint Unit for Rare Diseases, Insituto de Investigación Sanitaria La Fe-Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Francesc Puiggròs
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Tarragona, Spain
| | - Lluís Arola
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| |
Collapse
|
4
|
Wong C, Jurczak EM, Roy R. Neuronal exosomes transport an miRISC cargo to preserve stem cell integrity during energy stress. Cell Rep 2024; 43:114851. [PMID: 39392750 DOI: 10.1016/j.celrep.2024.114851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/19/2024] [Accepted: 09/24/2024] [Indexed: 10/13/2024] Open
Abstract
During periods of nutrient scarcity, many animals undergo germline quiescence to preserve reproductive capacity, and neurons are often necessary for this adaptation. We show here that starvation causes the release of neuronal microRNA (miRNA)/Argonaute-loaded exosomes following AMP kinase-regulated trafficking changes within serotonergic neurons. This neuron-to-germline communication is independent of classical neurotransmission but instead relies on endosome-derived vesicles that carry a pro-quiescent small RNA cargo to modify germline gene expression. Using an miRNA activity sensor, we show that neuronally expressed miRNAs can extinguish the expression of germline mRNA targets in an exosome-dependent manner. Our findings demonstrate how an adaptive neuronal response can change gene expression at a distance by redirecting intracellular trafficking to release neuronal exosomes with specific miRNA cargoes capable of tracking to their appropriate destinations.
Collapse
Affiliation(s)
- Christopher Wong
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Elena M Jurczak
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Richard Roy
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada.
| |
Collapse
|
5
|
Saad MZH, Ryan V WG, Edwards CA, Szymanski BN, Marri AR, Jerow LG, McCullumsmith R, Bamber BA. Olfactory combinatorial coding supports risk-reward decision making in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599745. [PMID: 39484578 PMCID: PMC11526860 DOI: 10.1101/2024.06.19.599745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Olfactory-driven behaviors are essential for animal survival, but mechanisms for decoding olfactory inputs remain poorly understood. We have used whole-network Ca ++ imaging to study olfactory coding in Caenorhabditis elegans. We show that the odorant 1-octanol is encoded combinatorially in the periphery as both an attractant and a repellant. These inputs are integrated centrally, and their relative strengths determine the sensitivity and valence of the behavioral response through modulation of locomotory reversals and speed. The balance of these pathways also dictates the activity of the locomotory command interneurons, which control locomotory reversals. This balance serves as a regulatory node for response modulation, allowing C. elegans to weigh opportunities and hazards in its environment when formulating behavioral responses. Thus, an odorant can be encoded simultaneously as inputs of opposite valence, focusing attention on the integration of these inputs in determining perception, response, and plasticity.
Collapse
|
6
|
Mountoufaris G, Nair A, Yang B, Kim DW, Vinograd A, Kim S, Linderman SW, Anderson DJ. A line attractor encoding a persistent internal state requires neuropeptide signaling. Cell 2024; 187:5998-6015.e18. [PMID: 39191257 PMCID: PMC11490375 DOI: 10.1016/j.cell.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 06/23/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Abstract
Internal states drive survival behaviors, but their neural implementation is poorly understood. Recently, we identified a line attractor in the ventromedial hypothalamus (VMH) that represents a state of aggressiveness. Line attractors can be implemented by recurrent connectivity or neuromodulatory signaling, but evidence for the latter is scant. Here, we demonstrate that neuropeptidergic signaling is necessary for line attractor dynamics in this system by using cell-type-specific CRISPR-Cas9-based gene editing combined with single-cell calcium imaging. Co-disruption of receptors for oxytocin and vasopressin in adult VMH Esr1+ neurons that control aggression diminished attack, reduced persistent neural activity, and eliminated line attractor dynamics while only slightly reducing overall neural activity and sex- or behavior-specific tuning. These data identify a requisite role for neuropeptidergic signaling in implementing a behaviorally relevant line attractor in mammals. Our approach should facilitate mechanistic studies in neuroscience that bridge different levels of biological function and abstraction.
Collapse
Affiliation(s)
- George Mountoufaris
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Aditya Nair
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Program in Computation and Neural Systems, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Bin Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Dong-Wook Kim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Amit Vinograd
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Samuel Kim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Scott W Linderman
- Department of Statistics, Stanford University, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - David J Anderson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA; Howard Hughes Medical Institute, Pasadena, CA 91001, USA.
| |
Collapse
|
7
|
Peesapati RS, Austin-Byler BL, Nawaz FZ, Stevenson JB, Mais SA, Kaya RN, Hassan MG, Khanal N, Wells AC, Ghiai D, Garikapati AK, Selhub J, Kipreos ET. A specific folate activates serotonergic neurons to control C. elegans behavior. Nat Commun 2024; 15:8471. [PMID: 39349491 PMCID: PMC11442744 DOI: 10.1038/s41467-024-52738-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/19/2024] [Indexed: 10/02/2024] Open
Abstract
Folates are B-group vitamins that function in one-carbon metabolism. Here we show that a specific folate can activate serotonergic neurons in C. elegans to modulate behavior through a pathway that requires the folate receptor FOLR-1 and the GON-2 calcium channel. FOLR-1 and GON-2 physically interact in a heterologous system, and both are expressed in the HSN and NSM serotonergic neurons. Both the folate 10-formyl-THF and a non-metabolic pteroate induce increases in the number of Ca2+ transients in the HSN neurons and egg laying in an FOLR-1- and GON-2-dependent manner. FOLR-1 and GON-2 are required for the activation of the NSM neurons in response to 10-formyl-THF, and for full NSM-mediated stoppage of movement when starved animals encounter bacteria. Our results demonstrate that FOLR-1 acts independently of one-carbon metabolism and suggest that 10-formyl-THF acts as a dietary signal that activates serotonergic neurons to impact behavior through a pathway that involves calcium entry.
Collapse
Affiliation(s)
- Ria S Peesapati
- Department of Cellular Biology, The University of Georgia, Athens, GA, USA
| | | | | | | | - Stanelle A Mais
- Department of Cellular Biology, The University of Georgia, Athens, GA, USA
| | - Rabia N Kaya
- Department of Cellular Biology, The University of Georgia, Athens, GA, USA
| | - Michael G Hassan
- Department of Cellular Biology, The University of Georgia, Athens, GA, USA
| | - Nabraj Khanal
- Department of Cellular Biology, The University of Georgia, Athens, GA, USA
| | - Alexandra C Wells
- Department of Cellular Biology, The University of Georgia, Athens, GA, USA
| | - Deena Ghiai
- Department of Cellular Biology, The University of Georgia, Athens, GA, USA
| | - Anish K Garikapati
- Department of Cellular Biology, The University of Georgia, Athens, GA, USA
| | - Jacob Selhub
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Edward T Kipreos
- Department of Cellular Biology, The University of Georgia, Athens, GA, USA.
| |
Collapse
|
8
|
Nair T, Weathers BA, Stuhr NL, Nhan JD, Curran SP. Serotonin deficiency from constitutive SKN-1 activation drives pathogen apathy. Nat Commun 2024; 15:8129. [PMID: 39285192 PMCID: PMC11405893 DOI: 10.1038/s41467-024-52233-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/29/2024] [Indexed: 09/20/2024] Open
Abstract
When an organism encounters a pathogen, the host innate immune system activates to defend against pathogen colonization and toxic xenobiotics produced. C. elegans employ multiple defense systems to ensure survival when exposed to Pseudomonas aeruginosa including activation of the cytoprotective transcription factor SKN-1/NRF2. Although wildtype C. elegans quickly learn to avoid pathogens, here we describe a peculiar apathy-like behavior towards PA14 in animals with constitutive activation of SKN-1, whereby animals choose not to leave and continue to feed on the pathogen even when a non-pathogenic and healthspan-promoting food option is available. Although lacking the urgency to escape the infectious environment, animals with constitutive SKN-1 activity are not oblivious to the presence of the pathogen and display the typical pathogen-induced intestinal distension and eventual demise. SKN-1 activation, specifically in neurons and intestinal tissues, orchestrates a unique transcriptional program which leads to defects in serotonin signaling that is required from both neurons and non-neuronal tissues. Serotonin depletion from SKN-1 activation limits pathogen defenses capacity, drives the pathogen-associated apathy behaviors and induces a synthetic sensitivity to selective serotonin reuptake inhibitors. Taken together, our work reveals interesting insights into how animals perceive environmental pathogens and subsequently alter behavior and cellular programs to promote survival.
Collapse
Affiliation(s)
- Tripti Nair
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Brandy A Weathers
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Nicole L Stuhr
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - James D Nhan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Kramer TS, Wan FK, Pugliese SM, Atanas AA, Hiser AW, Luo J, Bueno E, Flavell SW. Neural Sequences Underlying Directed Turning in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.11.607076. [PMID: 39149398 PMCID: PMC11326294 DOI: 10.1101/2024.08.11.607076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Complex behaviors like navigation rely on sequenced motor outputs that combine to generate effective movement. The brain-wide organization of the circuits that integrate sensory signals to select and execute appropriate motor sequences is not well understood. Here, we characterize the architecture of neural circuits that control C. elegans olfactory navigation. We identify error-correcting turns during navigation and use whole-brain calcium imaging and cell-specific perturbations to determine their neural underpinnings. These turns occur as motor sequences accompanied by neural sequences, in which defined neurons activate in a stereotyped order during each turn. Distinct neurons in this sequence respond to sensory cues, anticipate upcoming turn directions, and drive movement, linking key features of this sensorimotor behavior across time. The neuromodulator tyramine coordinates these sequential brain dynamics. Our results illustrate how neuromodulation can act on a defined neural architecture to generate sequential patterns of activity that link sensory cues to motor actions.
Collapse
Affiliation(s)
- Talya S. Kramer
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- MIT Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Flossie K. Wan
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah M. Pugliese
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam A. Atanas
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alex W. Hiser
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jinyue Luo
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eric Bueno
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven W. Flavell
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
10
|
Ornelas IM, Carrilho BDS, Ventura MAVDC, Domith I, de V Silveira CM, Dos Santos VF, Delou JM, Moll F, Pereira HMG, Junqueira M, Aguilaniu H, Rehen S. Lysergic acid diethylamide induces behavioral changes in Caenorhabditis elegans. Neurosci Lett 2024; 837:137903. [PMID: 39025433 DOI: 10.1016/j.neulet.2024.137903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Lysergic acid diethylamide (LSD) is a synthetic psychedelic compound with potential therapeutic value for psychiatric disorders. This study aims to establish Caenorhabditis elegans as an in vivo model for examining LSD's effects on locomotor behavior. Our results demonstrate that LSD is absorbed by C. elegans and that the acute treatment reduces animal speed, similar to the role of endogenous serotonin. This response is mediated in part by the serotonergic receptors SER-1 and SER-4. Our findings highlight the potential of this nematode as a new experimental model in psychedelic research.
Collapse
Affiliation(s)
- Isis M Ornelas
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro 22281-100, Brazil
| | - Beatriz de S Carrilho
- Programa de Pós-graduação em Ciências Morfológicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Matheus Antonio V de C Ventura
- Programa de Pós-graduação em Ciências Morfológicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ivan Domith
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro 22281-100, Brazil; IDOR/Pioneer Science Initiative, Rio de Janeiro, RJ 22281-010, Brazil
| | | | - Vanessa F Dos Santos
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - João M Delou
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro 22281-100, Brazil
| | - Francisco Moll
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro 22281-100, Brazil
| | | | - Magno Junqueira
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Hugo Aguilaniu
- Instituto Serrapilheira, Rio de Janeiro, Rio de Janeiro, 22431-050, Brazil
| | - Stevens Rehen
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro 22281-100, Brazil; Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2141-902, Brazil.
| |
Collapse
|
11
|
Feng YY, Bromberg-Martin ES, Monosov IE. Dorsal raphe neurons integrate the values of reward amount, delay, and uncertainty in multi-attribute decision-making. Cell Rep 2024; 43:114341. [PMID: 38878290 DOI: 10.1016/j.celrep.2024.114341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/27/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
The dorsal raphe nucleus (DRN) is implicated in psychiatric disorders that feature impaired sensitivity to reward amount, impulsivity when facing reward delays, and risk-seeking when confronting reward uncertainty. However, it has been unclear whether and how DRN neurons signal reward amount, reward delay, and reward uncertainty during multi-attribute value-based decision-making, where subjects consider these attributes to make a choice. We recorded DRN neurons as monkeys chose between offers whose attributes, namely expected reward amount, reward delay, and reward uncertainty, varied independently. Many DRN neurons signaled offer attributes, and this population tended to integrate the attributes in a manner that reflected monkeys' preferences for amount, delay, and uncertainty. After decision-making, in response to post-decision feedback, these same neurons signaled signed reward prediction errors, suggesting a broader role in tracking value across task epochs and behavioral contexts. Our data illustrate how the DRN participates in value computations, guiding theories about the role of the DRN in decision-making and psychiatric disease.
Collapse
Affiliation(s)
- Yang-Yang Feng
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | | | - Ilya E Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA; Washington University Pain Center, Washington University, St. Louis, MO, USA; Department of Neurosurgery, Washington University, St. Louis, MO, USA; Department of Electrical Engineering, Washington University, St. Louis, MO, USA.
| |
Collapse
|
12
|
Kramer TS, Flavell SW. Building and integrating brain-wide maps of nervous system function in invertebrates. Curr Opin Neurobiol 2024; 86:102868. [PMID: 38569231 PMCID: PMC11594635 DOI: 10.1016/j.conb.2024.102868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/13/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
The selection and execution of context-appropriate behaviors is controlled by the integrated action of neural circuits throughout the brain. However, how activity is coordinated across brain regions, and how nervous system structure enables these functional interactions, remain open questions. Recent technical advances have made it feasible to build brain-wide maps of nervous system structure and function, such as brain activity maps, connectomes, and cell atlases. Here, we review recent progress in this area, focusing on C. elegans and D. melanogaster, as recent work has produced global maps of these nervous systems. We also describe neural circuit motifs elucidated in studies of specific networks, which highlight the complexities that must be captured to build accurate models of whole-brain function.
Collapse
Affiliation(s)
- Talya S Kramer
- Picower Institute for Learning and Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; MIT Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven W Flavell
- Picower Institute for Learning and Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
13
|
Kim AT, Li S, Kim Y, You YJ, Park Y. Food preference-based screening method for identification of effectors of substance use disorders using Caenorhabditis elegans. Life Sci 2024; 345:122580. [PMID: 38514005 DOI: 10.1016/j.lfs.2024.122580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/26/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Substance use disorder (SUD) affects over 48 million Americans aged 12 and over. Thus, identifying novel chemicals contributing to SUD will be critical for developing efficient prevention and mitigation strategies. Considering the complexity of the actions and effects of these substances on human behavior, a high-throughput platform using a living organism is ideal. We developed a quick and easy screening assay using Caenorhabditis elegans. C. elegans prefers high-quality food (Escherichia coli HB101) over low-quality food (Bacillus megaterium), with a food preference index of approximately 0.2, defined as the difference in the number of worms at E. coli HB101 and B. megaterium over the total worm number. The food preference index was significantly increased by loperamide, a μ-opioid receptor (MOPR) agonist, and decreased by naloxone, a MOPR antagonist. These changes depended on npr-17, a C. elegans homolog of opioid receptors. In addition, the food preference index was significantly increased by arachidonyl-2'-chloroethylamide, a cannabinoid 1 receptor (CB1R) agonist, and decreased by rimonabant, a CB1R inverse agonist. These changes depended on npr-19, a homolog of CB1R. These results suggest that the conserved opioid and endocannabinoid systems modulate the food preference behaviors of C. elegans. Finally, the humanoid C. elegans strains where npr-17 was replaced with human MOPR and where npr-19 was replaced with human CB1R phenocopied the changes in food preference by the drug treatment. Together, the current results show that this method can be used to rapidly screen the potential effectors of MOPR and CB1R to yield results highly translatable to humans.
Collapse
Affiliation(s)
- Aaron Taehwan Kim
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Sida Li
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Yoo Kim
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Young-Jai You
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
14
|
Dyballa L, Lang S, Haslund-Gourley A, Yemini E, Zucker SW. Learning dynamic representations of the functional connectome in neurobiological networks. ARXIV 2024:arXiv:2402.14102v2. [PMID: 38463505 PMCID: PMC10925416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The static synaptic connectivity of neuronal circuits stands in direct contrast to the dynamics of their function. As in changing community interactions, different neurons can participate actively in various combinations to effect behaviors at different times. We introduce an unsupervised approach to learn the dynamic affinities between neurons in live, behaving animals, and to reveal which communities form among neurons at different times. The inference occurs in two major steps. First, pairwise non-linear affinities between neuronal traces from brain-wide calcium activity are organized by non-negative tensor factorization (NTF). Each factor specifies which groups of neurons are most likely interacting for an inferred interval in time, and for which animals. Finally, a generative model that allows for weighted community detection is applied to the functional motifs produced by NTF to reveal a dynamic functional connectome. Since time codes the different experimental variables (e.g., application of chemical stimuli), this provides an atlas of neural motifs active during separate stages of an experiment (e.g., stimulus application or spontaneous behaviors). Results from our analysis are experimentally validated, confirming that our method is able to robustly predict causal interactions between neurons to generate behavior.
Collapse
Affiliation(s)
| | - Samuel Lang
- Dept. Neurobiology, UMass Chan Medical School
| | | | | | | |
Collapse
|
15
|
Nair T, Weathers BA, Stuhr NL, Nhan JD, Curran SP. Serotonin deficiency from constitutive SKN-1 activation drives pathogen apathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.579755. [PMID: 38405962 PMCID: PMC10888766 DOI: 10.1101/2024.02.10.579755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
When an organism encounters a pathogen, the host innate immune system activates to defend against pathogen colonization and toxic xenobiotics produced. C. elegans employ multiple defense systems to ensure survival when exposed to Pseudomonas aeruginosa including activation of the cytoprotective transcription factor SKN-1/NRF2. Although wildtype C. elegans quickly learn to avoid pathogens, here we describe a peculiar apathy-like behavior towards PA14 in animals with constitutive activation of SKN-1, whereby animals choose not to leave and continue to feed on the pathogen even when a non-pathogenic and healthspan-promoting food option is available. Although lacking the urgency to escape the infectious environment, animals with constitutive SKN-1 activity are not oblivious to the presence of the pathogen and display the typical pathogen-induced intestinal distension and eventual demise. SKN-1 activation, specifically in neurons and intestinal tissues, orchestrates a unique transcriptional program which leads to defects in serotonin signaling that is required from both neurons and non-neuronal tissues. Serotonin depletion from SKN-1 activation limits pathogen defense capacity, drives the pathogen-associated apathy behaviors and induces a synthetic sensitivity to selective serotonin reuptake inhibitors. Taken together, our work reveals new insights into how animals perceive environmental pathogens and subsequently alter behavior and cellular programs to promote survival. KEY POINTS Identify an apathy-like behavioral response for pathogens resulting from the constitutive activation of the cytoprotective transcription factor SKN-1.Uncover the obligate role for serotonin synthesis in both neuronal and non-neuronal cells for the apathy-like state and ability of serotonin treatment to restore normal behaviors.Characterize the timing and tissue specificity of SKN-1 nuclear localization in neurons and intestinal cells in response to pathogen exposure.Define the unique and context-specific transcriptional signatures of animals with constitutive SKN-1 activation when exposed to pathogenic environments.Reveal necessity for both neuronal and non-neuronal serotonin signaling in host survival from pathogen infection.
Collapse
|
16
|
Wan Y, Macias LH, Garcia LR. Unraveling the hierarchical structure of posture and muscle activity changes during mating of Caenorhabditis elegans. PNAS NEXUS 2024; 3:pgae032. [PMID: 38312221 PMCID: PMC10837012 DOI: 10.1093/pnasnexus/pgae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/16/2024] [Indexed: 02/06/2024]
Abstract
One goal of neurobiology is to explain how decision-making in neuromuscular circuits produces behaviors. However, two obstacles complicate such efforts: individual behavioral variability and the challenge of simultaneously assessing multiple neuronal activities during behavior. Here, we circumvent these obstacles by analyzing whole animal behavior from a library of Caenorhabditis elegans male mating recordings. The copulating males express the GCaMP calcium sensor in the muscles, allowing simultaneous recording of posture and muscle activities. Our library contains wild type and males with selective neuronal desensitization in serotonergic neurons, which include male-specific posterior cord motor/interneurons and sensory ray neurons that modulate mating behavior. Incorporating deep learning-enabled computer vision, we developed a software to automatically quantify posture and muscle activities. By modeling, the posture and muscle activity data are classified into stereotyped modules, with the behaviors represented by serial executions and transitions among the modules. Detailed analysis of the modules reveals previously unidentified subtypes of the male's copulatory spicule prodding behavior. We find that wild-type and serotonergic neurons-suppressed males had different usage preferences for those module subtypes, highlighting the requirement of serotonergic neurons in the coordinated function of some muscles. In the structure of the behavior, bi-module repeats coincide with most of the previously described copulation steps, suggesting a recursive "repeat until success/give up" program is used for each step during mating. On the other hand, the transition orders of the bi-module repeats reveal the sub-behavioral hierarchy males employ to locate and inseminate hermaphrodites.
Collapse
Affiliation(s)
- Yufeng Wan
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA
| | - Luca Henze Macias
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA
| | - Luis Rene Garcia
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA
| |
Collapse
|
17
|
Moroz LL, Romanova DY. Chemical cognition: chemoconnectomics and convergent evolution of integrative systems in animals. Anim Cogn 2023; 26:1851-1864. [PMID: 38015282 PMCID: PMC11106658 DOI: 10.1007/s10071-023-01833-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Neurons underpin cognition in animals. However, the roots of animal cognition are elusive from both mechanistic and evolutionary standpoints. Two conceptual frameworks both highlight and promise to address these challenges. First, we discuss evidence that animal neural and other integrative systems evolved more than once (convergent evolution) within basal metazoan lineages, giving us unique experiments by Nature for future studies. The most remarkable examples are neural systems in ctenophores and neuroid-like systems in placozoans and sponges. Second, in addition to classical synaptic wiring, a chemical connectome mediated by hundreds of signal molecules operates in tandem with neurons and is the most information-rich source of emerging properties and adaptability. The major gap-dynamic, multifunctional chemical micro-environments in nervous systems-is not understood well. Thus, novel tools and information are needed to establish mechanistic links between orchestrated, yet cell-specific, volume transmission and behaviors. Uniting what we call chemoconnectomics and analyses of the cellular bases of behavior in basal metazoan lineages arguably would form the foundation for deciphering the origins and early evolution of elementary cognition and intelligence.
Collapse
Affiliation(s)
- Leonid L Moroz
- Department of Neuroscience, University of Florida, Gainesville, USA.
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, USA.
| | - Daria Y Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
| |
Collapse
|
18
|
Huang YC, Luo J, Huang W, Baker CM, Gomes MA, Meng B, Byrne AB, Flavell SW. A single neuron in C. elegans orchestrates multiple motor outputs through parallel modes of transmission. Curr Biol 2023; 33:4430-4445.e6. [PMID: 37769660 PMCID: PMC10860333 DOI: 10.1016/j.cub.2023.08.088] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/24/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023]
Abstract
Animals generate a wide range of highly coordinated motor outputs, which allows them to execute purposeful behaviors. Individual neurons in the circuits that generate behaviors have a remarkable capacity for flexibility as they exhibit multiple axonal projections, transmitter systems, and modes of neural activity. How these multi-functional properties of neurons enable the generation of adaptive behaviors remains unknown. Here, we show that the HSN neuron in C. elegans evokes multiple motor programs over different timescales to enable a suite of behavioral changes during egg laying. Using HSN activity perturbations and in vivo calcium imaging, we show that HSN acutely increases egg laying and locomotion while also biasing the animals toward low-speed dwelling behavior over minutes. The acute effects of HSN on egg laying and high-speed locomotion are mediated by separate sets of HSN transmitters and different HSN axonal compartments. The long-lasting effects on dwelling are mediated in part by HSN release of serotonin, which is taken up and re-released by NSM, another serotonergic neuron class that directly evokes dwelling. Our results show how the multi-functional properties of a single neuron allow it to induce a coordinated suite of behaviors and also reveal that neurons can borrow serotonin from one another to control behavior.
Collapse
Affiliation(s)
- Yung-Chi Huang
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jinyue Luo
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wenjia Huang
- Department of Neurobiology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Casey M Baker
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Matthew A Gomes
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bohan Meng
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexandra B Byrne
- Department of Neurobiology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Steven W Flavell
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
19
|
Atanas AA, Kim J, Wang Z, Bueno E, Becker M, Kang D, Park J, Kramer TS, Wan FK, Baskoylu S, Dag U, Kalogeropoulou E, Gomes MA, Estrem C, Cohen N, Mansinghka VK, Flavell SW. Brain-wide representations of behavior spanning multiple timescales and states in C. elegans. Cell 2023; 186:4134-4151.e31. [PMID: 37607537 PMCID: PMC10836760 DOI: 10.1016/j.cell.2023.07.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 07/05/2023] [Accepted: 07/28/2023] [Indexed: 08/24/2023]
Abstract
Changes in an animal's behavior and internal state are accompanied by widespread changes in activity across its brain. However, how neurons across the brain encode behavior and how this is impacted by state is poorly understood. We recorded brain-wide activity and the diverse motor programs of freely moving C. elegans and built probabilistic models that explain how each neuron encodes quantitative behavioral features. By determining the identities of the recorded neurons, we created an atlas of how the defined neuron classes in the C. elegans connectome encode behavior. Many neuron classes have conjunctive representations of multiple behaviors. Moreover, although many neurons encode current motor actions, others integrate recent actions. Changes in behavioral state are accompanied by widespread changes in how neurons encode behavior, and we identify these flexible nodes in the connectome. Our results provide a global map of how the cell types across an animal's brain encode its behavior.
Collapse
Affiliation(s)
- Adam A Atanas
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jungsoo Kim
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ziyu Wang
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eric Bueno
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - McCoy Becker
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Di Kang
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jungyeon Park
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Talya S Kramer
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; MIT Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Flossie K Wan
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Saba Baskoylu
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ugur Dag
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elpiniki Kalogeropoulou
- School of Computing, University of Leeds, Leeds, UK; School of Biology, University of Leeds, Leeds, UK
| | - Matthew A Gomes
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cassi Estrem
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Netta Cohen
- School of Computing, University of Leeds, Leeds, UK
| | - Vikash K Mansinghka
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven W Flavell
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
20
|
Feng YY, Bromberg-Martin ES, Monosov IE. Dorsal raphe neurons signal integrated value during multi-attribute decision-making. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553745. [PMID: 37662243 PMCID: PMC10473596 DOI: 10.1101/2023.08.17.553745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The dorsal raphe nucleus (DRN) is implicated in psychiatric disorders that feature impaired sensitivity to reward amount, impulsivity when facing reward delays, and risk-seeking when grappling with reward uncertainty. However, whether and how DRN neurons signal reward amount, reward delay, and reward uncertainty during multi-attribute value-based decision-making, where subjects consider all these attributes to make a choice, is unclear. We recorded DRN neurons as monkeys chose between offers whose attributes, namely expected reward amount, reward delay, and reward uncertainty, varied independently. Many DRN neurons signaled offer attributes. Remarkably, these neurons commonly integrated offer attributes in a manner that reflected monkeys' overall preferences for amount, delay, and uncertainty. After decision-making, in response to post-decision feedback, these same neurons signaled signed reward prediction errors, suggesting a broader role in tracking value across task epochs and behavioral contexts. Our data illustrate how DRN participates in integrated value computations, guiding theories of DRN in decision-making and psychiatric disease.
Collapse
Affiliation(s)
- Yang-Yang Feng
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | | | - Ilya E. Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
- Washington University Pain Center, Washington University, St. Louis, Missouri, USA
- Department of Neurosurgery, Washington University, St. Louis, Missouri, USA
- Department of Electrical Engineering, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
21
|
Yemini E. Systems neuroscience: Foraging through serotonin's tangled web. Curr Biol 2023; 33:R767-R770. [PMID: 37490863 DOI: 10.1016/j.cub.2023.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Serotonin signaling is conserved in regulating animal behaviors. A new paper decodes the nonlinear effects of all serotonin receptor combinations on foraging behaviors. The authors introduce a brain-wide multiscale method to dissect receptor dynamics, receptor effects on neural activity, and resulting behavioral changes.
Collapse
Affiliation(s)
- Eviatar Yemini
- University of Massachusetts, Department of Neurobiology, Worcester, MA 01605, USA.
| |
Collapse
|