1
|
Sheikh M, Saiyyad A, Aliunui A, Jirvankar PS. The evolving landscape of oncolytic virus immunotherapy: combinatorial strategies and novel engineering approaches. Med Oncol 2025; 42:190. [PMID: 40314865 DOI: 10.1007/s12032-025-02746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
Oncolytic viruses (OVs) are a promising class of cancer therapy, exploiting their abilities to selectively infect and kill cancer cells while stimulating antitumor immune responses. The current assessment explores the changing horizons of OV immunotherapy, focusing on recent advances in technology plans to improve OV projects and combined approaches to improve curative efficacy. We discuss how OVs induce direct oncolysis and promote the release of tumor-associated antigens, leading to the activation of both innate and adaptive immunity. Special attention shall be given to programs for arm OVs to express curative genes, modify the tumor microenvironment and overcome immunosuppression. Moreover, we assess the synergies of uniting OVs with other immunotherapeutic techniques, such as immune checkpoint inhibitors and cell therapy, to improve tolerant outcomes. The present assessment provides an understanding of the relevant declaration of the OV analysis, highlighting the main obstacles and the future directions for the development of other capable and targeted cancer immunotherapy.
Collapse
Affiliation(s)
- Mujibullah Sheikh
- Datta Meghe College of Pharmacy DMIHER (Deemed to be University), Wardha, Maharashtra, 442001, India.
| | - Arshiya Saiyyad
- Datta Meghe College of Pharmacy DMIHER (Deemed to be University), Wardha, Maharashtra, 442001, India
| | - Aimé Aliunui
- Datta Meghe College of Pharmacy DMIHER (Deemed to be University), Wardha, Maharashtra, 442001, India
| | - Pranita S Jirvankar
- Datta Meghe College of Pharmacy DMIHER (Deemed to be University), Wardha, Maharashtra, 442001, India
| |
Collapse
|
2
|
Kaufman HL, Silk AW. Using oncolytic viruses to induce hyperacute rejection against cancer. Nat Rev Clin Oncol 2025; 22:309-310. [PMID: 40011714 DOI: 10.1038/s41571-025-01006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Affiliation(s)
- Howard L Kaufman
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.
| | - Ann W Silk
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
3
|
Wang X, Zhou Q, Zhang X, Hu H, Liu B, Wang Y. Oncolytic viruses: a promising therapy for malignant pleural effusion and solid tumors. Front Immunol 2025; 16:1570698. [PMID: 40352942 PMCID: PMC12061930 DOI: 10.3389/fimmu.2025.1570698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/31/2025] [Indexed: 05/14/2025] Open
Abstract
Oncolytic viruses (OVs) are natural or recombinant viruses that can directly lyse tumor cells without damaging normal cells. They enhance anti-tumor immunity by releasing antigens and activating inflammatory responses within the tumor microenvironment (TME). This offers a new therapeutic approach for MPE and solid tumors. This review discusses the progress of OVs administered via intrapleural and intratumoral routes, emphasizing their potential in MPE treatment and the challenges posed by the complex intrapleural environment, which affects the direct interaction between OVs, tumor cells, and immune cells. This review also discusses the regulatory barriers, safety concerns and accessibility of oncolytic virus therapy.
Collapse
Affiliation(s)
- Xinya Wang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Qin Zhou
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Xuyan Zhang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Han Hu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Binlei Liu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Yang Wang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| |
Collapse
|
4
|
Ji S, Jin C, Cui X. Enhancing the physiological characteristics of chimeric antigen receptor natural killer cells by synthetic biology. Front Immunol 2025; 16:1592121. [PMID: 40313937 PMCID: PMC12043574 DOI: 10.3389/fimmu.2025.1592121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 04/02/2025] [Indexed: 05/03/2025] Open
Abstract
Chimeric antigen receptor natural Killer (CAR-NK) cells therapy represents a next-generation immunotherapeutic approach following CAR-T cells therapy, offering inherent "off-the-shelf" compatibility and mitigated off-tumor toxicity. Despite these advantages, clinical translation remains constrained by poor in vivo persistence and functional exhaustion in immunosuppressive tumor microenvironments (TME). This review examines recent advancements in synthetic biology aimed at enhancing the physiological characteristics of CAR-NK cells. By delineating the synergy between NK cells and synthetic biology toolkits, this work provides a roadmap for developing next-generation CAR-NK therapies capable of addressing solid tumor challenges while maintaining favorable safety profiles.
Collapse
Affiliation(s)
- Shuochao Ji
- Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Cheng Jin
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Xinjiang Cui
- Affiliated Hospital of Shandong Second Medical University, Weifang, China
| |
Collapse
|
5
|
Yu Z, Chen Y, Chen S, Ye W, Li R, Fu Y, Chen Y, Fu W, Wei X, Yu Q, Cai Y, Wang L, Zhang Y, Ying H, Dai F, Han W. Oligoadenylate synthetase-like aggravated Newcastle disease virus-induced necroptosis in glioma cells. Front Oncol 2025; 15:1574214. [PMID: 40330823 PMCID: PMC12053153 DOI: 10.3389/fonc.2025.1574214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/24/2025] [Indexed: 05/08/2025] Open
Abstract
Background Newcastle disease virus (NDV) has emerged as a tumor-lysing agent in a variety of cancers. Previous studies have shown that NDV has cytolytic activity in gliomas; however, the underlying mechanisms have not been fully elucidated. Methods Comparing the glioma cells LN229 controlled group with the infected group of NDV rLa Sota-GFP strain, we strive to observe the changes in the genome and protein levels as well as the activation of the signalling pathways before and after the infection at the cellular level and at the level of the genes in the transcriptome, to study the molecular mechanism of necroptosis of the NDV-infected lethal LN229. Results We found that NDV infection which inhibited glioma cells LN229 proliferation and promoted apoptosis in a dose-dependent manner involved mitochondrial disruption by a molecular mechanism, whereas the Fe2+ assay didn't change. Additionally, the necroptosis inhibitor Nec-1 alleviated the cellular damage caused by NDV during infection of LN229 cells. Using RNA-seq analysis, the necroptosis pathway was significantly enriched in NDV-infected LN229 cells, and the antiviral gene OASL (Oligoadenylate synthetase-like) was significantly up-regulated in the apoptotic signalling pathway, which could be directly induced by NDV infection. Knockdown of OASL attenuates NDV infection-induced necroptosis in LN229 cells. Conclusion Our study demonstrates that NDV has cytolytic activity on glioma cells by inducing necroptosis. Additionally, targeting upregulation of OASL may provide a novel strategy to enhance necrotic apoptosis in glioma cells after NDV infection.
Collapse
Affiliation(s)
- Zecheng Yu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuxin Chen
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Sisi Chen
- Center of Laboratory Animal, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wenjing Ye
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ruirui Li
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yutang Fu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yangkun Chen
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wenhao Fu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xianqiao Wei
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qin Yu
- School of Information Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yili Cai
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lingyun Wang
- School of Medical Laboratory and Biological Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuheng Zhang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Huazhong Ying
- Center of Laboratory Animal, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fangwei Dai
- Center of Laboratory Animal, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wei Han
- Center of Laboratory Animal, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|