1
|
Fahie KMM, Papanicolaou KN, Zachara NE. Integration of O-GlcNAc into Stress Response Pathways. Cells 2022; 11:3509. [PMID: 36359905 PMCID: PMC9654274 DOI: 10.3390/cells11213509] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
The modification of nuclear, mitochondrial, and cytosolic proteins by O-linked βN-acetylglucosamine (O-GlcNAc) has emerged as a dynamic and essential post-translational modification of mammalian proteins. O-GlcNAc is cycled on and off over 5000 proteins in response to diverse stimuli impacting protein function and, in turn, epigenetics and transcription, translation and proteostasis, metabolism, cell structure, and signal transduction. Environmental and physiological injury lead to complex changes in O-GlcNAcylation that impact cell and tissue survival in models of heat shock, osmotic stress, oxidative stress, and hypoxia/reoxygenation injury, as well as ischemic reperfusion injury. Numerous mechanisms that appear to underpin O-GlcNAc-mediated survival include changes in chaperone levels, impacts on the unfolded protein response and integrated stress response, improvements in mitochondrial function, and reduced protein aggregation. Here, we discuss the points at which O-GlcNAc is integrated into the cellular stress response, focusing on the roles it plays in the cardiovascular system and in neurodegeneration.
Collapse
Affiliation(s)
- Kamau M. M. Fahie
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kyriakos N. Papanicolaou
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Natasha E. Zachara
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Feinberg D, Ramakrishnan P, Wong DP, Asthana A, Parameswaran R. Inhibition of O-GlcNAcylation Decreases the Cytotoxic Function of Natural Killer Cells. Front Immunol 2022; 13:841299. [PMID: 35479087 PMCID: PMC9036377 DOI: 10.3389/fimmu.2022.841299] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/14/2022] [Indexed: 12/02/2022] Open
Abstract
Natural killer (NK) cells mediate killing of malignant and virus-infected cells, a property that is explored as a cell therapy approach in the clinic. Various cell intrinsic and extrinsic factors affect NK cell cytotoxic function, and an improved understanding of the mechanism regulating NK cell function is necessary to accomplish better success with NK cell therapeutics. Here, we explored the role of O-GlcNAcylation, a previously unexplored molecular mechanism regulating NK cell function. O-GlcNAcylation is a post-translational modification mediated by O-GlcNAc transferase (OGT) that adds the monosaccharide N-acetylglucosamine to serine and threonine residues on intracellular proteins and O-GlcNAcase (OGA) that removes the sugar. We found that stimulation of NK cells with the cytokines interleukin-2 (IL-2) and IL-15 results in enhanced O-GlcNAcylation of several cellular proteins. Chemical inhibition of O-GlcNAcylation using OSMI-1 was associated with a decreased expression of NK cell receptors (NKG2D, NKG2A, NKp44), cytokines [tumor necrosis factor (TNF)-α, interferon (IFN-γ)], granulysin, soluble Fas ligand, perforin, and granzyme B in NK cells. Importantly, inhibition of O-GlcNAcylation inhibited NK cell cytotoxicity against cancer cells. However, increases in O-GlcNAcylation following OGA inhibition using an OGA inhibitor or shRNA-mediated suppression did not alter NK cell cytotoxicity. Finally, we found that NK cells pretreated with OSMI-1 to inhibit O-GlcNAcylation showed compromised cytotoxic activity against tumor cells in vivo in a lymphoma xenograft mouse model. Overall, this study provides the seminal insight into the role of O-GlcNAcylation in regulating NK cell cytotoxic function.
Collapse
Affiliation(s)
- Daniel Feinberg
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Parameswaran Ramakrishnan
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, United States
- The Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Derek P Wong
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Abhishek Asthana
- Division of Hematology/Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Reshmi Parameswaran
- The Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Division of Hematology/Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
3
|
Fujita K, Tanaka S, Iizumi K, Akiyama S, Uchida K, Ogata M, Aoki D, Hosomi O, Kubohara Y. Melibiosamine, a novel oligosaccharide, suppresses mitogen-induced IL-2 production via inactivation of NFAT and NFκB in Jurkat cells. Biochem Biophys Rep 2019; 19:100658. [PMID: 31431927 PMCID: PMC6580327 DOI: 10.1016/j.bbrep.2019.100658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/21/2019] [Accepted: 06/09/2019] [Indexed: 11/23/2022] Open
Abstract
d-Glucosamine (GlcNH2) and several of its derivatives are known to possess immunosuppressive activities in various immune cell lines. The novel GlcNH2-containing oligosaccharide Galα1-6GlcNH2 (designated melibiosamine; MelNH2) is expected to be immunosuppressive also. In Jurkat cells (immortalized human T lymphocytes), interleukin 2 (IL-2) production (an index of the T-cell immune response) can be induced by stimulation with a mitogen, such as concanavalin A. Here, we compared the effects of GlcNH2 and MelNH2 on concanavalin A-induced IL-2 production (CIIP) in Jurkat cells and found that GlcNH2 and MelNH2 at millimolar levels both significantly suppressed CIIP without affecting cell viability. When we examined the effects of GlcNH2 and MelNH2 on the activation of the three transcription factors required for CIIP—NFAT (nuclear factor of activated T-cells), NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells), and AP-1 (activator protein 1)—we found that GlcNH2 and MelNH2 both suppressed CIIP by inhibiting the activation of NFAT and NFκB, but, unlike GlcNH2, MelNH2 also promoted the activation of AP-1. These results suggest that MelNH2 may be a potentially useful lead compound for development as an immunosuppressive or anti-inflammatory drug. Immunosuppressive effects of MelNH2 (Galα1-6GlcNH2) were examined in Jurkat cells. Concanavalin A induces IL-2 production in Jurkat cells. MelNH2 at millimolar levels dose-dependently suppressed ConA-induced IL-2 production. MelNH2 inhibited the activation of NFAT and NFκB, which control IL-2 expression.
Collapse
Key Words
- AP-1, activator protein 1
- CIIP, ConA-induced IL-2 production
- ConA, concanavalin A
- CsA, cyclosporine A
- GlcNH2, glucosamine
- Glucosamine
- IL-2, interleukin-2
- IM, ionomycin
- Immunosuppressive drug
- Interleukin 2
- Jurkat cell
- MelNH2, melibiosamine
- Melibiosamine
- NFAT, nuclear factor of activated T-cells
- NFκB, nuclear factor kappa-light-chain-enhancer of activated B cells
- PIIP, PMA/IM-induced IL-2 production
- PMA, phorbol 12-myristate 13-acetate
Collapse
Affiliation(s)
- Kazuki Fujita
- Laboratory of Health and Life Science, Department of Health Science, Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, 270-1695, Japan
| | - Susumu Tanaka
- Department of Health and Nutrition, Faculty of Health and Welfare, Takasaki University of Health and Welfare, Takasaki, Gunma, 370-0033, Japan
| | - Kyoichi Iizumi
- Laboratory of Health and Life Science, Department of Health Science, Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, 270-1695, Japan
| | - Shuri Akiyama
- Department of Health and Nutrition, Faculty of Health and Welfare, Takasaki University of Health and Welfare, Takasaki, Gunma, 370-0033, Japan
| | - Kaoru Uchida
- Department of Health and Nutrition, Faculty of Health and Welfare, Takasaki University of Health and Welfare, Takasaki, Gunma, 370-0033, Japan
| | - Makoto Ogata
- Department of Chemistry and Biochemistry, National Institute of Technology, Fukushima College, Iwaki, Fukushima, 970-8034, Japan
| | - Daichi Aoki
- Department of Chemistry and Biochemistry, National Institute of Technology, Fukushima College, Iwaki, Fukushima, 970-8034, Japan
| | - Osamu Hosomi
- Laboratory of Health and Life Science, Department of Health Science, Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, 270-1695, Japan
| | - Yuzuru Kubohara
- Laboratory of Health and Life Science, Department of Health Science, Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, 270-1695, Japan.,Laboratory of Health and Life Science, Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, 270-1695, Japan
| |
Collapse
|
4
|
Pizzolatti ALA, Gaudig F, Seitz D, Roesler CRM, Salmoria GV. Glucosamine Hydrochloride and N-Acetylglucosamine Influence the Response of Bovine Chondrocytes to TGF-β3 and IGF in Monolayer and Three-Dimensional Tissue Culture. Tissue Eng Regen Med 2019; 15:781-791. [PMID: 30603596 DOI: 10.1007/s13770-018-0150-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 01/14/2023] Open
Abstract
Background Glucosamine hydrochloride (GlcN·HCl) has been shown to inhibit cell growth and matrix synthesis, but not with N-acetyl-glucosamine (GlcNAc) supplementation. This effect might be related to an inhibition of critical growth factors (GF), or to a different metabolization of the two glucosamine derivatives. The aim of the present study was to evaluate the synergy between GlcN·HCl, GlcNAc, and GF on proliferation and cartilage matrix synthesis. Method Bovine chondrocytes were cultivated in monolayers for 48 h and in three-dimensional (3D) chitosan scaffolds for 30 days in perfusion bioreactors. Serum-free (SF) medium was supplemented with either growth factors (GF) TGF-β (5 ng mL-1) and IGF-I (10 ng mL-1), GlcN·HCl or GlcNAc at 1mM each or both. Six groups were compared according to medium supplementation: (a) SF control; (b) SF + GlcN·HCl; (c) SF + GlcNAc; (d) SF + GF; (e) SF + GF + GlcN·HCl; and (f) SF + GF + GlcNAc. Cell proliferation, proteoglycan, collagen I (COL1), and collagen II (COL2) synthesis were evaluated. Results The two glucosamines showed opposite effects in monolayer culture: GlcN·HCl significantly reduced proliferation and GlcNAc significantly augmented cellular metabolism. In the 30 days 3D culture, the GlcN·HCl added to GF stimulated cell proliferation more than when compared to GF only, but the proteoglycan synthesis was smaller than GF. However, GlcNAc added to GF improved the cell proliferation and proteoglycan synthesis more than when compared to GF and GF/GlcN·HCl. The synthesis of COL1 and COL2 was observed in all groups containing GF. Conclusion GlcN·HCl and GlcNAc increased cell growth and stimulated COL2 synthesis in long-time 3D culture. However, only GlcNAc added to GF improved proteoglycan synthesis.
Collapse
Affiliation(s)
- André Luiz A Pizzolatti
- 1Laboratory of Biomechanical Engineering (LEBm), University Hospital, Department of Mechanical Engineering, Federal University of Santa Catarina, St. Maria Flora Pausewang, Florianópolis, SC 88036-800 Brazil.,2CAPES Foundation, Ministry of Education of Brazil, St. ERL-Norte, Brasília, DF 70.040-020 Brazil
| | - Florian Gaudig
- Friedrich Baur Biomed Center, Bayreuth, St. Ludwig-Thoma- 36c, 95447 Bayreuth, Bavaria Germany.,4University of Bayreuth, St. University 30, 95447 Bayreuth, Bavaria Germany
| | - Daniel Seitz
- Friedrich Baur Biomed Center, Bayreuth, St. Ludwig-Thoma- 36c, 95447 Bayreuth, Bavaria Germany.,4University of Bayreuth, St. University 30, 95447 Bayreuth, Bavaria Germany
| | - Carlos R M Roesler
- 1Laboratory of Biomechanical Engineering (LEBm), University Hospital, Department of Mechanical Engineering, Federal University of Santa Catarina, St. Maria Flora Pausewang, Florianópolis, SC 88036-800 Brazil
| | - Gean Vitor Salmoria
- 1Laboratory of Biomechanical Engineering (LEBm), University Hospital, Department of Mechanical Engineering, Federal University of Santa Catarina, St. Maria Flora Pausewang, Florianópolis, SC 88036-800 Brazil
| |
Collapse
|
5
|
Abramowitz LK, Hanover JA. T cell development and the physiological role of
O
‐GlcNAc. FEBS Lett 2018; 592:3943-3949. [DOI: 10.1002/1873-3468.13159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/06/2018] [Accepted: 06/06/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Lara K. Abramowitz
- Laboratory of Cellular and Molecular Biology National Institute of Diabetes and Digestive and Kidney Diseases National Institute of Health Bethesda MD USA
| | - John A. Hanover
- Laboratory of Cellular and Molecular Biology National Institute of Diabetes and Digestive and Kidney Diseases National Institute of Health Bethesda MD USA
| |
Collapse
|
6
|
Nagy T, Kátai E, Fisi V, Takács TT, Stréda A, Wittmann I, Miseta A. Protein O-GlcNAc Modification Increases in White Blood Cells After a Single Bout of Physical Exercise. Front Immunol 2018; 9:970. [PMID: 29774032 PMCID: PMC5943509 DOI: 10.3389/fimmu.2018.00970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/18/2018] [Indexed: 01/24/2023] Open
Abstract
Background Protein O-linked N-acetylglucosamine (O-GlcNAc) is a dynamic posttranslational modification influencing the function of many intracellular proteins. Recently it was revealed that O-GlcNAc regulation is modified under various stress states, including ischemia and oxidative stress. Aside from a few contradictory studies based on animal models, the effect of exercise on O-GlcNAc is unexplored. Purpose To evaluate O-GlcNAc levels in white blood cells (WBC) of human volunteers following physical exercise. Methods Young (age 30 ± 5.2), healthy male volunteers (n = 6) were enlisted for the study. Blood parameters including metabolites, ions, “necro”-enzymes, and cell counts were measured before and after a single bout of exercise (2-mile run). From WBC samples, we performed western blots to detect O-GlcNAc modified proteins. The distribution of O-GlcNAc in WBC subpopulations was assessed by flow cytometry. Results Elevation of serum lactic acid (increased from 1.3 ± 0.4 to 6.9 ± 1.7 mM), creatinine (from 77.5 ± 6.3 U/L to 102.2 ± 7.0 μM), and lactate dehydrogenase (from 318.5 ± 26.2 to 380.5 ± 33.2 U/L) confirmed the effect of exercise. WBC count also significantly increased (from 6.6 ± 1.0 to 8.4 ± 1.4 G/L). The level of O-GlcNAc modified proteins in WBCs showed significant elevation after exercise (85 ± 51%, p < 0.05). Flow cytometry revealed that most of this change could be attributed to lymphocytes and monocytes. Conclusion Our results indicate that short-term exercise impacts the O-GlcNAc status of WBCs. O-GlcNAc modification could be a natural process by which physical activity modulates the immune system. Further research could elucidate the role of O-GlcNAc during exercise and validate O-GlcNAc as a biomarker for fitness assessment.
Collapse
Affiliation(s)
- Tamás Nagy
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Emese Kátai
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Viktória Fisi
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Tibor Takács
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Antal Stréda
- Department of Internal Medicine and Nephrology Center, Medical School, University of Pécs, Pécs, Hungary
| | - István Wittmann
- Department of Internal Medicine and Nephrology Center, Medical School, University of Pécs, Pécs, Hungary
| | - Attila Miseta
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
7
|
Liu R, Ma X, Chen L, Yang Y, Zeng Y, Gao J, Jiang W, Zhang F, Li D, Han B, Han R, Qiu R, Huang W, Wang Y, Hao J. MicroRNA-15b Suppresses Th17 Differentiation and Is Associated with Pathogenesis of Multiple Sclerosis by Targeting O-GlcNAc Transferase. THE JOURNAL OF IMMUNOLOGY 2017; 198:2626-2639. [PMID: 28228555 DOI: 10.4049/jimmunol.1601727] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/30/2017] [Indexed: 12/16/2022]
Abstract
IL-17-producing Th17 cells have gradually become considered as key factors in the pathogenesis of many autoimmune diseases, including multiple sclerosis (MS). Although the involvement of certain microRNAs in the development of MS has been reported, their role in Th17-driven autoimmunity is still poorly understood. In this study, we identified microRNA (miR)-15b as an important factor in Th17-associated effects and determined that the expression of miR-15b is significantly downregulated in MS patients and in mice with experimental autoimmune encephalomyelitis. Overexpression of miR-15b alleviated experimental autoimmune encephalomyelitis, whereas knockdown of miR-15b aggravated it. We demonstrated that miR-15b suppressed Th17 differentiation both in vivo and in vitro. We also found that O-linked N-acetylglucosamine transferase is a potential target of miR-15b, enabling it to affect the transcriptional regulation of retinoic acid-related orphan receptor γT through O-linked N-acetylglucosamine glycosylation of NF-κB. These results contribute to the importance of miR-15b in Th17 differentiation and the pathogenesis of MS.
Collapse
Affiliation(s)
- Ruiqiong Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Xiaofeng Ma
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Li Chen
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Yang Yang
- Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Yi Zeng
- Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Jie Gao
- Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Wei Jiang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Fang Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Daojing Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Bin Han
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ranran Han
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Rongfang Qiu
- Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Wei Huang
- Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Yan Wang
- Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China;
| | - Junwei Hao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China;
| |
Collapse
|
8
|
Groves JA, Lee A, Yildirir G, Zachara NE. Dynamic O-GlcNAcylation and its roles in the cellular stress response and homeostasis. Cell Stress Chaperones 2013; 18:535-58. [PMID: 23620203 PMCID: PMC3745259 DOI: 10.1007/s12192-013-0426-y] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 03/29/2013] [Accepted: 04/01/2013] [Indexed: 12/15/2022] Open
Abstract
O-linked N-acetyl-β-D-glucosamine (O-GlcNAc) is a ubiquitous and dynamic post-translational modification known to modify over 3,000 nuclear, cytoplasmic, and mitochondrial eukaryotic proteins. Addition of O-GlcNAc to proteins is catalyzed by the O-GlcNAc transferase and is removed by a neutral-N-acetyl-β-glucosaminidase (O-GlcNAcase). O-GlcNAc is thought to regulate proteins in a manner analogous to protein phosphorylation, and the cycling of this carbohydrate modification regulates many cellular functions such as the cellular stress response. Diverse forms of cellular stress and tissue injury result in enhanced O-GlcNAc modification, or O-GlcNAcylation, of numerous intracellular proteins. Stress-induced O-GlcNAcylation appears to promote cell/tissue survival by regulating a multitude of biological processes including: the phosphoinositide 3-kinase/Akt pathway, heat shock protein expression, calcium homeostasis, levels of reactive oxygen species, ER stress, protein stability, mitochondrial dynamics, and inflammation. Here, we will discuss the regulation of these processes by O-GlcNAc and the impact of such regulation on survival in models of ischemia reperfusion injury and trauma hemorrhage. We will also discuss the misregulation of O-GlcNAc in diseases commonly associated with the stress response, namely Alzheimer's and Parkinson's diseases. Finally, we will highlight recent advancements in the tools and technologies used to study the O-GlcNAc modification.
Collapse
Affiliation(s)
- Jennifer A. Groves
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205-2185 USA
| | - Albert Lee
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205-2185 USA
| | - Gokben Yildirir
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205-2185 USA
| | - Natasha E. Zachara
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205-2185 USA
| |
Collapse
|
9
|
Hewagama A, Gorelik G, Patel D, Liyanarachchi P, McCune WJ, Somers E, Gonzalez-Rivera T, Strickland F, Richardson B. Overexpression of X-linked genes in T cells from women with lupus. J Autoimmun 2013; 41:60-71. [PMID: 23434382 DOI: 10.1016/j.jaut.2012.12.006] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 12/16/2012] [Indexed: 10/27/2022]
Abstract
Women develop lupus more frequently than men and the reason remains incompletely understood. Evidence that men with Klinefelter's Syndrome (XXY) develop lupus at approximately the same rate as women suggests that a second X chromosome contributes. However, since the second X is normally inactivated, how it predisposes to lupus is unclear. DNA methylation contributes to the silencing of one X chromosome in women, and CD4+ T cell DNA demethylation contributes to the development of lupus-like autoimmunity. This suggests that demethylation of genes on the inactive X may predispose women to lupus, and this hypothesis is supported by a report that CD40LG, an immune gene encoded on the X chromosome, demethylates and is overexpressed in T cells from women but not men with lupus. Overexpression of other immune genes on the inactive X may also predispose women to this disease. We therefore compared mRNA and miRNA expression profiles in experimentally demethylated T cells from women and men as well as in T cells from women and men with lupus. T cells from healthy men and women were treated with the DNA methyltransferase inhibitor 5-azacytidine, then X-linked mRNAs were surveyed with oligonucleotide arrays, and X-linked miRNA's surveyed with PCR arrays. CD40LG, CXCR3, OGT, miR-98, let-7f-2*, miR 188-3p, miR-421 and miR-503 were among the genes overexpressed in women relative to men. MiRNA target prediction analyses identified CBL, which downregulates T cell receptor signaling and is decreased in lupus T cells, as a gene targeted by miR-188-3p and miR-98. Transfection with miR-98 and miR-188-3p suppressed CBL expression. The same mRNA and miRNA transcripts were also demethylated and overexpressed in CD4+ T cells from women relative to men with active lupus. Together these results further support a role for X chromosome demethylation in the female predisposition to lupus.
Collapse
Affiliation(s)
- Anura Hewagama
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109-2200, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ali AA, Lewis SM, Badgley HL, Allaben WT, Leakey JE. Oral glucosamine increases expression of transforming growth factor β1 (TGFβ1) and connective tissue growth factor (CTGF) mRNA in rat cartilage and kidney: Implications for human efficacy and toxicity. Arch Biochem Biophys 2011; 510:11-8. [DOI: 10.1016/j.abb.2011.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/22/2011] [Accepted: 03/25/2011] [Indexed: 02/03/2023]
|
11
|
Kazemi Z, Chang H, Haserodt S, McKen C, Zachara NE. O-linked beta-N-acetylglucosamine (O-GlcNAc) regulates stress-induced heat shock protein expression in a GSK-3beta-dependent manner. J Biol Chem 2010; 285:39096-107. [PMID: 20926391 DOI: 10.1074/jbc.m110.131102] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To investigate the mechanisms by which O-linked β-N-acetylglucosamine modification of nucleocytoplasmic proteins (O-GlcNAc) confers stress tolerance to multiple forms of cellular injury, we explored the role(s) of O-GlcNAc in the regulation of heat shock protein (HSP) expression. Using a cell line in which deletion of the O-GlcNAc transferase (OGT; the enzyme that adds O-GlcNAc) can be induced by 4-hydroxytamoxifen, we screened the expression of 84 HSPs using quantitative reverse transcriptase PCR. In OGT null cells the stress-induced expression of 18 molecular chaperones, including HSP72, were reduced. GSK-3β promotes apoptosis through numerous pathways, including phosphorylation of heat shock factor 1 (HSF1) at Ser(303) (Ser(P)(303) HSF1), which inactivates HSF1 and inhibits HSP expression. In OGT null cells we observed increased Ser(P)(303) HSF1; conversely, in cells in which O-GlcNAc levels had been elevated, reduced Ser(P)(303) HSF1 was detected. These data, combined with those showing that inhibition of GSK-3β in OGT null cells recovers HSP72 expression, suggests that O-GlcNAc regulates the activity of GSK-3β. In OGT null cells, stress-induced inactivation of GSK-3β by phosphorylation at Ser(9) was ablated providing a molecular basis for these findings. Together, these data suggest that stress-induced GlcNAcylation increases HSP expression through inhibition of GSK-3β.
Collapse
Affiliation(s)
- Zahra Kazemi
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
12
|
O-GlcNAc modification of proteins affects volume regulation in Jurkat cells. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:1207-17. [PMID: 20043149 DOI: 10.1007/s00249-009-0573-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 12/07/2009] [Accepted: 12/14/2009] [Indexed: 10/20/2022]
Abstract
An increasing amount of recent research has demonstrated that the hexosamine biosynthesis pathway (HBP) plays a significant role in the modulation of intracellular signaling transduction pathways, and affects cellular processes via modification of protein by O-linked beta-N-acetylglucosamine (O-GlcNAc). Besides the many known and postulated effects of protein O-GlcNAc modifications, there is little available data on the role of O-GlcNAc in cellular volume regulation. Our objective was to test the effect of increased O-GlcNAc levels on hypotonia-induced volume changes in Jurkat cells. We pretreated Jurkat cells for 1 h with glucosamine (GlcN), PUGNAc (O-(2-acetamido-2-deoxy-D-glucopyranosylidene)-amino-N-phenylcarbamate) an inhibitor of O-GlcNAcase, or a high level of glucose to induce elevated levels of O-GlcNAc. We found that the response of Jurkat cells to hypotonic stress was significantly altered. The hypotonia induced cell-swelling was augmented in both GlcN and PUGNAc-treated cells and, to a lesser extent, in high glucose concentration-treated cells. Evaluated by NMR measurements, GlcN and PUGNAc treatment also significantly reduced intracellular water diffusion. Taken together, increased cell swelling and reduced water diffusion caused by elevated O-GlcNAc show notable analogy to the regulatory volume changes seen by magnetic resonance methods in nervous and other tissues in different pathological states. In conclusion, we demonstrate for the first time that protein O-GlcNAc could modulate cell volume regulation.
Collapse
|
13
|
Higai K, Tsukada M, Moriya Y, Azuma Y, Matsumoto K. Prolonged high glucose suppresses phorbol 12-myristate 13-acetate and ionomycin-induced interleukin-2 mRNA expression in Jurkat cells. Biochim Biophys Acta Gen Subj 2008; 1790:8-15. [PMID: 18992303 DOI: 10.1016/j.bbagen.2008.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 09/29/2008] [Accepted: 10/03/2008] [Indexed: 01/13/2023]
Abstract
BACKGROUND The disturbance of immunological responses is a complication of diabetes mellitus. METHODS AND RESULTS We cultured Jurkat cells in 11.1 (normal) and 22.2 mmol/l (high) glucose for 12 weeks and stimulated them with 10 nmol/l phorbol 12-myristate 13-acetate (PMA) and 500 nmol/l ionomycin. RT-PCR revealed that induced interleukin (IL)-2 mRNA expression levels were suppressed in high glucose cultures compared to those in normal glucose. Promoter activities of IL-2, nuclear factor of activated T cells (NFAT), and activator protein-1 (AP-1), after 6 h stimulation with PMA and ionomycin, gradually decreased in high glucose cultures to approximately 20% of those in normal glucose at 12 weeks. The prolonged culture in high glucose increased inducible cAMP early repressor (ICER) II mRNA and protein levels, and overexpression of ICER II dose-dependently suppressed promoter activities of IL-2, NFAT, and AP-1. Moreover, ICER II mRNA expression was transiently induced by stimulation with PMA and ionomycin in normal glucose cultures; however, with high glucose, the induction disappeared. CONCLUSION These results indicate that ICER II protein accumulates during prolonged culture in high glucose and suppresses IL-2 mRNA expression in Jurkat cells.
Collapse
Affiliation(s)
- Koji Higai
- Department of Clinical Chemistry, School of Pharmaceutical Sciences, Toho University Miyama 2-2-1, Funabashi, Chiba 247-8510, Japan.
| | | | | | | | | |
Collapse
|
14
|
Obstacles to effective Toll-like receptor agonist therapy for hematologic malignancies. Oncogene 2008; 27:208-17. [DOI: 10.1038/sj.onc.1210905] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Zhu A, Huang JB, Clark A, Romero R, Petty HR. 2,5-Deoxyfructosazine, a D-glucosamine derivative, inhibits T-cell interleukin-2 production better than D-glucosamine. Carbohydr Res 2007; 342:2745-9. [PMID: 17892867 PMCID: PMC2758268 DOI: 10.1016/j.carres.2007.08.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 08/28/2007] [Accepted: 08/30/2007] [Indexed: 10/22/2022]
Abstract
D-Glucosamine has been widely reported to have immunosuppressive actions on neutrophils, lymphocytes, and other cells of the immune system. However, under conditions used in biological experiments (e.g., neutral pH, and phosphate buffers), we have found that D-glucosamine self-reacts to form 2,5-deoxyfructosazine [2-(D-arabino-tetrahydroxybutyl)-5-(D-erythro-2,3,4-trihydroxybutyl)pyrazine] (1) and 2,5-fructosazine [2,5-bis(D-arabino-tetrahydroxybutyl)pyrazine] (2). When tested for bioactivity at nontoxic concentrations, these D-glucosamine derivatives were more effective inhibitors of IL-2 release from PHA-activated T cells than d-glucosamine. Hence, fructosazines constitute a novel class of immunomodulators.
Collapse
Affiliation(s)
- Aiping Zhu
- Department of Ophthalmology and Visual Sciences, The University of Michigan Medical School, Ann Arbor, MI 48105
| | - Ji-Biao Huang
- Department of Ophthalmology and Visual Sciences, The University of Michigan Medical School, Ann Arbor, MI 48105
| | - Andrea Clark
- Department of Ophthalmology and Visual Sciences, The University of Michigan Medical School, Ann Arbor, MI 48105
| | - Roberto Romero
- Department of Perinatology Research Branch, National Institute of Child Health and Human Development, Hutzel Hospital, 4707 St. Antoine Blvd., Detroit, MI 48201
| | - Howard R. Petty
- Department of Ophthalmology and Visual Sciences, The University of Michigan Medical School, Ann Arbor, MI 48105
- Department of Microbiology and Immunology, The University of Michigan Medical School, Ann Arbor, MI 48105
| |
Collapse
|