1
|
Li X, Zhang Z, Wang X, Lu L, Zhang Z, Zhang G, Min J, Shi Q, Lyu S, Chu Q, Qi X, Li H, Huang Y, Wang E. In Vitro Analysis of LPS-Induced miRNA Differences in Bovine Endometrial Cells and Study of Related Pathways. Animals (Basel) 2024; 14:3367. [PMID: 39682333 DOI: 10.3390/ani14233367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Lipopolysaccharide (LPS) is one of the main factors inducing endometritis in dairy cows. However, the specific pathogenesis of LPS-induced endometritis in dairy cows is not fully understood. The objective of this study was to establish an in vitro endometritis model using LPS-induced bovine endometrial epithelial (BEND) cells. BEND cells were treated with LPS of different concentrations and times. The cell-counting kit-8 (CCK-8) was used to detect the cell survival rate after LPS treatment, and quantitative real-time PCR (RT-qPCR) was used to detect the expression of control group and LPS-treated group of inflammatory factors interleukin-1 beta (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-alpha (TNF-α). The results showed that the survival rate of endometrial epithelial cells stimulated by 5 μg/mL LPS for 6 h was 75.13%, and the expression of inflammatory factors was significantly increased. Therefore, 5 μg/mL LPS for 6 h could be selected as a suitable model for the study of inflammation. In addition, miRNA sequencing and target gene prediction was performed on normal and LPS-treated BEND cells. Among twenty-one differentially expressed miRNAs, six miRNAs were selected and their expression levels were detected by RT-qPCR, which were consistent with the sequencing results. Twenty-one differentially expressed miRNAs collectively predicted 17,050 target genes. This study provides a theoretical basis for further investigation of the pathogenesis of endometritis.
Collapse
Affiliation(s)
- Xinmiao Li
- Institute of Animal Husbandry, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhihao Zhang
- Institute of Animal Husbandry, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiangnan Wang
- Institute of Animal Husbandry, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Ligang Lu
- Bijie Academy of Agricultural Sciences, Bijie 551700, China
| | - Zijing Zhang
- Institute of Animal Husbandry, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Geyang Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Jia Min
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Qiaoting Shi
- Institute of Animal Husbandry, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Shijie Lyu
- Institute of Animal Husbandry, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qiuxia Chu
- Institute of Animal Husbandry, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xingshan Qi
- Bureau of Animal Husbandry of Biyang County, Biyang, Zhumadian 463700, China
| | - Huimin Li
- Agricultural Comprehensive Administrative Law Enforcement Detachment of Zhengzhou, Zhengzhou 450044, China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Eryao Wang
- Institute of Animal Husbandry, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| |
Collapse
|
2
|
Mezher N, Mroweh O, Karam L, Ibrahim JN, Kobeissy PH. Experimental models in Familial Mediterranean Fever (FMF): Insights into pathophysiology and therapeutic strategies. Exp Mol Pathol 2024; 135:104883. [PMID: 38266955 DOI: 10.1016/j.yexmp.2024.104883] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/05/2023] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Familial Mediterranean Fever (FMF) is a recurrent polyserositis characterized by self-limiting episodes or attacks of fever along with serosal inflammation. It mainly impacts people of the Mediterranean and Middle Eastern basin. FMF is a recessive autoinflammatory condition caused by mutation in the MEFV gene located on chromosome 16p13. MEFV mutations lead to the activation of the pyrin inflammasome resulting in an uncontrolled release of IL-1β. Various in vitro, in vivo and ex vivo experimental models have been developed to further comprehend the etiology and pathogenesis of FMF. These models have been proven to be clinically relevant to human FMF and can provide significant information about biological systems with respect to this condition. Additionally, these models have provided pertinent contributions to the development of potent therapeutic strategies against FMF. In this review, we describe the different experimental models utilized in FMF and we focus primarily on the most widely used models that have produced prominent insights into the pathophysiology of the disease.
Collapse
Affiliation(s)
- Nawal Mezher
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | - Ola Mroweh
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | - Louna Karam
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | - José-Noel Ibrahim
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon.
| | - Philippe Hussein Kobeissy
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon.
| |
Collapse
|
3
|
Zhang Y, Liu L, Zhang M, Li S, Wu J, Sun Q, Ma S, Cai W. The Research Progress of Bioactive Peptides Derived from Traditional Natural Products in China. Molecules 2023; 28:6421. [PMID: 37687249 PMCID: PMC10489889 DOI: 10.3390/molecules28176421] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Traditional natural products in China have a long history and a vast pharmacological repertoire that has garnered significant attention due to their safety and efficacy in disease prevention and treatment. Among the bioactive components of traditional natural products in China, bioactive peptides (BPs) are specific protein fragments that have beneficial effects on human health. Despite many of the traditional natural products in China ingredients being rich in protein, BPs have not received sufficient attention as a critical factor influencing overall therapeutic efficacy. Therefore, the purpose of this review is to provide a comprehensive summary of the current methodologies for the preparation, isolation, and identification of BPs from traditional natural products in China and to classify the functions of discovered BPs. Insights from this review are expected to facilitate the development of targeted drugs and functional foods derived from traditional natural products in China in the future.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Z.); (Q.S.)
| | - Lianghong Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (L.L.); (M.Z.); (S.L.); (J.W.)
| | - Min Zhang
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (L.L.); (M.Z.); (S.L.); (J.W.)
| | - Shani Li
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (L.L.); (M.Z.); (S.L.); (J.W.)
| | - Jini Wu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (L.L.); (M.Z.); (S.L.); (J.W.)
| | - Qiuju Sun
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Z.); (Q.S.)
| | - Shengjun Ma
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Z.); (Q.S.)
| | - Wei Cai
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (L.L.); (M.Z.); (S.L.); (J.W.)
| |
Collapse
|
4
|
Aslam B, Hussain A, Bari MU, Faisal MN, Sindhu ZUD, Alonaizan R, Al-Akeel RK, Naz S, Khan RU. Anti-Pyretic, Analgesic, and Anti-Inflammatory Activities of Meloxicam and Curcumin Co-Encapsulated PLGA Nanoparticles in Acute Experimental Models. Metabolites 2023; 13:935. [PMID: 37623878 PMCID: PMC10456287 DOI: 10.3390/metabo13080935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Herein, we evaluated the in vivo effects of meloxicam and curcumin co-encapsulated PLGA nanoparticles in experimental acute models of pyrexia, nociception, and inflammation. Seven groups (n = 6) were designed for each investigation and pretreated intraperitoneally (i.p.): the control group, meloxicam (4 mg/kg b.w.), curcumin (15 mg/kg b.w.), and equivalent content containing PLGA capped nanoparticles of meloxicam (Mlx-NP) and curcumin (Cur-NP) alone and in combination (Mlx-Cur-NP; at two doses). The results showed that PLGA encapsulation significantly (p ≤ 0.05) improved the in vivo activities of each compound. Furthermore, co-encapsulation of meloxicam and curcumin potentiated the anti-pyretic effect on yeast-induced pyretic rats, anti-nociceptive effect on nociception induced in rats by formalin and heat, and anti-edematogenic activity in xylene-induced ear edema in rats in a dose-dependent manner. In carrageenan-induced paw inflammation in rats, meloxicam and curcumin co-loading (Mlx-Cur-NP) resulted in significant (p ≤ 0.05) inhibition of paw inflammation, reduction in TNF-α and PGE2 levels, downregulation of expressions of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), as well as a decrease in histopathological changes and TNF-α immunoexpression in paw tissues. Moreover, Mlx-Cur-NP demonstrated noteworthy potentiation in pharmacological effects compared to free compounds and mono-compound-loaded nanoparticles. Thus, the association of meloxicam with curcumin in a biodegradable nanocarrier system could provide a promising anti-pyretic, anti-nociceptive, and anti-inflammatory therapeutic approach for acute conditions.
Collapse
Affiliation(s)
- Bilal Aslam
- Institute of Physiology and Pharmacology, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (B.A.); (A.H.); (M.U.B.); (M.N.F.)
| | - Asif Hussain
- Institute of Physiology and Pharmacology, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (B.A.); (A.H.); (M.U.B.); (M.N.F.)
- Department of Pharmacy, Riphah International University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Usman Bari
- Institute of Physiology and Pharmacology, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (B.A.); (A.H.); (M.U.B.); (M.N.F.)
| | - Muhammad Naeem Faisal
- Institute of Physiology and Pharmacology, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (B.A.); (A.H.); (M.U.B.); (M.N.F.)
| | - Zia ud Din Sindhu
- Department of Parasitology, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| | - Rasha Alonaizan
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (R.A.); (R.K.A.-A.)
| | - Rasha K. Al-Akeel
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (R.A.); (R.K.A.-A.)
| | - Shabana Naz
- Department of Zoology, Government College University, Faisalabad 38000, Pakistan;
| | - Rifat Ullah Khan
- Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar 25130, Pakistan
| |
Collapse
|
5
|
Huryn LA, Kozycki CT, Serpen JY, Zein WM, Ullah E, Iannaccone A, Williams LB, Sobrin L, Brooks BP, Sen HN, Hufnagel RB, Kastner DL, Kodati S. Ophthalmic Manifestations of ROSAH (Retinal Dystrophy, Optic Nerve Edema, Splenomegaly, Anhidrosis, and Headache) Syndrome, an Inherited NF κB-Mediated Autoinflammatory Disease with Retinal Dystrophy. Ophthalmology 2023; 130:423-432. [PMID: 36332842 PMCID: PMC10038920 DOI: 10.1016/j.ophtha.2022.10.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/07/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE We aimed to characterize the ocular phenotype of patients with ROSAH (retinal dystrophy, optic nerve edema, splenomegaly, anhidrosis, and headache) syndrome and their response to therapy. DESIGN Single-center observational case study. PARTICIPANTS Eleven patients with a diagnosis of ROSAH syndrome and mutation in ALPK1 were included. METHODS Patients with molecularly confirmed ROSAH syndrome underwent ophthalmic evaluation, including visual acuity testing, slit-lamp and dilated examinations, color fundus and autofluorescence imaging, fluorescein angiography, OCT, and electrophysiologic testing. MAIN OUTCOME MEASURES Visual acuity, electrophysiology, fluorescein angiography, and OCT findings. RESULTS Eleven individuals (6 female and 5 male patients) from 7 families ranging in age from 7.3 to 60.2 years at the time of the initial evaluation were included in this study. Seven patients were followed up for a mean of 2.6 years (range, 0.33-5.0 years). Best-corrected visual acuity at baseline ranged from 20/16 to no light perception. Variable signs or sequelae of intraocular inflammation were observed in 9 patients, including keratic precipitates, band keratopathy, trace to 2+ anterior chamber cells, cystoid macular edema, and retinal vasculitis on fluorescein angiography. Ten patients were observed to show optic disc elevation and demonstrated peripapillary thickening on OCT. Seven patients showed retinal degeneration consistent with a cone-rod dystrophy, with atrophy tending to involve the posterior pole and extending peripherally. One patient with normal electroretinography findings and visual evoked potential was found to have decreased Arden ratio on electro-oculography. CONCLUSIONS Leveraging insights from the largest single-center ROSAH cohort described to date, this study identified 3 main factors as contributing to changes in visual function of patients with ROSAH syndrome: optic nerve involvement; intraocular inflammation, including cystoid macular edema; and retinal degeneration. More work is needed to determine how to arrest the progressive vision loss associated with ROSAH syndrome. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Laryssa A Huryn
- National Eye Institute, National Institutes of Health, Bethesda, Maryland.
| | - Christina Torres Kozycki
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jasmine Y Serpen
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Wadih M Zein
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Ehsan Ullah
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Lloyd B Williams
- Duke Eye Center, Duke University School of Medicine, Durham, North Carolina
| | - Lucia Sobrin
- Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Brian P Brooks
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - H Nida Sen
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Robert B Hufnagel
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Daniel L Kastner
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Shilpa Kodati
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
6
|
Xu XY, Dhandapani S, Mi XJ, Park HR, Kim YJ. Immune-enhancing efficacy of Curtobacterium proimmune K3 lysates isolated from Panax ginseng beverages in cyclophosphamide-induced immunosuppressed mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
7
|
Fayez AG, Eldeen GN, Zarouk WA, Hamed K, Ramadan A, Foda BM, Kobesiy MM, Zekrie ME, Lotfy RS, Sokkar MF, El-Bassyouni HT. Dynamic disequilibrium-based pathogenicity model in mutated pyrin’s B30.2 domain—Casp1/p20 complex. J Genet Eng Biotechnol 2022; 20:31. [PMID: 35190906 PMCID: PMC8861233 DOI: 10.1186/s43141-022-00300-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/14/2022] [Indexed: 01/04/2023]
Abstract
Background The B30.2 variants lead to most relevant severity forms of familial Mediterranean fever (FMF) manifestations. The B30.2 domain plays a key role in protein-protein interaction (PPI) of pyrin with other apoptosis proteins and in regulation the cascade of inflammatory reactions. Pyrin-casp1 interaction is mainly responsible for the dysregulation of the inflammatory responses in FMF. Lower binding affinity was observed between the mutant B30.2 pyrin and casp1 without the release of the complete pathogenicity mechanism. The aim of this study was to identify the possible effects of the interface pocked residues in B30.2/SPRY-Casp1/p20 complex using molecular mechanics simulation and in silico analysis. Results It was found that Lys671Met, Ser703Ile, and Ala744Ser variants led mainly to shift of the binding affinity (∆G), dissociation constant (Kd), and root mean square deviation (RMSD) in B30.2/SPRY-Casp1/p20 complex leading to dynamic disequilibrium of the p20-B30.2/SPRY complex toward its complex form. The current pathogenicity model and its predicted implementation in the relevant colchicine dosage were delineated. Conclusion The molecular mechanics analysis of B30.2/SPRY-p20 complex harboring Lys671Met, Ser703Ile, and Ala744Ser variants showed dynamic disequilibrium of B30.2/SPRY-casp1/p20complex in context of the studied variants that could be a new computational model for FMF pathogenicity. This study also highlighted the specific biochemical markers that could be useful to adjust the colchicine dose in FMF patients.
Collapse
|
8
|
Liang Y, Liu C, Yan S, Wang P, Wu B, Jiang C, Li X, Liu Y, Li X. A novel polysaccharide from plant fermentation extracts and its immunomodulatory activity in macrophage RAW264.7 cells. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1874884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Yan Liang
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, People’s Republic of China
| | - Chunhua Liu
- Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, People’s Republic of China
| | - Shuxia Yan
- Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, People’s Republic of China
| | - Pu Wang
- Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, People’s Republic of China
| | - Binbin Wu
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
- Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, People’s Republic of China
| | - Chengzi Jiang
- Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, People’s Republic of China
| | - Xiaoqing Li
- Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, People’s Republic of China
| | - Yanwen Liu
- Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, People’s Republic of China
| | - Xiang Li
- Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, People’s Republic of China
| |
Collapse
|
9
|
Gegunde S, Alfonso A, Alonso E, Alvariño R, Botana LM. Gracilin-Derivatives as Lead Compounds for Anti-inflammatory Effects. Cell Mol Neurobiol 2020; 40:603-615. [PMID: 31729596 PMCID: PMC11448785 DOI: 10.1007/s10571-019-00758-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/05/2019] [Indexed: 01/23/2023]
Abstract
Gracilins are diterpenes derivative, isolated from the marine sponge Spongionella gracilis. Natural gracilins and synthetic derivatives have shown antioxidant, immunosuppressive, and neuroprotective capacities related to the affinity for cyclophilins. The aim of this work was to study anti-inflammatory and immunosuppressive pathways modulated by gracilin L and two synthetic analogues, compound 1 and 2, on a cellular model of inflammation. In this way, the murine BV2 microglia cell line was used. To carry out the experiments, microglia cells were pre-treated with compounds for 1 h and then stimulated with lipopolysaccharide for 24 h to determine reactive oxygen species production, mitochondrial membrane potential, the release of nitric oxide, interleukin-6 and tumor necrosis factor-α and the expression of Nuclear factor-erythroid 2-related factor 2, Nuclear Factor-κB, the inducible nitric oxide synthase, and the cyclophilin A. Finally, a co-culture of neuron SH-SY5Y and microglia BV2 cells was used to check the neuroprotective effect of these compounds. Cyclosporine A was used as a control of effect. The compounds were able to decrease inflammatory mediators, the expression of inflammatory target proteins as well as they activated anti-oxidative mechanism upon inflammatory conditions. For this reason, natural and synthetic gracilins could be interesting for developing anti-inflammatory drugs.
Collapse
Grants
- 2017 GRC GI-1682 Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia
- AGL2016-78728-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- ISCIII/PI16/01830 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- RTC-2016-5507-2 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- ITC-20161072 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- 0161-Nanoeaters -1-E-1 European Commission
- Interreg AlertoxNet EAPA-317-2016 European Commission
- Interreg Agritox EAPA-998-2018 European Commission
- 778069-EMERTOX Horizon 2020
Collapse
Affiliation(s)
- Sandra Gegunde
- Pharmacology Department, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - Amparo Alfonso
- Pharmacology Department, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain.
| | - Eva Alonso
- Pharmacology Department, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain
- Fundación Instituto de Investigación Sanitaria Santiago de Compostela (FIDIS), Hospital Universitaio Lucus Augusti, 27004, Lugo, Spain
| | - Rebeca Alvariño
- Pharmacology Department, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - Luis M Botana
- Pharmacology Department, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| |
Collapse
|
10
|
Vera J, Paludo J, Kottschade L, Brandt J, Yan Y, Block M, McWilliams R, Dronca R, Loprinzi C, Grothey A, Markovic SN. Case series of dabrafenib-trametinib-induced pyrexia successfully treated with colchicine. Support Care Cancer 2019; 27:3869-3875. [DOI: 10.1007/s00520-019-4654-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/15/2019] [Indexed: 01/15/2023]
|
11
|
Wang Z, Wang N, Liu X, Wang Q, Xu B, Liu P, Zhu H, Chen J, Situ H, Lin Y. Broadleaf Mahonia attenuates granulomatous lobular mastitis‑associated inflammation by inhibiting CCL‑5 expression in macrophages. Int J Mol Med 2017; 41:340-352. [PMID: 29138800 PMCID: PMC5746325 DOI: 10.3892/ijmm.2017.3246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 11/01/2017] [Indexed: 12/22/2022] Open
Abstract
Granulomatous lobular mastitis (GLM) is a type of chronic mammary inflammation with unclear etiology. Currently systematic corticosteroids and methitrexate are considered as the main drugs for GLM treatment, but a high toxicity and risk of recurrence greatly limit their application. It is therefore an urgent requirement that safe and efficient natural drugs are found to improve the GLM prognosis. Broadleaf Mahonia (BM) is a traditional Chinese herb that is believed to have anti-inflammatory properties according to ancient records of traditional Chinese medicine. The present study investigated this belief and demonstrated that BM significantly inhibited the expression of interleukin-1β (IL-1β), IL-6, cyclooxygenase-2 and inducible nitric oxide synthase in RAW264.7 cells, but had little influence on the cell viability, cell cycle and apoptosis. Meanwhile, the lipopolysaccharide-induced elevation of reactive oxygen species and nitric oxide was also blocked following BM treatment, accompanied with decreased activity of nuclear factor-κB and MAPK signaling. A cytokine array further validated that BM exhibited significant inhibitory effects on several chemoattractants, including chemokine (C-C motif) ligand (CCL)-2, CCL-3, CCL-5 and secreted tumor necrosis factor receptor 1, among which CCL-5 exhibited the highest inhibition ratio in cell and clinical GLM specimens. Collectively, the results show that BM is a novel effective anti-inflammatory herb in vitro and ex vivo, and that CCL-5 may be closely associated with GLM pathogenesis.
Collapse
Affiliation(s)
- Zhiyu Wang
- Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Neng Wang
- Department of Breast Oncology, Sun Yat‑Sen Univeristy Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Guangzhou, Guangdong 510060, P.R. China
| | - Xiaoyan Liu
- Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Biao Xu
- Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Pengxi Liu
- Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Huayu Zhu
- Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, SAR 00852, P.R. China
| | - Honglin Situ
- Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yi Lin
- Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
12
|
Lee MH, Hong SH, Park C, Han MH, Kim SO, Hong SH, Kim GY, Choi YH. Anti-inflammatory effects of Daehwangmokdantang, a traditional herbal formulation, in lipopolysaccharide-stimulated RAW 264.7 macrophages. Exp Ther Med 2017; 14:5809-5816. [PMID: 29285125 PMCID: PMC5740599 DOI: 10.3892/etm.2017.5296] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 08/17/2017] [Indexed: 12/14/2022] Open
Abstract
Daehwangmokdantang (DHMDT) is a traditional polyherbal formulation that has known antidiarrheal and anti-inflammatory activities. However, the underlying mechanisms of these activities are poorly understood. In the present study, the inhibitory effects of DHMDT on the production of proinflammatory mediators and cytokines in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages were investigated. The inhibitory effects of DHMDT on LPS-induced nitric oxide (NO), prostaglandin (PG)E2, tumor necrosis factor (TNF)-α and interleukin (IL)-1β production were examined using Griess reagent and ELISA detection kits. The effects of DHMDT on the expression of inducible NO synthase (iNOS), cyclooxygenase (COX)-2, IL-1β and TNF-α, and their upstream signal proteins, including nuclear factor (NF)-κB, mitogen-activated protein kinases (MAPKs) and RAC-α serine/threonine-protein kinase (Akt), a phosphatidylinositol 3-kinase (PI3K) downstream effector, were investigated using western blotting and immunofluorescence staining. The results revealed the pretreatment with DHMDT significantly inhibited the LPS-induced production of NO, PGE2, TNF-α, and IL-1β, and expression of iNOS, COX-2 TNF-α, and IL-1β, without any significant cytotoxicity. DHMDT also efficiently prevented the translocation of the NF-κB subunit p65 into the nucleus by interrupting the activation of the upstream mediator inhibitor of NF-κB kinase α/β. Furthermore, the anti-inflammatory effects of DHMDT were associated with the suppression of LPS-induced phosphorylation of Akt and MAPKs in RAW 264.7 macrophages. Therefore, the results of the present study indicate that DHMDT exhibited anti-inflammatory activity via the inhibition of proinflammatory mediators and cytokines, in which the inactivation of NF-κB, PI3K/Akt, and MAPKs may be involved. These results suggest that DHMDT may be a potential anti-inflammatory drug candidate.
Collapse
Affiliation(s)
- Moon Hee Lee
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea.,Anti-Aging Research Center and Blue-Bio Industry RIC, College of Natural Sciences and Human Ecology, Dongeui University, Busan 614-714, Republic of Korea
| | - Su Hyun Hong
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences and Human Ecology, Dongeui University, Busan 614-714, Republic of Korea
| | - Min-Ho Han
- Natural Products Research Team, National Marine Biodiversity Institute of Korea, Seocheon 325-902, Republic of Korea
| | - Sung Ok Kim
- Department of Food Science and Biotechnology, College of Engineering, Kyungsung University, Busan 608-736, Republic of Korea
| | - Sang Hoon Hong
- Department of Internal Medicine, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea.,Anti-Aging Research Center and Blue-Bio Industry RIC, College of Natural Sciences and Human Ecology, Dongeui University, Busan 614-714, Republic of Korea
| |
Collapse
|
13
|
Ma C, Wang Y, Dong L, Li M, Cai W. Anti-inflammatory effect of resveratrol through the suppression of NF-κB and JAK/STAT signaling pathways. Acta Biochim Biophys Sin (Shanghai) 2015; 47:207-13. [PMID: 25651848 DOI: 10.1093/abbs/gmu135] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Resveratrol, the most important ingredient extracted from Polygonum cuspidatum, exerts cytoprotective effects via anti-inflammatory actions in vitro. In this study, we investigated this effect of resveratrol on the lipopolysaccharide (LPS)-induced inflammatory response and its underlying molecular mechanism of action in RAW264.7 murine macrophages. Results showed that resveratrol down-regulated the expression of inducible nitric oxide synthase (iNOS) and interleukin-6 (IL-6), therefore, suppressed the production of nitric oxide and the secretion of IL-6 in LPS-stimulated RAW264.7 cells in a dose-dependent manner. Resveratrol also inhibited the translocation of high-mobility group box 1 (HMGB1) from the nucleus to the cytoplasm and of nuclear transcription factor kappa-B (NF-κB) p65 from the cytoplasm to the nucleus; it suppressed the phosphorylation of IκBα. Furthermore, these actions were mediated by suppressing the phosphorylation of signal transducer and activator of transcription (STAT)-1 and -3. In conclusion, these data indicate that resveratrol exerts anti-inflammatory effects, at least in part by reducing the release of HMGB1 and modulating the NF-κB and Janus kinase/STAT signaling pathways. Resveratrol could potentially be developed as a useful agent for the chemoprevention of inflammatory diseases.
Collapse
Affiliation(s)
- Chunfang Ma
- The Second Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou 310005, China
| | - Yin Wang
- The Second Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou 310005, China
| | - Lei Dong
- The Second Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou 310005, China
| | - Minjing Li
- The Second Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou 310005, China
| | - Wanru Cai
- The Second Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou 310005, China
| |
Collapse
|
14
|
Park HY, Park C, Hwang HJ, Kim BW, Kim GY, Kim CM, Kim ND, Choi YH. 7,8-Dihydroxyflavone attenuates the release of pro-inflammatory mediators and cytokines in lipopolysaccharide-stimulated BV2 microglial cells through the suppression of the NF-κB and MAPK signaling pathways. Int J Mol Med 2014; 33:1027-34. [PMID: 24535427 DOI: 10.3892/ijmm.2014.1652] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/03/2014] [Indexed: 01/12/2023] Open
Abstract
7,8-Dihydroxyflavone (7,8-DHF), a member of the flavonoid family, has received considerable attention as a selective tyrosine kinase receptor B agonist. However, the pharmacological mechanisms responsible for its anti-inflammatory activities in microglial cells have yet to be elucidated. In this study, we evaluated the anti-inflammatory effects of this compound on the production of inflammatory mediators and cytokines in lipopolysaccharide (LPS)-stimulated murine BV2 microglial cells. At non-toxic concentrations, 7,8-DHF attenuated the production of nitric oxide (NO) and prostaglandin E2 (PGE2), by inhibiting inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, respectively. Furthermore, the release and expression of inflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), were inhibited by 7,8-DHF. In addition, 7,8-DHF suppressed nuclear factor-κB (NF-κB) translocation and its transcriptional activity by blocking IκB (IκB)-α degradation; in addition, it exerted suppressive effects on the phosphorylation of mitogen-activated protein kinases (MAPKs). These results indicate that 7,8-DHF possesses therapeutic potential against neurodegenerative diseases that involve microglial activation.
Collapse
Affiliation(s)
- Hye Young Park
- Department of Pharmacy, Busan National University, Busan 609-735, Republic of Korea
| | - Cheol Park
- Department of Molecular Biology, Dongeui University, Busan 614-714, Republic of Korea
| | - Hye Jin Hwang
- Department of Food and Nutrition, Dongeui University, Busan 614-714, Republic of Korea
| | - Byung Woo Kim
- Department of Life Science and Biotechnology, Dongeui University, Busan 614-714, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Cheol Min Kim
- Research Center for Anti-Aging Technology Development and Department of Biochemistry, Busan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Nam Deuk Kim
- Department of Pharmacy, Busan National University, Busan 609-735, Republic of Korea
| | - Yung Hyun Choi
- Department of Anti-Aging Research Center and Blue-Bio Industry RIC, Dongeui University, Busan 614-714, Republic of Korea
| |
Collapse
|
15
|
Ozgocmen S, Akgul O. Anti-TNF agents in familial Mediterranean fever: report of three cases and review of the literature. Mod Rheumatol 2014. [DOI: 10.3109/s10165-011-0463-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Kim SC, Kang SH, Jeong SJ, Kim SH, Ko HS, Kim SH. Inhibition of c-Jun N-terminal kinase and nuclear factor κ B pathways mediates fisetin-exerted anti-inflammatory activity in lipopolysccharide-treated RAW264.7 cells. Immunopharmacol Immunotoxicol 2012; 34:645-50. [DOI: 10.3109/08923973.2011.648270] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Horton AA, Wang B, Camp L, Price MS, Arshi A, Nagy M, Nadler SA, Faeder JR, Luckhart S. The mitogen-activated protein kinome from Anopheles gambiae: identification, phylogeny and functional characterization of the ERK, JNK and p38 MAP kinases. BMC Genomics 2011; 12:574. [PMID: 22111877 PMCID: PMC3233564 DOI: 10.1186/1471-2164-12-574] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 11/23/2011] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Anopheles gambiae is the primary mosquito vector of human malaria parasites in sub-Saharan Africa. To date, three innate immune signaling pathways, including the nuclear factor (NF)-kappaB-dependent Toll and immune deficient (IMD) pathways and the Janus kinase/signal transducers and activators of transcription (Jak-STAT) pathway, have been extensively characterized in An. gambiae. However, in addition to NF-kappaB-dependent signaling, three mitogen-activated protein kinase (MAPK) pathways regulated by JNK, ERK and p38 MAPK are critical mediators of innate immunity in other invertebrates and in mammals. Our understanding of the roles of the MAPK signaling cascades in anopheline innate immunity is limited, so identification of the encoded complement of these proteins, their upstream activators, and phosphorylation profiles in response to relevant immune signals was warranted. RESULTS In this study, we present the orthologs and phylogeny of 17 An. gambiae MAPKs, two of which were previously unknown and two others that were incompletely annotated. We also provide detailed temporal activation profiles for ERK, JNK, and p38 MAPK in An. gambiae cells in vitro to immune signals that are relevant to malaria parasite infection (human insulin, human transforming growth factor-beta1, hydrogen peroxide) and to bacterial lipopolysaccharide. These activation profiles and possible upstream regulatory pathways are interpreted in light of known MAPK signaling cascades. CONCLUSIONS The establishment of a MAPK "road map" based on the most advanced mosquito genome annotation can accelerate our understanding of host-pathogen interactions and broader physiology of An. gambiae and other mosquito species. Further, future efforts to develop predictive models of anopheline cell signaling responses, based on iterative construction and refinement of data-based and literature-based knowledge of the MAP kinase cascades and other networked pathways will facilitate identification of the "master signaling regulators" in biomedically important mosquito species.
Collapse
Affiliation(s)
- Ashley A Horton
- Department of Medical Microbiology and Immunology, School of Medicine, 3146 Tupper Hall, One Shields Avenue, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ozgocmen S, Akgul O. Anti-TNF agents in familial Mediterranean fever: report of three cases and review of the literature. Mod Rheumatol 2011; 21:684-90. [PMID: 21567247 DOI: 10.1007/s10165-011-0463-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 04/20/2011] [Indexed: 11/29/2022]
Abstract
Familial Mediterranean fever (FMF) is an autoinflammatory disease characterized by recurrent fever, peritonitis/pleuritis, or arthritis attacks. Patients may have FMF-associated mutations of pyrin. The role of biologics such as anti-tumor necrosis factor (TNF) agents (infliximab, etanercept, adalimumab, golimumab) and anakinra, canakinumab, or rilonacept in the treatment of FMF needs to be clarified. Herein we present reports of three patients (all were positive for HLA B27) with typical spondylitis associated with FMF who were successfully managed with anti-TNF agents, along with a literature review. The patients were a 37-year-old man with concomitant Crohn's disease and amyloidosis who was treated with infliximab (INF, 5 mg/kg for 3 years) and switched to adalimumab (ADA), and two female patients (a 24-year-old and a 31-year-old) with FMF who developed severe spondylitis and who were also treated with ADA. Anti-TNF agents can control FMF attacks quite effectively and they reveal a promising role in the treatment of FMF-associated amyloidosis and spondylitis.
Collapse
Affiliation(s)
- Salih Ozgocmen
- Division of Rheumatology, Dept. PMR, Gevher Nesibe Hospital, Erciyes University, School of Medicine, 38039 Kayseri, Turkey.
| | | |
Collapse
|
19
|
Ji G, Yang Q, Hao J, Guo L, Chen X, Hu J, Leng L, Jiang Z. Anti-inflammatory effect of genistein on non-alcoholic steatohepatitis rats induced by high fat diet and its potential mechanisms. Int Immunopharmacol 2011; 11:762-8. [PMID: 21320636 DOI: 10.1016/j.intimp.2011.01.036] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 01/25/2011] [Accepted: 01/30/2011] [Indexed: 12/27/2022]
Abstract
Genistein is a naturally occurring plant-derived phytoestrogen present in the human diet, and is known to possess anti-cancer, anti-oxidant and anti-osteoporosis effects. Anti-inflammatory activity of genistein has been revealed in animal studies. In this paper, we investigated the anti-inflammatory effect of genistein on non-alcoholic steatohepatitis (NASH) rats induced by high fat diet (HFD), and explored its potential mechanisms. Rats were fed with normal chow diet or HFD for 12 weeks with or without low (4 mg/kg/day body weight) or high (8 mg/kg/day body weight) dose of genistein. Serum levels of aminotransferases, thiobarbituric acid-reactive substances (TBARS), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6) and transforming growth factor beta (TGF-β(1)) were measured, hepatic inflammation, liver TBARS, IL-6, TNF-α and TGF-β(1) levels were determined, and proteins involved in mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) pathways were assayed. The results showed that the NASH model rats reproduced typical pathogenetic and histopathological features of NASH in human, and genistein administration improved liver function, slowed down NASH progression, decreased the levels of TBARS, TNF-α and IL-6 in serum and liver, as well as inhibited IκB-α phosphorylation, nuclear translocation of NF-κB p65 subunit, and activation of c-Jun N-terminal kinase (JNK). In conclusion, genistein may be a promising drug to inhibit the inflammatory process and prevent liver damage in patients with NASH.
Collapse
Affiliation(s)
- Guiyuan Ji
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|