1
|
Zhang B, Zhang W, He Y, Ma X, Li M, Jiang Q, Loor JJ, Lv X, Yang W, Xu C. Store-operated Ca 2+ entry-sensitive glycolysis regulates neutrophil adhesion and phagocytosis in dairy cows with subclinical hypocalcemia. J Dairy Sci 2023; 106:7131-7146. [PMID: 37164848 DOI: 10.3168/jds.2022-22709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 04/06/2023] [Indexed: 05/12/2023]
Abstract
Hypocalcemia in dairy cows is associated with a decrease of neutrophil adhesion and phagocytosis, an effect driven partly by changes in the expression of store-operated Ca2+ entry (SOCE)-related molecules. It is well established in nonruminants that neutrophils obtain the energy required for immune function through glycolysis. Whether glycolysis plays a role in the acquisition of energy by neutrophils during hypocalcemia in dairy cows is unknown. To address this relationship, we performed a cohort study and then a clinical trial. Neutrophils were isolated at 2 d postcalving from lactating Holstein dairy cows (average 2.83 ± 0.42 lactations, n = 6) diagnosed as clinically healthy (CON) or with plasma concentrations of Ca2+ <2.0 mmol/L as a criterion for diagnosing subclinical hypocalcemia (HYP, average 2.83 ± 0.42 lactations, n = 6). In the first experiment, neutrophils were isolated from blood of CON and HYP cows and used to analyze aspects of adhesion and phagocytosis function through quantitative reverse-transcription PCR along with confocal laser scanning microscopy, mRNA expression of the glycolysis-related gene hexokinase 2 (HKII), and components of the SOCE moiety ORAI calcium release-activated calcium modulator 1 (ORAI1, ORAI2, ORAI3, stromal interaction molecule 1 [STIM1], and STIM2). Results showed that adhesion and phagocytosis function were reduced in HYP cows. The mRNA expression of adhesion-related syndecan-4 (SDC4), integrin β9 (ITGA9), and integrin β3 (ITGB3) and phagocytosis-related molecules complement component 1 R subcomponent (C1R), CD36, tubulinß1 (TUBB1) were significantly decreased in the HYP group. In the second experiment, to address how glycolysis affects neutrophil adhesion and phagocytosis, neutrophils isolated from CON and HYP cows were treated with 2 μM HKII inhibitor benserazide-d3 or 1 μM fructose-bisphosphatase 1 (FBP1) inhibitor MB05032 for 1 h. Results revealed that the HKII inhibitor benserazide-d3 reduced phagocytosis and the mRNA abundance of ITGA9, and CD36 in the HYP group. The FBP1 inhibitor MB05032 increased adhesion and phagocytosis and increased mRNA abundance of HKII, ITGA9, and CD36 in the HYP group. Finally, to investigate the mechanism whereby SOCE-sensitive glycolysis affects neutrophil adhesion and phagocytosis, isolated neutrophils were treated with 1 μM SOCE activator thapsigargin or 50 μM inhibitor 2-APB for 1 h. Results showed that thapsigargin increased mRNA abundance of HKII, ITGA9, and CD36, and increased adhesion and phagocytosis in the HYP group. In contrast, 2-APB decreased mRNA abundance of HKII and both adhesion and phagocytosis of neutrophils in the CON group. Overall, the data indicated that SOCE-sensitive intracellular Ca2+ levels affect glycolysis and help regulate adhesion and phagocytosis of neutrophils during hypocalcemia in dairy cows.
Collapse
Affiliation(s)
- Bingbing Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Wei Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yuxin He
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xinru Ma
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Ming Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Xinquan Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Wei Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Chuang Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; College of Veterinary Medicine, China Agricultural University, Beijing 100000, China.
| |
Collapse
|
2
|
Radhakrishnan A, Mukherjee T, Mahish C, Kumar PS, Goswami C, Chattopadhyay S. TRPA1 activation and Hsp90 inhibition synergistically downregulate macrophage activation and inflammatory responses in vitro. BMC Immunol 2023; 24:16. [PMID: 37391696 PMCID: PMC10314470 DOI: 10.1186/s12865-023-00549-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/14/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Transient receptor potential ankyrin 1 (TRPA1) channels are known to be actively involved in various pathophysiological conditions, including neuronal inflammation, neuropathic pain, and various immunological responses. Heat shock protein 90 (Hsp90), a cytoplasmic molecular chaperone, is well-reported for various cellular and physiological processes. Hsp90 inhibition by various molecules has garnered importance for its therapeutic significance in the downregulation of inflammation and are proposed as anti-cancer drugs. However, the possible role of TRPA1 in the Hsp90-associated modulation of immune responses remains scanty. RESULTS Here, we have investigated the role of TRPA1 in regulating the anti-inflammatory effect of Hsp90 inhibition via 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) in lipopolysaccharide (LPS) or phorbol 12-myristate 13-acetate (PMA) stimulation in RAW 264.7, a mouse macrophage cell lines and PMA differentiated THP-1, a human monocytic cell line similar to macrophages. Activation of TRPA1 with Allyl isothiocyanate (AITC) is observed to execute an anti-inflammatory role via augmenting Hsp90 inhibition-mediated anti-inflammatory responses towards LPS or PMA stimulation in macrophages, whereas inhibition of TRPA1 by 1,2,3,6-Tetrahydro-1,3-dimethyl-N-[4-(1-methylethyl)phenyl]-2,6-dioxo-7 H-purine-7-acetamide,2-(1,3-Dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7 H-purin-7-yl)-N-(4-isopropylphenyl)acetamide (HC-030031) downregulates these developments. LPS or PMA-induced macrophage activation was found to be regulated by TRPA1. The same was confirmed by studying the levels of activation markers (major histocompatibility complex II (MHCII), cluster of differentiation (CD) 80 (CD80), and CD86, pro-inflammatory cytokines (tumor necrosis factor (TNF) and interleukin 6 (IL-6)), NO (nitric oxide) production, differential expression of mitogen-activated protein kinase (MAPK) signaling pathways (p-p38 MAPK, phospho-extracellular signal-regulated kinase 1/2 (p-ERK 1/2), and phosphor-stress-activated protein kinase/c-Jun N-terminal kinase (p-SAPK/JNK)), and induction of apoptosis. Additionally, TRPA1 has been found to be an important contributor to intracellular calcium levels toward Hsp90 inhibition in LPS or PMA-stimulated macrophages. CONCLUSION This study indicates a significant role of TRPA1 in Hsp90 inhibition-mediated anti-inflammatory developments in LPS or PMA-stimulated macrophages. Activation of TRPA1 and inhibition of Hsp90 has synergistic roles towards regulating inflammatory responses associated with macrophages. The role of TRPA1 in Hsp90 inhibition-mediated modulation of macrophage responses may provide insights towards designing future novel therapeutic approaches to regulate various inflammatory responses.
Collapse
Affiliation(s)
- Anukrishna Radhakrishnan
- National Institute of Science Education and Research, an Off-campus Centre (OCC) of Homi Bhabha National Institute, Bhubaneswar, Odisha 752050 India
| | - Tathagata Mukherjee
- National Institute of Science Education and Research, an Off-campus Centre (OCC) of Homi Bhabha National Institute, Bhubaneswar, Odisha 752050 India
| | - Chandan Mahish
- National Institute of Science Education and Research, an Off-campus Centre (OCC) of Homi Bhabha National Institute, Bhubaneswar, Odisha 752050 India
| | - P Sanjai Kumar
- Institute of Life Sciences, Nalco Nagar Rd, NALCO Square, NALCO Nagar, Chandrasekharpur, Bhubaneswar, Odisha 751023 India
| | - Chandan Goswami
- National Institute of Science Education and Research, an Off-campus Centre (OCC) of Homi Bhabha National Institute, Bhubaneswar, Odisha 752050 India
| | - Subhasis Chattopadhyay
- National Institute of Science Education and Research, an Off-campus Centre (OCC) of Homi Bhabha National Institute, Bhubaneswar, Odisha 752050 India
| |
Collapse
|
3
|
Sex-dependent effect of aging on calcium signaling and expression of TRPM2 and CRAC channels in human neutrophils. Hum Immunol 2022; 83:645-655. [PMID: 35660323 DOI: 10.1016/j.humimm.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/26/2022] [Accepted: 05/15/2022] [Indexed: 11/22/2022]
Abstract
The vulnerability of older adults to bacterial infections has been associated with age-related changes in neutrophils. We analyzed the consequences of aging on calcium (Ca2+) mobilization and TRPM2 and CRAC channels expression in human neutrophils. The percentages of granulocytes, mature neutrophils, and neutrophil precursors were equivalent between young and older adults. However, neutrophil chemotaxis towards IL-8, C5a, or fMLP was lower in older adults of both sexes. Interestingly, a stronger Ca2+ transient followed by an identical Ca2+ influx to IL-8 was observed in older adult females. In addition, the Ca2+ response to LPS was delayed and prolonged in neutrophils of older adult males. There was no significant difference in Ca2+ response to fMLP, C5a, or store-operated Ca2+ entry in the older adults. There were also no differences in the expression of CXCR2, CD88, FPLR1, and TLR4. Interestingly, TRPM2- and ORAI1-mRNA expression was lower in neutrophils of older adults, mainly in females. Both channels were detected intracellularly in the neutrophils. TRPM2 was in late endosomes in young adults and in lysosomes in older adult neutrophils. In summary, defective neutrophil chemotaxis in aging seemed not to stem from alterations in Ca2+ signals; nevertheless, the low TRPM2 and ORAI1 expression may affect other functions.
Collapse
|
4
|
Collado-Díaz V, Martinez-Cuesta MÁ, Blanch-Ruiz MA, Sánchez-López A, García-Martínez P, Peris JE, Usach I, Ivorra MD, Lacetera A, Martín-Santamaría S, Esplugues JV, Alvarez A. Abacavir Increases Purinergic P2X7 Receptor Activation by ATP: Does a Pro-inflammatory Synergism Underlie Its Cardiovascular Toxicity? Front Pharmacol 2021; 12:613449. [PMID: 33867979 PMCID: PMC8045785 DOI: 10.3389/fphar.2021.613449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/15/2021] [Indexed: 11/15/2022] Open
Abstract
The cardiovascular toxicity of Abacavir is related to its purinergic structure. Purinergic P2X7-receptors (P2X7R), characterized by activation by high concentrations of ATP and with high plasticity, seem implicated. We appraise the nature of the interplay between Abacavir and P2X7R in generating vascular inflammation. The effects of Abacavir on leukocyte-endothelium interactions were compared with those of its metabolite carbovir triphosphate (CBV-TP) or ATP in the presence of apyrase (ATP-ase) or A804598 (P2X7R-antagonist). CBV-TP and ATP levels were evaluated by HPLC, while binding of Abacavir, CBV-TP and ATP to P2X7R was assessed by radioligand and docking studies. Hypersensitivity studies explored a potential allosteric action of Abacavir. Clinical concentrations of Abacavir (20 µmol/L) induced leukocyte-endothelial cell interactions by specifically activating P2X7R, but the drug did not show affinity for the P2X7R ATP-binding site (site 1). CBV-TP levels were undetectable in Abacavir-treated cells, while those of ATP were unaltered. The effects of Abacavir were Apyrase-dependent, implying dependence on endogenous ATP. Exogenous ATP induced a profile of proinflammatory actions similar to Abacavir, but was not entirely P2X7R-dependent. Docking calculations suggested ATP-binding to sites 1 and 2, and Abacavir-binding only to allosteric site 2. A combination of concentrations of Abacavir (1 µmol/L) and ATP (0.1 µmol/L) that had no effect when administered separately induced leukocyte-endothelium interactions mediated by P2X7R and involving Connexin43 channels. Therefore, Abacavir acts as a positive allosteric modulator of P2X7R, turning low concentrations of endogenous ATP themselves incapable of stimulating P2X7R into a functional proinflammatory agonist of the receptor.
Collapse
Affiliation(s)
- Víctor Collado-Díaz
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Maria Ángeles Martinez-Cuesta
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain.,CIBERehd, Valencia, Spain
| | | | - Ainhoa Sánchez-López
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | | | - José E Peris
- Departamento de Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
| | - Iris Usach
- Departamento de Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
| | - Maria Dolores Ivorra
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Alessandra Lacetera
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Sonsoles Martín-Santamaría
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Juan V Esplugues
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain.,CIBERehd, Valencia, Spain.,FISABIO- Fundación Hospital Universitario Dr. Peset, Valencia, Spain
| | - Angeles Alvarez
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain.,CIBERehd, Valencia, Spain
| |
Collapse
|
5
|
Alvarez A, Rios-Navarro C, Blanch-Ruiz MA, Collado-Diaz V, Andujar I, Martinez-Cuesta MA, Orden S, Esplugues JV. Abacavir induces platelet-endothelium interactions by interfering with purinergic signalling: A step from inflammation to thrombosis. Antiviral Res 2017; 141:179-185. [PMID: 28263802 DOI: 10.1016/j.antiviral.2017.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 10/24/2022]
Abstract
The controversy connecting Abacavir (ABC) with cardiovascular disease has been fuelled by the lack of a credible mechanism of action. ABC shares structural similarities with endogenous purines, signalling molecules capable of triggering prothrombotic/proinflammatory programmes. Platelets are leading actors in the process of thrombosis. Our study addresses the effects of ABC on interactions between platelets and other vascular cells, while exploring the adhesion molecules implicated and the potential interference with the purinergic signalling pathway. The effects of ABC on platelet aggregation and platelet-endothelium interactions were evaluated, respectively, with an aggregometer and a flow chamber system that reproduced conditions in vivo. The role of adhesion molecules and purinergic receptors in endothelial and platelet populations was assessed by selective pre-incubation with specific antagonists and antibodies. ABC and carbovir triphosphate (CBT) levels were evaluated by HPLC. The results showed that ABC promoted the adherence of platelets to endothelial cells, a crucial step for the formation of thrombi. This was not a consequence of a direct effect of ABC on platelets, but resulted from activation of the endothelium via purinergic ATP-P2X7 receptors, which subsequently triggered an interplay between P-selectin and ICAM-1 on endothelial cells with constitutively expressed GPIIb/IIIa and GPIbα on platelets. ABC did not induce platelet activation (P-selectin expression or Ca2+ mobilization) or aggregation, even at high concentrations. CBT levels in endothelial cells were lower than those required to induce platelet-endothelium interactions. Thus, ABC interference with endothelial purinergic signalling leads to platelet recruitment. This highlights the endothelium as the main cell target of ABC in this interaction, which is in line with previous experimental evidence that ABC induces manifestations of vascular inflammation.
Collapse
Affiliation(s)
- Angeles Alvarez
- Departamento de Farmacología and CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; Universidad Jaume I, Facultad de Ciencias de la Salud, Castellón de la Plana, Spain.
| | - Cesar Rios-Navarro
- Departamento de Farmacología and CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; FISABIO-Fundación Hospital Universitario Dr. Peset, Valencia, Spain
| | - Maria Amparo Blanch-Ruiz
- Departamento de Farmacología and CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Victor Collado-Diaz
- Departamento de Farmacología and CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Isabel Andujar
- FISABIO-Fundación Hospital Universitario Dr. Peset, Valencia, Spain
| | | | - Samuel Orden
- Departamento de Farmacología and CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; FISABIO-Fundación Hospital Universitario Dr. Peset, Valencia, Spain
| | - Juan V Esplugues
- Departamento de Farmacología and CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; FISABIO-Fundación Hospital Universitario Dr. Peset, Valencia, Spain
| |
Collapse
|
6
|
Karachaliou CE, Triantis C, Liolios C, Palamaris L, Zikos C, Tsitsilonis OE, Kalbacher H, Voelter W, Loudos G, Papadopoulos M, Pirmettis I, Livaniou E. In vivo biodistribution and imaging studies with a 99mTc-radiolabeled derivative of the C-terminus of prothymosin alpha in mice bearing experimentally-induced inflammation. Eur J Pharm Biopharm 2017; 113:188-197. [PMID: 28087377 DOI: 10.1016/j.ejpb.2016.12.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/15/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022]
Abstract
Prothymosin alpha (ProTα) is a highly conserved mammalian polypeptide (109 amino acids in man) exerting in vitro and in vivo immunoenhancing activities. Recently, our team has developed a 99mTc-radiolabeled derivative of the C-terminal bioactive decapeptide of ProTα ([99mTc]C1) and employed it in in vitro studies, the results of which support the existence of binding sites on human neutrophils that recognize [99mTc]C1, intact ProTα as well as the C-terminal decapeptide of ProTα and presumably involve Toll-like receptor 4. In the present work, [99mTc]C1 was administered to Swiss albino mice with experimentally-induced inflammation for in vivo biodistribution and imaging studies, in parallel with a suitable negative control, which differs from [99mTc]C1 only in bearing a scrambled version of the ProTα decapeptide. The biodistribution data obtained with [99mTc]C1 demonstrated fast clearance of radioactivity from blood, heart, lungs, normal muscle, and predominantly urinary excretion. Most importantly, slow clearance of radioactivity from the inflammation focus was observed, resulting in a high ratio of inflamed/normal muscle tissue (9.15 at 30min post injection, which remained practically stable up to 2h). The inflammation-targeting capacity of [99mTc]C1 was confirmed by imaging studies and might be attributed to neutrophils, which are recruited at the inflamed areas and bear binding sites for [99mTc]C1. In this respect, apart from being a valuable tool for further studies on ProTα in in vitro and in vivo systems, [99mTc]C1 merits further evaluation as a radiopharmaceutical for specific imaging of inflammation foci.
Collapse
Affiliation(s)
- Chrysoula-Evangelia Karachaliou
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety (INRASTES), National Center for Scientific Research "Demokritos" (NCSR "Demokritos"), Athens 15310, Greece
| | - Charalampos Triantis
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety (INRASTES), National Center for Scientific Research "Demokritos" (NCSR "Demokritos"), Athens 15310, Greece
| | - Christos Liolios
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety (INRASTES), National Center for Scientific Research "Demokritos" (NCSR "Demokritos"), Athens 15310, Greece
| | - Lazaros Palamaris
- Department of Medical Instruments Technology, Technological Educational Institute, Athens 12243, Greece
| | - Christos Zikos
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety (INRASTES), National Center for Scientific Research "Demokritos" (NCSR "Demokritos"), Athens 15310, Greece
| | - Ourania E Tsitsilonis
- Division of Animal and Human Physiology, Department of Biology, University of Athens, Athens 15784, Greece
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen 72076, Germany
| | - Wolfgang Voelter
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen 72076, Germany
| | - George Loudos
- Department of Medical Instruments Technology, Technological Educational Institute, Athens 12243, Greece
| | - Minas Papadopoulos
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety (INRASTES), National Center for Scientific Research "Demokritos" (NCSR "Demokritos"), Athens 15310, Greece
| | - Ioannis Pirmettis
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety (INRASTES), National Center for Scientific Research "Demokritos" (NCSR "Demokritos"), Athens 15310, Greece
| | - Evangelia Livaniou
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety (INRASTES), National Center for Scientific Research "Demokritos" (NCSR "Demokritos"), Athens 15310, Greece.
| |
Collapse
|