1
|
Dao LTM, Vu TT, Nguyen QT, Hoang VT, Nguyen TL. Current cell therapies for systemic lupus erythematosus. Stem Cells Transl Med 2024; 13:859-872. [PMID: 38920310 PMCID: PMC11386214 DOI: 10.1093/stcltm/szae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/11/2024] [Indexed: 06/27/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease in which multiple organs are damaged by the immune system. Although standard treatment options such as hydroxychloroquine (HCQ), glucocorticoids (GCs), and other immunosuppressive or immune-modulating agents can help to manage symptoms, they do not offer a cure. Hence, there is an urgent need for the development of novel drugs and therapies. In recent decades, cell therapies have been used for the treatment of SLE with encouraging results. Hematopoietic stem cell transplantation, mesenchymal stem cells, regulatory T (Treg) cell, natural killer cells, and chimeric antigen receptor T (CAR T) cells are advanced cell therapies which have been developed and evaluated in clinical trials in humans. In clinical application, each of these approaches has shown advantages and disadvantages. In addition, further studies are necessary to conclusively establish the safety and efficacy of these therapies. This review provides a summary of recent clinical trials investigating cell therapies for SLE treatment, along with a discussion on the potential of other cell-based therapies. The factors influencing the selection of common cell therapies for individual patients are also highlighted.
Collapse
Affiliation(s)
- Lan T M Dao
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
| | - Thu Thuy Vu
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
| | - Quyen Thi Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
| | - Van T Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
| | - Thanh Liem Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
- Vinmec International Hospital, Center of Regenerative Medicine and Cell Therapy, Vinmec Healthcare System, Hanoi 100000, Vietnam
- Vin University, College of Health Sciences, Hanoi 100000, Vietnam
| |
Collapse
|
2
|
Bekić M, Tomić S. Myeloid-derived suppressor cells in the therapy of autoimmune diseases. Eur J Immunol 2023; 53:e2250345. [PMID: 37748117 DOI: 10.1002/eji.202250345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/14/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are well recognized as critical factors in the pathology of tumors. However, their roles in autoimmune diseases are still unclear, which hampers the development of efficient immunotherapies. The role of different MDSCs subsets in multiple sclerosis, inflammatory bowel diseases, rheumatoid arthritis, type 1 diabetes, and systemic lupus erythematosus displayed different mechanisms of immune suppression, and several studies pointed to MDSCs' capacity to induce T-helper (Th)17 cells and tissue damage. These results also suggested that MDSCs could be present in different functional states and utilize different mechanisms for controlling the activity of T and B cells. Therefore, various therapeutic strategies should be employed to restore homeostasis in autoimmune diseases. The therapies harnessing MDSCs could be designed either as cell therapy or rely on the expansion and activation of MDSCs in vivo, or their depletion. Cumulatively, MDSCs are inevitable players in autoimmunity, and rational approaches in developing therapies are required to avoid the adverse effects of MDSCs and harness their suppressive mechanisms to improve the overall efficacy of autoimmunity therapy.
Collapse
Affiliation(s)
- Marina Bekić
- Institute for the Application of Nuclear Energy, University in Belgrade, Beograd, Serbia
| | - Sergej Tomić
- Institute for the Application of Nuclear Energy, University in Belgrade, Beograd, Serbia
| |
Collapse
|
3
|
Manley AL, Chen J, Fitzgerald W, Feng X, Young NS. Immunosuppressive Activity of Exosomes from Granulocytic Myeloid-Derived Suppressor Cells in a Murine Model of Immune Bone Marrow Failure. Int J Mol Sci 2023; 24:14661. [PMID: 37834110 PMCID: PMC10572857 DOI: 10.3390/ijms241914661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
We previously reported that granulocytic myeloid-derived suppressor cells (G-MDSCs) suppressed T-cell activation and attenuated bone marrow failure (BMF) in a minor histocompatibility (minor-H) antigen mismatched murine aplastic anemia (AA) model. In the current study, we tested the hypothesis that exosomes, a subset of extracellular vesicles, are responsible at least partially for G-MDSCs' therapeutic efficacy. Indeed, exosomes isolated from GMDSCs (G-MDSC-exos) suppressed CD4+ and CD8+ T-cell proliferation in vitro and mildly attenuated immune BMF in the minor-H mismatched AA model. G-MDSC-exos treatment significantly increased red blood cells, hemoglobin, and total bone marrow (BM) cells, and moderately reduced BM CD8+ T cells. G-MDSC-exos' effects were associated with upregulations in an array of lymphocyte-suppression-related miRNAs such as hsa-miR-142-5p, miR-19a-3p, and miR-19b-3p in both BM CD4+ and CD8+ T cells. We concluded that G-MDSC-exos attenuate immune BMF via modulating the delivery of immunosuppressive miRNAs into activated T lymphocytes.
Collapse
Affiliation(s)
- Ash Lee Manley
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (A.L.M.); (J.C.); (N.S.Y.)
| | - Jichun Chen
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (A.L.M.); (J.C.); (N.S.Y.)
| | - Wendy Fitzgerald
- Intracellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Xingmin Feng
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (A.L.M.); (J.C.); (N.S.Y.)
| | - Neal S. Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (A.L.M.); (J.C.); (N.S.Y.)
| |
Collapse
|
4
|
Sohal IS, Kasinski AL. Emerging diversity in extracellular vesicles and their roles in cancer. Front Oncol 2023; 13:1167717. [PMID: 37397375 PMCID: PMC10312242 DOI: 10.3389/fonc.2023.1167717] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Extracellular vesicles have undergone a paradigm shift from being considered as 'waste bags' to being central mediators of cell-to-cell signaling in homeostasis and several pathologies including cancer. Their ubiquitous nature, ability to cross biological barriers, and dynamic regulation during changes in pathophysiological state of an individual not only makes them excellent biomarkers but also critical mediators of cancer progression. This review highlights the heterogeneity in extracellular vesicles by discussing emerging subtypes, such as migrasomes, mitovesicles, and exophers, as well as evolving components of extracellular vesicles such as the surface protein corona. The review provides a comprehensive overview of our current understanding of the role of extracellular vesicles during different stages of cancer including cancer initiation, metabolic reprogramming, extracellular matrix remodeling, angiogenesis, immune modulation, therapy resistance, and metastasis, and highlights gaps in our current knowledge of extracellular vesicle biology in cancer. We further provide a perspective on extracellular vesicle-based cancer therapeutics and challenges associated with bringing them to the clinic.
Collapse
Affiliation(s)
- Ikjot S. Sohal
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Andrea L. Kasinski
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
5
|
Pang B, Hu C, Li H, Nie X, Wang K, Zhou C, Yi H. Myeloidderived suppressor cells: Escorts at the maternal-fetal interface. Front Immunol 2023; 14:1080391. [PMID: 36817414 PMCID: PMC9932974 DOI: 10.3389/fimmu.2023.1080391] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a novel heterogenous group of immunosuppressive cells derived from myeloid progenitors. Their role is well known in tumors and autoimmune diseases. In recent years, the role and function of MDSCs during reproduction have attracted increasing attention. Improving the understanding of their strong association with recurrent implantation failure, pathological pregnancy, and neonatal health has become a focus area in research. In this review, we focus on the interaction between MDSCs and other cell types (immune and non-immune cells) from embryo implantation to postpartum. Furthermore, we discuss the molecular mechanisms that could facilitate the therapeutic targeting of MDSCs. Therefore, this review intends to encourage further research in the field of maternal-fetal interface immunity in order to identify probable pathways driving the accumulation of MDSCs and to effectively target their ability to promote embryo implantation, reduce pathological pregnancy, and increase neonatal health.
Collapse
Affiliation(s)
- Bo Pang
- Central Laboratory, First Hospital of Jilin University, Changchun, Jilin, China.,Cardiology Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Cong Hu
- Central Laboratory, First Hospital of Jilin University, Changchun, Jilin, China.,Reproductive Medicine Center, Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Huimin Li
- Central Laboratory, First Hospital of Jilin University, Changchun, Jilin, China.,Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Xinyu Nie
- Central Laboratory, First Hospital of Jilin University, Changchun, Jilin, China.,Reproductive Medicine Center, Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Keqi Wang
- Central Laboratory, First Hospital of Jilin University, Changchun, Jilin, China.,Cardiology Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Chen Zhou
- General Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Huanfa Yi
- Central Laboratory, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Li C, Yu X, Zhang L, Peng Y, Zhang T, Li Y, Luan Y, Yin C. The potential role and regulatory mechanism of IL-33/ST2 axis on T lymphocytes during lipopolysaccharide stimulation or perinatal Listeria infection. Int Immunopharmacol 2022; 108:108742. [DOI: 10.1016/j.intimp.2022.108742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/20/2022] [Accepted: 03/29/2022] [Indexed: 11/05/2022]
|
7
|
Chen Z, Yuan R, Hu S, Yuan W, Sun Z. Roles of the Exosomes Derived From Myeloid-Derived Suppressor Cells in Tumor Immunity and Cancer Progression. Front Immunol 2022; 13:817942. [PMID: 35154134 PMCID: PMC8829028 DOI: 10.3389/fimmu.2022.817942] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/12/2022] [Indexed: 12/23/2022] Open
Abstract
Tumor immunity is involved in malignant tumor progression. Myeloid-derived suppressor cells (MDSCs) play an irreplaceable role in tumor immunity. MDSCs are composed of immature myeloid cells and exhibit obvious immunomodulatory functions. Exosomes released by MDSCs (MDSCs-Exos) have similar effects to parental MDSCs in regulating tumor immunity. In this review, we provided a comprehensive description of the characteristics, functions and mechanisms of exosomes. We analyzed the immunosuppressive, angiogenesis and metastatic effects of MDSCs-Exos in different tumors through multiple perspectives. Immunotherapy targeting MDSCs-Exos has demonstrated great potential in cancers and non-cancerous diseases.
Collapse
Affiliation(s)
- Zhuang Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Lajqi T, Köstlin-Gille N, Hillmer S, Braun M, Kranig SA, Dietz S, Krause C, Rühle J, Frommhold D, Pöschl J, Gille C, Hudalla H. Gut Microbiota-Derived Small Extracellular Vesicles Endorse Memory-like Inflammatory Responses in Murine Neutrophils. Biomedicines 2022; 10:442. [PMID: 35203650 PMCID: PMC8962420 DOI: 10.3390/biomedicines10020442] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
Neutrophils are classically characterized as merely reactive innate effector cells. However, the microbiome is known to shape the education and maturation process of neutrophils, improving their function and immune-plasticity. Recent reports demonstrate that murine neutrophils possess the ability to exert adaptive responses after exposure to bacterial components such as LPS (Gram-negative bacteria) or LTA (Gram-positive bacteria). We now ask whether small extracellular vesicles (EVs) from the gut may directly mediate adaptive responses in neutrophils in vitro. Murine bone marrow-derived neutrophils were primed in vitro by small EVs of high purity collected from colon stool samples, followed by a second hit with LPS. We found that low-dose priming with gut microbiota-derived small EVs enhanced pro-inflammatory sensitivity as indicated by elevated levels of TNF-α, IL-6, ROS and MCP-1 and increased migratory and phagocytic activity. In contrast, high-dose priming resulted in a tolerant phenotype, marked by increased IL-10 and decreased transmigration and phagocytosis. Alterations in TLR2/MyD88 as well as TLR4/MyD88 signaling were correlated with the induction of adaptive cues in neutrophils in vitro. Taken together, our study shows that small EVs from stools can drive adaptive responses in neutrophils in vitro and may represent a missing link in the gut-immune axis.
Collapse
Affiliation(s)
- Trim Lajqi
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (N.K.-G.); (M.B.); (S.A.K.); (S.D.); (C.K.); (J.P.); (C.G.)
| | - Natascha Köstlin-Gille
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (N.K.-G.); (M.B.); (S.A.K.); (S.D.); (C.K.); (J.P.); (C.G.)
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany;
| | - Stefan Hillmer
- Electron Microscopy Core Facility (EMCF), University of Heidelberg, D-69120 Heidelberg, Germany;
| | - Maylis Braun
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (N.K.-G.); (M.B.); (S.A.K.); (S.D.); (C.K.); (J.P.); (C.G.)
| | - Simon A. Kranig
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (N.K.-G.); (M.B.); (S.A.K.); (S.D.); (C.K.); (J.P.); (C.G.)
| | - Stefanie Dietz
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (N.K.-G.); (M.B.); (S.A.K.); (S.D.); (C.K.); (J.P.); (C.G.)
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany;
| | - Christian Krause
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (N.K.-G.); (M.B.); (S.A.K.); (S.D.); (C.K.); (J.P.); (C.G.)
| | - Jessica Rühle
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany;
| | - David Frommhold
- Klinik für Kinderheilkunde und Jugendmedizin, D-87700 Memmingen, Germany;
| | - Johannes Pöschl
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (N.K.-G.); (M.B.); (S.A.K.); (S.D.); (C.K.); (J.P.); (C.G.)
| | - Christian Gille
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (N.K.-G.); (M.B.); (S.A.K.); (S.D.); (C.K.); (J.P.); (C.G.)
| | - Hannes Hudalla
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (N.K.-G.); (M.B.); (S.A.K.); (S.D.); (C.K.); (J.P.); (C.G.)
| |
Collapse
|
9
|
Bert S, Ward EJ, Nadkarni S. Neutrophils in pregnancy: New insights into innate and adaptive immune regulation. Immunology 2021; 164:665-676. [PMID: 34287859 PMCID: PMC8561097 DOI: 10.1111/imm.13392] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
The immunology of pregnancy has been the focus of many studies to better understand how the mother is able to tolerate the presence of a semi-allogeneic fetus. Far from the initial view of pregnancy as a state of immunosuppression, successful fetal development from implantation to birth is now known to be under the control of an intricate balance of immune cells. The balance between pro-inflammatory functions used to promote embryo implantation and placental development and immunosuppressive activity to maintain maternal tolerance of the fetus is an immunological phenotype unique to pregnancy, which is dependent on the time of gestation. Neutrophils are one of a host of innate immune cells detected at the maternal-fetal interface, but very little is known of their function. In this review, we explore the emerging functions of neutrophils during pregnancy and their interactions with and regulation of T cells, a key adaptive immune cell population essential for the establishment of fetal-maternal tolerance.
Collapse
Affiliation(s)
- Serena Bert
- William Harvey Research InstituteBarts and the London School of MedicineQueen Mary UniversityLondonUK
| | - Eleanor J. Ward
- William Harvey Research InstituteBarts and the London School of MedicineQueen Mary UniversityLondonUK
| | - Suchita Nadkarni
- William Harvey Research InstituteBarts and the London School of MedicineQueen Mary UniversityLondonUK
| |
Collapse
|
10
|
Vergani E, Daveri E, Vallacchi V, Bergamaschi L, Lalli L, Castelli C, Rodolfo M, Rivoltini L, Huber V. Extracellular vesicles in anti-tumor immunity. Semin Cancer Biol 2021; 86:64-79. [PMID: 34509614 DOI: 10.1016/j.semcancer.2021.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022]
Abstract
To what extent extracellular vesicles (EVs) can impact anti-tumor immune responses has only started to get unraveled. Their nanometer dimensions, their growing number of subtypes together with the difficulties in defining their origin hamper their investigation. The existence of tumor cell lines facilitated advance in cancer EV understanding, while capturing information about phenotypes and functions of immune cell EVs in this context is more complex. The advent of immunotherapy with immune checkpoint inhibitors has further deepened the need to dissect the impact of EVs during immune activation and response, not least to contribute unraveling and preventing the generation of resistance occurring in the majority of patients. Here we discuss the factors that influence anddrive the immune response in cancer patients in the context of cancer therapeutics and the roles or possible functions that EVs can have in this scenario. With immune cell-derived EVs as leitmotiv, we will journey from EV discovery and subtypes through physiological and pathological functions, from similarities with tumor EVs to measures to revert detrimental consequences on immune responses to cancer.
Collapse
Affiliation(s)
- Elisabetta Vergani
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Elena Daveri
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Viviana Vallacchi
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Laura Bergamaschi
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Luca Lalli
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Chiara Castelli
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Monica Rodolfo
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Licia Rivoltini
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Veronica Huber
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy.
| |
Collapse
|
11
|
Myeloid-derived suppressor cells: Multi-talented immune suppressive cells that can be either helpful or harmful. Cell Immunol 2021; 365:104374. [PMID: 34038759 DOI: 10.1016/j.cellimm.2021.104374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|