1
|
Yang L, Xue R, Yang C, Lv Y, Li S, Xiang W, Guo X, Zhou J. Endoplasmic reticulum stress on glioblastoma: Tumor growth promotion and immunosuppression. Int Immunopharmacol 2025; 157:114806. [PMID: 40339490 DOI: 10.1016/j.intimp.2025.114806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 04/10/2025] [Accepted: 05/03/2025] [Indexed: 05/10/2025]
Abstract
Exogenous or endogenous factors such as hypoxia, nutritional deficiencies, acidic microenvironments and their own high metabolic demands usually lead to tumor endoplasmic reticulum dysfunction and trigger endoplasmic reticulum stress (ERS). ERS sensors intercept such stress signals, which subsequently initiate the unfolded protein response (UPR), enabling tumor cells to adapt robustly in the hostile environment. Many studies have found that the ERS response affects a variety of tumor-infiltrating immune cells and suppresses their anti-tumor responses through different mechanisms. Given that glioblastoma (GBM) are immunosuppressive "cold tumors" with a poor prognosis. This paper not only discusses the promotion of GBM growth by ERS response, but also reviews the mechanisms by which ERS response promotes an immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Luxia Yang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Ruifeng Xue
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Chaoge Yang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Yancheng Lv
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Shenjie Li
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Wei Xiang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Xiyuan Guo
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China; Division of Clinical Chemistry, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Jie Zhou
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China.
| |
Collapse
|
2
|
Moghaddasnejad MR, Keshavarz A, Mardi A, Sherafat NS, Aghebati-Maleki L, Mohammadi MH. LncRNAs as behind-the-scenes molecules in cancer progression through regulating tumor-associated innate immune system cells. Mol Biol Rep 2025; 52:449. [PMID: 40338353 DOI: 10.1007/s11033-025-10513-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/14/2025] [Indexed: 05/09/2025]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as critical regulators in cancer biology, particularly in the modulation of innate immune cells within the tumor microenvironment. These lncRNAs significantly influence the phenotype and function of immune cells, such as tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs), natural killer cells (NK), neutrophils, and γδT cells. Thus, lncRNAs emerge as pivotal molecules in cancer development due to their capacity to modulate the innate immune system. Understanding the intricate mechanisms by which lncRNAs influence tumor-associated immune cells can pave the way for novel therapeutic strategies to restore effective anti-tumor immunity. This review highlights the diverse roles of lncRNAs in regulating the differentiation, activation, and effector functions of innate immune cells within the complex tumor microenvironment.
Collapse
Affiliation(s)
| | - Ali Keshavarz
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, P.O.Box: 15468-15514, Tehran, Iran
| | - Amirhossein Mardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Negar Sadat Sherafat
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mohammad Hossein Mohammadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, P.O.Box: 15468-15514, Tehran, Iran.
| |
Collapse
|
3
|
Zhang XJ, Yu Y, Zhao HP, Guo L, Dai K, Lv J. Mechanisms of tumor immunosuppressive microenvironment formation in esophageal cancer. World J Gastroenterol 2024; 30:2195-2208. [PMID: 38690024 PMCID: PMC11056912 DOI: 10.3748/wjg.v30.i16.2195] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/05/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
As a highly invasive malignancy, esophageal cancer (EC) is a global health issue, and was the eighth most prevalent cancer and the sixth leading cause of cancer-related death worldwide in 2020. Due to its highly immunogenic nature, emer-ging immunotherapy approaches, such as immune checkpoint blockade, have demonstrated promising efficacy in treating EC; however, certain limitations and challenges still exist. In addition, tumors may exhibit primary or acquired resistance to immunotherapy in the tumor immune microenvironment (TIME); thus, understanding the TIME is urgent and crucial, especially given the im-portance of an immunosuppressive microenvironment in tumor progression. The aim of this review was to better elucidate the mechanisms of the suppressive TIME, including cell infiltration, immune cell subsets, cytokines and signaling pathways in the tumor microenvironment of EC patients, as well as the downregulated expression of major histocompatibility complex molecules in tumor cells, to obtain a better understanding of the differences in EC patient responses to immunotherapeutic strategies and accurately predict the efficacy of immunotherapies. Therefore, personalized treatments could be developed to maximize the advantages of immunotherapy.
Collapse
Affiliation(s)
- Xiao-Jun Zhang
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Yan Yu
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - He-Ping Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Lei Guo
- Department of Spinal Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Kun Dai
- Department of Clinical Laboratory, Yanliang Railway Hospital of Xi’an, Xi’an 710089, Shaanxi Province, China
| | - Jing Lv
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| |
Collapse
|
4
|
Jiang WM, Tian JY, Guo YH, Qiu LH, Luo XY, Huang YY, Long H, Zhang LJ, Lin P, Xu XX, Wu LL, Ma GW. The molecular characteristics could supplement the staging system of pT2/T3N0M0 esophageal squamous cell carcinoma: a translational study based on a cohort with over 20 years of follow-up. Cancer Cell Int 2024; 24:119. [PMID: 38553712 PMCID: PMC10981364 DOI: 10.1186/s12935-024-03286-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/29/2024] [Indexed: 04/01/2024] Open
Abstract
OBJECTIVE This study aimed to construct a model based on 23 enrolled molecules to evaluate prognoses of pT2/3N0M0 esophageal squamous cell carcinoma (ESCC) patients with up to 20 years of follow-up. METHODS The lasso-Cox model was used to identify the candidate molecule. A nomogram was conducted to develop the survival model (molecular score, MS) based on the molecular features. Cox regression and Kaplan-Meier analysis were used in this study. The concordance index (C-index) was measured to compare the predicted ability between different models. The primary endpoint was overall survival (OS). RESULTS A total of 226 patients and 23 proteins were enrolled in this study. Patients were classified into high-risk (MS-H) and low-risk (MS-L) groups based on the MS score of 227. The survival curves showed that the MS-L cohort had better 5-year and 10-year survival rates than the MS-H group (5-year OS: 51.0% vs. 8.0%; 10-year OS: 45.0% vs. 5.0%, all p < 0.001). Furthermore, multivariable analysis confirmed MS as an independent prognostic factor after eliminating the confounding factors (Hazard ratio 3.220, p < 0.001). The pT classification was confirmed to differentiate ESCC patients' prognosis (Log-rank: p = 0.029). However, the combination of pT and MS could classify survival curves evidently (overall p < 0.001), which showed that the prognostic prediction efficiency was improved significantly by the combination of the pT and MS than by the classical pT classification (C-index: 0.656 vs. 0.539, p < 0.001). CONCLUSIONS Our study suggested an MS for significant clinical stratification of T2/3N0M0 ESCC patients to screen out subgroups with poor prognoses. Besides, the combination of pT staging and MS could predict survival more accurately for this cohort than the pT staging system alone.
Collapse
Affiliation(s)
- Wen-Mei Jiang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510030, P. R. China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Jia-Yuan Tian
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510030, P. R. China
| | - Yi-Han Guo
- Department of Scientific Research, Shaanxi Academy of Social Sciences, Xi'an, 710065, China
| | - Li-Hong Qiu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510030, P. R. China
| | - Xing-Yu Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510030, P. R. China
| | - Yang-Yu Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510030, P. R. China
| | - Hao Long
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510030, P. R. China
| | - Lan-Jun Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510030, P. R. China
| | - Peng Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510030, P. R. China
| | - Xin-Xin Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510030, P. R. China.
- Central Hospital of Minhang District, Shanghai, 201100, P. R. China.
| | - Lei-Lei Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510030, P. R. China.
- Department of Thoracic Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
| | - Guo-Wei Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510030, P. R. China.
| |
Collapse
|
5
|
Arab I, Park J, Shin JJ, Shin HS, Suk K, Lee WH. Macrophage lncRNAs in cancer development: Long-awaited therapeutic targets. Biochem Pharmacol 2023; 218:115890. [PMID: 37884197 DOI: 10.1016/j.bcp.2023.115890] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
In the tumor microenvironment, the interplay among macrophages, cancer cells, and endothelial cells is multifaceted. Tumor-associated macrophages (TAMs), which often exhibit an M2 phenotype, contribute to tumor growth and angiogenesis, while cancer cells and endothelial cells reciprocally influence macrophage behavior. This complex interrelationship highlights the importance of targeting these interactions for the development of novel cancer therapies aimed at disrupting tumor progression and angiogenesis. Accumulating evidence underscores the indispensable involvement of lncRNAs in shaping macrophage functionality and contributing to the development of cancer. Animal studies have further validated the therapeutic potential of manipulating macrophage lncRNA activity to ameliorate disease severity and reduce morbidity rates. This review provides a survey of our current understanding of macrophage-associated lncRNAs, with a specific emphasis on their molecular targets and their regulatory impact on cancer progression. These lncRNAs predominantly govern macrophage polarization, favoring the dominance of M2 macrophages or TAMs. Exosomes or extracellular vesicles mediate lncRNA transfer between macrophages and cancer cells, affecting cellular functions of each other. Moreover, this review presents therapeutic strategies targeting cancer-associated lncRNAs. The insights and findings presented in this review pertaining to macrophage lncRNAs can offer valuable information for the development of treatments against cancer.
Collapse
Affiliation(s)
- Imene Arab
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeongkwang Park
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Joon Shin
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyeung-Seob Shin
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
6
|
Ning XY, Ma JH, He W, Ma JT. Role of exosomes in metastasis and therapeutic resistance in esophageal cancer. World J Gastroenterol 2023; 29:5699-5715. [PMID: 38075847 PMCID: PMC10701334 DOI: 10.3748/wjg.v29.i42.5699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/13/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023] Open
Abstract
Esophageal cancer (EC) has a high incidence and mortality rate and is emerging as one of the most common health problems globally. Owing to the lack of sensitive detection methods, uncontrollable rapid metastasis, and pervasive treatment resistance, EC is often diagnosed in advanced stages and is susceptible to local recurrence. Exosomes are important components of intercellular communication and the exosome-mediated crosstalk between the cancer and surrounding cells within the tumor microenvironment plays a crucial role in the metastasis, progression, and therapeutic resistance of EC. Considering the critical role of exosomes in tumor pathogenesis, this review focused on elucidating the impact of exosomes on EC metastasis and therapeutic resistance. Here, we summarized the relevant signaling pathways involved in these processes. In addition, we discussed the potential clinical applications of exosomes for the early diagnosis, prognosis, and treatment of EC.
Collapse
Affiliation(s)
- Xing-Yu Ning
- The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Jin-Hu Ma
- The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Wei He
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Jun-Ting Ma
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui Province, China
| |
Collapse
|
7
|
Zhan DT, Xian HC. Exploring the regulatory role of lncRNA in cancer immunity. Front Oncol 2023; 13:1191913. [PMID: 37637063 PMCID: PMC10448763 DOI: 10.3389/fonc.2023.1191913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Imbalanced immune homeostasis in cancer microenvironment is a hallmark of cancer. Increasing evidence demonstrated that long non-coding RNAs (lncRNAs) have emerged as key regulatory molecules in directly blocking the cancer immunity cycle, apart from activating negative regulatory pathways for restraining tumor immunity. lncRNAs reshape the tumor microenvironment via the recruitment and activation of innate and adaptive lymphoid cells. In this review, we summarized the versatile mechanisms of lncRNAs implicated in cancer immunity cycle, including the inhibition of antitumor T cell activation, blockade of effector T cell recruitment, disruption of T cell homing, recruitment of immunosuppressive cells, and inducing an imbalance between antitumor effector cells (cytotoxic T lymphocytes, M1 macrophages, and T helper type 1 cells) versus immunosuppressive cells (M2 macrophages, T helper type 2 cells, myeloid derived suppressor cells, and regulatory T cells) that infiltrate in the tumor. As such, we would highlight the potential of lncRNAs as novel targets for immunotherapy.
Collapse
Affiliation(s)
- Dan-ting Zhan
- Department of Prosthodontics, Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Hong-chun Xian
- Department of Plastic and Maxillofacial Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|