1
|
Zhao C, Xiang H, Li M, Gao R, Zhang Y, Li Q, Hu L. Heat shock protein 110: A novel candidate for disease diagnosis and targeted therapy. Drug Discov Today 2024; 29:104199. [PMID: 39368698 DOI: 10.1016/j.drudis.2024.104199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
The heat shock protein 110 (Hsp110) family in eukaryotes plays a pivotal role in maintaining cellular proteostasis. As a unique class of molecular chaperones, Hsp110s act as both independent chaperones and cochaperones for other essential molecular chaperones. Malfunction of Hsp110s is involved in many diseases. Thus targeting Hsp110s or its interactions with client proteins may provide new approaches for developing therapeutics. In this review, we describe the current understanding of the role and molecular mechanism of Hsp110s in disease development, and discuss the recent exploration of Hsp110s as potential targets to provide a novel direction for disease diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Congke Zhao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China; Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Honglin Xiang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| | - Mengqi Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Ruizhe Gao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| | - Yifan Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China.
| | - Liqing Hu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China.
| |
Collapse
|
2
|
Kumar S, Verma R, Saha S, Agrahari AK, Shukla S, Singh ON, Berry U, Anurag, Maiti TK, Asthana S, Ranjith-Kumar CT, Surjit M. RNA-Protein Interactome at the Hepatitis E Virus Internal Ribosome Entry Site. Microbiol Spectr 2023; 11:e0282722. [PMID: 37382527 PMCID: PMC10434006 DOI: 10.1128/spectrum.02827-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/11/2023] [Indexed: 06/30/2023] Open
Abstract
Multiple processes exist in a cell to ensure continuous production of essential proteins either through cap-dependent or cap-independent translation processes. Viruses depend on the host translation machinery for viral protein synthesis. Therefore, viruses have evolved clever strategies to use the host translation machinery. Earlier studies have shown that genotype 1 hepatitis E virus (g1-HEV) uses both cap-dependent and cap-independent translation machineries for its translation and proliferation. Cap-independent translation in g1-HEV is driven by an 87-nucleotide-long RNA element that acts as a noncanonical, internal ribosome entry site-like (IRESl) element. Here, we have identified the RNA-protein interactome of the HEV IRESl element and characterized the functional significance of some of its components. Our study identifies the association of HEV IRESl with several host ribosomal proteins, demonstrates indispensable roles of ribosomal protein RPL5 and DHX9 (RNA helicase A) in mediating HEV IRESl activity, and establishes the latter as a bona fide internal translation initiation site. IMPORTANCE Protein synthesis is a fundamental process for survival and proliferation of all living organisms. The majority of cellular proteins are produced through cap-dependent translation. Cells also use a variety of cap-independent translation processes to synthesize essential proteins during stress. Viruses depend on the host cell translation machinery to synthesize their own proteins. Hepatitis E virus (HEV) is a major cause of hepatitis worldwide and has a capped positive-strand RNA genome. Viral nonstructural and structural proteins are synthesized through a cap-dependent translation process. An earlier study from our laboratory reported the presence of a fourth open reading frame (ORF) in genotype 1 HEV, which produces the ORF4 protein using a cap-independent internal ribosome entry site-like (IRESl) element. In the current study, we identified the host proteins that associate with the HEV-IRESl RNA and generated the RNA-protein interactome. Through a variety of experimental approaches, our data prove that HEV-IRESl is a bona fide internal translation initiation site.
Collapse
Affiliation(s)
- Shiv Kumar
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Rohit Verma
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Sandhini Saha
- Laboratory of Functional Proteomics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Ashish Kumar Agrahari
- Noncommunicable Disease Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Shivangi Shukla
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Oinam Ningthemmani Singh
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Umang Berry
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Anurag
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Tushar Kanti Maiti
- Laboratory of Functional Proteomics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Shailendra Asthana
- Noncommunicable Disease Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - C. T. Ranjith-Kumar
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Milan Surjit
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|
3
|
Zhao X, Zhang DQ, Song R, Wang R, Zhang G. The clinical significance of circulating glucose-regulated protein 78, Caspase-3, and C/EBP homologous protein levels in patients with heart failure. Heliyon 2023; 9:e13436. [PMID: 36820047 PMCID: PMC9937949 DOI: 10.1016/j.heliyon.2023.e13436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Background and aims The destruction of endoplasmic reticulum (ER) homeostasis leads to heart failure (HF), which further aggravates ER stress. Limited data are available on the levels of ER stress markers in HF patients in clinical practice. This study aimed to determine the clinical significance of the ER stress markers, glucose-regulated protein 78 (GRP78), Caspase-3, and C/EBP homologous protein (CHOP), in predicting HF and its severity. Materials and methods A total of 62 patients with HF and 44 healthy controls were enrolled in the study, and all participants were followed-up for 2 years. Results Serum GRP78, Caspase-3, and CHOP levels were significantly higher in patients with HF than those in healthy controls. The level of GRP78 increased with the severity of HF. GRP78 levels were negatively correlated with left ventricular ejection fraction, and positively correlated with N-terminal B-type natriuretic peptide, D-dimer, and lactic acid. Serum GRP78 and Caspase-3 levels showed moderate predictive values for HF patients. Conclusion ER stress markers, GRP78 and Caspase-3, had a certain predictive value in HF and can be used as serum biomarkers for the diagnosis of HF. Additionally, GRP78 showed a certain predictive value in HF severity.
Collapse
Affiliation(s)
- Xuecheng Zhao
- Department of Emergency Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Da-Qi Zhang
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Corresponding author. Department of Neurology, the First Affiliated Hospital of Hainan Medical University, Longhua Road, Haikou City 570102, Hainan Province, China.
| | - Rongjing Song
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| | - Rong Wang
- School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Guoqiang Zhang
- Department of Emergency Medicine, China-Japan Friendship Hospital, Beijing, China
- Corresponding author. Department of Emergency Medicine, China-Japan Friendship Hospital, 2 Yinghua Dongjie, Hepingli, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
4
|
Yan LR, Shen SX, Wang A, Ding HX, Liu YN, Yuan Y, Xu Q. Comprehensive Pan-Cancer Analysis of Heat Shock Protein 110, 90, 70, and 60 Families. Front Mol Biosci 2021; 8:726244. [PMID: 34712697 PMCID: PMC8546173 DOI: 10.3389/fmolb.2021.726244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Here we carried out a panoramic analysis of the expression and prognosis of HSP110, HSP90, HSP70, and HSP60 families in 33 types of cancer, with the aim of deepening the systematic understanding of heat shock proteins (HSPs) in cancer. Materials and Methods: Next-generation sequencing data of multiple tumors were downloaded from TCGA, CCLE and Oncomine databases. RStudio 3.6.1 was used to analyze HSP110, HSP90, HSP70 and HSP60 families based on their expression in 33 types of cancer. The validations in vivo (stomach adenocarcinoma and colon adenocarcinoma tissues) were performed by qRT-PCR. Results: HSPs were differentially expressed in different cancers. The results revealed mainly positive correlations among the expressions of HSPs in different cancers. Expressions of HSP family members were generally associated with poor prognosis in respiratory, digestive, urinary and reproductive system tumors and associated with good prognosis in cholangiocarcinoma, pheochromocytoma and paraganglioma. TCGA mutation analysis showed that HSP gene mutation rate in cancers was 0–23%. CCLE mutation analysis indicated that HSP gene mutation rate in 828 cell lines from 15 tumors was 0–17%. CNV analysis revealed that HSPs have different degrees of gene amplifications and deletions in cancers. Gene mutations of 15 HSPs influenced their protein expressions in different cancers. Copy number amplifications and deletions of 22 HSPs also impacted protein expression levels in pan-cancer. HSP gene mutation was generally a poor prognosis factor in cancers, except for uterine corpus endometrial carcinoma. CNVs in 14 HSPs showed varying influences on survival status in different cancers. HSPs may be involved in the activation and inhibition of multiple cancer-related pathways. HSP expressions were closely correlated with 22 immune cell infiltrations in different cancers. The qRT-PCR validation results in vivo showed that HSPA2 was down-regulated in stomach adenocarcinoma and colon adenocarcinoma; HSPA7 and HSPA1A also were down-regulated in colon adenocarcinoma. HSPA2-HSPA7 (r = 0.031, p = 0.009) and HSPA1A-HSPA7 (r = 0.516, p < 0.001) were positive correlation in colon adenocarcinoma. Conclusion: These analysis and validation results show that HSP families play an important role in the occurrence and development of various tumors and are potential tumor diagnostic and prognostic biomarkers as well as anti-cancer therapeutic targets.
Collapse
Affiliation(s)
- Li-Rong Yan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
| | - Shi-Xuan Shen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
| | - Ang Wang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
| | - Han-Xi Ding
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
| | - Ying-Nan Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
| |
Collapse
|
5
|
Luan Y, Luan Y, Yuan RX, Feng Q, Chen X, Yang Y. Structure and Function of Mitochondria-Associated Endoplasmic Reticulum Membranes (MAMs) and Their Role in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4578809. [PMID: 34336092 PMCID: PMC8289621 DOI: 10.1155/2021/4578809] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022]
Abstract
Abnormal function of suborganelles such as mitochondria and endoplasmic reticulum often leads to abnormal function of cardiomyocytes or vascular endothelial cells and cardiovascular disease (CVD). Mitochondria-associated membrane (MAM) is involved in several important cellular functions. Increasing evidence shows that MAM is involved in the pathogenesis of CVD. MAM mediates multiple cellular processes, including calcium homeostasis regulation, lipid metabolism, unfolded protein response, ROS, mitochondrial dynamics, autophagy, apoptosis, and inflammation, which are key risk factors for CVD. In this review, we discuss the structure of MAM and MAM-associated proteins, their role in CVD progression, and the potential use of MAM as the therapeutic targets for CVD treatment.
Collapse
Affiliation(s)
- Yi Luan
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ying Luan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Rui-Xia Yuan
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
| | - Xing Chen
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yang Yang
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
6
|
Zulkifli A, Tan FH, Areeb Z, Stuart SF, Gomez J, Paradiso L, Luwor RB. Carfilzomib Promotes the Unfolded Protein Response and Apoptosis in Cetuximab-Resistant Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22137114. [PMID: 34281166 PMCID: PMC8269417 DOI: 10.3390/ijms22137114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Cetuximab is a common treatment option for patients with wild-type K-Ras colorectal carcinoma. However, patients often display intrinsic resistance or acquire resistance to cetuximab following treatment. Here we generate two human CRC cells with acquired resistance to cetuximab that are derived from cetuximab-sensitive parental cell lines. These cetuximab-resistant cells display greater in vitro proliferation, colony formation and migration, and in vivo tumour growth compared with their parental counterparts. To evaluate potential alternative therapeutics to cetuximab-acquired-resistant cells, we tested the efficacy of 38 current FDA-approved agents against our cetuximab-acquired-resistant clones. We identified carfilzomib, a selective proteosome inhibitor to be most effective against our cell lines. Carfilzomib displayed potent antiproliferative effects, induced the unfolded protein response as determined by enhanced CHOP expression and ATF6 activity, and enhanced apoptosis as determined by enhanced caspase-3/7 activity. Overall, our results indicate a potentially novel indication for carfilzomib: that of a potential alternative agent to treat cetuximab-resistant colorectal cancer.
Collapse
Affiliation(s)
- Ahmad Zulkifli
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Clinical Sciences Building, Parkville, VIC 3050, Australia; (A.Z.); (F.H.T.); (Z.A.); (S.F.S.); (J.G.); (L.P.)
| | - Fiona H. Tan
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Clinical Sciences Building, Parkville, VIC 3050, Australia; (A.Z.); (F.H.T.); (Z.A.); (S.F.S.); (J.G.); (L.P.)
| | - Zammam Areeb
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Clinical Sciences Building, Parkville, VIC 3050, Australia; (A.Z.); (F.H.T.); (Z.A.); (S.F.S.); (J.G.); (L.P.)
| | - Sarah F. Stuart
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Clinical Sciences Building, Parkville, VIC 3050, Australia; (A.Z.); (F.H.T.); (Z.A.); (S.F.S.); (J.G.); (L.P.)
| | - Juliana Gomez
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Clinical Sciences Building, Parkville, VIC 3050, Australia; (A.Z.); (F.H.T.); (Z.A.); (S.F.S.); (J.G.); (L.P.)
| | - Lucia Paradiso
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Clinical Sciences Building, Parkville, VIC 3050, Australia; (A.Z.); (F.H.T.); (Z.A.); (S.F.S.); (J.G.); (L.P.)
| | - Rodney B. Luwor
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Clinical Sciences Building, Parkville, VIC 3050, Australia; (A.Z.); (F.H.T.); (Z.A.); (S.F.S.); (J.G.); (L.P.)
- Fiona Elsey Cancer Research Institute, Federation University Australia, Ballarat, VIC 3350, Australia
- Correspondence: ; Tel.: +61-3-8344-3027; Fax: +61-3-9347-6488
| |
Collapse
|
7
|
EGFRvIII Promotes Cell Survival during Endoplasmic Reticulum Stress through a Reticulocalbin 1-Dependent Mechanism. Cancers (Basel) 2021; 13:cancers13061198. [PMID: 33801941 PMCID: PMC7999088 DOI: 10.3390/cancers13061198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary A key molecule, EGFRvIII has been shown to provide several growth advantages for brain tumors. However, we have found a new mechanism in which the EGFRvIII provides increased survival to brain cancer cells when under sub-optimal conditions. Specifically, we have found that the EGFRvIII drives the expression of a molecule called Reticulocalbin 1 (RCN1) and that RCN1 blocks cell stress and cell death, thereby allowing cells to survive and proliferate. Importantly, these findings will allow for the generation of drugs that block the function of EGFRvIII and RCN1 with the hope that these drugs will induce brain cancer cell death. Abstract Reticulocalbin 1 (RCN1) is an endoplasmic reticulum (ER)-residing protein, involved in promoting cell survival during pathophysiological conditions that lead to ER stress. However, the key upstream receptor tyrosine kinase that regulates RCN1 expression and its potential role in cell survival in the glioblastoma setting have not been determined. Here, we demonstrate that RCN1 expression significantly correlates with poor glioblastoma patient survival. We also demonstrate that glioblastoma cells with expression of EGFRvIII receptor also have high RCN1 expression. Over-expression of wildtype EGFR also correlated with high RCN1 expression, suggesting that EGFR and EGFRvIII regulate RCN1 expression. Importantly, cells that expressed EGFRvIII and subsequently showed high RCN1 expression displayed greater cell viability under ER stress compared to EGFRvIII negative glioblastoma cells. Consistently, we also demonstrated that RCN1 knockdown reduced cell viability and exogenous introduction of RCN1 enhanced cell viability following induction of ER stress. Mechanistically, we demonstrate that the EGFRvIII-RCN1-driven increase in cell survival is due to the inactivation of the ER stress markers ATF4 and ATF6, maintained expression of the anti-apoptotic protein Bcl-2 and reduced activity of caspase 3/7. Our current findings identify that EGFRvIII regulates RCN1 expression and that this novel association promotes cell survival in glioblastoma cells during ER stress.
Collapse
|
8
|
Niu X, Nong S, Gong J, Zhang X, Tang H, Zhou T, Li W. Hepatitis B Virus DNA Polymerase Displays an Anti-Apoptotic Effect by Interacting with Elongation Factor-1 Alpha-2 in Hepatoma Cells. J Microbiol Biotechnol 2021; 31:16-24. [PMID: 33144545 PMCID: PMC9705884 DOI: 10.4014/jmb.2002.02039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 09/07/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022]
Abstract
Hepatitis B virus (HBV) genome P-encoded protein HBV DNA polymerase (Pol) has long been known as a reverse transcriptase during HBV replication. In this study, we investigated the impact of HBV Pol on host cellular processes, mainly apoptosis, and the underlying mechanisms. We showed a marked reduction in apoptotic rates in the HBV Pol-expressed HepG2 cells compared to controls. Moreover, a series of assays, i.e., yeast two-hybrid, GST pull-down, co-immunoprecipitation, and confocal laser scanning microscopy, identified the host factor eEF1A2 to be associated with HBV Pol. Furthermore, knockdown of eEF1A2 gene by siRNA abrogated the HBV Pol-mediated anti-apoptotic effect with apoptosis induced by endoplasmatic reticulum (ER) stress-inducer thapsigargin (TG), thus suggesting that the host factor eEF1A2 is essential for HBV Pol's anti-apoptosis properties. Our findings have revealed a novel role for HBV Pol in its modulation of apoptosis through integrating with eEF1A2.
Collapse
Affiliation(s)
- Xianli Niu
- Department of Biochemistry and Molecular Biology, Zunyi Medical University, Zhuhai, Guangdong 5904, P.R. China,Key Laboratory of Genetic Engineering and Medicine, Key Laboratory of Viral Biology, Jinan University, Guangzhou, Guangdong 51063, P.R. China
| | - Shirong Nong
- Key Laboratory of Genetic Engineering and Medicine, Key Laboratory of Viral Biology, Jinan University, Guangzhou, Guangdong 51063, P.R. China
| | - Junyuan Gong
- Key Laboratory of Genetic Engineering and Medicine, Key Laboratory of Viral Biology, Jinan University, Guangzhou, Guangdong 51063, P.R. China
| | - Xin Zhang
- Key Laboratory of Genetic Engineering and Medicine, Key Laboratory of Viral Biology, Jinan University, Guangzhou, Guangdong 51063, P.R. China
| | - Hui Tang
- Key Laboratory of Genetic Engineering and Medicine, Key Laboratory of Viral Biology, Jinan University, Guangzhou, Guangdong 51063, P.R. China
| | - Tianhong Zhou
- Key Laboratory of Genetic Engineering and Medicine, Key Laboratory of Viral Biology, Jinan University, Guangzhou, Guangdong 51063, P.R. China,T.H. Zhou E-mail:
| | - Wei Li
- Key Laboratory of Genetic Engineering and Medicine, Key Laboratory of Viral Biology, Jinan University, Guangzhou, Guangdong 51063, P.R. China,Corresponding authors W. Li Phone: +19945656624 Fax +0208895322 E-mail:
| |
Collapse
|
9
|
de Vivo L, Bellesi M. The role of sleep and wakefulness in myelin plasticity. Glia 2019; 67:2142-2152. [PMID: 31237382 PMCID: PMC6771952 DOI: 10.1002/glia.23667] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022]
Abstract
Myelin plasticity is gaining increasing recognition as an essential partner to synaptic plasticity, which mediates experience-dependent brain structure and function. However, how neural activity induces adaptive myelination and which mechanisms are involved remain open questions. More than two decades of transcriptomic studies in rodents have revealed that hundreds of brain transcripts change their expression in relation to the sleep-wake cycle. These studies consistently report upregulation of myelin-related genes during sleep, suggesting that sleep represents a window of opportunity during which myelination occurs. In this review, we summarize recent molecular and morphological studies detailing the dependence of myelin dynamics after sleep, wake, and chronic sleep loss, a condition that can affect myelin substantially. We present novel data about the effects of sleep loss on the node of Ranvier length and provide a hypothetical mechanism through which myelin changes in response to sleep loss. Finally, we discuss the current findings in humans, which appear to confirm the important role of sleep in promoting white matter integrity.
Collapse
Affiliation(s)
- Luisa de Vivo
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| | - Michele Bellesi
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| |
Collapse
|
10
|
Limanaqi F, Biagioni F, Ryskalin L, Busceti CL, Fornai F. Molecular Mechanisms Linking ALS/FTD and Psychiatric Disorders, the Potential Effects of Lithium. Front Cell Neurosci 2019; 13:450. [PMID: 31680867 PMCID: PMC6797817 DOI: 10.3389/fncel.2019.00450] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
Altered proteostasis, endoplasmic reticulum (ER) stress, abnormal unfolded protein response (UPR), mitochondrial dysfunction and autophagy impairment are interconnected events, which contribute to the pathogenesis of amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD). In recent years, the mood stabilizer lithium was shown to potentially modify ALS/FTD beyond mood disorder-related pathology. The effects of lithium are significant in ALS patients carrying genetic variations in the UNC13 presynaptic protein, which occur in ALS/FTD and psychiatric disorders as well. In the brain, lithium modulates a number of biochemical pathways involved in synaptic plasticity, proteostasis, and neuronal survival. By targeting UPR-related events, namely ER stress, excitotoxicity and autophagy dysfunction, lithium produces plastic effects. These are likely to relate to neuroprotection, which was postulated for mood and motor neuron disorders. In the present manuscript, we try to identify and discuss potential mechanisms through which lithium copes concomitantly with ER stress, UPR and autophagy dysfunctions related to UNC13 synaptic alterations and aberrant RNA and protein processing. This may serve as a paradigm to provide novel insights into the neurobiology of ALS/FTD featuring early psychiatric disturbances.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
11
|
Wang Y, Ge C, Chen J, Tang K, Liu J. GSK-3β inhibition confers cardioprotection associated with the restoration of mitochondrial function and suppression of endoplasmic reticulum stress in sevoflurane preconditioned rats following ischemia/reperfusion injury. Perfusion 2018; 33:679-686. [PMID: 29987974 DOI: 10.1177/0267659118787143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Sevoflurane has been shown to protect against myocardial ischemia/reperfusion (I/R) injury in animals, while its cardioprotection is lost if the ischemic insult is too long. In this study, we proposed a prevailing hypothesis that GSK-3β inhibitor-mediated activation of GSK-3β/β-catenin signaling pathway provides additional cardioprotection in sevoflurane preconditioned rats following I/R injury. Methods: Rats were subjected to treatment with TDZD-8, a GSK-3β inhibitor, 5 minutes prior to sevoflurane preconditioning and 30-minute ischemia and 120-minute reperfusion. Furthermore, in order to find out whether this cardioprotection is linked with mitochondrial function and endoplasmic reticulum stress (ERS), we isolated mitochondria from rat hearts perfused with TDZD-8 and determined the alternations of ERS markers. Results: Sevoflurane preconditioning or GSK-3β inhibitor treatment prevented cardiomyocyte apoptosis, phosphorylated GSK-3β and accelerated total β-catenin expression levels, reduced mitochondrial permeability transition pore (MPTP) activity, promoted the recovery of mitochondrial membrane potential and decreased the expression levels of GRP78, caspase-12 and C/EBP homology protein (CHOP) in rats under I/R condition, suggesting sevoflurane preconditioning or TDZD-8 activate the GSK-3β/β-catenin signaling pathway, improve mitochondria function and suppress ERS occurrence. Conclusions: Taken together, the findings obtained from the study support the concept that sevoflurane preconditioning confers cardioprotection against myocardial I/R injury and GSK-3β/β-catenin signaling activation mediated by TDZD-8 as a novel target to prolong cardioprotection by sevoflurane anaesthesia.
Collapse
Affiliation(s)
- Yujia Wang
- Intensive Care Unit, Shanghai Jing’an District Shibei Hospital, Shanghai, 200040, China
| | - Chunlin Ge
- Department of Anesthesia, Xuhui Centre District Hospital, Shanghai, 200031, China
| | - Junfeng Chen
- Department of Anesthesia, Shanghai Jing’an District Shibei Hospital, Shanghai, 200040, China
| | - Kun Tang
- Department of Anesthesia, Shanghai Tongren Hospital, Shanghai, 200336, China
| | - Jianjun Liu
- Intensive Care Unit, Shanghai Jing’an District Shibei Hospital, Shanghai, 200040, China
| |
Collapse
|
12
|
Sun H, Cai X, Zhou H, Li X, Du Z, Zou H, Wu J, Xie L, Cheng Y, Xie W, Lu X, Xu L, Chen L, Li E, Wu B. The protein-protein interaction network and clinical significance of heat-shock proteins in esophageal squamous cell carcinoma. Amino Acids 2018; 50:685-697. [PMID: 29700654 DOI: 10.1007/s00726-018-2569-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/09/2018] [Indexed: 02/06/2023]
Abstract
Heat-shock proteins (HSPs), one of the evolutionarily conserved protein families, are widely found in various organisms, and play important physiological functions. Nevertheless, HSPs have not been systematically analyzed in esophageal squamous cell carcinoma (ESCC). In this study, we applied the protein-protein interaction (PPI) network methodology to explore the characteristics of HSPs, and integrate their expression in ESCC. First, differentially expressed HSPs in ESCC were identified from our previous RNA-seq data. By constructing a specific PPI network, we found differentially expressed HSPs interacted with hundreds of neighboring proteins. Subcellular localization analyses demonstrated that HSPs and their interacting proteins distributed in multiple layers, from membrane to nucleus. Functional enrichment annotation analyses revealed known and potential functions for HSPs. KEGG pathway analyses identified four significant enrichment pathways. Moreover, three HSPs (DNAJC5B, HSPA1B, and HSPH1) could serve as promising targets for prognostic prediction in ESCC, suggesting these HSPs might play a significant role in the development of ESCC. These multiple bioinformatics analyses have provided a comprehensive view of the roles of heat-shock proteins in esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Hong Sun
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
| | - Xinyi Cai
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
| | - Haofeng Zhou
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
| | - Xiaoqi Li
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
| | - Zepeng Du
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, 515041, China
| | - Haiying Zou
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
| | - Jianyi Wu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
| | - Lei Xie
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
| | - Yinwei Cheng
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, China
| | - Wenming Xie
- Network and Information Center, Shantou University Medical College, Shantou, 515041, China
| | - Xiaomei Lu
- Tumor Hospital Affiliated to Xinjiang Medical University, Ürümqi, 830054, Xinjiang Uygur Autonomous Region, China
| | - Liyan Xu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, China
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, 515041, China
| | - Longqi Chen
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Sichuan, 610041, China
| | - Enmin Li
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, China.
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China.
| | - Bingli Wu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, China.
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
13
|
Luca A, Calandra C, Luca M. Gsk3 Signalling and Redox Status in Bipolar Disorder: Evidence from Lithium Efficacy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3030547. [PMID: 27630757 PMCID: PMC5007367 DOI: 10.1155/2016/3030547] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/28/2016] [Accepted: 07/20/2016] [Indexed: 12/15/2022]
Abstract
Objective. To discuss the link between glycogen synthase kinase-3 (GSK3) and the main biological alterations demonstrated in bipolar disorder (BD), with special attention to the redox status and the evidence supporting the efficacy of lithium (a GSK3 inhibitor) in the treatment of BD. Methods. A literature research on the discussed topics, using Pubmed and Google Scholar, has been conducted. Moreover, a manual selection of interesting references from the identified articles has been performed. Results. The main biological alterations of BD, pertaining to inflammation, oxidative stress, membrane ion channels, and circadian system, seem to be intertwined. The dysfunction of the GSK3 signalling pathway is involved in all the aforementioned "biological causes" of BD. In a complex scenario, it can be seen as the common denominator linking them all. Lithium inhibition of GSK3 could, at least in part, explain its positive effect on these biological dysfunctions and its superiority in terms of clinical efficacy. Conclusions. Deepening the knowledge on the molecular bases of BD is fundamental to identifying the biochemical pathways that must be targeted in order to provide patients with increasingly effective therapeutic tools against an invalidating disorder such as BD.
Collapse
Affiliation(s)
- Antonina Luca
- Department of Medical and Surgical Sciences and Advanced Technologies, University Hospital Policlinico-Vittorio Emanuele, Santa Sofia Street 78, Catania, 95100 Sicily, Italy
| | - Carmela Calandra
- Psychiatry Unit, Department of Medical and Surgical Sciences and Advanced Technologies, University Hospital Policlinico-Vittorio Emanuele, Santa Sofia Street 78, Catania, 95100 Sicily, Italy
| | - Maria Luca
- Psychiatry Unit, Department of Medical and Surgical Sciences and Advanced Technologies, University Hospital Policlinico-Vittorio Emanuele, Santa Sofia Street 78, Catania, 95100 Sicily, Italy
| |
Collapse
|
14
|
Henderson-Smith A, Corneveaux JJ, De Both M, Cuyugan L, Liang WS, Huentelman M, Adler C, Driver-Dunckley E, Beach TG, Dunckley TL. Next-generation profiling to identify the molecular etiology of Parkinson dementia. NEUROLOGY-GENETICS 2016; 2:e75. [PMID: 27275011 PMCID: PMC4881621 DOI: 10.1212/nxg.0000000000000075] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/21/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVE We sought to determine the underlying cortical gene expression changes associated with Parkinson dementia using a next-generation RNA sequencing approach. METHODS In this study, we used RNA sequencing to evaluate differential gene expression and alternative splicing in the posterior cingulate cortex from neurologically normal control patients, patients with Parkinson disease, and patients with Parkinson disease with dementia. RESULTS Genes overexpressed in both disease states were involved with an immune response, whereas shared underexpressed genes functioned in signal transduction or as components of the cytoskeleton. Alternative splicing analysis produced a pattern of immune and RNA-processing disturbances. CONCLUSIONS Genes with the greatest degree of differential expression did not overlap with genes exhibiting significant alternative splicing activity. Such variation indicates the importance of broadening expression studies to include exon-level changes because there can be significant differential splicing activity with potential structural consequences, a subtlety that is not detected when examining differential gene expression alone, or is underrepresented with probe-limited array technology.
Collapse
Affiliation(s)
- Adrienne Henderson-Smith
- Neurogenomics Division (A.H.-S., J.J.C., M.D.B., L.C., W.S.L., M.H., T.L.D.), Collaborative Sequencing Center (L.C., W.S.L.), Translational Genomics Research Institute, Phoenix; Division of Neurology (C.A., E.D.-D.), Mayo Clinic, Scottsdale; Banner Sun Health Research Institute (T.G.B.), Sun City, AZ
| | - Jason J Corneveaux
- Neurogenomics Division (A.H.-S., J.J.C., M.D.B., L.C., W.S.L., M.H., T.L.D.), Collaborative Sequencing Center (L.C., W.S.L.), Translational Genomics Research Institute, Phoenix; Division of Neurology (C.A., E.D.-D.), Mayo Clinic, Scottsdale; Banner Sun Health Research Institute (T.G.B.), Sun City, AZ
| | - Matthew De Both
- Neurogenomics Division (A.H.-S., J.J.C., M.D.B., L.C., W.S.L., M.H., T.L.D.), Collaborative Sequencing Center (L.C., W.S.L.), Translational Genomics Research Institute, Phoenix; Division of Neurology (C.A., E.D.-D.), Mayo Clinic, Scottsdale; Banner Sun Health Research Institute (T.G.B.), Sun City, AZ
| | - Lori Cuyugan
- Neurogenomics Division (A.H.-S., J.J.C., M.D.B., L.C., W.S.L., M.H., T.L.D.), Collaborative Sequencing Center (L.C., W.S.L.), Translational Genomics Research Institute, Phoenix; Division of Neurology (C.A., E.D.-D.), Mayo Clinic, Scottsdale; Banner Sun Health Research Institute (T.G.B.), Sun City, AZ
| | - Winnie S Liang
- Neurogenomics Division (A.H.-S., J.J.C., M.D.B., L.C., W.S.L., M.H., T.L.D.), Collaborative Sequencing Center (L.C., W.S.L.), Translational Genomics Research Institute, Phoenix; Division of Neurology (C.A., E.D.-D.), Mayo Clinic, Scottsdale; Banner Sun Health Research Institute (T.G.B.), Sun City, AZ
| | - Matthew Huentelman
- Neurogenomics Division (A.H.-S., J.J.C., M.D.B., L.C., W.S.L., M.H., T.L.D.), Collaborative Sequencing Center (L.C., W.S.L.), Translational Genomics Research Institute, Phoenix; Division of Neurology (C.A., E.D.-D.), Mayo Clinic, Scottsdale; Banner Sun Health Research Institute (T.G.B.), Sun City, AZ
| | - Charles Adler
- Neurogenomics Division (A.H.-S., J.J.C., M.D.B., L.C., W.S.L., M.H., T.L.D.), Collaborative Sequencing Center (L.C., W.S.L.), Translational Genomics Research Institute, Phoenix; Division of Neurology (C.A., E.D.-D.), Mayo Clinic, Scottsdale; Banner Sun Health Research Institute (T.G.B.), Sun City, AZ
| | - Erika Driver-Dunckley
- Neurogenomics Division (A.H.-S., J.J.C., M.D.B., L.C., W.S.L., M.H., T.L.D.), Collaborative Sequencing Center (L.C., W.S.L.), Translational Genomics Research Institute, Phoenix; Division of Neurology (C.A., E.D.-D.), Mayo Clinic, Scottsdale; Banner Sun Health Research Institute (T.G.B.), Sun City, AZ
| | - Thomas G Beach
- Neurogenomics Division (A.H.-S., J.J.C., M.D.B., L.C., W.S.L., M.H., T.L.D.), Collaborative Sequencing Center (L.C., W.S.L.), Translational Genomics Research Institute, Phoenix; Division of Neurology (C.A., E.D.-D.), Mayo Clinic, Scottsdale; Banner Sun Health Research Institute (T.G.B.), Sun City, AZ
| | - Travis L Dunckley
- Neurogenomics Division (A.H.-S., J.J.C., M.D.B., L.C., W.S.L., M.H., T.L.D.), Collaborative Sequencing Center (L.C., W.S.L.), Translational Genomics Research Institute, Phoenix; Division of Neurology (C.A., E.D.-D.), Mayo Clinic, Scottsdale; Banner Sun Health Research Institute (T.G.B.), Sun City, AZ
| |
Collapse
|
15
|
Gurel Z, Zaro BW, Pratt MR, Sheibani N. Identification of O-GlcNAc modification targets in mouse retinal pericytes: implication of p53 in pathogenesis of diabetic retinopathy. PLoS One 2014; 9:e95561. [PMID: 24788674 PMCID: PMC4006792 DOI: 10.1371/journal.pone.0095561] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/28/2014] [Indexed: 12/31/2022] Open
Abstract
Hyperglycemia is the primary cause of the majority of diabetes complications, including diabetic retinopathy (DR). Hyperglycemic conditions have a detrimental effect on many tissues and cell types, especially the retinal vascular cells including early loss of pericytes (PC). However, the mechanisms behind this selective sensitivity of retinal PC to hyperglycemia are undefined. The O-linked β-N-acetylglucosamine (O-GlcNAc) modification is elevated under hyperglycemic condition, and thus, may present an important molecular modification impacting the hyperglycemia-driven complications of diabetes. We have recently demonstrated that the level of O-GlcNAc modification in response to high glucose is variable in various retinal vascular cells. Retinal PC responded with the highest increase in O-GlcNAc modification compared to retinal endothelial cells and astrocytes. Here we show that these differences translated into functional changes, with an increase in apoptosis of retinal PC, not just under high glucose but also under treatment with O-GlcNAc modification inducers, PUGNAc and Thiamet-G. To gain insight into the molecular mechanisms involved, we have used click-It chemistry and LC-MS analysis and identified 431 target proteins of O-GlcNAc modification in retinal PC using an alkynyl-modified GlcNAc analog (GlcNAlk). Among the O-GlcNAc target proteins identified here 115 of them were not previously reported to be target of O-GlcNAc modification. We have identified at least 34 of these proteins with important roles in various aspects of cell death processes. Our results indicated that increased O-GlcNAc modification of p53 was associated with an increase in its protein levels in retinal PC. Together our results suggest that post-translational O-GlcNAc modification of p53 and its increased levels may contribute to selective early loss of PC during diabetes. Thus, modulation of O-GlcNAc modification may provide a novel treatment strategy to prevent the initiation and progression of DR.
Collapse
Affiliation(s)
- Zafer Gurel
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States of America; McPherson Eye Research Institute, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Balyn W Zaro
- Departments of Chemistry and Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Matthew R Pratt
- Departments of Chemistry and Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States of America; McPherson Eye Research Institute, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States of America
| |
Collapse
|
16
|
Tuerdi G, Ichinomiya S, Sato H, Siddig S, Suwa E, Iwata H, Yano T, Ueno K. Synergistic effect of combined treatment with gamma-tocotrienol and statin on human malignant mesothelioma cells. Cancer Lett 2013; 339:116-27. [PMID: 23879968 DOI: 10.1016/j.canlet.2013.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/24/2013] [Accepted: 07/15/2013] [Indexed: 02/04/2023]
Abstract
The present study is the first to demonstrate the synergetic effect of statins (atorvastatin and simvastatin) and gamma-tocotrienol (γ-T3) on human malignant mesothelioma (MM). Statin + γ-T3 combinations induced greater cell growth inhibition more than each single treatment via inhibition of mevalonate pathway, a well-known target of both γ-T3 and statins. γ-T3 was necessary for endoplasmic reticulum stress markers CHOP and GRP78, whereas an intrinsic apoptotic marker, caspase 3 activation was induced only in the presence of statins. Overall, the combination of γ-T3 and statins could be useful for MM therapy and functions in a complementary style.
Collapse
Affiliation(s)
- Guligena Tuerdi
- Department of Geriatric Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8675, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Feng L, Zhang D, Fan C, Ma C, Yang W, Meng Y, Wu W, Guan S, Jiang B, Yang M, Liu X, Guo D. ER stress-mediated apoptosis induced by celastrol in cancer cells and important role of glycogen synthase kinase-3β in the signal network. Cell Death Dis 2013; 4:e715. [PMID: 23846217 PMCID: PMC3730400 DOI: 10.1038/cddis.2013.222] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 01/13/2023]
Abstract
HeLa cells treated with celastrol, a natural compound with inhibitive effect on proteasome, exhibited increase in apoptotic rate and characteristics of apoptosis. To clarify the signal network activated by celastrol to induce apoptosis, both the direct target proteins and undirect target proteins of celastrol were searched in the present study. Proteasome catalytic subunit β1 was predicted by computational analysis to be a possible direct target of celastrol and confirmed by checking direct effect of celastrol on the activity of recombinant human proteasome subunit β1 in vitro. Undirect target-related proteins of celastrol were searched using proteomic studies including two-dimensional electrophoresis (2-DE) analysis and iTRAQ-based LC-MS analysis. Possible target-related proteins of celastrol such as endoplasmic reticulum protein 29 (ERP29) and mitochondrial import receptor Tom22 (TOM22) were found by 2-DE analysis of total cellular protein expression profiles. Further study showed that celastrol induced ER stress and ER stress inhibitor could ameliorate cell death induced by celastrol. Celastrol induced translocation of Bax into the mitochondria, which might be related to the upregulation of BH-3-only proteins such as BIM and the increase in the expression level of TOM22. To further search possible target-related proteins of celastrol in ER and ER-related fractions, iTRAQ-based LC-MS method was use to analyze protein expression profiles of ER/microsomal vesicles-riched fraction of cells with or without celastrol treatment. Based on possible target-related proteins found in both 2-DE analysis and iTRAQ-based LC-MS analysis, protein–protein interaction (PPI) network was established using bioinformatic analysis. The important role of glycogen synthase kinase-3β (GSK3β) in the signal cascades of celastrol was suggested. Pretreatment of LiCL, an inhibitor of GSK3β, could significantly ameliorate apoptosis induced by celastrol. On the basis of the results of the present study, possible signal network of celastrol activated by celastrol leading to apoptosis was predicted.
Collapse
Affiliation(s)
- L Feng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jossé L, Smales CM, Tuite MF. Engineering the chaperone network of CHO cells for optimal recombinant protein production and authenticity. Methods Mol Biol 2012; 824:595-608. [PMID: 22160922 DOI: 10.1007/978-1-61779-433-9_32] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
All proteins fold into a defined three-dimensional shape that is compatible with the cellular role and/or biological activity of those proteins. Molecular chaperones are a family of proteins whose role is to assist the folding and targeting of proteins in both normal and stressed cells. The rational manipulation of chaperone levels in a cell line engineered to produce a defined recombinant protein (rP) can significantly improve both the achievable steady-state levels and authenticity of a wide range of recombinant proteins. Here, we describe the methodology associated with expressing a variety of molecular chaperones in Chinese hamster ovary (CHO) lines in order to improve their recombinant protein production capacity. These chaperones include both those that facilitate the folding of the polypeptide chain (i.e. Hsp70, Hsp40) and those that can re-fold proteins that have misfolded in the cell (i.e. ClpB/Hsp104). This latter property is particularly important given the propensity for highly expressed recombinant proteins to misfold in the "foreign" cellular environment.
Collapse
|
19
|
Llano-Diez M, Gustafson AM, Olsson C, Goransson H, Larsson L. Muscle wasting and the temporal gene expression pattern in a novel rat intensive care unit model. BMC Genomics 2011; 12:602. [PMID: 22165895 PMCID: PMC3266306 DOI: 10.1186/1471-2164-12-602] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 12/13/2011] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Acute quadriplegic myopathy (AQM) or critical illness myopathy (CIM) is frequently observed in intensive care unit (ICU) patients. To elucidate duration-dependent effects of the ICU intervention on molecular and functional networks that control the muscle wasting and weakness associated with AQM, a gene expression profile was analyzed at time points varying from 6 hours to 14 days in a unique experimental rat model mimicking ICU conditions, i.e., post-synaptically paralyzed, mechanically ventilated and extensively monitored animals. RESULTS During the observation period, 1583 genes were significantly up- or down-regulated by factors of two or greater. A significant temporal gene expression pattern was constructed at short (6 h-4 days), intermediate (5-8 days) and long (9-14 days) durations. A striking early and maintained up-regulation (6 h-14d) of muscle atrogenes (muscle ring-finger 1/tripartite motif-containing 63 and F-box protein 32/atrogin-1) was observed, followed by an up-regulation of the proteolytic systems at intermediate and long durations (5-14d). Oxidative stress response genes and genes that take part in amino acid catabolism, cell cycle arrest, apoptosis, muscle development, and protein synthesis together with myogenic factors were significantly up-regulated from 5 to 14 days. At 9-14 d, genes involved in immune response and the caspase cascade were up-regulated. At 5-14d, genes related to contractile (myosin heavy chain and myosin binding protein C), regulatory (troponin, tropomyosin), developmental, caveolin-3, extracellular matrix, glycolysis/gluconeogenesis, cytoskeleton/sarcomere regulation and mitochondrial proteins were down-regulated. An activation of genes related to muscle growth and new muscle fiber formation (increase of myogenic factors and JunB and down-regulation of myostatin) and up-regulation of genes that code protein synthesis and translation factors were found from 5 to 14 days. CONCLUSIONS Novel temporal patterns of gene expression have been uncovered, suggesting a unique, coordinated and highly complex mechanism underlying the muscle wasting associated with AQM in ICU patients and providing new target genes and avenues for intervention studies.
Collapse
Affiliation(s)
- Monica Llano-Diez
- Department of Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| | | | - Carl Olsson
- Department of Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Hanna Goransson
- Department of Medical Sciences, Uppsala University Hospital, Uppsala, Sweden
| | - Lars Larsson
- Department of Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Tew SR, Vasieva O, Peffers MJ, Clegg PD. Post-transcriptional gene regulation following exposure of osteoarthritic human articular chondrocytes to hyperosmotic conditions. Osteoarthritis Cartilage 2011; 19:1036-46. [PMID: 21640843 DOI: 10.1016/j.joca.2011.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 04/26/2011] [Accepted: 04/30/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osmolarity is a major biophysical regulator of chondrocyte function. Modulation of chondrocytic marker gene expression occurs at the post-transcriptional level following exposure of human articular chondrocytes (HAC) to hyperosmotic conditions. This study aims to further characterise the post-transcriptional response of HAC to hyperosmolarity. METHODS Gene expression and microRNA (miRNA) levels in freshly isolated HAC after 5h under control or hyperosmotic conditions were measured using microarrays. Regulated genes were checked for the presence of AU rich elements (AREs) in their 3' untranslated regions (3'UTR), whilst gene ontology was examined using Ingenuity Pathway Analysis (IPA). RNA decay rates of candidate ARE-containing genes were determined in HAC using actinomycin D chase experiments and the involvement of the p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathways were investigated using pharmacological inhibitors. RESULTS Hyperosmolarity led to the regulation of a wide variety of genes. IPA identified enrichment of genes involved with cell stress responses, cell signalling and transforming growth factor β (TGFβ) signalling. Importantly, upregulated genes were over-represented with those containing AREs, and RNA decay analysis demonstrated that many of these were regulated post-transcriptionally by hyperosmolarity in HAC. Analysis of miRNA levels in HAC indicated that they are only modestly regulated by hyperosmotic conditions, whilst inhibitor studies showed that p38 MAPK and ERK1/2 were able to block hyperosmotic induction of many of these genes. CONCLUSION Through microarray and bioinformatics analysis we have identified genes which are post-transcriptionally regulated in HAC following exposure to hyperosmotic conditions. These genes have a range of functions, and their regulation involves transduction through the p38 MAPK and ERK1/2 pathways. Interestingly, our results suggest that miRNA regulation is not key to the process. Overall, this work illustrates the range of processes regulated in chondrocytes by changes in their osmotic environment, and underlines the importance of post-transcriptional mRNA regulation to chondrocyte function.
Collapse
Affiliation(s)
- S R Tew
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Neston, Cheshire, UK.
| | | | | | | |
Collapse
|
21
|
Kuribara M, van Bakel NHM, Ramekers D, de Gouw D, Neijts R, Roubos EW, Scheenen WJJM, Martens GJM, Jenks BG. Gene expression profiling of pituitary melanotrope cells during their physiological activation. J Cell Physiol 2011; 227:288-96. [PMID: 21412779 DOI: 10.1002/jcp.22734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pituitary melanotrope cells of the amphibian Xenopus laevis are responsible for the production of the pigment-dispersing peptide α-melanophore-stimulating hormone, which allows the animal to adapt its skin color to its environment. During adaptation to a dark background the melanotrope cells undergo remarkable changes characterized by dramatic increases in cell size and secretory activity. In this study we performed microarray mRNA expression profiling to identify genes important to melanotrope activation and growth. We show a strong increase in the expression of the immediate early gene (IEG) c-Fos and of the brain-derived neurotrophic factor gene (BDNF). Furthermore, we demonstrate the involvement of another IEG in the adaptation process, Nur77, and conclude from in vitro experiments that the expression of both c-Fos and Nur77 are partially regulated by the adenylyl cyclase system and calcium ions. In addition, we found a steady up-regulation of Ras-like product during the adaptation process, possibly evoked by BDNF/TrkB signaling. Finally, the gene encoding the 105-kDa heat shock protein HSPh1 was transiently up-regulated in the course of black-background adaptation and a gene product homologous to ferritin (ferritin-like product) was >100-fold up-regulated in fully black-adapted animals. We suggest that these latter two genes are induced in response to cellular stress and that they may be involved in changing the mode of mRNA translation required to meet the increased demand for de novo protein synthesis. Together, our results show that microarray analysis is a valuable approach to identify the genes responsible for generating coordinated responses in physiologically activated cells.
Collapse
Affiliation(s)
- Miyuki Kuribara
- Department of Cellular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lu JJ, Meng LH, Shankavaram UT, Zhu CH, Tong LJ, Chen G, Lin LP, Weinstein JN, Ding J. Dihydroartemisinin accelerates c-MYC oncoprotein degradation and induces apoptosis in c-MYC-overexpressing tumor cells. Biochem Pharmacol 2010; 80:22-30. [PMID: 20206143 DOI: 10.1016/j.bcp.2010.02.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/22/2010] [Accepted: 02/24/2010] [Indexed: 12/18/2022]
Abstract
Artemisinin and its derivatives (ARTs) are effective antimalarial drugs and also possess profound anticancer activity. However, the mechanism accounted for its distinctive activity in tumor cells remains unelucidated. We computed Pair wise Pearson correlation coefficients to identify genes that show significant correlation with ARTs activity in NCI-55 cell lines using data obtained from studies with HG-U133A Affymetrix chip. We found c-myc is one of the genes that showed the highest positive correlation coefficients among the probe sets analyzed (r=0.585, P<0.001). Dihydroartemisinin (DHA), the main active metabolite of ARTs, induced significant apoptosis in HL-60 and HCT116 cells that express high levels of c-MYC. Stable knockdown of c-myc abrogated DHA-induced apoptosis in HCT116 cells. Conversely, forced expression of c-myc in NIH3T3 cells sensitized these cells to DHA-induced apoptosis. Interestingly, DHA irreversibly down-regulated the protein level of c-MYC in DHA-sensitive HCT116 cells, which is consistent to persistent G1 phase arrest induced by DHA. Further studies demonstrated that DHA accelerated the degradation of c-MYC protein and this process was blocked by pretreatment with the proteasome inhibitor MG-132 or GSK 3beta inhibitor LiCl in HCT116 cells. Taken together, ARTs might be useful in the treatment of c-MYC-overexpressing tumors. We also suggest that c-MYC may potentially be a biomarker candidate for prediction of the antitumor efficacies of ARTs.
Collapse
Affiliation(s)
- Jin-Jian Lu
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Rd., Shanghai 201203, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Inflammation seems to play a role in the pathogenesis of perinatal brain damage in fetuses/infants born much before term. We raise the possibility that noninflammatory phenomena induce endoplasmic reticulum stress, which, in turn, leads to the unfolded protein response, which is followed by apoptosis-promoting processes and inflammation. Perhaps by these events, noninflammatory stimuli lead to perinatal brain damage.
Collapse
Affiliation(s)
- Wolfgang Bueter
- Perinatal Neuroepidemiology Unit OE 6415, Departments of Obstetrics and Pediatrics, Hannover Medical School, Hannover, Germany.
| | | | | |
Collapse
|
24
|
Sakurai T, Kiyokawa T, Kikuchi K, Miyakoshi J. Intermediate frequency magnetic fields generated by an induction heating (IH) cooktop do not affect genotoxicities and expression of heat shock proteins. Int J Radiat Biol 2009. [DOI: 10.1080/09553000903184358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Hiss DC, Gabriels GA. Implications of endoplasmic reticulum stress, the unfolded protein response and apoptosis for molecular cancer therapy. Part I: targeting p53, Mdm2, GADD153/CHOP, GRP78/BiP and heat shock proteins. Expert Opin Drug Discov 2009; 4:799-821. [PMID: 23496268 DOI: 10.1517/17460440903052559] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND In eukaryotes, endoplasmic reticulum stress (ERS) and the unfolded protein response (UPR) are coordinately regulated to maintain steady-state levels and activities of various cellular proteins to ensure cell survival. OBJECTIVE This review (Part I of II) focuses on specific ERS and UPR signalling regulators, their expression in the cancer phenotype and apoptosis, and proposes how their implication in these processes can be rationalised into proteasome inhibition, apoptosis induction and the development of more efficacious targeted molecular cancer therapies. METHOD In this review, we contextualise many ERS and UPR client proteins that are deregulated or mutated in cancers and show links between ERS and the UPR, their implication in oncogenic transformation, tumour progression and escape from immune surveillance, apoptosis inhibition, angiogenesis, metastasis, acquired drug resistance and poor cancer prognosis. CONCLUSION Evasion of programmed cell death or apoptosis is a hallmark of cancer that enables tumour cells to proliferate uncontrollably. Successful eradication of cancer cells through targeting ERS- and UPR-associated proteins to induce apoptosis is currently being pursued as a central tenet of anticancer drug discovery.
Collapse
Affiliation(s)
- Donavon C Hiss
- Head, Molecular Oncology Research Programme University of the Western Cape, Department of Medical BioSciences, Bellville, 7535, South Africa +27 21 959 2334 ; +27 21 959 1563 ;
| | | |
Collapse
|
26
|
Huang WC, Lin YS, Chen CL, Wang CY, Chiu WH, Lin CF. Glycogen synthase kinase-3beta mediates endoplasmic reticulum stress-induced lysosomal apoptosis in leukemia. J Pharmacol Exp Ther 2009; 329:524-31. [PMID: 19188482 DOI: 10.1124/jpet.108.148122] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Glycogen synthase kinase (GSK)-3beta may modulate endoplasmic reticulum (ER) stress-induced apoptosis; however, the mechanism remains unclear. Our data showed that human monocytic leukemia/lymphoma U937 and acute myeloid leukemia HL-60, but not chronic myeloid leukemia K562, cells were susceptible to apoptosis induced by ER stressor tunicamycin, a protein glycosylation inhibitor. Tunicamycin caused early activation of caspase-2, -3, -4, and -8, followed by apoptosis, whereas caspase-9 was slowly activated. Inhibiting caspase-2 reduced activation of caspase-8 and -3 but had no effect on caspase-4. Tunicamycin induced apoptosis independently of the mitochondrial pathway but caused lysosomal destabilization followed by lysosomal membrane permeabilization (LMP), cathepsin B relocation from lysosomes to the cytosol, and caspase-8 and -3 activation. It is notable that caspase-2 mediated lysosomal destabilization. Inhibiting GSK-3beta comprehensively reduced lysosomal apoptosis after caspase-2 inhibition. Unlike U937 and HL-60 cells, K562 cells showed nonresponsive ER stress and failure of activation of GSK-3beta and caspase-2 in response to tunicamycin. Activating GSK-3beta caused K562 cells to be susceptible to tunicamycin-induced apoptosis. Taken together, we show that GSK-3beta exhibits a mechanism of ER stress-induced lysosomal apoptosis in leukemia involving caspase-2-induced LMP and cathepsin B relocation, which result in caspase-8 and -3 activation.
Collapse
Affiliation(s)
- Wei-Ching Huang
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
27
|
Gitcho MA, Strider J, Carter D, Taylor-Reinwald L, Forman MS, Goate AM, Cairns NJ. VCP mutations causing frontotemporal lobar degeneration disrupt localization of TDP-43 and induce cell death. J Biol Chem 2009; 284:12384-98. [PMID: 19237541 PMCID: PMC2673306 DOI: 10.1074/jbc.m900992200] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Indexed: 11/06/2022] Open
Abstract
Frontotemporal lobar degeneration (FTLD) with inclusion body myopathy and Paget disease of bone is a rare, autosomal dominant disorder caused by mutations in the VCP (valosin-containing protein) gene. The disease is characterized neuropathologically by frontal and temporal lobar atrophy, neuron loss and gliosis, and ubiquitin-positive inclusions (FTLD-U), which are distinct from those seen in other sporadic and familial FTLD-U entities. The major component of the ubiquitinated inclusions of FTLD with VCP mutation is TDP-43 (TAR DNA-binding protein of 43 kDa). TDP-43 proteinopathy links sporadic amyotrophic lateral sclerosis, sporadic FTLD-U, and most familial forms of FTLD-U. Understanding the relationship between individual gene defects and pathologic TDP-43 will facilitate the characterization of the mechanisms leading to neurodegeneration. Using cell culture models, we have investigated the role of mutant VCP in intracellular trafficking, proteasomal function, and cell death and demonstrate that mutations in the VCP gene 1) alter localization of TDP-43 between the nucleus and cytosol, 2) decrease proteasome activity, 3) induce endoplasmic reticulum stress, 4) increase markers of apoptosis, and 5) impair cell viability. These results suggest that VCP mutation-induced neurodegeneration is mediated by several mechanisms.
Collapse
Affiliation(s)
- Michael A Gitcho
- Alzheimer's Disease Research Center and the Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
AHMED KANWAL, HORI TAKESHI, YU DAYONG, WEI ZHENGLI, ZHAO QINGLI, NAKASHIMA MASAO, HASSAN MARIAMEALI, KONDO TAKASHI. Hyperthermia Chemo-sensitization, Chemical Thermo-sensitization and Apoptosis. ACTA ACUST UNITED AC 2008. [DOI: 10.3191/thermalmed.24.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- KANWAL AHMED
- Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - TAKESHI HORI
- Orthopaedic Surgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - DA-YONG YU
- Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - ZHENG-LI WEI
- Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - QING-LI ZHAO
- Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - MASAO NAKASHIMA
- Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - MARIAME ALI HASSAN
- Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - TAKASHI KONDO
- Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|