1
|
Fatma H, Siddique HR. AURORA KINASE A and related downstream molecules: A potential network for cancer therapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:115-145. [PMID: 36858732 DOI: 10.1016/bs.apcsb.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aurora-A kinase (AURKA) belongs to the serine/threonine kinase family specific to cell division. In normal cells, activation of the AURKA protein is essential for regulating chromosomal segregation and centrosome maturation. The physiological concentration of AURKA accumulation has utmost importance during cell division. AURKA starts accumulating during the S phase of the cell cycle, gets functionally activated during the G2/M phase, attaches to the microtubule, and gets degraded during mitotic exit. Overexpression of AURKA could lead to deregulated cell cycle division, which is intrinsic to numerous cancers. Moreover, dysregulated AURKA affects various downstream molecules that aid in cancer pathogenesis. AURKA phosphorylates its substrates, including oncoproteins, transcriptional factors, tumor suppressor proteins, or other kinases central to various oncogenic signaling pathways critical to cancer. Considering the central role of AURKA in cell proliferation and tumorigenesis, targeting AURKA can be a novel alternative to cancer management. Several AURKA inhibitors have shown promising responses against different cancers either as a single agent or combined with various therapies. This chapter briefly discusses the role of AURKA and its downstream molecules in cancer vis-à-vis the role of AURKA inhibitor in chemoprevention.
Collapse
Affiliation(s)
- Homa Fatma
- Molecular Cancer Genetics & Translational Research Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
| |
Collapse
|
2
|
Liu F, Wang X, Duan J, Hou Z, Wu Z, Liu L, Lei H, Huang D, Ren Y, Wang Y, Li X, Zhuo J, Zhang Z, He B, Yan M, Yuan H, Zhang L, Yan J, Wen S, Wang Z, Liu Q. A Temporal PROTAC Cocktail-Mediated Sequential Degradation of AURKA Abrogates Acute Myeloid Leukemia Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104823. [PMID: 35652200 PMCID: PMC9353462 DOI: 10.1002/advs.202104823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/18/2022] [Indexed: 06/15/2023]
Abstract
AURKA is a potential kinase target in various malignancies. The kinase-independent oncogenic functions partially disclose the inadequate efficacy of the kinase inhibitor in a Phase III clinical trial. Simultaneously targeting the catalytic and noncatalytic functions of AURKA may be a feasible approach. Here, a set of AURKA proteolysis targeting chimeras (PROTACs) are developed. The CRBN-based dAurA383 preferentially degrades the highly abundant mitotic AURKA, while cIAP-based dAurA450 degrades the lowly abundant interphase AURKA in acute myeloid leukemia (AML) cells. The proteomic and transcriptomic analyses indicate that dAurA383 triggers the "mitotic cell cycle" and "stem cell" processes, while dAurA450 inhibits the "MYC/E2F targets" and "stem cell" processes. dAurA383 and dAurA450 are combined as a PROTAC cocktail. The cocktail effectively degrades AURKA, relieves the hook effect, and synergistically inhibits AML stem cells. Furthermore, the PROTAC cocktail induces AML regression in a xenograft mouse model and primary patient blasts. These findings establish the PROTAC cocktail as a promising spatial-temporal drug administration strategy to sequentially eliminate the multifaceted functions of oncoproteins, relieve the hook effect, and prevent cancer stem cell-mediated drug resistance.
Collapse
Affiliation(s)
- Fang Liu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Xuan Wang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Jianli Duan
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Zhijie Hou
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
| | - Zhouming Wu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Lingling Liu
- Department of Hematologythe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Hanqi Lei
- Department of UrologyKidney and Urology CenterPelvic Floor Disorders CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
| | - Dan Huang
- Department of Hematologythe Second Affiliated Hospital of Dalian Medical UniversityDalian116027China
| | - Yifei Ren
- Department of Hematologythe Second Affiliated Hospital of Dalian Medical UniversityDalian116027China
| | - Yue Wang
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
| | - Xinyan Li
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Junxiao Zhuo
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Zijian Zhang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Bin He
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Min Yan
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Huiming Yuan
- CAS Key Laboratory of Separation Sciences for Analytical ChemistryNational Chromatographic R&A CenterDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Sciences for Analytical ChemistryNational Chromatographic R&A CenterDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Jinsong Yan
- Department of Hematologythe Second Affiliated Hospital of Dalian Medical UniversityDalian116027China
| | - Shijun Wen
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Zifeng Wang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Quentin Liu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
- Department of Hematologythe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| |
Collapse
|
3
|
AURKA Increase the Chemosensitivity of Colon Cancer Cells to Oxaliplatin by Inhibiting the TP53-Mediated DNA Damage Response Genes. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8916729. [PMID: 32851091 PMCID: PMC7439175 DOI: 10.1155/2020/8916729] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 04/04/2020] [Accepted: 07/07/2020] [Indexed: 12/03/2022]
Abstract
AURKA, a cell cycle-regulated kinase, is associated with malignant transformation and progression in many cancer types. We analyzed the expression change of AURKA in pan-cancer and its effect on the prognosis of cancer patients using the TCGA dataset. We revealed that AURKA was extensively elevated and predicted a poor prognosis in most of the detected cancer types, with an exception in colon cancer. AURKA was elevated in colon cancer, but the upregulation of AURKA indicated better outcomes of colon cancer patients. Then we revealed that undermethylation of the AURKA gene and several transcription factors contributed to the upregulation of AURKA in colon cancer. Moreover, we demonstrated that AURKA overexpression promoted the death of colon cancer cells induced by Oxaliplatin, whereas knockdown of AURKA significantly weakened the chemosensitivity of colon cancer cells to Oxaliplatin. Mechanistically, AURKA inhibited DNA damage response by suppressing the expression of various DNA damage repair genes in a TP53-dependent manner, which can partly explain that ARUKA is associated with a beneficial outcome of colon cancer. This study provided a possibility to use AURKA as a biomarker to predict the chemosensitivity of colon cancer to platinum in the clinic.
Collapse
|
4
|
Long M, Lin F, Wang X, Chen X, Liu L, Zhang H, Dong K. Adenovirus-mediated anti-AEG-1 ScFv expression driven by stathmin promoter inhibits tumor growth in cervical cancer. Cancer Cell Int 2020; 20:79. [PMID: 32190003 PMCID: PMC7068931 DOI: 10.1186/s12935-020-1159-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/29/2020] [Indexed: 12/14/2022] Open
Abstract
Background Astrocyte-elevated gene-1 (AEG-1) is over-expressed in many cancer cells and has multiple key functions in tumor initiation and progression. Currently, targeted-AEG-1 siRNA is one of the most common techniques to down-regulate AEG-1 expression, but the lack of tumor specificity and available delivery system make it difficult to enter clinical trials. Methods In this study, we creatively developed an adenovirus-mediated anti-AEG-1 single-chain antibody fragment (ScFv) expression system driven by a tumor specific promoter, and experimented with it in human cervical carcinoma cells to investigate the effect on tumor’s proliferation and apoptosis. Results The results showed that of HeLa and SiHa cells treated with this recombinant anti-AEG-1 ScFv adenovirus not only inhibited cell growth, but induced apoptosis both in vitro and in vivo. Furthermore, we also observed that the expressions of several apoptosis-related genes like Akt 1 and c-Myc decreased, while NF-κB (p65) and cleaved caspase 3 increased on protein levels in vivo. Conclusion We concluded that stathmin promoter-driving anti-AEG-1 ScFv adenoviral system may be a breakthrough for its dual-specificity, and serve as an adjuvant tumor specific therapy method in the treatment for human cervical cancers.
Collapse
Affiliation(s)
- Min Long
- Department of Medical Laboratory, Tangdu Hospital, Airforce Military Medical University, Xinsi Road, Xi'an, 710038 Shaanxi China
| | - Fang Lin
- Department of Medical Laboratory, Tangdu Hospital, Airforce Military Medical University, Xinsi Road, Xi'an, 710038 Shaanxi China
| | - Xi Wang
- Department of Medical Laboratory, Tangdu Hospital, Airforce Military Medical University, Xinsi Road, Xi'an, 710038 Shaanxi China
| | - Xi Chen
- Department of Medical Laboratory, Tangdu Hospital, Airforce Military Medical University, Xinsi Road, Xi'an, 710038 Shaanxi China
| | - Li Liu
- Department of Medical Laboratory, Tangdu Hospital, Airforce Military Medical University, Xinsi Road, Xi'an, 710038 Shaanxi China
| | - Huizhong Zhang
- Department of Medical Laboratory, Tangdu Hospital, Airforce Military Medical University, Xinsi Road, Xi'an, 710038 Shaanxi China
| | - Ke Dong
- Department of Medical Laboratory, Tangdu Hospital, Airforce Military Medical University, Xinsi Road, Xi'an, 710038 Shaanxi China
| |
Collapse
|
5
|
Ke QH, Chen HY, He ZL, Lv Z, Xu XF, Qian YG, Zheng SS. Silencing of microRNA-375 affects immune function in mice with liver failure by upregulating astrocyte elevated gene-1 through reducing apoptosis of Kupffer cells. J Cell Biochem 2018; 120:253-263. [PMID: 30206980 DOI: 10.1002/jcb.27338] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/26/2018] [Indexed: 12/27/2022]
Abstract
This study aims to investigate how microRNA-375 (miR-375) improves immune function by regulating liver macrophages (Kupffer cells) in mice with liver failure. Forty mice were divided into ConA-1h, ConA-3h, ConA-6h, and control groups, with 10 mice in each group. Mice models of liver failure were established by injecting concanavalin A (ConA) solution via the tail veins of mice, and then primary Kupffer cells were isolated and cultured. Reverse transcription quantitative polymerase chain reaction, Western blot analysis, and enzyme-linked immunosorbent assay were conducted to examine the expressions of miR-375, astrocyte elevated gene-1 (AEG-1), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and IL-1β in Kupffer cells of mice with liver failure as well as after silencing of miR-375. Flow cytometry was used to determine cell apoptosis. During the liver failure process, miR-375, IL-6, TNF-α, and IL-1β expressions were increased over time, while AEG-1 expression decreased over time in the control, ConA-1h, ConA-3h, and ConA-6h groups. Opposite alternations were observed after silencing of miR-375. Dual-luciferase reporter gene assay showed that AEG-1 was a target gene of miR-375. Flow cytometry determination showed that the ratio of apoptotic Kupffer cells decreased after silencing of miR-375. Overexpression of AEG-1 could rescue the suppression of IL-6, TNF-α, and IL-1β expressions in Kupffer cells after the short-term induction of ConA and further inhibit cell apoptosis. Our study provides evidence that miR-375 could regulate Kupffer cells to improve immune function in mice with liver failure.
Collapse
Affiliation(s)
- Qing-Hong Ke
- Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Hai-Yong Chen
- Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zeng-Lei He
- Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zhen Lv
- Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xiao-Feng Xu
- Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yi-Gang Qian
- Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Shu-Sen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Wang J, Chen X, Tong M. Knockdown of astrocyte elevated gene-1 inhibited cell growth and induced apoptosis and suppressed invasion in ovarian cancer cells. Gene 2017; 616:8-15. [PMID: 28323000 DOI: 10.1016/j.gene.2017.03.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/09/2017] [Accepted: 03/17/2017] [Indexed: 01/28/2023]
Abstract
Emerging evidence has demonstrated that AEG-1 (astrocyte elevated gene-1) plays a pivotal oncogenic role in tumorigenesis. However, the molecular mechanism by which AEG-1 exerts its oncogenic function is elusive in ovarian cancer. To explore the role and molecular insight on AEG-1-mediated tumorigenesis in ovarian cancer, multiple approaches are performed including MTT assay, flow cytometry for apoptosis and cell cycle assay, gene transfection, real-time RT-PCR, Western blotting, and Transwell assay. Our MTT assay showed that knockdown of AEG-1 by its siRNA significantly inhibited cell growth in ovarian cancer cells. Moreover, AEG-1 siRNA treatment induced G0/G1 cell cycle arrest and triggered cell apoptosis in ovarian cancer cells. Notably, inhibition of AEG-1 suppressed cell migration and invasion in ovarian cancer cells. Intriguingly, we identified that knockdown of AEG-1 remarkably inhibited the activation of Akt pathway. Our results also validated that knockdown of AEG-1 inhibited the expression of MMP-2 and VEGF, which could lead to inhibition of cell migration and invasion. These data suggest that AEG-1 could be a potential therapeutic target for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Jiewen Wang
- Dept of Gynecology and Obstetrics, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaodong Chen
- Dept of Liver Disease, The Fifth Hospital of Bengbu, Bengbu, Anhui, China
| | - Maoqing Tong
- Dept of Cardiology, The Affiliated Ningbo First Hospital, School of Medicine, Ningbo University, Ningbo, China.
| |
Collapse
|
7
|
Aurora Kinase A is a Biomarker for Bladder Cancer Detection and Contributes to its Aggressive Behavior. Sci Rep 2017; 7:40714. [PMID: 28102366 PMCID: PMC5244380 DOI: 10.1038/srep40714] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/08/2016] [Indexed: 01/01/2023] Open
Abstract
The effects of AURKA overexpression associated with poor clinical outcomes have been attributed to increased cell cycle progression and the development of genomic instability with aneuploidy. We used RNA interference to examine the effects of AURKA overexpression in human bladder cancer cells. Knockdown had minimal effects on cell proliferation but blocked tumor cell invasion. Whole genome mRNA expression profiling identified nicotinamide N-methyltransferase (NNMT) as a downstream target that was repressed by AURKA. Chromatin immunoprecipitation and NNMT promoter luciferase assays revealed that AURKA’s effects on NNMT were caused by PAX3-mediated transcriptional repression and overexpression of NNMT blocked tumor cell invasion in vitro. Overexpression of AURKA and activation of its downstream pathway was enriched in the basal subtype in primary human tumors and was associated with poor clinical outcomes. We also show that the FISH test for the AURKA gene copy number in urine yielded a specificity of 79.7% (95% confidence interval [CI] = 74.2% to 84.1%), and a sensitivity of 79.6% (95% CI = 74.2% to 84.1%) with an AUC of 0.901 (95% CI = 0.872 to 0.928; P < 0.001). These results implicate AURKA as an effective biomarker for bladder cancer detection as well as therapeutic target especially for its basal type.
Collapse
|
8
|
Emdad L, Das SK, Hu B, Kegelman T, Kang DC, Lee SG, Sarkar D, Fisher PB. AEG-1/MTDH/LYRIC: A Promiscuous Protein Partner Critical in Cancer, Obesity, and CNS Diseases. Adv Cancer Res 2016; 131:97-132. [PMID: 27451125 DOI: 10.1016/bs.acr.2016.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Since its original discovery in 2002, AEG-1/MTDH/LYRIC has emerged as a primary regulator of several diseases including cancer, inflammatory diseases, and neurodegenerative diseases. AEG-1/MTDH/LYRIC has emerged as a key contributory molecule in almost every aspect of cancer progression, including uncontrolled cell growth, evasion of apoptosis, increased cell migration and invasion, angiogenesis, chemoresistance, and metastasis. Additionally, recent studies highlight a seminal role of AEG-1/MTDH/LYRIC in neurodegenerative diseases and obesity. By interacting with multiple protein partners, AEG-1/MTDH/LYRIC plays multifaceted roles in the pathogenesis of a wide variety of diseases. This review discusses the current state of understanding of AEG-1/MTDH/LYRIC regulation and function in cancer and other diseases with a focus on its association/interaction with several pivotal protein partners.
Collapse
Affiliation(s)
- L Emdad
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - S K Das
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - B Hu
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - T Kegelman
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - D-C Kang
- Ilsong Institute of Life Science, Hallym University, Anyang, Republic of Korea
| | - S-G Lee
- Cancer Preventive Material Development Research Center, Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - D Sarkar
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - P B Fisher
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
9
|
Vartak-Sharma N, Nooka S, Ghorpade A. Astrocyte elevated gene-1 (AEG-1) and the A(E)Ging HIV/AIDS-HAND. Prog Neurobiol 2016; 157:133-157. [PMID: 27090750 DOI: 10.1016/j.pneurobio.2016.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 03/11/2016] [Accepted: 03/19/2016] [Indexed: 12/23/2022]
Abstract
Recent attempts to analyze human immunodeficiency virus (HIV)-1-induced gene expression changes in astrocytes uncovered a multifunctional oncogene, astrocyte elevated gene-1 (AEG-1). Our previous studies revealed that AEG-1 regulates reactive astrocytes proliferation, migration and inflammation, hallmarks of aging and CNS injury. Moreover, the involvement of AEG-1 in neurodegenerative disorders, such as Huntington's disease and migraine, and its induction in the aged brain suggest a plausible role in regulating overall CNS homeostasis and aging. Therefore, it is important to investigate AEG-1 specifically in aging-associated cognitive decline. In this study, we decipher the common mechanistic links in cancer, aging and HIV-1-associated neurocognitive disorders that likely contribute to AEG-1-based regulation of astrocyte responses and function. Despite AEG-1 incorporation into HIV-1 virions and its induction by HIV-1, tumor necrosis factor-α and interleukin-1β, the specific role(s) of AEG-1 in astrocyte-driven HIV-1 neuropathogenesis are incompletely defined. We propose that AEG-1 plays a central role in a multitude of cellular stress responses involving mitochondria, endoplasmic reticulum and the nucleolus. It is thus important to further investigate AEG-1-based cellular and molecular regulation in order to successfully develop better therapeutic approaches that target AEG-1 to combat cancer, HIV-1 and aging.
Collapse
Affiliation(s)
- Neha Vartak-Sharma
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107-2699, USA; Institute for Integrated Cell-Material Sciences, Kyoto University, Japan; Institute for Stem Cell Research and Regenerative Medicine, National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Shruthi Nooka
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107-2699, USA
| | - Anuja Ghorpade
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107-2699, USA.
| |
Collapse
|
10
|
LI GUANGYAO, ZHANG LI, LIU JIZHU, XIAO TAIWU, LIU GUOZHEN, WANG JINGXIA, HOU MING. shRNA-mediated RPS15A silencing inhibits U937 acute myeloid leukemia cell proliferation and enhances apoptosis. Mol Med Rep 2016; 13:4400-6. [DOI: 10.3892/mmr.2016.5064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 03/07/2016] [Indexed: 11/06/2022] Open
|
11
|
Xu Z, Wang F, Fan F, Gu Y, Shan N, Meng X, Cheng S, Liu Y, Wang C, Song Y, Xu R. Quantitative Proteomics Reveals That the Inhibition of Na+/K+-ATPase Activity Affects S-Phase Progression Leading to a Chromosome Segregation Disorder by Attenuating the Aurora A Function in Hepatocellular Carcinoma Cells. J Proteome Res 2015; 14:4594-602. [PMID: 26491887 DOI: 10.1021/acs.jproteome.5b00724] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhongwei Xu
- Central
Laboratory, Logistics University of Chinese People’s Armed Police Force, Tianjin 300162, China
| | - Fengmei Wang
- Department
of Gastroenterology and Hepatology, The Third Central Hospital of Tianjin, Tianjin 300170, China
| | - Fengxu Fan
- Central
Laboratory, Logistics University of Chinese People’s Armed Police Force, Tianjin 300162, China
| | - Yanjun Gu
- Affiliated Hospital of Chinese People’s Armed Police Force, Tianjin 300162, China
| | - Nana Shan
- Central
Laboratory, Logistics University of Chinese People’s Armed Police Force, Tianjin 300162, China
| | - Xiangyan Meng
- Department
of Physiology and Pathophysiology, Logistics University of Chinese People’s Armed Police Force, Tianjin 300162, China
| | - Shixiang Cheng
- Affiliated Hospital of Chinese People’s Armed Police Force, Tianjin 300162, China
| | - Yingfu Liu
- Central
Laboratory, Logistics University of Chinese People’s Armed Police Force, Tianjin 300162, China
| | - Chengyan Wang
- Central
Laboratory, Logistics University of Chinese People’s Armed Police Force, Tianjin 300162, China
| | - Yueying Song
- Central
Laboratory, Logistics University of Chinese People’s Armed Police Force, Tianjin 300162, China
| | - Ruicheng Xu
- Tianjin Key Laboratory for Biomarkers of Occupational and Environmental Hazard, No. 1 Huizhi Huan Road, DongLi District, Tianjin 300309, China
| |
Collapse
|
12
|
ZHU HAIDAN, LIAO JIAZHI, HE XINGXING, LI PEIYUAN. The emerging role of astrocyte-elevated gene-1 in hepatocellular carcinoma (Review). Oncol Rep 2015; 34:539-46. [PMID: 26035424 DOI: 10.3892/or.2015.4024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/08/2015] [Indexed: 11/05/2022] Open
|
13
|
Suppression of Aurora-A-FLJ10540 signaling axis prohibits the malignant state of head and neck cancer. Mol Cancer 2015; 14:83. [PMID: 25889801 PMCID: PMC4403844 DOI: 10.1186/s12943-015-0348-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/19/2015] [Indexed: 12/11/2022] Open
Abstract
Background Head and neck cancer (HNC) is a highly invasive cancer. Aurora-A has been reported for a number of malignancies. However, the identity of downstream effectors responsible for its aggressive phenotype in HNC remains underinvestigated. Methods The mRNA and protein expression levels of Aurora-A and FLJ10540 were assessed in HNC specimens and cell lines using RT-qPCR, western blot, Oncomine, and microarray database analysis. The downstream molecular mechanisms of Aurora-A were confirmed by RT-qPCR, western blot, luciferase reporter, confocal microscopy analyses, immunoprecipitation, colony formation, cell viability, and xenograft model. Cellular functions in response to Aurora-A-modulated downstream targets such as FLJ10540 and MMPs were examined in vitro and in vivo, including cell growth, motility and chemosensitivity. Aurora-A/FLJ10540/MMPs expression was determined in cancer and adjacent normal tissues from HNC patients by immunohistochemistry approach. Results In the current study, Aurora-A exhibited similar gene expression profiles with FLJ10540 by using accessibly public microarray and Oncomine database analysis, raising the possibility that these molecules might coordinately participate in cancer progression and metastasis of HNC. These two molecules connection were also examined in cell lines and tissues of HNC. Aurora-A overexpression could not only bind to the promoter of FLJ10540 to induce FLJ10540 expression, but also increase both mRNA and protein levels of MMP-7 and MMP-10 in HNC cells. Conversely, depletion of Aurora-A expression by using siRNA or Aurora-A kinase inhibitor, MLN8237, suppressed FLJ10540, MMP-7 and MMP-10 mRNA and protein expressions in vitro and in vivo. In addition, the FLJ10540-PI3K complex was destroyed by inhibition the Aurora-A kinase activity. Forced overexpression of FLJ10540 in Aurora-A-depleted or in MLN8237-treated HNC cells attenuated the effect on cytotoxicity to cisplatin. Elevated Aurora-A expression in HNC cells led to the characteristics of more aggressive malignancy, including enhanced chemoresistance and increased the abilities of proliferation, migration and invasion, which was required for FLJ10540/MMP-7 or FLJ10540/MMP-10 expressions. Finally, immunohistochemical analysis of human HNC specimens showed a significant positively correlation among Aurora-A, FLJ10540, MMP-7 and MMP-10 expressions. Conclusion Together, our findings define a novel mechanism by which Aurora-A promotes cell malignancy, with potential implications for understanding the clinical action of Aurora-A. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0348-7) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Zhu GC, Yu CY, She L, Tan HL, Li G, Ren SL, Su ZW, Wei M, Huang DH, Tian YQ, Su RN, Liu Y, Zhang X. Metadherin regulation of vascular endothelial growth factor expression is dependent upon the PI3K/Akt pathway in squamous cell carcinoma of the head and neck. Medicine (Baltimore) 2015; 94:e502. [PMID: 25674742 PMCID: PMC4602746 DOI: 10.1097/md.0000000000000502] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Our previous study indicated overexpression of metadherin (MTDH) is an adverse prognostic factor in squamous cell carcinoma of the head and neck (SCCHN) and promotes SCCHN cell proliferation and invasion. However, its mechanism remains unclear. Recent studies have indicated that MTDH is a cancer-metastasis-associated molecule that participates in the process of angiogenesis. Therefore, the study is aimed to investigate that whether vascular endothelial growth factor (VEGF), as one of the most potent proangiogenic cytokines, is regulated by MTDH and the role of the phosphatidylinositide 3-kinases/Protein Kinase B (PI3K/Akt) pathway in this process of regulation and the clinical significance of both MTDH and VEGF in SCCHN.Immunohistochemistry was used to assay the expression of MTDH and VEGF in a cohort of 189 SCCHN patients with intact follow-up information. The expression of MTDH was then upregulated or inhibited by lentivirus-mediated MTDH Complementary deoxyribonucleic acid or MTDH short hairpin ribonucleic acid (shRNA) to observe the resulting alterations in VEGF expression and the PI3K/Akt signaling pathway in SCCHN cell lines. In addition, the PI3K/Akt pathway was modulated to observe the resulting changes in the MTDH-mediated expression of VEGF.The immunohistochemistry data showed that MTDH expression is positively correlated with VEGF expression in SCCHN tissues. Moreover, the overexpression of MTDH in SCCHN Tu686 and 5-8F cells led to increases in the expression of VEGF, and this effect was accompanied by activation of the PI3K/Akt pathway. Conversely, shRNA-mediated knockdown of MTDH led to decreased VEGF expression. In addition, inhibition of the Akt signaling pathway reversed the upregulation of VEGF resulting from MTDH overexpression. Moreover, the survival analysis revealed that VEGF is an independent prognostic factor, and a combined survival analysis based on both MTDH and VEGF showed synergistic effects in the prognosis evaluation of SCCHN patients.The findings of the present study demonstrate that MTDH regulates the expression of VEGF via the PI3K/Akt signaling pathway, indicating the potential role of the MTDH-mediated activation of VEGF signaling pathway in SCCHN angiogenesis and metastasis.
Collapse
Affiliation(s)
- Gang-Cai Zhu
- From the Department of Otolaryngology Head and Neck Surgery (G-cZ, C-yY, LS, H-lT, GL, S-lR, Z-wS, MW, D-hH, Y-qT, YL, XZ), Xiangya Hospital, Central South University; Otolaryngology Major Disease Research Key Laboratory of Hunan Province (G-cZ, C-yY, LS, H-lT, GL, S-lR, Z-wS, MW, D-hH, Y-qT, YL, XZ); and Department of Dermatology (R-nS), Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yuan CX, Zhou ZW, Yang YX, He ZX, Zhang X, Wang D, Yang T, Wang NJ, Zhao RJ, Zhou SF. Inhibition of mitotic Aurora kinase A by alisertib induces apoptosis and autophagy of human gastric cancer AGS and NCI-N78 cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:487-508. [PMID: 25609923 PMCID: PMC4298344 DOI: 10.2147/dddt.s74127] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Gastric cancer is one of the most common cancers and responds poorly to current chemotherapy. Alisertib (ALS) is a second-generation, orally bioavailable, highly selective small-molecule inhibitor of the serine/threonine protein kinase Aurora kinase A (AURKA). ALS has been shown to have potent anticancer effects in preclinical and clinical studies, but its role in gastric cancer treatment is unclear. This study aimed to investigate the cancer cell-killing effect of ALS on gastric cancer cell lines AGS and NCI-N78, with a focus on cell proliferation, cell-cycle distribution, apoptosis, and autophagy and the mechanism of action. The results showed that ALS exhibited potent growth-inhibitory, proapoptotic, and proautophagic effects on AGS and NCI-N78 cells. ALS concentration-dependently inhibited cell proliferation and induced cell-cycle arrest at G2/M phase in both cell lines, with a downregulation of cyclin-dependent kinase 1 and cyclin B1 expression but upregulation of p21 Waf1/Cip1, p27 Kip1, and p53 expression. ALS induced mitochondria-mediated apoptosis and autophagy in both AGS and NCI-N78 cells. ALS induced the expression of proapoptotic proteins but inhibited the expression of antiapoptotic proteins, with a significant increase in the release of cytochrome c and the activation of caspase 9 and caspase 3 in both cell lines. ALS induced inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and p38 mitogen-activated protein kinase (MAPK) signaling pathways while activating the 5′-adenosine monophosphate-activated protein kinase (AMPK) signaling pathway as indicated by their altered phosphorylation, contributing to the proautophagic effects of ALS. SB202191 and wortmannin enhanced the autophagy-inducing effect of ALS in AGS and NCI-N78 cells. Notably, ALS treatment significantly decreased the ratio of phosphorylated AURKA over AURKA, which may contribute, at least in part, to the inducing effects of ALS on cell-cycle arrest and autophagy in AGS and NCI-N78 cells. Taken together, these results indicate that ALS exerts a potent inhibitory effect on cell proliferation but inducing effects on cell-cycle arrest, mitochondria-dependent apoptosis, and autophagy with the involvement of PI3K/Akt/mTOR, p38 MAPK, and AURKA-mediated signaling pathways in AGS and NCI-N78 cells.
Collapse
Affiliation(s)
- Chun-Xiu Yuan
- Department of Oncology, General Hospital Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China ; Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People's Republic of China
| | - Yin-Xue Yang
- Department of Colorectal Surgery, General Hospital, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People's Republic of China
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Dong Wang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People's Republic of China
| | - Tianxing Yang
- Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Ning-Ju Wang
- Department of Oncology, General Hospital Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Ruan Jin Zhao
- Center for Traditional Chinese Medicine, Sarasota, FL, USA
| | - Shu-Feng Zhou
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA
| |
Collapse
|
16
|
Zou Y, Xiong H, Xiong H, Lu T, Zhu F, Luo Z, Yuan X, Wang Y. A polysaccharide from mushroom Huaier retards human hepatocellular carcinoma growth, angiogenesis, and metastasis in nude mice. Tumour Biol 2014; 36:2929-36. [PMID: 25492485 DOI: 10.1007/s13277-014-2923-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/28/2014] [Indexed: 12/20/2022] Open
Abstract
Mushroom Huaier has become a focus of interest in the treatment of hepatocellular carcinoma (HCC). Presently, we isolated and purified one polysaccharide from this mushroom. This study aimed to investigate the effects of SP1 on tumor growth and metastasis in a HCC xenograft model and explore its possible mechanism of action. Our results showed that SP1 not only significantly inhibited the proliferation of SMMC-7721 cells in vitro at the concentration ranging from 0 to 800 μg/ml but also suppressed the HCC tumor growth and metastatic nodules to the lung in SMMC-7721-bearing mice by oral administration at three doses of 30, 60, and 120 mg/kg. Concomitantly, immunohistochemistry analysis of tumor tissues identified that SP1 administration at three doses significantly inhibited the in vivo cancer cell proliferation and microvessel density (MVD) formation, evidenced by a low proliferating cell nuclear antigen (PCNA) and CD34 expression, but increased the percentage of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells. Keeping in line with this observation, SP1 treatment decreased serum matrix metalloproteinase (MMP) 2 and vascular endothelial growth factor (VEGF) levels, downregulated the protein expression of hypoxia-inducible factor (HIF)-1alpha, VEGF, MMP2, bcl-2, N-cadherin, signal transducer and activator of transcription 3 (STAT3), and metadherin (MTDH), and upregulated bax and NE-cadherin protein expression in tumor tissues. Taken together, our data suggest that SP1 appears to be a promising chemopreventive agent for the tumorigenesis and metastasis in patients with HCC, especially at advanced stages.
Collapse
Affiliation(s)
- Yanmei Zou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Dong L, Qin S, Li Y, Zhao L, Dong S, Wang Y, Zhang C, Han S. High expression of astrocyte elevated gene-1 is associated with clinical staging, metastasis, and unfavorable prognosis in gastric carcinoma. Tumour Biol 2014; 36:2169-78. [PMID: 25407490 DOI: 10.1007/s13277-014-2827-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 11/06/2014] [Indexed: 01/01/2023] Open
Abstract
More and more evidence has demonstrated that astrocyte elevated gene-1 (AEG-1) is tightly associated with progression, metastasis, and unfavorable prognosis in many malignancies. However, the potential biological role of AEG-1 in gastric carcinoma (GC) has not been thoroughly delineated. In the current study, we found that AEG-1 mRNA and protein levels in GC tissues were significantly higher than those in normal gastric mucosa (P < 0.05). Simultaneously, statistical analysis displayed a significant correlation of high AEG-1 mRNA and protein expressions with differentiation status, TNM staging, invasive depth, and lymph node metastasis (P < 0.05). Most importantly, expressions of AEG-1 mRNA and protein in high clinical staging and metastatic GC tissues were dramatically higher than those in low clinical staging and non-metastatic GC tissues (P < 0.05). Stepwise investigation confirmed that the survival time of the patients with high AEG-1 level was shorter than those with low AEG-1 level or negative AEG-1 staining. Taken altogether, our data presented herein suggest that AEG-1 may be a novel predictor for metastasis and prognosis of the patients with GC.
Collapse
Affiliation(s)
- Liangpeng Dong
- Department of General Surgery, the First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, 453100, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Tang J, Shen L, Yang Q, Zhang C. Overexpression of metadherin mediates metastasis of osteosarcoma by regulating epithelial-mesenchymal transition. Cell Prolif 2014; 47:427-34. [PMID: 25174891 DOI: 10.1111/cpr.12129] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 06/24/2014] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Osteosarcoma (OS) is one of the most common primary malignant bone tumours of childhood and adolescence, and is characterized by high propensity for metastasis (specially to the lung), which is the main cause of death. However, molecular mechanisms underlying metastasis of OS are still poorly understood. MATERIALS AND METHODS Metadherin (MTDH) was identified to be significantly upregulated in OS tissues that had metastasized compared to OS without metastasis, using a two-dimensional approach of electrophoresis, coupled with mass spectrometry. To understand the function of MTDH in OS, OS cell lines U2OS and SOSP-M were transfected with retroviral shRNA vector against MTDH. RESULTS It was found that metastatic propensity as well as cell proliferation were significantly reduced in both U2OS and SOSP-M. Migration and invasion of U2OS and SOSP-M cells were significantly lower after knock-down of MTDH. In addition, epithelial-mesenchymal transition (EMT) was reduced after knock-down of MTDH. Clinicopathologically, overexpression of MTDH was significantly associated with metastasis and poor survival of patients with OS. CONCLUSION Taken together, our results demonstrate that MTDH mediated metastasis of OS through regulating EMT. This could be an ideal therapeutic target against metastasis of OS.
Collapse
Affiliation(s)
- J Tang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | | | | | | |
Collapse
|
19
|
Huang Y, Li LEP. Progress of cancer research on astrocyte elevated gene-1/Metadherin (Review). Oncol Lett 2014; 8:493-501. [PMID: 25009642 PMCID: PMC4081432 DOI: 10.3892/ol.2014.2231] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 05/23/2014] [Indexed: 12/15/2022] Open
Abstract
Tumor development is initiated by an accumulation of numerous genetic and epigenetic alterations that promote tumor initiation, invasion and metastasis. Astrocyte elevated gene-1 [AEG-1; also known as Metadherin (MTDH) and Lysine-rich CEACAM1 co-isolated (LYRIC)] has emerged in recent years as a potentially crucial mediator of tumor malignancy, and a key converging point of a complex network of oncogenic signaling pathways. AEG-1/MTDH has a multifunctional role in tumor development that has been found to be involved in the following signaling cascades: i) The Ha-Ras and PI3K/Akt pathways; ii) the nuclear factor-κB signaling pathway; iii) the ERK/mitogen-activated protein kinase and Wnt/β-catenin pathways; and iv) the Aurora-A kinase signaling pathway. Studies have established that AEG-1/MTDH is crucial in tumor progression, including transformation, the evasion of apoptosis, invasion, angiogenesis and metastasis. In addition, recent clinical studies have convincingly associated AEG-1/MTDH with tumor progression and poor prognosis in a number of cancer types, including hepatocellular, esophageal squamous cell, gallbladder and renal cell carcinomas, breast, non-small cell lung, prostate, gastric and colorectal cancers, and glioma, melanoma, neuroblastoma and osteosarcoma. AEG-1/MTDH may be used as a biomarker to identify subgroups of patients who require more intensive treatments and who are likely to benefit from AEG-1/MTDH-targeted therapies. The therapeutic targeting of AEG-1/MTDH may simultaneously block metastasis, suppress tumor growth and enhance the efficacy of chemotherapeutic treatments.
Collapse
Affiliation(s)
- Yong Huang
- Department of Gastrointestinal Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China ; Department of General Surgery, Zao Zhuang Municipal Hospital, Zaozhuang, Shandong 277101, P.R. China
| | - LE-Ping Li
- Department of Gastrointestinal Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|