1
|
Chandran Manimegalai S, Krishnamoorthy SP, Kalimuthu V, Thirunavukarasu RD, Chandrabose S, Balamuthu K. An investigative study on the impact of DLK1 and NCoR1 knockdown by siRNA transfection on endometrial cancer proliferation: unveiling notch interactions. Med Oncol 2025; 42:124. [PMID: 40111664 DOI: 10.1007/s12032-025-02676-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
Endometrial cancer is the most common gynecological malignancy. Despite advances in treatment, many patients experience disease recurrence or metastasis. This study investigates the impact of siRNA-mediated gene knockdown of NCoR1 and DLK1 genes in the proliferation of endometrial cancer cell lines Ishikawa and AN3CA and normal HEK 293 cells. Cellular growth and survival before and after the treatment of predesigned siRNAs in the endometrial cancer cell lines were evidenced using fluorescent stains. The mRNA expression of BID, BAX, BCL2, Caspases 3, 8, and 9 GPR78, EGFR, VEGF, NCoR1, DLK1 and ARID1A was analyzed in the untreated HEK 293, Ishikawa, and AN3CA cell lines to substantiate the oncogenic property of Ishikawa and AN3CA cell lines. Then, to evidence the successful transfection of NCoR1 and DLK1 gene in endometrial cancer cells, the mRNA and protein expression of targeted genes before and after being transfected were also validated. As a result, the mRNA expression significantly increased in BID, BAX, BCL2, GPR78, EGFR and VEGF. On the other hand, Caspases 3, 8, and 9 were down-regulated in Ishikawa and AN3CA compared to the control cell line (HEK 293). The mRNA and protein expression of NCoR1 and DLK1 in siRNA-mediated transfection supported the reduced proliferation in endometrial cancer cells by interfering with certain pathways like Notch, MAPK, SWI/SNF, and NF-κB, which have crucial roles in the grade of receptor to the histone remodeling. With these findings, the study recommends exploring the possible role and interactions of NCoR1 and DLK1, signaling pathways that favor the progression of endometrial cancer.
Collapse
Affiliation(s)
| | | | - Vignesh Kalimuthu
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India
| | | | - Sureka Chandrabose
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Kadalmani Balamuthu
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
- National Centre for Alternatives to Animal Experiments, Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
| |
Collapse
|
2
|
Chang Z, Gao Y, Chen P, Gao W, Zhao W, Wu D, Liang W, Chen Z, Chen L, Xi H. THBS2 promotes gastric cancer progression and stemness via the Notch signaling pathway. Am J Cancer Res 2024; 14:3433-3450. [PMID: 39113869 PMCID: PMC11301304 DOI: 10.62347/uxwk4038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/20/2024] [Indexed: 08/10/2024] Open
Abstract
Thrombospondin-2 (THBS2), a secreted extracellular matrix protein, plays a crucial role in various biological processes including angiogenesis, tissue remodeling, and inflammation. Our study focuses on its function in human gastric cancer (GC). Through bioinformatics and tumor tissue analysis, we compared THBS2 expression in GC tissues and adjacent tissues, and predicted regulatory upstream and downstream molecules. The direct regulatory effect of miR-29b-3p on THBS2 was evaluated through dual-luciferase reporter assays, showing that miR-29b-3p targets the 3'-UTR of THBS2 mRNA, reducing its expression in GC cells. The influence of THBS2 on tumorigenesis and stemness was examined on protein expression levels via Western blot. In vivo, THBS2's role was investigated through xenograft and metastasis assays in nude mice, demonstrating that downregulation of THBS2 impairs GC tumorigenesis and liver metastasis. Our study identified THBS2 as a highly expressed prognostic factor in GC patients. Functionally, THBS2 promotes GC progression through the Notch signaling pathway by regulating Notch3, NEY1, and HES1 proteins, and sustains cancer stem cell-like characteristics by Notch3, including the expression of CD44, Nanog, OCT4, and SOX2. In sum, our study reveals that THBS2 promotes GC progression and stemness, modulated negatively by miR-29b-3p. This suggests potential therapeutic targets within the THBS2/Notch signaling axis for combating gastric cancer.
Collapse
Affiliation(s)
- Zhengyao Chang
- Medical School of Chinese PLABeijing 100853, China
- Department of General Surgery, The First Medical Center of Chinese PLA General HospitalBeijing 100853, China
| | - Yunhe Gao
- Department of General Surgery, The First Medical Center of Chinese PLA General HospitalBeijing 100853, China
| | - Peng Chen
- Department of General Surgery, The First Medical Center of Chinese PLA General HospitalBeijing 100853, China
| | - Wenxing Gao
- Medical School of Chinese PLABeijing 100853, China
- Department of General Surgery, The First Medical Center of Chinese PLA General HospitalBeijing 100853, China
| | - Wen Zhao
- Department of General Surgery, The First Medical Center of Chinese PLA General HospitalBeijing 100853, China
- School of Medicine, Nankai UniversityTianjin 300071, China
| | - Di Wu
- Medical School of Chinese PLABeijing 100853, China
- Department of General Surgery, The First Medical Center of Chinese PLA General HospitalBeijing 100853, China
| | - Wenquan Liang
- Department of General Surgery, The First Medical Center of Chinese PLA General HospitalBeijing 100853, China
| | - Zhida Chen
- Department of General Surgery, The First Medical Center of Chinese PLA General HospitalBeijing 100853, China
| | - Lin Chen
- Department of General Surgery, The First Medical Center of Chinese PLA General HospitalBeijing 100853, China
| | - Hongqing Xi
- Department of General Surgery, The First Medical Center of Chinese PLA General HospitalBeijing 100853, China
| |
Collapse
|
3
|
Chen H, Lee LJ, Vincent KM, Xu Z, Liu J, Zhang G, Nakevska Z, Smith D, Lee CH, Postovit LM, Fu Y. Transcription factor ZIC2 regulates the tumorigenic phenotypes associated with both bulk and cancer stem cells in epithelial ovarian cancer. Oncogene 2024; 43:1688-1700. [PMID: 38594503 DOI: 10.1038/s41388-024-03026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024]
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy in North America. Current therapeutic regimens are ineffective against advanced EOC. A better understanding of the molecular mechanisms that regulate the biology of EOC will be a critical step toward developing more efficacious therapies against EOC. Herein, we demonstrate that elevated expression of transcription factor ZIC2 was associated with lower survival of EOC patients. Knockout of endogenous ZIC2 in EOC cells attenuated the tumorigenic phenotypes associated with both bulk and cancer stem cells in vitro and in vivo, indicating a pro-tumorigenic role of ZIC2 in EOC. On the other hand, however, overexpression of ZIC2 in EOC cells that do not express endogenous ZIC2 promoted cell migration and sphere formation, but inhibited cell growth and colony formation in vitro and tumor growth in vivo, indicating that the role for ZIC2 in EOC is context dependent. Our transcriptomic analysis showed that ZIC2-regulated genes were involved in multiple biological processes and signaling pathways associated with tumor progression. In conclusion, our findings reveal a context-dependent role for ZIC2 in regulating tumorigenic phenotypes in EOC, providing evidence that ZIC2 can be a potential therapeutic target for EOCs that express a high level of ZIC2.
Collapse
Affiliation(s)
- Huachen Chen
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Laura Jiyoung Lee
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Krista M Vincent
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Zhihua Xu
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jiahui Liu
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Guihua Zhang
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Zorica Nakevska
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - DuPreez Smith
- Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Cheng-Han Lee
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Lynne-Marie Postovit
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| | - YangXin Fu
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
4
|
Islam SS, Al-Mohanna FH, Yousef IM, Al-Badawi IA, Aboussekhra A. Ovarian tumor cell-derived JAGGED2 promotes omental metastasis through stimulating the Notch signaling pathway in the mesothelial cells. Cell Death Dis 2024; 15:247. [PMID: 38575576 PMCID: PMC10995149 DOI: 10.1038/s41419-024-06512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 04/06/2024]
Abstract
The primary site of metastasis for epithelial ovarian cancer (EOC) is the peritoneum, and it occurs through a multistep process that begins with adhesive contacts between cancer cells and mesothelial cells. Despite evidence that Notch signaling has a role in ovarian cancer, it is unclear how exactly it contributes to ovarian cancer omental metastasis, as well as the cellular dynamics and intrinsic pathways that drive this tropism. Here we show that tumor cells produced the Notch ligand Jagged2 is a clinically and functionally critical mediator of ovarian cancer omental metastasis by activating the Notch signaling in single-layered omental mesothelial cells. In turn, Jagged2 promotes tumor growth and therapeutic resistance by stimulating IL-6 release from mesothelial cells. Additionally, Jagged2 is a potent downstream mediator of the omental metastasis cytokine TGF-β that is released during omental destruction. Importantly, therapeutic inhibition of Jagged2-mediated omental metastasis was significantly improved by directly disrupting the Notch pathway in omental mesothelial cells. These findings highlight the key role of Jagged2 to the functional interplay between the TGF-β and the Notch signaling pathways during the metastatic process of ovarian cancer cells to the omentum and identify the Notch signaling molecule as a precision therapeutic target for ovarian cancer metastasis.
Collapse
Affiliation(s)
- Syed S Islam
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia.
- School of Medicine, Al-Faisal University, Riyadh, Saudi Arabia.
| | - Falah H Al-Mohanna
- Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Iman M Yousef
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Ismail A Al-Badawi
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Abdelilah Aboussekhra
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia.
| |
Collapse
|
5
|
Cheng B, Li Y, Ji YB, Shi W, Li M, Zheng J, Ding L, Liu K, Fang L, Xu Y, Li H, Shao X. Polyethylenimine Triggers Dll4 Degradation to Regulate Angiogenesis In Vitro. ACS OMEGA 2024; 9:7502-7510. [PMID: 38405519 PMCID: PMC10882680 DOI: 10.1021/acsomega.3c06050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/28/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024]
Abstract
The Dll4-Notch signaling pathway plays a crucial role in the regulation of angiogenesis and is a promising therapeutic target for diseases associated with abnormal angiogenesis, such as cancer and ophthalmic diseases. Here, we find that polyethylenimine (PEI), a cationic polymer widely used as nucleic acid transfection reagents, can target the Notch ligand Dll4. By immunostaining and immunoblotting, we demonstrate that PEI significantly induces the clearance of cell-surface Dll4 and facilitates its degradation through the lysosomal pathway. As a result, the activation of Notch signaling in endothelial cells is effectively inhibited by PEI, as evidenced by the observed decrease in the generation of the activated form of Notch and expression of Notch target genes Hes1 and Hey1. Furthermore, through blocking Dll4-mediated Notch signaling, PEI treatment enhances angiogenesis in vitro. Together, our study reveals a novel biological effect of PEI and establishes a foundation for the development of a Dll4-targeted biomaterial for the treatment of angiogenesis-related disease.
Collapse
Affiliation(s)
- Binghua Cheng
- Guangdong
Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Li
- Guangdong
Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Bin Ji
- Guangdong
Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenli Shi
- Guangdong
Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Meiqing Li
- Guangdong
Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Sino-Euro
Center of Biomedicine and Health, Shenzhen 518024, China
| | - Jiwei Zheng
- Guangdong
Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Li Ding
- Guangdong
Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ke Liu
- Guangdong
Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Sino-Euro
Center of Biomedicine and Health, Shenzhen 518024, China
| | - Lijing Fang
- Guangdong
Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Sino-Euro
Center of Biomedicine and Health, Shenzhen 518024, China
| | - Ye Xu
- General
Hospital of Southern Theatre Command, Guangzhou 510010, China
| | - Hongchang Li
- Guangdong
Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Sino-Euro
Center of Biomedicine and Health, Shenzhen 518024, China
| | - Ximing Shao
- Guangdong
Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Sino-Euro
Center of Biomedicine and Health, Shenzhen 518024, China
| |
Collapse
|
6
|
Sen P, Ghosh SS. γ-Secretase Inhibitor Potentiates the Activity of Suberoylanilide Hydroxamic Acid by Inhibiting Its Ability to Induce Epithelial to Mesenchymal Transition and Stemness via Notch Pathway Activation in Triple-Negative Breast Cancer Cells. ACS Pharmacol Transl Sci 2023; 6:1396-1415. [PMID: 37854616 PMCID: PMC10580388 DOI: 10.1021/acsptsci.3c00099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Indexed: 10/20/2023]
Abstract
Histone deacetylase inhibitors, such as suberoylanilide hydroxamic acid (SAHA), possess great therapeutic value for triple-negative breast cancer patients. However, their inherent ability to induce epithelial to mesenchymal transition in various malignancies has been of greater concern. Herein, we hypothesize that SAHA facilitates epithelial to mesenchymal transition (EMT) via activation of the Notch pathway. From the literature survey, it is evident that histone deacetylase mediates the formation of the co-repressor complex upon interacting with the DNA binding domain, thereby inhibiting the transcription of the Notch downstream genes. Hence, we hypothesize that the use of SAHA facilitates the transcriptional activation of the Notch target genes, by disrupting the co-repressor complex and recruiting the coactivator complex, thereby facilitating EMT. In this study, we have observed that SAHA upregulates the expression profile of the Notch downstream proteins (such as Notch intracellular domain, Hes-1, c-Myc, etc.) and the Notch ligands (such as Jagged-1 and Jagged-2), thereby aberrantly activating the signaling pathway. Therefore, we have focused on combination therapy using a γ-secretase inhibitor LY411575 that would enhance the efficacy of SAHA by blocking the canonical Notch pathway mediated via its intracellular domain. It was observed that co-treatment significantly mediates apoptosis, generates cellular reactive oxygen species, depolarizes mitochondria, and diminishes the stemness properties. Besides, it also mediates autophagy-independent cell death and diminishes the expression of inflammatory cytokines, along with the downregulation in the expression of the Notch downstream genes and mesenchymal markers. Altogether, our study provides a mechanistic basis for combating EMT potentiated by SAHA, which could be utilized as a rational strategy for the treatment of solid tumors, especially triple-negative breast cancer.
Collapse
Affiliation(s)
- Plaboni Sen
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Siddhartha Sankar Ghosh
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Centre
for Nanotechnology, Indian Institute of
Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
7
|
Saha A, Kolonin MG, DiGiovanni J. Obesity and prostate cancer - microenvironmental roles of adipose tissue. Nat Rev Urol 2023; 20:579-596. [PMID: 37198266 DOI: 10.1038/s41585-023-00764-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 05/19/2023]
Abstract
Obesity is known to have important roles in driving prostate cancer aggressiveness and increased mortality. Multiple mechanisms have been postulated for these clinical observations, including effects of diet and lifestyle, systemic changes in energy balance and hormonal regulation and activation of signalling by growth factors and cytokines and other components of the immune system. Over the past decade, research on obesity has shifted towards investigating the role of peri-prostatic white adipose tissue as an important source of locally produced factors that stimulate prostate cancer progression. Cells that comprise white adipose tissue, the adipocytes and their progenitor adipose stromal cells (ASCs), which proliferate to accommodate white adipose tissue expansion in obesity, have been identified as important drivers of obesity-associated cancer progression. Accumulating evidence suggests that adipocytes are a source of lipids that are used by adjacent prostate cancer cells. However, results of preclinical studies indicate that ASCs promote tumour growth by remodelling extracellular matrix and supporting neovascularization, contributing to the recruitment of immunosuppressive cells, and inducing epithelial-mesenchymal transition through paracrine signalling. Because epithelial-mesenchymal transition is associated with cancer chemotherapy resistance and metastasis, ASCs are considered to be potential targets of therapies that could be developed to suppress cancer aggressiveness in patients with obesity.
Collapse
Affiliation(s)
- Achinto Saha
- Division of Pharmacology and Toxicology and Dell Paediatric Research Institute, The University of Texas at Austin, Austin, TX, USA
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Disease, The University of Texas Health Sciences Center at Houston, Houston, Texas, USA.
| | - John DiGiovanni
- Division of Pharmacology and Toxicology and Dell Paediatric Research Institute, The University of Texas at Austin, Austin, TX, USA.
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, USA.
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
8
|
Zhou J, Kong YS, Vincent KM, Dieters‐Castator D, Bukhari AB, Glubrecht D, Liu R, Quilty D, Findlay SD, Huang X, Xu Z, Yang RZ, Zhang L, Tang E, Lajoie G, Eisenstat DD, Gamper AM, Fahlman R, Godbout R, Postovit L, Fu Y. RNA cytosine methyltransferase NSUN5 promotes protein synthesis and tumorigenic phenotypes in glioblastoma. Mol Oncol 2023; 17:1763-1783. [PMID: 37057706 PMCID: PMC10483612 DOI: 10.1002/1878-0261.13434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/28/2023] [Accepted: 04/13/2023] [Indexed: 04/15/2023] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant primary brain tumor in adults. The standard treatment achieves a median overall survival for GBM patients of only 15 months. Hence, novel therapies based on an increased understanding of the mechanistic underpinnings of GBM are desperately needed. In this study, we show that elevated expression of 28S rRNA (cytosine-C(5))-methyltransferase NSUN5, which methylates cytosine 3782 of 28S rRNA in GBM cells, is strongly associated with the poor survival of GBM patients. Moreover, we demonstrate that overexpression of NSUN5 increases protein synthesis in GBM cells. NSUN5 knockdown decreased protein synthesis, cell proliferation, sphere formation, migration, and resistance to temozolomide in GBM cell lines. NSUN5 knockdown also decreased the number and size of GBM neurospheres in vitro. As a corollary, mice harboring U251 tumors wherein NSUN5 was knocked down survived longer than mice harboring control tumors. Taken together, our results suggest that NSUN5 plays a protumorigenic role in GBM by enabling the enhanced protein synthesis requisite for tumor progression. Accordingly, NSUN5 may be a hitherto unappreciated target for the treatment of GBM.
Collapse
Affiliation(s)
- Jiesi Zhou
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Yan Shu Kong
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Krista M. Vincent
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | | | - Amirali B. Bukhari
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Darryl Glubrecht
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Rong‐Zong Liu
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Douglas Quilty
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonONCanada
| | - Scott D. Findlay
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Xiaowei Huang
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Zhihua Xu
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Rui Zhe Yang
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Lanyue Zhang
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Emily Tang
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Gilles Lajoie
- Department of BiochemistryWestern UniversityLondonONCanada
| | - David D. Eisenstat
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
- Department of PaediatricsUniversity of MelbourneParkvilleVic.Australia
| | - Armin M. Gamper
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Richard Fahlman
- Department of Biochemistry, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Roseline Godbout
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Lynne‐Marie Postovit
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonONCanada
| | - YangXin Fu
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| |
Collapse
|
9
|
The Role of Cytokines in Epithelial-Mesenchymal Transition in Gynaecological Cancers: A Systematic Review. Cells 2023; 12:cells12030416. [PMID: 36766756 PMCID: PMC9913821 DOI: 10.3390/cells12030416] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Chronic inflammation has been closely linked to the development and progression of various cancers. The epithelial-mesenchymal transition (EMT) is a process involving the acquisition of mesenchymal features by carcinoma cells and is an important link between inflammation and cancer development. Inflammatory mediators in the tumour micro-environment, such as cytokines and chemokines, can promote EMT changes in cancer cells. The aim of this systematic review is to analyse the effect of cytokines on EMT in gynaecological cancers and discuss their possible therapeutic implications. A search of the databases CINAHL, Cochrane, Embase, Medline, PubMed, TRIP, and Web of Science was performed using the keywords: "cytokines" AND "epithelial mesenchymal transition OR transformation" AND "gynaecological cancer". Seventy-one articles reported that various cytokines, such as TGF-β, TNF-α, IL-6, etc., promoted EMT changes in ovarian, cervical, and endometrial cancers. The EMT changes included from epithelial to mesenchymal morphological change, downregulation of the epithelial markers E-cadherin/β-catenin, upregulation of the mesenchymal markers N-cadherin/vimentin/fibronectin, and upregulation of the EMT-transformation factors (EMT-TF) SNAI1/SNAI2/TWIST/ZEB. Cytokine-induced EMT can lead to gynaecological cancer development and metastasis and hence novel therapies targeting the cytokines or their EMT signalling pathways could possibly prevent cancer progression, reduce cancer recurrence, and prevent drug-resistance.
Collapse
|
10
|
Wang Y, Zhang Z, Zhu Z, Wang P, Zhang J, Liu H, Li J. The significance of EphA2-regulated Wnt/β-catenin signal pathway in promoting the metastasis of HBV-related hepatocellular carcinoma. Mol Biol Rep 2023; 50:565-575. [PMID: 36350420 DOI: 10.1007/s11033-022-08045-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Hepatitis B virus (HBV) infection is closely associated with the malignant progression of hepatocellular carcinoma (HCC). However, the mechanism involved in the HBV-related HCC development remains poorly understood. Hence, the aim of this study is to investigate the regulatory mechanism of EphA2-induced epithelial-mesenchymal transition (EMT) in the metastasis of HBV-related HCC cells. METHODS AND RESULTS The expression level of EphA2 was determined in HBV-related human HCC cells. Then, the effects of EphA2 silencing on the EMT-associated proteins, the Wnt/β-catenin signal pathway and the metastatic potential of HBV-related HCC cells were evaluated. Finally, the inhibitory role of Entecavir (a potent antiviral drug for HBV) on EphA2-induced EMT was explored. The present study revealed that the EphA2 expression level was increased in HBV-related HCC cells compared with non-related HCC cells. Following EphA2 knockdown, the downregulation of Vimentin, β-catenin and p-GSK-3βSer9 expressions, the upregulation of E-cadherin expression, and the suppressed migration and invasion ability of HBV-related HCC cells were found. Additionally, Entecavir was proved to have a significant inhibitory effect on EphA2-induced EMT via attenuating the Wnt/β-catenin signal pathway. CONCLUSIONS In this study, we found that EphA2-induced EMT was involved in the enhanced metastatic potential of HBV-related HCC cells through the activation of the Wnt/β-catenin signal pathway.
Collapse
Affiliation(s)
- Yidan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhenting Zhang
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zhengyan Zhu
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Nankai University, Tianjin, 300170, China
| | - Peng Wang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Nankai University, Tianjin, 300170, China
| | - Jinjuan Zhang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Nankai University, Tianjin, 300170, China
| | - Hui Liu
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Nankai University, Tianjin, 300170, China.
| | - Jianyu Li
- Department of Pharmacy, Logistics University of Chinese People's Armed Police Forces, Tianjin, 300309, China.
| |
Collapse
|
11
|
Giuli MV, Mancusi A, Giuliani E, Screpanti I, Checquolo S. Notch signaling in female cancers: a multifaceted node to overcome drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 4:805-836. [PMID: 35582386 PMCID: PMC8992449 DOI: 10.20517/cdr.2021.53] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022]
Abstract
Drug resistance is one of the main challenges in cancer therapy, including in the treatment of female-specific malignancies, which account for more than 60% of cancer cases among women. Therefore, elucidating the underlying molecular mechanisms is an urgent need in gynecological cancers to foster novel therapeutic approaches. Notably, Notch signaling, including either receptors or ligands, has emerged as a promising candidate given its multifaceted role in almost all of the hallmarks of cancer. Concerning the connection between Notch pathway and drug resistance in the afore-mentioned tumor contexts, several studies focused on the Notch-dependent regulation of the cancer stem cell (CSC) subpopulation or the induction of the epithelial-to-mesenchymal transition (EMT), both features implicated in either intrinsic or acquired resistance. Indeed, the present review provides an up-to-date overview of the published results on Notch signaling and EMT- or CSC-driven drug resistance. Moreover, other drug resistance-related mechanisms are examined such as the involvement of the Notch pathway in drug efflux and tumor microenvironment. Collectively, there is a long way to go before every facet will be fully understood; nevertheless, some small pieces are falling neatly into place. Overall, the main aim of this review is to provide strong evidence in support of Notch signaling inhibition as an effective strategy to evade or reverse resistance in female-specific cancers.
Collapse
Affiliation(s)
- Maria V Giuli
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome 00161, Italy
| | - Angelica Mancusi
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome 00161, Italy
| | - Eugenia Giuliani
- Scientific Direction, San Gallicano Dermatological Institute IRCCS, Rome 00144, Italy
| | - Isabella Screpanti
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome 00161, Italy
| | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University, Latina 04100, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome 00161, Italy
| |
Collapse
|
12
|
Anti-Jagged-1 immunotherapy in cancer. Adv Med Sci 2022; 67:196-202. [PMID: 35421813 DOI: 10.1016/j.advms.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/25/2022] [Accepted: 04/02/2022] [Indexed: 02/06/2023]
Abstract
Notch signaling is a highly conserved pathway and it plays an essential role in regulating cellular proliferation, differentiation, and apoptosis. The human Notch family includes four receptors, Notch 1-4, and five ligands, delta-like ligand 1 (DLL1), delta-like ligand 3 (DLL3), delta-like ligand 4 (DLL4), Jagged-1 (JAG1), and Jagged-2 (JAG2). It is widely known, that Notch signaling components are often mutated and have deregulated expression in many types of cancer and other diseases. Thus, various therapeutic approaches targeting receptors and ligands of the Notch pathway are being investigated. Human JAG1 is closely related to tumor biology among the Notch ligands, and recent studies have shown potential for monoclonal antibodies targeting JAG1 in cancer therapy. Therefore, this review focuses on current reports on the significance of JAG1 directed cancer treatment, emphasizing immunotherapy.
Collapse
|
13
|
Roldán FL, Lozano JJ, Ingelmo-Torres M, Carrasco R, Díaz E, Ramirez-Backhaus M, Rubio J, Reig O, Alcaraz A, Mengual L, Izquierdo L. Clinicopathological and Molecular Prognostic Classifier for Intermediate/High-Risk Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13246338. [PMID: 34944958 PMCID: PMC8699125 DOI: 10.3390/cancers13246338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary In this report, we identified biomarkers for tumor progression from tissue samples of intermediate/high-risk ccRCC. Using the molecular findings and the clinical data, we developed an improved prognostic model which could help to provide better individualized management recommendations. Abstract The probability of tumor progression in intermediate/high-risk clear cell renal cell carcinoma (ccRCC) is highly variable, underlining the lack of predictive accuracy of the current clinicopathological factors. To develop an accurate prognostic classifier for these patients, we analyzed global gene expression patterns in 13 tissue samples from progressive and non-progressive ccRCC using Illumina Hi-seq 4000. Expression levels of 22 selected differentially expressed genes (DEG) were assessed by nCounter analysis in an independent series of 71 ccRCCs. A clinicopathological-molecular model for predicting tumor progression was developed and in silico validated in a total of 202 ccRCC patients using the TCGA cohort. A total of 1202 DEGs were found between progressive and non-progressive intermediate/high-risk ccRCC in RNAseq analysis, and seven of the 22 DEGs selected were validated by nCounter. Expression of HS6ST2, pT stage, tumor size, and ISUP grade were found to be independent prognostic factors for tumor progression. A risk score generated using these variables was able to distinguish patients at higher risk of tumor progression (HR 7.27; p < 0.001), consistent with the results obtained from the TCGA cohort (HR 2.74; p < 0.002). In summary, a combined prognostic algorithm was successfully developed and validated. This model may aid physicians to select high-risk patients for adjuvant therapy.
Collapse
Affiliation(s)
- Fiorella L. Roldán
- Department and Laboratory of Urology, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain; (F.L.R.); (M.I.-T.); (R.C.); (E.D.); (A.A.); (L.I.)
| | - Juan J. Lozano
- Bioinformatics Platform, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Clinic, 08036 Barcelona, Spain;
| | - Mercedes Ingelmo-Torres
- Department and Laboratory of Urology, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain; (F.L.R.); (M.I.-T.); (R.C.); (E.D.); (A.A.); (L.I.)
| | - Raquel Carrasco
- Department and Laboratory of Urology, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain; (F.L.R.); (M.I.-T.); (R.C.); (E.D.); (A.A.); (L.I.)
| | - Esther Díaz
- Department and Laboratory of Urology, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain; (F.L.R.); (M.I.-T.); (R.C.); (E.D.); (A.A.); (L.I.)
| | - Miguel Ramirez-Backhaus
- Department of Urology, Oncologic Institute of Valencia, 46009 Valencia, Spain; (M.R.-B.); (J.R.)
| | - José Rubio
- Department of Urology, Oncologic Institute of Valencia, 46009 Valencia, Spain; (M.R.-B.); (J.R.)
| | - Oscar Reig
- Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS) and Medical Oncology Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain;
| | - Antonio Alcaraz
- Department and Laboratory of Urology, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain; (F.L.R.); (M.I.-T.); (R.C.); (E.D.); (A.A.); (L.I.)
| | - Lourdes Mengual
- Department and Laboratory of Urology, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain; (F.L.R.); (M.I.-T.); (R.C.); (E.D.); (A.A.); (L.I.)
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-227-54-00 (ext. 4820)
| | - Laura Izquierdo
- Department and Laboratory of Urology, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain; (F.L.R.); (M.I.-T.); (R.C.); (E.D.); (A.A.); (L.I.)
| |
Collapse
|
14
|
Ghoneum A, Almousa S, Warren B, Abdulfattah AY, Shu J, Abouelfadl H, Gonzalez D, Livingston C, Said N. Exploring the clinical value of tumor microenvironment in platinum-resistant ovarian cancer. Semin Cancer Biol 2021; 77:83-98. [PMID: 33476723 PMCID: PMC8286277 DOI: 10.1016/j.semcancer.2020.12.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/20/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022]
Abstract
Platinum resistance in epithelial ovarian cancer (OvCa) is rising at an alarming rate, with recurrence of chemo-resistant high grade serous OvCa (HGSC) in roughly 75 % of all patients. Additionally, HGSC has an abysmal five-year survival rate, standing at 39 % and 17 % for FIGO stages III and IV, respectively. Herein we review the crucial cellular interactions between HGSC cells and the cellular and non-cellular components of the unique peritoneal tumor microenvironment (TME). We highlight the role of the extracellular matrix (ECM), ascitic fluid as well as the mesothelial cells, tumor associated macrophages, neutrophils, adipocytes and fibroblasts in platinum-resistance. Moreover, we underscore the importance of other immune-cell players in conferring resistance, including natural killer cells, myeloid-derived suppressive cells (MDSCs) and T-regulatory cells. We show the clinical relevance of the key platinum-resistant markers and their correlation with the major pathways perturbed in OvCa. In parallel, we discuss the effect of immunotherapies in re-sensitizing platinum-resistant patients to platinum-based drugs. Through detailed analysis of platinum-resistance in HGSC, we hope to advance the development of more effective therapy options for this aggressive disease.
Collapse
Affiliation(s)
- Alia Ghoneum
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Sameh Almousa
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Bailey Warren
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Ammar Yasser Abdulfattah
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Alexandria University School of Medicine, Alexandria, Egypt
| | - Junjun Shu
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; The Third Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Hebatullah Abouelfadl
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Department of Genetics, Animal Health Research Institute, Dokki, Egypt
| | - Daniela Gonzalez
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Christopher Livingston
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Neveen Said
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Departments of Urology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Comprehensive Cancer Center, Winston Salem, NC, 27157, USA.
| |
Collapse
|
15
|
Alves E, Taifour S, Dolcetti R, Chee J, Nowak AK, Gaudieri S, Blancafort P. Reprogramming the anti-tumor immune response via CRISPR genetic and epigenetic editing. Mol Ther Methods Clin Dev 2021; 21:592-606. [PMID: 34095343 PMCID: PMC8142043 DOI: 10.1016/j.omtm.2021.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Precise clustered regularly interspaced short palindromic repeats (CRISPR)-mediated genetic and epigenetic manipulation of the immune response has become a promising immunotherapeutic approach toward combating tumorigenesis and tumor progression. CRISPR-based immunologic reprograming in cancer therapy comprises the locus-specific enhancement of host immunity, the improvement of tumor immunogenicity, and the suppression of tumor immunoevasion. To date, the ex vivo re-engineering of immune cells directed to inhibit the expression of immune checkpoints or to express synthetic immune receptors (chimeric antigen receptor therapy) has shown success in some settings, such as in the treatment of melanoma, lymphoma, liver, and lung cancer. However, advancements in nuclease-deactivated CRISPR-associated nuclease-9 (dCas9)-mediated transcriptional activation or repression and Cas13-directed gene suppression present novel avenues for the development of tumor immunotherapies. In this review, the basis for development, mechanism of action, and outcomes from recently published Cas9-based clinical trial (genetic editing) and dCas9/Cas13-based pre-clinical (epigenetic editing) data are discussed. Lastly, we review cancer immunotherapy-specific considerations and barriers surrounding use of these approaches in the clinic.
Collapse
Affiliation(s)
- Eric Alves
- School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
| | - Shahama Taifour
- School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
| | - Riccardo Dolcetti
- Diamantina Institute, The University of Queensland, Brisbane, QLD 4102, Australia
- Sir Peter MacCallum Centre for Cancer Immunotherapy, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Jonathan Chee
- National Centre for Asbestos Related Diseases, Institute of Respiratory Health, The University of Western Australia, Perth, WA 6009, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Anna K. Nowak
- National Centre for Asbestos Related Diseases, Institute of Respiratory Health, The University of Western Australia, Perth, WA 6009, Australia
- School of Medicine, The University of Western Australia, Perth, WA 6009, Australia
| | - Silvana Gaudieri
- School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA 6150, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Pilar Blancafort
- School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- The Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
16
|
McCaw TR, Inga E, Chen H, Jaskula‐Sztul R, Dudeja V, Bibb JA, Ren B, Rose JB. Gamma Secretase Inhibitors in Cancer: A Current Perspective on Clinical Performance. Oncologist 2021; 26:e608-e621. [PMID: 33284507 PMCID: PMC8018325 DOI: 10.1002/onco.13627] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/13/2020] [Indexed: 01/01/2023] Open
Abstract
Gamma secretase inhibitors (GSIs), initially developed as Alzheimer's therapies, have been repurposed as anticancer agents given their inhibition of Notch receptor cleavage. The success of GSIs in preclinical models has been ascribed to induction of cancer stem-like cell differentiation and apoptosis, while also impairing epithelial-to-mesenchymal transition and sensitizing cells to traditional chemoradiotherapies. The promise of these agents has yet to be realized in the clinic, however, as GSIs have failed to demonstrate clinical benefit in most solid tumors with the notable exceptions of CNS malignancies and desmoid tumors. Disappointing clinical performance to date reflects important questions that remain to be answered. For example, what is the net impact of these agents on antitumor immune responses, and will they require concurrent targeting of tumor-intrinsic compensatory pathways? Addressing these limitations in our current understanding of GSI mechanisms will undoubtedly facilitate their rational incorporation into combinatorial strategies and provide a valuable tool with which to combat Notch-dependent cancers. In the present review, we provide a current understanding of GSI mechanisms, discuss clinical performance to date, and suggest areas for future investigation that might maximize the utility of these agents. IMPLICATIONS FOR PRACTICE: The performance of gamma secretase inhibitors (GSIs) in clinical trials generally has not reflected their encouraging performance in preclinical studies. This review provides a current perspective on the clinical performance of GSIs across various solid tumor types alongside putative mechanisms of antitumor activity. Through exploration of outstanding gaps in knowledge as well as reasons for success in certain cancer types, the authors identify areas for future investigation that will likely enable incorporation of GSIs into rational combinatorial strategies for superior tumor control and patient outcomes.
Collapse
Affiliation(s)
- Tyler R. McCaw
- Divisions of Surgical Oncology, The University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Evelyn Inga
- Divisions of Surgical Oncology, The University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Herbert Chen
- Breast & Endocrine Surgery, The University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Renata Jaskula‐Sztul
- Breast & Endocrine Surgery, The University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Vikas Dudeja
- Divisions of Surgical Oncology, The University of Alabama at BirminghamBirminghamAlabamaUSA
| | - James A. Bibb
- Gastrointestinal Surgery, The University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Bin Ren
- Vascular Surgery & Endovascular Therapy, Department of Surgery, The University of Alabama at BirminghamBirminghamAlabamaUSA
| | - J. Bart Rose
- Divisions of Surgical Oncology, The University of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
17
|
Tai CS, Lan KC, Wang E, Chan FE, Hsieh MT, Huang CW, Weng SL, Chen PC, Chen WL. Nanotopography as Artificial Microenvironment for Accurate Visualization of Metastasis Development via Simulation of ECM Dynamics. NANO LETTERS 2021; 21:1400-1411. [PMID: 33522822 DOI: 10.1021/acs.nanolett.0c04209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metastatic progression is mediated by complex interactions between deregulated extracellular matrix (ECM) and cancer cells and remains a major challenge in cancer management. To investigate the role of ECM dynamics in promoting metastasis development, we developed an artificial microenvironment (AME) platform comprised of nanodot arrays of increasing diameter. Cells cultured on the platform showed increasing signs of mesenchymal-like cell transition as AME diameter increased, suggesting accurate simulation of ECM-mediated gene regulation. Gene expression was analyzed to determine genes significant to transition, which were then used to select appropriate small molecule drugs for time course treatments. Our results suggest that the platform can identify critical target genes as well as possible drug candidates. Overall, the AME platform allows for the study of intricate ECM-induced gene expression trends across metastasis development that would otherwise be difficult to visualize in vivo and may open new avenues toward successful personalized cancer management.
Collapse
Affiliation(s)
- Chun-San Tai
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Kuan-Chun Lan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Erick Wang
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Fu-Erh Chan
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Ming-Ting Hsieh
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Ching-Wen Huang
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Shun-Long Weng
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Department of Obstetrics and Gynecology, Hsinchu MacKay Memorial Hospital, Hsinchu City, Taiwan
| | - Po-Chun Chen
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan
- Institute of Material Science and Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Wen Liang Chen
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
18
|
Wu D, Ke Y, Xiao R, Liu J, Li Q, Wang Y. Long non-coding RNA GClnc1 knockdown suppresses progression of epithelial ovarian cancer by recruiting FOXC2 to disrupt the NOTCH1/NF-κB/Snail pathway. Exp Cell Res 2020; 399:112422. [PMID: 33338479 DOI: 10.1016/j.yexcr.2020.112422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Epithelial ovarian cancer (EOC) is a highly fatal gynecological cancer. A long noncoding RNA (lncRNA) gastric cancer-associated lncRNA1 (GClnc1) has been revealed to play critical roles in metastasis. Therefore, the present study aims to explore the correlation between GClnc1 and the metastasis and progression of EOC. METHODS First, 57 paired EOC and paracancerous tissues were collected to detect GClnc1 expression by RT-qPCR. Subsequently, OVC1 and SKOV3 cells with GClnc1 silencing/overexpression were developed to detect changes in cell activity, apoptosis, migration and invasion abilities. Then, the subcellular localization of GClnc1 was detected by nuclear/cytoplasmic fractionation, ISH and FISH assays. The binding relationships between GClnc1 and forkhead box protein C2 (FOXC2), and between FOXC2 and NOTCH1 were predicted and verified. RESULTS GClnc1 was significantly overexpressed in EOC tissues, and knockdown of GClnc1 inhibited cell viability and promoted apoptosis. Moreover, GClnc1 in the nucleus bound to the transcription factor FOXC2, thereby activating the transcription of NOTCH1. NOTCH1 overexpression enhanced the proliferation and epithelial-mesenchymal transition of SKOV3 and OVC1 cells. Moreover, NOTCH1 activated the NF-κB/Snail signaling. Finally, in vivo experiments demonstrated that GClnc1 knockdown suppressed the growth and metastasis of SKOV3 and OVC1 cells in vivo. CONCLUSIONS GClnc1 promoted NOTCH1 transcription by recruiting FOXC2, thereby activating the NF-κB/Snail signaling and promoting EOC cell growth and metastasis.
Collapse
Affiliation(s)
- Dandan Wu
- Department of Obstetrics and Gynecology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, PR China
| | - Yumin Ke
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, PR China
| | - Rongrong Xiao
- Department of Obstetrics and Gynecology, Quanzhou Strait Hospital, Quanzhou, Fujian, 362018, PR China
| | - Jia Liu
- Department of Obstetrics and Gynecology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, PR China
| | - Qingli Li
- Department of Obstetrics and Gynecology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, PR China
| | - Yiwen Wang
- Department of Obstetrics and Gynecology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, PR China.
| |
Collapse
|
19
|
Chen Y, Guo Y, Chen H, Ma F. Long Non-coding RNA Expression Profiling Identifies a Four-Long Non-coding RNA Prognostic Signature for Isocitrate Dehydrogenase Mutant Glioma. Front Neurol 2020; 11:573264. [PMID: 33329315 PMCID: PMC7714930 DOI: 10.3389/fneur.2020.573264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Isocitrate dehydrogenase (IDH) mutant is one of the most robust and important genetic aberrations in glioma. However, the underlying regulation mechanism of long non-coding RNA (lncRNA) in IDH mutant glioma has not been systematically portrayed. Methods:In this work, 775 IDH mutant glioma samples with transcriptome data, including 167 samples from the Chinese Glioma Genome Atlas (CGGA) RNAseq dataset, 390 samples from The Cancer Genome Atlas (TCGA) dataset, 79 samples from GSE16011 dataset, and 139 samples from CGGA microarray dataset, were enrolled. R language and GraphPad Prism software were applied for the statistical analysis and graphical work. Results: By comparing the differentially lncRNA genes between IDH mutant and IDH wild-type glioma samples, a four-lncRNA (JAG1, PVT1, H19, and HAR1A) signature was identified in IDH mutant glioma patients. The signature model was established based on the expression level and the regression coefficient of the four lncRNA genes. IDH mutant glioma samples could be successfully stratified into low-risk and high-risk groups in CGGA RNAseq, TCGA, GSE16011, and CGGA microarray databases. Meanwhile, multivariate Cox analysis showed that the four-lncRNA signature was an independent prognostic biomarker after adjusting for other clinicopathologic factors. Moreover, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the immune response and cellular metabolism were significantly associated with the four-lncRNA risk signature. Conclusion: Taken together, the four-lncRNA risk signature was identified as a novel prognostic marker for IDH mutant glioma patients and may potentially lead to improvements in the lives of glioma patients.
Collapse
Affiliation(s)
- Yusheng Chen
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yang Guo
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Hang Chen
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Fengjin Ma
- Department of Intensive Care Unit, The Third People's Hospital of Zhengzhou, Zhengzhou, China
| |
Collapse
|
20
|
Wang Z, Li L, Wang C, Piao Y, Jiang J, Li L, Yan G, Piao H. Recombinant Pyrin Domain Protein Attenuates Airway Inflammation and Alleviates Epithelial-Mesenchymal Transition by Inhibiting Crosstalk Between TGFβ1 and Notch1 Signaling in Chronic Asthmatic Mice. Front Physiol 2020; 11:559470. [PMID: 33192556 PMCID: PMC7645102 DOI: 10.3389/fphys.2020.559470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/15/2020] [Indexed: 01/10/2023] Open
Abstract
This article aims to investigate the effects of recombinant pyrin domain (RPYD) on airway inflammation and remodeling in mice with chronic asthma. The chronic asthma BALB/c mouse model was first sensitized by ovalbumin (OVA) and then challenged by OVA nebulization. RPYD or dexamethasone was given before OVA challenge. Our results showed that RPYD significantly inhibited the increase of total cell number, eosinophils, neutrophils and lymphocytes in bronchoalveolar lavage fluid (BALF) induced by OVA, and reduced the infiltration of inflammatory cells, the proliferation of goblet cells and collagen deposition. In addition, RPYD inhibited the mRNA and protein levels of α-smooth muscle actin (α-SMA), transforming growth factor (TGF)-β1, Jagged1, Notch1, Hes1 and Smad3, as well as Smad3 phosphorylation. TGFβ1 down-regulated the level of E-cadherin and promoted the expression of α-SMA, thus inducing epithelial-mesenchymal transition (EMT) in bronchial epithelial cells. We found that RPYD reduced EMT by inhibiting TGFβ1/smad3 and Jagged1/Notch1 signaling pathways. Further overexpression of NICD showed that under the stimulation of TGFβ1, NICD enhanced the phosphorylated Smad3 and nuclear Smad3, accompanied by the increased expression of Notch1 target gene Hes1. In contrast, after treatment with smad3 siRNA, the expression of Hes1 was down regulated as the decrease of Smad3, which indicates that there is crosstalk between smad3 and NICD on Hes1 expression. In conclusion, RPYD reduces airway inflammation, improves airway remodeling and reduces EMT in chronic asthmatic mice by inhibiting the crosstalk between TGFβ1/smad3 and Jagged1/Notch1 signaling pathways.
Collapse
Affiliation(s)
- Zhiguang Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, China
| | - Liangchang Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Chongyang Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Yihua Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Intensive Care Unit, Affiliated Hospital of Yanbian University, Yanji, China
| | - Jingzhi Jiang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Li Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Guanghai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Hongmei Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, China
| |
Collapse
|
21
|
Shen Q, Reedijk M. Notch Signaling and the Breast Cancer Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1287:183-200. [PMID: 33034033 DOI: 10.1007/978-3-030-55031-8_12] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Notch promotes breast cancer progression through tumor initiating cell maintenance, tumor cell fate specification, proliferation, survival, and motility. In addition, Notch is recognized as a decisive mechanism in regulating various juxtacrine and paracrine communications in the tumor microenvironment (TME). In this chapter, we review recent studies on stress-mediated Notch activation within the TME and sequelae such as angiogenesis, extracellular matrix remodeling, changes in the innate and adaptive immunophenotype, and therapeutic perspectives.
Collapse
Affiliation(s)
- Qiang Shen
- Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Michael Reedijk
- Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
22
|
SMAD-oncoprotein interplay: Potential determining factors in targeted therapies. Biochem Pharmacol 2020; 180:114155. [DOI: 10.1016/j.bcp.2020.114155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
|
23
|
Targeting Notch signaling pathway as an effective strategy in overcoming drug resistance in ovarian cancer. Pathol Res Pract 2020; 216:153158. [PMID: 32829107 DOI: 10.1016/j.prp.2020.153158] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 12/21/2022]
Abstract
Ovarian cancer, as one of the most common types of gynecological malignancies, has an increasing rate of incidence worldwide. Despite huge amounts of recent efforts in designing novel therapeutic strategies for complete removal of tumors and increasing overall survival of patients, chemotherapy is still the preferred therapy for ovarian cancer. However, chemotherapy is also challenged by development of drug resistance. Therefore, elucidating the underlying mechanisms of drug reissuance is an urgent need in ovarian cancer. Numerous studies have shown the implication of the Notch signaling pathway in the development of various human malignancies. Therefore, this study will provide a brief overview of the published evidence in support of Notch targeting in reverting multidrug resistance as a safer and novel approach for the improvement of ovarian cancer treatment.
Collapse
|
24
|
Wang Q, Peng H, Qi X, Wu M, Zhao X. Targeted therapies in gynecological cancers: a comprehensive review of clinical evidence. Signal Transduct Target Ther 2020; 5:137. [PMID: 32728057 PMCID: PMC7391668 DOI: 10.1038/s41392-020-0199-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Advanced and recurrent gynecological cancers are associated with poor prognosis and lack of effective treatment. The developments of the molecular mechanisms on cancer progression provide insight into novel targeted therapies, which are emerging as groundbreaking and promising cancer treatment strategies. In gynecologic malignancies, potential therapeutic targeted agents include antiangiogenic agents, poly (ADP-ribose) polymerase (PARP) inhibitors, tumor-intrinsic signaling pathway inhibitors, selective estrogen receptor downregulators, and immune checkpoint inhibitors. In this article, we provide a comprehensive review of the clinical evidence of targeted agents in gynecological cancers and discuss the future implication.
Collapse
Affiliation(s)
- Qiao Wang
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Hongling Peng
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Xiaorong Qi
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
25
|
Li Y, Lin S, An N. Hsa_circ_0009910: oncogenic circular RNA targets microRNA-145 in ovarian cancer cells. Cell Cycle 2020; 19:1857-1868. [PMID: 32588730 DOI: 10.1080/15384101.2020.1731650] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Circular RNAs (circRNAs) correlate with cancer cell phenotypes. Particularly, circRNAs mediate the cancer process as microRNAs (miRNAs) sponges. This study was to ascertain the roles of hsa_circ_0009910 in phenotypic aspects of ovarian cancer cells. Mantel-Cox test was performed to analyze the correlation between hsa_circ_0009910 and survival outcomes of ovarian cancer. Minigene reporter was constructed and small interfering-RNA was designed for constructing hsa_circ_0009910-dysregulated and miR-145-upregulated cells identified by qRT-PCR. Proliferative and motile activities were monitored by CCK and Transwell. Western blot was applied for quantification of cyclin D1, CDK4, CDK6, MMP-2, MMP-9, IκBα, p65, Notch1, Hes1, and Hes5. miRNAs targets were predicted using a bioinformatics tool and confirmed using qRT-PCR and Dual-Luciferase reporter assay. Hsa_circ_0009910 was correlated with the poor prognosis of ovarian cancer patients. The ovarian cancer cell phenotypes were promoted by hsa_circ_0009910 while repressed by silencing hsa_circ_0009910. Hsa_circ_0009910 silence was responsible for the upregulation of the predicted miRNAs targets. Thereinto, miR-145 was confirmed as a miRNA target and negatively regulated by hsa_circ_0009910. miR-145 nullified the biological function of hsa_circ_0009910 in the proliferative and motile phenotypes, and the active status of NF-κB and Notch. Hsa_circ_0009910, representing unfavorable prognosis, induced proliferative and motile phenotypes by suppressing miR-145 in ovarian cancer cells.
Collapse
Affiliation(s)
- Ying Li
- Department of Obstetrics, Shengli Oilfield Central Hospital , Dongying, China
| | - Shuang Lin
- Department of Obstetrics, Yantaishan Hospital , Yantai, China
| | - Na An
- Department of Gynecology, Shengli Oilfield Central Hospital , Dongying, China
| |
Collapse
|
26
|
The oncogenic role of Jagged1/Notch signaling in cancer. Biomed Pharmacother 2020; 129:110416. [PMID: 32593969 DOI: 10.1016/j.biopha.2020.110416] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/14/2022] Open
Abstract
Aberrant activation of Notch signaling plays an oncogenic role in cancer development. Jagged1 (JAG1) is an important Notch ligand that triggers Notch signaling through cell-cell interactions. JAG1 overexpression has been reported in many different types of cancer and correlates with a poor clinical prognosis. JAG1/Notch signaling controls oncogenic processes in different cell types and cellular contexts. Furthermore, JAG1/Notch signaling cascades activate a number of oncogenic factors that regulate cellular functions such as proliferation, metastasis, drug-resistance, and angiogenesis. To suppress the severe toxicity of pan-Notch inhibitors, JAG1 is attracting increasing attention as a source of therapeutic targets for cancers. In this review, the oncogenic role of JAG1/Notch signaling in cancer is discussed, as well as implications of strategies to inhibit JAG1/Notch signaling activity.
Collapse
|
27
|
Liu N, Ma M, Qu N, Wang R, Chen H, Hu F, Gao S, Shan F. Low-dose naltrexone inhibits the epithelial-mesenchymal transition of cervical cancer cells in vitro and effects indirectly on tumor-associated macrophages in vivo. Int Immunopharmacol 2020; 86:106718. [PMID: 32585612 DOI: 10.1016/j.intimp.2020.106718] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022]
Abstract
The metastasis of cervical cancer has always been a clinical challenge. We investigated the effects of low-dose naltrexone (LDN) on the epithelial mesenchymal transition of cervical cancer cells in vitro as well as its influence on macrophage polarization and associated cytokines in vivo. The results suggested that LDN supressed the proliferation, migration and invasion abilities and promote their apoptosis in Hela cells, whereas the opioid growth factor receptor (OGFr) silenced significantly reversed these effects in vitro. Knockdown the expression of OGFr, the inhibitory of LDN on EMT was weakened. LDN could inhibit cervical cancer progression in nude mice. In additon, LDN indirectly reduced the number of tumor-associated macrophages (TAMs), mainly M2 macrophages, and decreased expression of anti-inflammatory factor IL-10 in the serum of nude mice. These findings demonstrate that LDN could be a potential treatment for cervical cancer.
Collapse
Affiliation(s)
- Ning Liu
- Department of Immunology, School of Basic Medical Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, Liaoning Province, China
| | - Mingxing Ma
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, Liaoning Province, China
| | - Na Qu
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang 110042, Liaoning Province, China
| | - Ruizhe Wang
- Department of Gynecology, No. 1 Affiliated Hospital, China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang 110001, Liaoning, China
| | - Hao Chen
- Department of Immunology, School of Basic Medical Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, China
| | - Fangzhu Hu
- Department of Immunology, School of Basic Medical Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, China
| | - Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, Liaoning Province, China
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, China.
| |
Collapse
|
28
|
Feng YL, Chen DQ, Vaziri ND, Guo Y, Zhao YY. Small molecule inhibitors of epithelial-mesenchymal transition for the treatment of cancer and fibrosis. Med Res Rev 2020; 40:54-78. [PMID: 31131921 DOI: 10.1002/med.21596] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/20/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
Tissue fibrosis and cancer both lead to high morbidity and mortality worldwide; thus, effective therapeutic strategies are urgently needed. Because drug resistance has been widely reported in fibrotic tissue and cancer, developing a strategy to discover novel targets for targeted drug intervention is necessary for the effective treatment of fibrosis and cancer. Although many factors lead to fibrosis and cancer, pathophysiological analysis has demonstrated that tissue fibrosis and cancer share a common process of epithelial-mesenchymal transition (EMT). EMT is associated with many mediators, including transcription factors (Snail, zinc-finger E-box-binding protein and signal transducer and activator of transcription 3), signaling pathways (transforming growth factor-β1, RAC-α serine/threonine-protein kinase, Wnt, nuclear factor-kappa B, peroxisome proliferator-activated receptor, Notch, and RAS), RNA-binding proteins (ESRP1 and ESRP2) and microRNAs. Therefore, drugs targeting EMT may be a promising therapy against both fibrosis and tumors. A large number of compounds that are synthesized or derived from natural products and their derivatives suppress the EMT by targeting these mediators in fibrosis and cancer. By targeting EMT, these compounds exhibited anticancer effects in multiple cancer types, and some of them also showed antifibrotic effects. Therefore, drugs targeting EMT not only have both antifibrotic and anticancer effects but also exert effective therapeutic effects on multiorgan fibrosis and cancer, which provides effective therapy against fibrosis and cancer. Taken together, the results highlighted in this review provide new concepts for discovering new antifibrotic and antitumor drugs.
Collapse
Affiliation(s)
- Ya-Long Feng
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Dan-Qian Chen
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Nosratola D Vaziri
- Department of Medicine, University of California Irvine, Irvine, California
| | - Yan Guo
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico
| | - Ying-Yong Zhao
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
29
|
Li Y, Zhao Y, Wang Y. 2',3'-Cyclic-nucleotide 3'-phosphodiesterase contributes to epithelial-mesenchymal transition of lens epithelial cells through the notch signalling pathway. Cell Prolif 2019; 52:e12707. [PMID: 31617266 PMCID: PMC6869463 DOI: 10.1111/cpr.12707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/23/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
Objectives Fibrosis is a complex process involved in multiple diseases that result in organ injury and failure. Cataract, one common form of ocular fibrosis, is a main cause of blindness worldwide, and surgery may be the only cure. In this regard, epithelial‐mesenchymal transition (EMT) of lens epithelial cells (LECs) is the primary cause of anterior subcapsular cataract (ASC). This study aimed to investigate the mechanism by which 2',3'‐cyclic‐nucleotide 3'‐phosphodiesterase (CNPase) regulates the function of EMT in LECs. Materials and Methods A mouse model of ASC was used to observe the expression of CNPase in the lens and correlate its expression changes with lens EMT. Furthermore, the effects of CNPase on cell migration and cell proliferation were evaluated by transwell migration, wound healing and EdU staining assays. Finally, Western blotting and immunofluorescence were used to assess the mechanical properties potentially involved in the regulation of EMT by CNPase. Results The expression of CNPase was upregulated in LECs during the EMT process in mice with ASC. Notably, CNPase significantly promoted the proliferation, migration and EMT of LECs in vitro. Interestingly, the EMT‐promoting mechanism of CNPase may be achieved by targeting the Notch signalling pathway. Conclusions Considering the involvement of EMT in ASC, both CNPase and the Notch signalling pathway may be therapeutic targets for the treatment of cataracts.
Collapse
Affiliation(s)
- Yue Li
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
| | - Yu Zhao
- Technology Transfer Center, Kunming Medical University, Kunming, China
| | - Yan Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
| |
Collapse
|
30
|
Isoliquiritigenin Inhibits Ovarian Cancer Metastasis by Reversing Epithelial-to-Mesenchymal Transition. Molecules 2019; 24:molecules24203725. [PMID: 31623144 PMCID: PMC6833095 DOI: 10.3390/molecules24203725] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/26/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) plays a prominent role in cancer metastasis. Isoliquiritigenin (ISL), one of the flavonoids in licorice, has been shown to exhibit anticancer activities in many cancer types through various mechanisms. However, it is unknown whether ISL impacts the EMT process. Here, we show that ISL is able to suppress mesenchymal features of ovarian cancer SKOV3 and OVCAR5 cells, evidenced by an apparent morphological change from a mesenchymal to an epithelial phenotype and reduced levels of mesenchymal markers accompanied by the gain of E-cadherin expression. The suppression of EMT is also supported by the observed decrease in cell migration and in vitro invasion upon ISL treatment. Moreover, we show that ISL effectively blocks the intraperitoneal xenograft development of the SKOV3 cell line and prolonged the survival of tumor-bearing mice. These data suggest that ISL inhibits intraperitoneal ovary tumor development through the suppression of EMT, indicating that ISL may be an effective therapeutic agent against ovarian cancer.
Collapse
|
31
|
Wang Y, Zhong Y, Hou T, Liao J, Zhang C, Sun C, Wang G. PM2.5 induces EMT and promotes CSC properties by activating Notch pathway in vivo and vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 178:159-167. [PMID: 31002970 DOI: 10.1016/j.ecoenv.2019.03.086] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/12/2019] [Accepted: 03/20/2019] [Indexed: 05/20/2023]
Abstract
Fine particulate matter (PM2.5) has been closely linked to increased morbidity and mortality of lung cancer worldwide. However, the role of PM2.5 in the etiology of lung cancer and the mechanism involved in PM2.5 induced lung cancer are largely unknown. In this study, we performed chronic exposure animal model to investigate the carcinogenetic mechanisms of PM2.5 by targeting the induction of epithelial-mesenchymal transition (EMT) and cancer stem cells (CSC) properties through Notch1 signal pathway. The antagonism of Notch1 signal pathway was carried out in vitro cell lines of A549 and BEAS-2B to block EMT and CSC. We found that chronic PM2.5 exposure mice lung tissue pathology showed atypical hyperplasia of bronchiolar epithelium. Then, we discovered that chronic PM2.5 exposure induced notable EMT event and obvious CSC properties indicating the developing process of cell malignant behaviors. EMT characterized with decreased protein expression of E-cadherin and increased protein expression of Vimentin. CSC properties induced by chronic PM2.5 exposure characterized with increased cell-surface markers (ABCG2 and ALDH1A1) and self-renewal genes (SOX2 and OCT4). Furthermore, PM2.5 exposure activate Notch signal pathway by increasing expression of Notch1 and Hes1. At last, we blocked Notch signal pathway by inhibitor RO4929097 in vitro to explore the underlying mechanism mediating PM2.5 induced EMT and CSC. We found that blocking Notch1 could prevent PM2.5 induced malignant behaviors including EMT and CSC in A549 and BEAS-2B. These data revealed that the induction of EMT and CSC properties were involved in the lung cancer risk of PM2.5 in vivo, and blocking-up Notch1 may negatively regulate EMT and CSC to suppress the invasion and migration in vitro, thereby putatively serving as a novel therapeutic target for PM2.5 induced lung cancer.
Collapse
Affiliation(s)
- Yunxia Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China.
| | - Yijue Zhong
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China.
| | - Tianfang Hou
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China.
| | - Jiping Liao
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China.
| | - Cheng Zhang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China.
| | - Chao Sun
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China.
| | - Guangfa Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China.
| |
Collapse
|
32
|
Yang J, Xing H, Lu D, Wang J, Li B, Tang J, Gu F, Hong L. Role of Jagged1/STAT3 signalling in platinum-resistant ovarian cancer. J Cell Mol Med 2019; 23:4005-4018. [PMID: 30993885 PMCID: PMC6533470 DOI: 10.1111/jcmm.14286] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/13/2019] [Accepted: 02/25/2019] [Indexed: 12/11/2022] Open
Abstract
Jagged1, the essential ligand of the Notch signalling pathway, is highly expressed in metastatic prostate cancer, and its high expression in breast cancer is linked to poor survival rates. However, the mechanism of Jagged1′s involvement in platinum‐resistant ovarian cancer has not been thoroughly elucidated to date. The purpose of the present study was to investigate the roles of Jagged1 in the platinum resistance of ovarian cancer and its possible mechanisms. Compared with a platinum responsive group of ovarian epithelial cell carcinomas, we found the positive staining intensity of Notch1, Notch2, Jagged1, STAT3 and Epithelial‐mesenchymal transition (EMT) proteins were lower in a platinum‐resistant group. The DDP‐resistant ovarian cancer cell line (C13K) had a higher IC50 of DDP than its parental cell line (OV2008) (P < 0.05) and acquired an EMT phenotype and invasive characteristics. Inhibiting or knockdown of Jagged1 expression could not only reduce its capacity of migration and invasion but also reverse EMT and down‐regulate the expression of serine 727‐phosphorylated STAT3 (pS727) at the protein level but not total STAT3 or tyrosine 705‐phosphorylated STAT3 (pY705) in C13K cells. Furthermore, it was found that crosstalk between the Jagged1/Notch and JAK/STAT3 signalling pathways were involved in Jagged1‐promoting EMT in C13K cells. Experiments in vivo showed a reduced micrometastatic tumour burden in the lung, liver and spleen of mice implanted with C13K cells with knocked‐down Jagged1 compared with mice implanted with control cells. All of these results demonstrate that Jagged1 can crosstalk with the JAK/STAT3 pathway, and they all cooperate to promote the aberrant occurrence of EMT, further reinforcing the abilities of invasion and migration of platinum‐resistant ovarian cancer in vivo and in vitro.
Collapse
Affiliation(s)
- Jiang Yang
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Hui Xing
- Department of Obstetrics and Gynaecology, Xiangyang Central Hospital, Xiangyang, P.R. China
| | - Danhua Lu
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Jun Wang
- Department of Obstetrics and Gynaecology, Xiangyang Central Hospital, Xiangyang, P.R. China
| | - Bingshu Li
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Jianming Tang
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Fengqin Gu
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Li Hong
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| |
Collapse
|
33
|
Han B, Fan J, Liu L, Tian J, Gan C, Yang Z, Jiao H, Zhang T, Liu Z, Zhang H. Adipose-derived mesenchymal stem cells treatments for fibroblasts of fibrotic scar via downregulating TGF-β1 and Notch-1 expression enhanced by photobiomodulation therapy. Lasers Med Sci 2018; 34:1-10. [DOI: 10.1007/s10103-018-2567-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 06/14/2018] [Indexed: 12/23/2022]
|
34
|
Yang L, Shang Z, Long S, Wang N, Shan G, Zhang R. Roles of genetic and microenvironmental factors in cancer epithelial-to-mesenchymal transition and therapeutic implication. Exp Cell Res 2018; 370:190-197. [PMID: 30075173 DOI: 10.1016/j.yexcr.2018.07.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/27/2018] [Accepted: 07/28/2018] [Indexed: 01/11/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a process in which epithelial cells lose their cell-cell contacts resulting in the formation of mesenchymal cells with migratory properties. Increasing evidence indicate EMT plays a key role in the invasion, metastasis and therapeutic resistance of cancer and maintenance of the phenotype of cancer stem cells (CSCs), which makes the prognosis of patients worse. The progression of cancer from epithelial tissue towards a malignant phenotype is driven by multiple factors that remodel the tissue architecture. This review summarizes and analyzes current studies of genetic and microenvironmental factors in inducing and maintaining cancer EMT and therapeutic implications. This will enable a better understanding of the contribution of EMT-associated factors to cancer progression and highlights that genetic factors and tumor microenvironment responsible for EMT could be used as attractive targets for therapeutic intervention.
Collapse
Affiliation(s)
- Liuqi Yang
- Department of Immunology, Basic Medical School, Guizhou Medical University, Guiyang 550004, China.
| | - Zhengling Shang
- Department of Immunology, Basic Medical School, Guizhou Medical University, Guiyang 550004, China
| | - Shiqi Long
- Department of Immunology, Basic Medical School, Guizhou Medical University, Guiyang 550004, China
| | - Nianxue Wang
- Department of Immunology, Basic Medical School, Guizhou Medical University, Guiyang 550004, China
| | - Ge Shan
- Department of Immunology, Basic Medical School, Guizhou Medical University, Guiyang 550004, China
| | - Ruya Zhang
- Department of Immunology, Basic Medical School, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
35
|
Drakes ML, Stiff PJ. Regulation of Ovarian Cancer Prognosis by Immune Cells in the Tumor Microenvironment. Cancers (Basel) 2018; 10:E302. [PMID: 30200478 PMCID: PMC6162424 DOI: 10.3390/cancers10090302] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/20/2022] Open
Abstract
It is estimated that in the United States in 2018 there will be 22,240 new cases of ovarian cancer and 14,070 deaths due to this malignancy. The most common subgroup of this disease is high-grade serous ovarian cancer (HGSOC), which is known for its aggressiveness, high recurrence rate, metastasis to other sites, and the development of resistance to conventional therapy. It is important to understand the ovarian cancer tumor microenvironment (TME) from the viewpoint of the function of pre-existing immune cells, as immunocompetent cells are crucial to mounting robust antitumor responses to prevent visible tumor lesions, disease progression, or recurrence. Networks consisting of innate and adaptive immune cells, metabolic pathways, intracellular signaling molecules, and a vast array of soluble factors, shape the pathogenic nature of the TME and are useful prognostic indicators of responses to conventional therapy and immunotherapy, and subsequent survival rates. This review highlights key immune cells and soluble molecules in the TME of ovarian cancer, which are important in the development of effective antitumor immunity, as well as those that impair effector T cell activity. A more insightful knowledge of the HGSOC TME will reveal potential immune biomarkers to aid in the early detection of this disease, as well as biomarkers that may be targeted to advance the design of novel therapies that induce potent antitumor immunity and survival benefit.
Collapse
Affiliation(s)
- Maureen L Drakes
- Cardinal Bernardin Cancer Center, Department of Medicine, Loyola University Chicago, Building 112, 2160 South First Avenue, Maywood, IL 60153, USA.
| | - Patrick J Stiff
- Cardinal Bernardin Cancer Center, Department of Medicine, Loyola University Chicago, Building 112, 2160 South First Avenue, Maywood, IL 60153, USA.
| |
Collapse
|
36
|
Regulation of Ovarian Cancer Prognosis by Immune Cells in the Tumor Microenvironment. Cancers (Basel) 2018. [PMID: 30200478 DOI: 10.3390/cancers10090302]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
It is estimated that in the United States in 2018 there will be 22,240 new cases of ovarian cancer and 14,070 deaths due to this malignancy. The most common subgroup of this disease is high-grade serous ovarian cancer (HGSOC), which is known for its aggressiveness, high recurrence rate, metastasis to other sites, and the development of resistance to conventional therapy. It is important to understand the ovarian cancer tumor microenvironment (TME) from the viewpoint of the function of pre-existing immune cells, as immunocompetent cells are crucial to mounting robust antitumor responses to prevent visible tumor lesions, disease progression, or recurrence. Networks consisting of innate and adaptive immune cells, metabolic pathways, intracellular signaling molecules, and a vast array of soluble factors, shape the pathogenic nature of the TME and are useful prognostic indicators of responses to conventional therapy and immunotherapy, and subsequent survival rates. This review highlights key immune cells and soluble molecules in the TME of ovarian cancer, which are important in the development of effective antitumor immunity, as well as those that impair effector T cell activity. A more insightful knowledge of the HGSOC TME will reveal potential immune biomarkers to aid in the early detection of this disease, as well as biomarkers that may be targeted to advance the design of novel therapies that induce potent antitumor immunity and survival benefit.
Collapse
|
37
|
Drakes ML, Stiff PJ. Regulation of Ovarian Cancer Prognosis by Immune Cells in the Tumor Microenvironment. Cancers (Basel) 2018. [PMID: 30200478 DOI: 10.3390/cancers10090302] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
It is estimated that in the United States in 2018 there will be 22,240 new cases of ovarian cancer and 14,070 deaths due to this malignancy. The most common subgroup of this disease is high-grade serous ovarian cancer (HGSOC), which is known for its aggressiveness, high recurrence rate, metastasis to other sites, and the development of resistance to conventional therapy. It is important to understand the ovarian cancer tumor microenvironment (TME) from the viewpoint of the function of pre-existing immune cells, as immunocompetent cells are crucial to mounting robust antitumor responses to prevent visible tumor lesions, disease progression, or recurrence. Networks consisting of innate and adaptive immune cells, metabolic pathways, intracellular signaling molecules, and a vast array of soluble factors, shape the pathogenic nature of the TME and are useful prognostic indicators of responses to conventional therapy and immunotherapy, and subsequent survival rates. This review highlights key immune cells and soluble molecules in the TME of ovarian cancer, which are important in the development of effective antitumor immunity, as well as those that impair effector T cell activity. A more insightful knowledge of the HGSOC TME will reveal potential immune biomarkers to aid in the early detection of this disease, as well as biomarkers that may be targeted to advance the design of novel therapies that induce potent antitumor immunity and survival benefit.
Collapse
Affiliation(s)
- Maureen L Drakes
- Cardinal Bernardin Cancer Center, Department of Medicine, Loyola University Chicago, Building 112, 2160 South First Avenue, Maywood, IL 60153, USA.
| | - Patrick J Stiff
- Cardinal Bernardin Cancer Center, Department of Medicine, Loyola University Chicago, Building 112, 2160 South First Avenue, Maywood, IL 60153, USA.
| |
Collapse
|
38
|
Chen XB, Li W, Chu AX. MicroRNA-133a inhibits gastric cancer cells growth, migration, and epithelial-mesenchymal transition process by targeting presenilin 1. J Cell Biochem 2018; 120:470-480. [PMID: 30161272 DOI: 10.1002/jcb.27403] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/10/2018] [Indexed: 12/15/2022]
Abstract
Gastric cancer (GC) is one of the most common malignancies and a leading cause of cancer-related death worldwide. Accumulating evidence reported that microRNA (miR)-133a was involved in GC. This study aimed to investigate the function and mechanism of miR-133a in the development and progression of GC. The expression of miR-133a and presenilin 1 (PSEN1) in two GC cell lines, SGC-7901 and BGC-823, were inhibited and overexpressed by transient transfections. Thereafter, cell viability, migration, and apoptosis were measured by trypan blue exclusion assay, transwell migration assay, and flow cytometry assay, respectively. Dual-luciferase reporter assay was conducted to verify whether PSEN1 was a direct target of miR-133a. Furthermore, quantitative real-time polymerase chain reaction and Western blot analysis were mainly performed to assess the expression changes of epithelial-mesenchymal transition (EMT)-associated proteins, apoptosis-related proteins, and Notch pathway proteins. MiR-133a inhibitor significantly increased cell viability and migration, while miR-133a mimic decreased cell viability, migration, and induced apoptosis. miR-133a suppression accelerated transforming growth factor-β1 (TGF-β1)-induce EMT, as evidenced by upregulation of E-cadherin, and downregulation of N-cadherin, vimentin, and Slug. Of contrast, miR-133a overexpression blocked TGF-β1-induce EMT by altering these factors. PSEN1 was a direct target of miR-133a, and suppression of PSEN1 abolished the promoting functions of miR-133 suppression on cell growth and metastasis. Moreover, PSEN1 inhibition decreased Notch 1, Notch 2, and Notch 3 protein expressions. This study demonstrates an antigrowth and antimetastasis role of miR-133a in GC cells. Additionally, miR-133a acts as a tumor suppressor may be via targeting PSEN1.
Collapse
Affiliation(s)
- Xin-Bo Chen
- Department of Gastroenterology, Shengli Oilfield Central Hospital, Dongying, China
| | - Wei Li
- Department of Gastroenterology, Shengli Oilfield Central Hospital, Dongying, China
| | - Ai-Xia Chu
- Department of Gastroenterology, Shengli Oilfield Central Hospital, Dongying, China
| |
Collapse
|
39
|
Ghoneum A, Afify H, Salih Z, Kelly M, Said N. Role of tumor microenvironment in the pathobiology of ovarian cancer: Insights and therapeutic opportunities. Cancer Med 2018; 7:5047-5056. [PMID: 30133163 PMCID: PMC6198242 DOI: 10.1002/cam4.1741] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/15/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer is the fifth most common cancer affecting women and at present, stands as the most lethal gynecologic malignancy. The poor disease outcome is due to the nonspecific symptoms and the lack of effective treatment at advanced stages. Thus, it is of utmost importance to understand ovarian carcinoma through several lenses and to dissect the role that the unique peritoneal tumor microenvironment plays in ovarian cancer progression and metastasis. This review seeks to highlight several determinants of this unique tumor microenvironment, their influence on disease outcome and ongoing clinical trials targeting these determinants.
Collapse
Affiliation(s)
- Alia Ghoneum
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, North Carolina
| | - Hesham Afify
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, North Carolina
| | - Ziyan Salih
- Department of Pathology, Wake Forest University School of Medicine, Winston Salem, North Carolina
| | - Michael Kelly
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston Salem, North Carolina
| | - Neveen Said
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, North Carolina.,Department of Pathology, Wake Forest University School of Medicine, Winston Salem, North Carolina.,Department of Urology, Wake Forest University School of Medicine, Winston Salem, North Carolina
| |
Collapse
|
40
|
Han X, Chen H, Zhou J, Steed H, Postovit LM, Fu Y. Pharmacological Inhibition of p38 MAPK by SB203580 Increases Resistance to Carboplatin in A2780cp Cells and Promotes Growth in Primary Ovarian Cancer Cells. Int J Mol Sci 2018; 19:ijms19082184. [PMID: 30049957 PMCID: PMC6121386 DOI: 10.3390/ijms19082184] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/21/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022] Open
Abstract
Chemoresistance renders current chemotherapy regimens ineffective against advanced epithelial ovarian cancer (EOC). Carboplatin (the first-line chemotherapeutic agent to treat EOC) induces cell death by regulating multiple signaling pathways. The objective of this study is to identify the signaling pathways that contribute to carboplatin resistance in EOC. To this end, we performed a proteome profiler human phospho-kinase array experiment and compared the phosphorylation profiles between the cisplatin-sensitive A2780s versus its derivative cisplatin-resistant A2780cp cells. The phospho-kinase array revealed that A2780s and A2780cp cells displayed different profiles in basal and carboplatin-induced phosphorylation. Phosphorylation of p38 MAPK was increased by carboplatin more markedly in A2780s cells compared to A2780cp cells. Inhibition of p38 MAPK activity by its specific inhibitor SB203580 increased resistance to carboplatin in A2780cp cells, but not in A2780s cells or in ascites-derived high-grade serous EOC cells. Interestingly, SB203580 increased the number of viable cells in the primary EOC cells, which was concomitant with an increase in survivin expression. In conclusion, inhibition of p38 MAPK by SB203580 increases resistance to carboplatin in A2780cp cells and the number of viable cells in the primary EOC cells, suggesting that pharmacological inhibition of p38 MAPK might not be an effective therapeutic strategy for EOC.
Collapse
Affiliation(s)
- Xiaolu Han
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1 Canada.
| | - Huachen Chen
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1 Canada.
| | - Jiesi Zhou
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1 Canada.
| | - Helen Steed
- Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Lynne-Marie Postovit
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1 Canada.
- Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - YangXin Fu
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1 Canada.
- Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
41
|
Crosstalk between Notch, HIF-1α and GPER in Breast Cancer EMT. Int J Mol Sci 2018; 19:ijms19072011. [PMID: 29996493 PMCID: PMC6073901 DOI: 10.3390/ijms19072011] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022] Open
Abstract
The Notch signaling pathway acts in both physiological and pathological conditions, including embryonic development and tumorigenesis. In cancer progression, diverse mechanisms are involved in Notch-mediated biological responses, including angiogenesis and epithelial-mesenchymal-transition (EMT). During EMT, the activation of cellular programs facilitated by transcriptional repressors results in epithelial cells losing their differentiated features, like cell–cell adhesion and apical–basal polarity, whereas they gain motility. As it concerns cancer epithelial cells, EMT may be consequent to the evolution of genetic/epigenetic instability, or triggered by factors that can act within the tumor microenvironment. Following a description of the Notch signaling pathway and its major regulatory nodes, we focus on studies that have given insights into the functional interaction between Notch signaling and either hypoxia or estrogen in breast cancer cells, with a particular focus on EMT. Furthermore, we describe the role of hypoxia signaling in breast cancer cells and discuss recent evidence regarding a functional interaction between HIF-1α and GPER in both breast cancer cells and cancer-associated fibroblasts (CAFs). On the basis of these studies, we propose that a functional network between HIF-1α, GPER and Notch may integrate tumor microenvironmental cues to induce robust EMT in cancer cells. Further investigations are required in order to better understand how hypoxia and estrogen signaling may converge on Notch-mediated EMT within the context of the stroma and tumor cells interaction. However, the data discussed here may anticipate the potential benefits of further pharmacological strategies targeting breast cancer progression.
Collapse
|
42
|
Ghoneum A, Afify H, Salih Z, Kelly M, Said N. Role of tumor microenvironment in ovarian cancer pathobiology. Oncotarget 2018; 9:22832-22849. [PMID: 29854318 PMCID: PMC5978268 DOI: 10.18632/oncotarget.25126] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/21/2018] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is the fifth most common cancer affecting the female population and at present, stands as the most lethal gynecologic malignancy. Poor prognosis and low five-year survival rate are attributed to nonspecific symptoms and below par diagnostic criteria at early phases along with a lack of effective treatment at advanced stages. It is thus of utmost importance to understand ovarian carcinoma through several lenses including its molecular pathogenesis, epidemiology, histological subtypes, hereditary factors, diagnostic approaches and methods of treatment. Above all, it is crucial to dissect the role that the unique peritoneal tumor microenvironment plays in ovarian cancer progression and metastasis. This review seeks to highlight several important aspects of ovarian cancer pathobiology as a means to provide the necessary background to approach ovarian malignancies in the future.
Collapse
Affiliation(s)
- Alia Ghoneum
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Hesham Afify
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Ziyan Salih
- Department of Cancer Pathology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Michael Kelly
- Department of Cancer Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Neveen Said
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Department of Cancer Pathology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Department of Cancer Urology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| |
Collapse
|
43
|
Skarmoutsou E, Bevelacqua V, D' Amico F, Russo A, Spandidos DA, Scalisi A, Malaponte G, Guarneri C. FOXP3 expression is modulated by TGF‑β1/NOTCH1 pathway in human melanoma. Int J Mol Med 2018; 42:392-404. [PMID: 29620159 PMCID: PMC5979787 DOI: 10.3892/ijmm.2018.3618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/04/2018] [Indexed: 12/18/2022] Open
Abstract
Forkhead box protein 3 (FOXP3) transcription factor is expressed by immune cells and several human cancers and is associated with tumor aggressiveness and unfavorable clinical outcomes. NOTCH and transforming growth factor-β (TGF-β) protumorigenic effects are mediated by FOXP3 expression in several cancer models; however, their interaction and role in melanoma is unknown. We investigated TGF-β-induced FOXP3 gene expression during NOTCH1 signaling inactivation. Primary (WM35) and metastatic melanoma (A375 and A2058) cell lines and normal melanocytes (NHEM) were used. FOXP3 subcellular distribution was evaluated by immuno cytochemical analysis. Gene expression levels were assessed by reverse transcription-quantitative polymerase chain reaction. Protein levels were assessed by western blot analysis. The γ-secretase inhibitor (GSI) was used for NOTCH1 inhibition and recombinant human (rh)TGF-β was used for melanoma cell stimulation. Cell proliferation and viability were respectively assessed by MTT and Trypan blue dye assays. FOXP3 mRNA and protein levels were progressively higher in WM35, A375 and A2058 cell lines compared to NHEM and their levels were further increased after stimulation with rh-TGF-β. TGF-β-mediated FOXP3 expression was mediated by NOTCH1 signaling. Inhibition of NOTCH1 with concomitant rh-TGF-β stimulation determined the reduction in gene expression and protein level of FOXP3. Finally, melanoma cell line proliferation and viability were reduced by NOTCH1 inhibition. The results show that nn increase in FOXP3 expression in metastatic melanoma cell lines is a potential marker of tumor aggressiveness and metastasis. NOTCH1 is a central mediator of TGF-β-mediated FOXP3 expression and NOTCH1 inhibition produces a significant reduction of melanoma cell proliferation and viability.
Collapse
Affiliation(s)
- Eva Skarmoutsou
- Department of Biomedical and Biotechnological Science, University of Catania, 95124 Catania, Italy
| | - Valentina Bevelacqua
- Department of Biomedical and Biotechnological Science, University of Catania, 95124 Catania, Italy
| | - Fabio D' Amico
- Department of Biomedical and Biotechnological Science, University of Catania, 95124 Catania, Italy
| | - Angela Russo
- Department of Biomedical and Biotechnological Science, University of Catania, 95124 Catania, Italy
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | - Aurora Scalisi
- Unit of Oncologic Diseases, ASP‑Catania, 95100 Catania, Italy
| | - Grazia Malaponte
- Research Unit of the Catania Section of the Italian League Against Cancer, 95122 Catania, Italy
| | - Claudio Guarneri
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98122 Messina, Italy
| |
Collapse
|
44
|
Common profiles of Notch signaling differentiate disease-free survival in luminal type A and triple negative breast cancer. Oncotarget 2018; 8:6013-6032. [PMID: 27888801 PMCID: PMC5351609 DOI: 10.18632/oncotarget.13451] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/29/2016] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) is characterized by high heterogeneity regarding its biology and clinical characteristics. The Notch pathway regulates such processes as organ modeling and epithelial-to-mesenchymal transition (EMT). The aim of the study was to determine the effect of differential expression of Notch members on disease-free survival (DFS) in luminal type A (lumA) and triple negative (TN) BC. The differential expression of 19 Notch members was examined in a TCGA BC cohort. DFS analysis was performed using the log-rank test (p<0.05). Biological differences between DFS groups were determined with Gene Set Enrichment Analysis (GSEA) (tTest, FDR<0.25). Common expression profiles according to Notch signaling were examined using ExpressCluster (K-means, mean centered, Euclidean distance metric). The overexpression of HES1, LFNG and PSEN1 was found to be favorable for DFS in lumA, and lowered expression favorable for DFS in TN. GSEA analysis showed that differential Notch signaling is associated with cell cycle, tissue architecture and remodeling. Particularly, targets of E2F, early stage S phase transcription factor, were upregulated in the lumA unfavorable group and the TN favorable group differentiated on a basis of HES1 and PSEN1 expression. Summarizing, our analysis show significance of Notch signaling in BRCA progression through triggering EMT. Moreover, identification of numerous genes which overexpression is associated with disease recurrence may serve as a source of potential targets for a new anticancer therapy.
Collapse
|
45
|
Hypoxia Enhances Fusion of Oral Squamous Carcinoma Cells and Epithelial Cells Partly via the Epithelial-Mesenchymal Transition of Epithelial Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5015203. [PMID: 29581976 PMCID: PMC5822897 DOI: 10.1155/2018/5015203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/03/2018] [Indexed: 01/06/2023]
Abstract
Increasing evidence and indications showed that cell fusion is crucial in tumor development and metastasis, and hypoxia, a closely linked factor to tumor microenvironment, which can lead to EMT, induces angiogenesis and metastasis in tumor growth. However, the relationship between hypoxia and fusion has not been reported yet. EMT will change some proteins in the epithelial cell surface and the changes of proteins in cell surface may increase cell fusion. This study found that hypoxia promotes the spontaneous cell fusion between Oral Squamous Carcinoma Cells (OSCCs) and Human Immortalized Oral Epithelial Cells (HIOECs). At the same time, Hypoxia can lead to EMT, and hypoxia-pretreated HIOECs increased fusion rate with OSCC, while the fusion rate was significantly reduced by DAPT, a kind of EMT blocker. Therefore, epithelial cells can increase spontaneously cell fusion with OSCC by EMT. Our study may provide a new insight to link among tumor microenvironment, cell fusion, and cancer.
Collapse
|
46
|
Chen DW, Wang H, Bao YF, Xie K. Notch signaling molecule is involved in the invasion of MiaPaCa2 cells induced by CoCl2 via regulating epithelial‑mesenchymal transition. Mol Med Rep 2018; 17:4965-4972. [PMID: 29393429 PMCID: PMC5865956 DOI: 10.3892/mmr.2018.8502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/05/2017] [Indexed: 01/23/2023] Open
Abstract
Pancreatic cancer exhibits a high mortality rate resulting from metastasis and there is currently no effective treatment strategy. Hypoxia serves an important role in cancer cells, where cellular metabolic rate is high. The underlying mechanisms that trigger hypoxia and the invasion of pancreatic cancer cells remain unknown. Investigation of the importance of hypoxia in the invasion of pancreatic cancer cells for potential, novel treatment strategies is of primary concern. Cell Counting Kit-8 assay, invasion assay, western blotting and reverse transcription-quantitative polymerase chain reaction were used to investigate invasion and epithelial mesenchymal transition (EMT) and the expression of Notch1 in MiaPaCa2 cells treated with cobalt II chloride (CoCl2). Hypoxia-inducible factor 1α (HIF-1α) small interfering (si)RNA and Notch1 inhibitor N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) were also selected to investigate these mechanisms. Data indicated that CoCl2 increased the invasion ability and altered EMT in MiaPaCa2 cells. CoCl2 regulated the expression of HIF-1α and Notch1 in MiaPaCa2 cells. In addition, HIF-1α siRNA inhibited the effects of CoCl2 on the expression of Notch1 and decreased Snail, EMT and invasion in MiaPaCa2 cells. DAPT increased the expression of epithelial-cadherin and decreased the content of neural-cadherin, Snail and invasion in MiaPaCa2 cells in the presence or absence of CoCl2. CoCl2 promoted invasion by stimulating the expression of HIF-1α and regulating the expression of Notch1 and EMT in MiaPaCa2 cells. Targeting the Notch1 signaling molecule may be a novel treatment strategy for the prevention and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Ding-Wei Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Hong Wang
- Zhejiang Medical College, Hangzhou, Zhejiang 310053, P.R. China
| | - Ya-Fang Bao
- Caihe Street Community Health Service Center, Hangzhou, Zhejiang 310016, P.R. China
| | - Kun Xie
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
47
|
Zhang Y, Li D, Feng F, An L, Hui F, Dang D, Zhao Q. Progressive and Prognosis Value of Notch Receptors and Ligands in Hepatocellular Carcinoma: A Systematic Review and Meta-analysis. Sci Rep 2017; 7:14809. [PMID: 29093570 PMCID: PMC5665870 DOI: 10.1038/s41598-017-14897-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 10/18/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is not sensitive to radiotherapy and chemotherapy and experiences postoperative relapse extremely easy, which is the major cause of the high mortality rate. The Notch signaling pathway is expected to become a new target for the biological treatment of HCC. We searched databases for studies that evaluated the expression of Notch receptors and/or ligands in human HCC tissue. The search yielded 15 studies that enrolled 1643 patients. Compared with non-HCC tissues, Notch 1 was associated with a higher expression level (odds risk 1.59, 95% confidence interval 0.34 to 7.45), as well as Notch 3 (2.63, 0.69 to 10.02), Notch 4 (1.33, 0.74 to 2.38) and Jagged 1 (1.47, 0.23 to 9.53); however, Notch 2 showed the opposite result (0.60, 0.30 to 1.20). Larger tumor size (>5 cm), metastasis positive, and micro vascular invasion positive were features that were associated with over-expression in Notch 1 according to the clinicopathological features. The expression levels of Notch 1, 3, 4 and Jagged 1 were associated with higher expression in HCC tissues, while Notch 2 had the opposite result. This study is registered with PROSPERO (CRD42017055782).
Collapse
Affiliation(s)
- Yingshi Zhang
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang, 110840, P.R. China.,Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Dandan Li
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang, 110840, P.R. China
| | - Fan Feng
- Research center for clinical and transitional medicine, The 302nd Hospital of Chinese PLA, Beijing, 100039, P.R. China
| | - Li An
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang, 110840, P.R. China.,Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Fuhai Hui
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Dasheng Dang
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang, 110840, P.R. China. .,Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China.
| | - Qingchun Zhao
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang, 110840, P.R. China. .,Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China.
| |
Collapse
|
48
|
Mohamed AA, Tan SH, Xavier CP, Katta S, Huang W, Ravindranath L, Jamal M, Li H, Srivastava M, Srivatsan ES, Sreenath TL, McLeod DG, Srinivasan A, Petrovics G, Dobi A, Srivastava S. Synergistic Activity with NOTCH Inhibition and Androgen Ablation in ERG-Positive Prostate Cancer Cells. Mol Cancer Res 2017; 15:1308-1317. [PMID: 28607007 DOI: 10.1158/1541-7786.mcr-17-0058] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/04/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022]
Abstract
The oncogenic activation of the ETS-related gene (ERG) due to gene fusions is present in over half of prostate cancers in Western countries. Because of its high incidence and oncogenic role, ERG and components of ERG network have emerged as potential drug targets for prostate cancer. Utilizing gene expression datasets, from matched normal and prostate tumor epithelial cells, an association of NOTCH transcription factors with ERG expression status was identified, confirming that NOTCH factors are direct transcriptional targets of ERG. Inhibition of ERG in TMPRSS2-ERG-positive VCaP cells led to decreased levels of NOTCH1 and 2 proteins and downstream transcriptional targets and partially recapitulated the phenotypes associated with ERG inhibition. Regulation of NOTCH1 and 2 genes by ERG were also noted with ectopic ERG expression in LNCaP (ERG-negative prostate cancer) and RWPE-1 (benign prostate-derived immortalized) cells. Furthermore, inhibition of NOTCH by the small-molecule γ-secretase inhibitor 1, GSI-1, conferred an increased sensitivity to androgen receptor (AR) inhibitors (bicalutamide and enzalutamide) or the androgen biosynthesis inhibitor (abiraterone) in VCaP cells. Combined treatment with bicalutamide and GSI-1 showed strongest inhibition of AR, ERG, NOTCH1, NOTCH2, and PSA protein levels along with decreased cell growth, cell survival, and enhanced apoptosis. Intriguingly, this effect was not observed in ERG-negative prostate cancer cells or immortalized benign/normal prostate epithelial cells. These data underscore the synergy of AR and NOTCH inhibitors in reducing the growth of ERG-positive prostate cancer cells.Implications: Combinational targeting of NOTCH and AR signaling has therapeutic potential in advanced ERG-driven prostate cancers. Mol Cancer Res; 15(10); 1308-17. ©2017 AACR.
Collapse
Affiliation(s)
- Ahmed A Mohamed
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Shyh-Han Tan
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Charles P Xavier
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Shilpa Katta
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Wei Huang
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Lakshmi Ravindranath
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Muhammad Jamal
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Hua Li
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Meera Srivastava
- Department of Anatomy, Physiology and Genetics, Uniformed University of Health Sciences, Bethesda, Maryland
| | - Eri S Srivatsan
- Division of General Surgery, Department of Surgery, VAGLAHS/David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California.,Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, California
| | - Taduru L Sreenath
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - David G McLeod
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Alagarsamy Srinivasan
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Albert Dobi
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland.
| | - Shiv Srivastava
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland.
| |
Collapse
|
49
|
Zhang L, Sha J, Yang G, Huang X, Bo J, Huang Y. Activation of Notch pathway is linked with epithelial-mesenchymal transition in prostate cancer cells. Cell Cycle 2017; 16:999-1007. [PMID: 28388267 DOI: 10.1080/15384101.2017.1312237] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Notch signaling has been reported to play an essential role in tumorigenesis. Several studies have suggested that Notch receptors could be oncoproteins or tumor suppressors in different types of human cancers. Emerging evidence has suggested that Notch pathway regulates cell growth, apoptosis, cell cycle, and metastasis. In the current study, we explore whether Notch-1 could regulate the cell invasion and migration as well as EMT (epithelial-mesenchymal transition) in prostate cancer cells. We found that overexpression of Notch-1 enhanced cell migration and invasion in PC-3 cells. However, downregulation of Notch-1 retarded cell migration and invasion in prostate cancer cells. Importantly, we observed that overexpression of Notch-1 led to EMT in PC-3 cells. Notably, we found that EMT-type cells are associated with EMT markers change and cancer stem cell phenotype. Taken together, we concluded that downregulation of Notch-1 could be a promising approach for inhibition of invasion in prostate cancer cells, which could be useful for the treatment of metastatic prostate cancer.
Collapse
Affiliation(s)
- Lianhua Zhang
- a Department of Urology , Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Jianjun Sha
- a Department of Urology , Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Guoliang Yang
- a Department of Urology , Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Xuyuan Huang
- a Department of Urology , Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Juanjie Bo
- a Department of Urology , Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Yiran Huang
- a Department of Urology , Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| |
Collapse
|
50
|
Garg M. Epithelial, mesenchymal and hybrid epithelial/mesenchymal phenotypes and their clinical relevance in cancer metastasis. Expert Rev Mol Med 2017; 19:e3. [PMID: 28322181 DOI: 10.1017/erm.2017.6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancer metastasis occurs through local invasion of circulating tumour cells (CTCs), intravasation, transportation to distant sites, and their extravasation followed by colonisation at secondary sites. Epithelial-mesenchymal transition (EMT) is a normal developmental phenomenon, but its aberrant activation confers tumour cells with enhanced cell motility, metastatic properties, resistant to therapies and cancer stem cell (CSC) phenotype in epithelium-derived carcinoma. Experimental studies from various research papers have been reviewed to determine the factors, which interlink cancer stemness and cellular plasticity with EMT. Although existence of CSCs has been linked with EMT, nevertheless, there are controversies with the involvement of type of tumour cells, including cells with E (epithelial) and M (mesenchymal) phenotype alone or hybrid E/M phenotype in different types of cancers. Studies on CTCs with hybrid E/M phenotypes during different stages of cancer metastasis reveal strong association with tumour -initiation potential, cellular plasticity and types of cancer cells. Cells with the hybrid E/M state are strictly controlled by phenotypic stability factors coupled to core EMT decision-making circuits, miR200/ZEB and miR-34/Snail. Understanding the regulatory functions of EMT program in cancer metastasis can help us to characterise the biomarkers of prognostic and therapeutic potential. These biomarkers when targeted may act as metastatic suppressors, inhibit cellular plasticity and stemness ability of tumour cells and can block metastatic growth.
Collapse
Affiliation(s)
- Minal Garg
- Department of Biochemistry,University of Lucknow,Lucknow - 226007,UP,India
| |
Collapse
|