1
|
Song W, Rahimian N, Hasanzade Bashkandi A. GRP78: A new promising candidate in colorectal cancer pathogenesis and therapy. Eur J Pharmacol 2025; 995:177308. [PMID: 39870235 DOI: 10.1016/j.ejphar.2025.177308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Colorectal cancer (CRC) is a significant global health challenge, marked by varying incidence and mortality rates across different regions. The pathogenesis of CRC involves multiple stages, including initiation, promotion, progression, and metastasis, influenced by genetic and epigenetic factors. The chaperone protein glucose-regulated protein 78 (GRP78), crucial in regulating the unfolded protein response (UPR) during endoplasmic reticulum (ER) stress, plays a pivotal role in CRC pathogenesis. This review discusses the expression profile of GRP78 in CRC, highlighting its potential as a prognostic biomarker and its role in modulating the cellular mechanisms of CRC, including ER response regulation, cell proliferation, migration and invasion. The complex molecular interactions of GRP78 with key signaling pathways such as protein kinase B (Akt), Wnt, protein kinase R-like ER kinase (PERK), vascular endothelial growth factor (VEGF), and Kirsten rat sarcoma virus (Kras) are explored, elucidating its contributions to tumor survival, proliferation, invasion, and chemoresistance. GRP78's involvement in autophagy, glycolysis, and immune regulation further underscores its importance in CRC progression. The review also covers the therapeutic potential of targeting GRP78 in CRC, examining various natural products like curcumin, epigallocatechin gallate (EGCG), and aloe-emodin, which modulate GRP78 expression and activity. Additionally, GRP78's role in mediating resistance to chemotherapeutic agents like 5-fluorouracil (5-FU) and oxaliplatin is discussed, emphasizing its significance in the development of resistance mechanisms in CRC. In conclusion, GRP78 emerges as a central player in CRC pathogenesis and a promising target for therapeutic interventions aimed at improving treatment outcomes and overcoming chemoresistance in colorectal cancer.
Collapse
Affiliation(s)
- Wang Song
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China.
| | - Neda Rahimian
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
2
|
Yang H, Jung S, Choi EY. E3 ubiquitin ligase TRIM38 regulates macrophage polarization to reduce hepatic inflammation by interacting with HSPA5. Int Immunopharmacol 2025; 157:114662. [PMID: 40300357 DOI: 10.1016/j.intimp.2025.114662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/01/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses pathologies from simple steatosis and steatohepatitis (MASH) to cirrhosis. Hepatic inflammation is a common cause of liver pathogenesis, with macrophage activation as a key indicator of both acute and chronic liver dysfunction. While M1 macrophages promote inflammation and M2 macrophages suppress it, their roles in MASLD are dynamic and shift according to disease stage and liver microenvironment. Tripartite motif (TRIM) family proteins, which possess E3 ubiquitin ligase activity, are involved in various cellular processes, including intracellular signaling, development, apoptosis, protein quality control, innate immunity, autophagy, and carcinogenesis. TRIM38 negatively regulates innate immunity and inflammation triggered by viruses, Toll-like receptor 3 and 4, and tumor necrosis factor α/interleukin-1β signaling; however, its role in liver pathogenesis remains unclear. This study investigates the role of macrophage TRIM38 in metabolic liver disease to identify key targets for controlling inflammation. TRIM38 overexpression suppressed lipopolysaccharide-induced macrophage activation and metabolic stress-induced hepatic lipid accumulation. Mechanistically, TRIM38 interacted with heat shock protein family A member 5 (HSPA5) and stabilized it via K63-dependent ubiquitination. This TRIM38-HSPA5 axis promoted the expression of M2 macrophage markers (arginase 1 and retinoic acid-related orphan receptor α), thereby ameliorating liver steatosis. Single-cell RNA sequencing revealed significant downregulation of TRIM38 expression in the liver macrophages of patients with MASLD and negative regulation of liver inflammation via modulation of macrophage polarization. Hence, macrophage TRIM38 suppresses metabolic liver disease progression via HSPA5-mediated M2 macrophage polarization and provides insights into potential therapeutic targets.
Collapse
Affiliation(s)
- Heeyoung Yang
- Center for Predictive Model Research, Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon, Republic of Korea.
| | - Soontag Jung
- Center for Regulatory Toxicology Research, Division of Next Generation Non-Clinical Research, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Eun-Yong Choi
- Center for Predictive Model Research, Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon, Republic of Korea
| |
Collapse
|
3
|
Drzymała A. The Functions of SARS-CoV-2 Receptors in Diabetes-Related Severe COVID-19. Int J Mol Sci 2024; 25:9635. [PMID: 39273582 PMCID: PMC11394807 DOI: 10.3390/ijms25179635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is considered a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor of high importance, but due to its non-ubiquitous expression, studies of other proteins that may participate in virus internalisation have been undertaken. To date, many alternative receptors have been discovered. Their functioning may provide an explanation for some of the events observed in severe COVID-19 that cannot be directly explained by the model in which ACE2 constitutes the central point of infection. Diabetes mellitus type 2 (T2D) can induce severe COVID-19 development. Although many mechanisms associated with ACE2 can lead to increased SARS-CoV-2 virulence in diabetes, proteins such as basigin (CD147), glucose-regulated protein 78 kDa (GRP78), cluster of differentiation 4 (CD4), transferrin receptor (TfR), integrins α5β1/αvβ3, or ACE2 co-receptors neuropilin 2 (NRP2), vimentin, and even syalilated gangliosides may also be responsible for worsening the COVID-19 course. On the other hand, some others may play protective roles. Understanding how diabetes-associated mechanisms can induce severe COVID-19 via modification of virus receptor functioning needs further extensive studies.
Collapse
Affiliation(s)
- Adam Drzymała
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052 Opole, Poland
| |
Collapse
|
4
|
He P, Li Y, Hu J, Deng B, Tan Z, Chen Y, Yu B, Dong W. Pterostilbene suppresses gastric cancer proliferation and metastasis by inhibiting oncogenic JAK2/STAT3 signaling: In vitro and in vivo therapeutic intervention. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155316. [PMID: 38518635 DOI: 10.1016/j.phymed.2023.155316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/15/2023] [Accepted: 12/25/2023] [Indexed: 03/24/2024]
Abstract
BACKGROUND Gastric cancer (GC) represents a significant health burden with dire prognostic implications upon metastasis and recurrence. Pterostilbene (PTE) has been proven to have a strong ability to inhibit proliferation and metastasis in other cancers, while whether PTE exhibits anti-GC activity and its potential mechanism remain unclear. PURPOSE To explore the efficacy and potential mechanism of PTE in treating GC. METHODS We employed a comprehensive set of assays, including CCK-8, EdU staining, colony formation, flow cytometry, cell migration, and invasion assays, to detect the effect of PTE on the biological function of GC cells in vitro. The xenograft tumor model was established to evaluate the in vivo anti-GC activity of PTE. Network pharmacology was employed to predict PTE's potential targets and pathways within GC. Subsequently, Western blotting, immunofluorescence, and immunohistochemistry were utilized to analyze protein levels related to the cell cycle, EMT, and the JAK2/STAT3 pathway. RESULTS Our study demonstrated strong inhibitory effects of PTE on GC cells both in vitro and in vivo. In vitro, PTE significantly induced cell cycle arrest at G0/G1 and S phases and suppressed proliferation, migration, and invasion of GC cells. In vivo, PTE led to a dose-dependent reduction in tumor volume and weight. Importantly, PTE exhibited notable safety, leaving mouse weight, liver function, and kidney function unaffected. The involvement of the JAK2/STAT3 pathway in PTE's anti-GC effect was predicted utilizing network pharmacology. PTE suppressed JAK2 kinase activity by binding to the JH1 kinase structural domain and inhibited the downstream STAT3 signaling pathway. Western blotting confirmed PTE's inhibition of the JAK2/STAT3 pathway and EMT-associated protein levels. The anti-GC effect was partially reversed upon STAT3 activation, validating the pivotal role of the JAK2/STAT3 signaling pathway in PTE's activity. CONCLUSION Our investigation validates the potent inhibitory effects of PTE on the proliferation and metastasis of GC cells. Importantly, we present novel evidence implicating the JAK2/STAT3 pathway as the key mechanism through which PTE exerts its anti-GC activity. These findings not only establish the basis for considering PTE as a promising lead compound for GC therapeutics but also contribute significantly to our comprehension of the intricate molecular mechanisms underlying its exceptional anti-cancer properties.
Collapse
Affiliation(s)
- Pengzhan He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yangbo Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jiaming Hu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Beiying Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zongbiao Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Ying Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Baoping Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| |
Collapse
|
5
|
Zhang Y, Gu X, Huang L, Yang Y, He J. Enhancing precision medicine: Bispecific antibody-mediated targeted delivery of lipid nanoparticles for potential cancer therapy. Int J Pharm 2024; 654:123990. [PMID: 38467208 DOI: 10.1016/j.ijpharm.2024.123990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 03/13/2024]
Abstract
The precise delivery of therapeutic agents to specific cell populations, including cancer cells, remains a target in modern medicine, to enhance treatment efficacy, while minimizing unintended side effects. This study presents a strategy utilizing bispecific antibodies for the targeted delivery of nucleic acid drugs to the surface of glucose-regulated protein 78 (GRP78)-overexpressing cancer cells. Strong binding affinity of the bispecific antibodies to GRP78-overexpressing cancer cells, including HEPG2 cells, confirmed the tumor-targeting potential of this platform. Functional analyses demonstrated the role of the bispecific antibodies in enhancing lipid nanoparticle (LNP) uptake, causing increased gene expression levels of nucleic acid drugs loaded within LNPs. In vivo imaging confirmed the potency of the bispecific-antibody-modified LNPs in delivering nucleic acid drugs to tumors and sustaining therapeutic expression levels. In vivo therapy results indicated that the bispecific antibodies improved the antitumor activity of PE38-loaded LNPs in tumors overexpressing surface GRP78. This study pioneered a bispecific-antibody-centered platform for the targeted delivery of nucleic acid drugs. The robust antigen-antibody binding affinity, tumor-selective interactions, enhanced cellular uptake, and proficient gene expression promise to advance precision therapeutics in oncology. Continued refinement and translation of this drug delivery strategy are important to unlock its full clinical potential.
Collapse
Affiliation(s)
- Yue Zhang
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, PR China
| | - Xiaoyan Gu
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, PR China
| | - Lili Huang
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, PR China
| | - Yani Yang
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, PR China
| | - Jun He
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, PR China.
| |
Collapse
|
6
|
Zhang L, Lu X, Xu Y, La X, Tian J, Li A, Li H, Wu C, Xi Y, Song G, Zhou Z, Bai W, An L, Li Z. Tumor-associated macrophages confer colorectal cancer 5-fluorouracil resistance by promoting MRP1 membrane translocation via an intercellular CXCL17/CXCL22-CCR4-ATF6-GRP78 axis. Cell Death Dis 2023; 14:582. [PMID: 37658050 PMCID: PMC10474093 DOI: 10.1038/s41419-023-06108-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
Chemotherapy represents a major type of clinical treatment against colorectal cancer (CRC). Aberrant drug efflux mediated by transporters acts as a key approach for tumor cells to acquire chemotherapy resistance. Increasing evidence implies that tumor-associated macrophages (TAMs) play a pivotal role in both tumorigenesis and drug resistance. Nevertheless, the specific mechanism through which TAMs regulate drug efflux remains elusive. Here, we discovered that TAMs endow CRC cells with resistance to 5-fluorouracil (5-FU) treatment via a cell-cell interaction-mediated MRP1-dependent drug efflux process. Mechanistically, TAM-secreted C-C motif chemokine ligand 17 (CCL17) and CCL22, via membrane receptor CCR4, activated the PI3K/AKT pathway in CRC tumor cells. Specifically, phosphorylation of AKT inactivated IP3R and induced calcium aggregation in the ER, resulting in the activation of ATF6 and upregulation of GRP78. Accordingly, excessive GRP78 can interact with MRP1 and promote its translocation to the cell membrane, causing TAM-induced 5-FU efflux. Taken together, our results demonstrated that TAMs promote CRC chemotherapy resistance via elevating the expression of GRP78 to promote the membrane translocation of MRP1 and drug efflux, providing direct proof for TAM-induced drug resistance.
Collapse
Affiliation(s)
- Lichao Zhang
- Institutes of Biomedical Sciences, Shanxi University, 030006, Taiyuan, China
| | - Xiaoqing Lu
- Institutes of Biomedical Sciences, Shanxi University, 030006, Taiyuan, China
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital of Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Yuanzhi Xu
- Department of Stomatology, Shanghai Tenth People's Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, 200072, Shanghai, China
| | - Xiaoqin La
- Institutes of Biomedical Sciences, Shanxi University, 030006, Taiyuan, China
| | - Jinmiao Tian
- Institute of Biotechnology, Shanxi University, 030006, Taiyuan, China
| | - Aiping Li
- Modern Research Center for traditional Chinese medicine, Shanxi University, 030006, Taiyuan, China
| | - Hanqing Li
- School of Life Science, Shanxi University, 030006, Taiyuan, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, 030006, Taiyuan, China
| | - Yanfeng Xi
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital of Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Guisheng Song
- Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Wenqi Bai
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital of Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.
| | - Liwei An
- Department of Stomatology, Shanghai Tenth People's Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, 200072, Shanghai, China.
| | - Zhuoyu Li
- Institutes of Biomedical Sciences, Shanxi University, 030006, Taiyuan, China.
- Institute of Biotechnology, Shanxi University, 030006, Taiyuan, China.
| |
Collapse
|
7
|
Tian J, Zhang L, La X, Fan X, Li A, Wu C, An Y, Yan S, Dong X, Wu H, Li Z. Tumor-secreted GRP78 induces M2 polarization of macrophages by promoting lipid catabolism. Cell Signal 2023; 108:110719. [PMID: 37207940 DOI: 10.1016/j.cellsig.2023.110719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Macrophages in hypoxic regions of advanced colorectal tumors often exhibit M2-type features, but prefer oxygen-consuming lipid catabolism, which is contradictory in oxygen demand and supply. In this study, the results from bioinformatics analysis and intestinal lesions immunohistochemistry of 40 colorectal cancer patients illustrated that glucose-regulatory protein 78 (GRP78) was positively correlated with M2 macrophages. Furthermore, tumor-secreted GRP78 could enter macrophages and polarize them to M2-type. Mechanistically, entered GRP78 located in lipid droplets of macrophages, and elevated protein stabilization of adipose triglyceride lipase ATGL by interacting with it to inhibit its ubiquitination. Increased ATGL promoted the hydrolysis of triglycerides and the production of arachidonic acid (ARA) and docosahexaenoic acid (DHA). Excessive ARA and DHA interacted with PPARγ to encourage its activation, which mediated the M2 polarization of macrophages. In summary, our study showed that secreted GRP78 in the tumor hypoxic microenvironment mediated the domestication of tumor cells to macrophages and maintained tumor immunosuppressive microenvironment by promoting lipolysis, and the lipid catabolism not only provides energy for macrophages but also plays an important role in maintenance of immunosuppressive properties.
Collapse
Affiliation(s)
- Jinmiao Tian
- Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Lichao Zhang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Xiaoqin La
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Xiaxia Fan
- Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Aiping Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Yuxuan An
- Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Shuning Yan
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Xiushan Dong
- General Surgery Department, Shanxi Bethune Hospital, Taiyuan 030032, China
| | - Haitao Wu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Zhuoyu Li
- Institute of Biotechnology, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
8
|
Yang J, Liu X, Cheng Y, Zhang J, Ji F, Ling Z. Roles of Plasmacytoid Dendritic Cells in Gastric Cancer. Front Oncol 2022; 12:818314. [PMID: 35311157 PMCID: PMC8927765 DOI: 10.3389/fonc.2022.818314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/15/2022] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is the fifth most common neoplasm and the third most deadly cancer in humans worldwide. Helicobacter pylori infection is the most important causative factor of gastric carcinogenesis, and activates host innate and adaptive immune responses. As key constituents of the tumor immune microenvironment, plasmacytoid dendritic cells (pDCs) are increasingly attracting attention owing to their potential roles in immunosuppression. We recently reported that pDCs have vital roles in the development of immunosuppression in GC. Clarifying the contribution of pDCs to the development and progression of GC may lead to improvements in cancer therapy. In this review, we summarize current knowledge regarding immune modulation in GC, especially the roles of pDCs in GC carcinogenesis and treatment strategies.
Collapse
Affiliation(s)
- Jinpu Yang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingchen Zhang
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Ji
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| |
Collapse
|
9
|
Shan S, Niu J, Yin R, Shi J, Zhang L, Wu C, Li H, Li Z. Peroxidase from foxtail millet bran exerts anti-colorectal cancer activity via targeting cell-surface GRP78 to inactivate STAT3 pathway. Acta Pharm Sin B 2022; 12:1254-1270. [PMID: 35530132 PMCID: PMC9069399 DOI: 10.1016/j.apsb.2021.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022] Open
Abstract
Molecular targeted therapy has become an emerging promising strategy in cancer treatment, and screening the agents targeting at cancer cell specific targets is very desirable for cancer treatment. Our previous study firstly found that a secretory peroxidase of class III derived from foxtail millet bran (FMBP) exhibited excellent targeting anti-colorectal cancer (CRC) activity in vivo and in vitro, whereas its underlying target remains unclear. The highlight of present study focuses on the finding that cell surface glucose-regulated protein 78 (csGRP78) abnormally located on CRC is positively correlated with the anti-CRC effects of FMBP, indicating it serves as a potential target of FMBP against CRC. Further, we demonstrated that the combination of FMBP with the nucleotide binding domain (NBD) of csGRP78 interfered with the downstream activation of signal transducer and activator of transcription 3 (STAT3) in CRC cells, thus promoting the intracellular accumulation of reactive oxygen species (ROS) and cell grown inhibition. These phenomena were further confirmed in nude mice tumor model. Collectively, our study highlights csGRP78 acts as an underlying target of FMBP against CRC, uncovering the clinical potential of FMBP as a targeted agent for CRC in the future.
Collapse
Key Words
- CAC, colitis-associated carcinogenesis
- CDKs, cyclin-dependent kinases
- CETSA, cellular thermal shift assay
- CRC, colorectal cancer
- Co-IP, co-immunoprecipitation
- Colorectal cancer
- DCFH-DA, dichloro-dihydro-fluorescein diacetate
- EGFR, epidermal growth factor receptor
- ER, endoplasmic reticulum
- FDA, U.S. Food and Drug Administration
- FMBP
- FMBP, peroxidase derived from foxtail millet bran
- Foxtail millet bran
- GRP78, glucose-regulated protein 78
- H&E, hematoxylin & eosin
- ISM, isthmin
- MPs, membrane proteins
- NBD, the nucleotide binding domain of csGRP78
- PD-1, programmed death-1
- ROS
- ROS, reactive oxygen species
- SBD, substrate-binding domain of csGRP78
- SPF, specific pathogen free
- STAT3
- STAT3, signal transducer and activator of transcription 3
- TRAIL, tumor necrosis factor-related apoptosis-inducing ligand
- csGRP78
- csGRP78, cell surface glucose-regulated protein 78
- rGRP78, recombinant GRP78
Collapse
|
10
|
Jiang J, Mei J, Ma Y, Jiang S, Zhang J, Yi S, Feng C, Liu Y, Liu Y. Tumor hijacks macrophages and microbiota through extracellular vesicles. EXPLORATION (BEIJING, CHINA) 2022; 2:20210144. [PMID: 37324578 PMCID: PMC10190998 DOI: 10.1002/exp.20210144] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/16/2021] [Indexed: 06/17/2023]
Abstract
The tumor microenvironment (TME) is a biological system with sophisticated constituents. In addition to tumor cells, tumor-associated macrophages (TAMs) and microbiota are also dominant components. The phenotypic and functional changes of TAMs are widely considered to be related to most tumor progressions. The chronic colonization of pathogenic microbes and opportunistic pathogens accounts for the generation and development of tumors. As messengers of cell-to-cell communication, tumor-derived extracellular vesicles (TDEVs) can transfer various malignant factors, regulating physiological and pathological changes in the recipients and affecting TAMs and microbes in the TME. Despite the new insights into tumorigenesis and progress brought by the above factors, the crosstalk among tumor cells, macrophages, and microbiota remain elusive, and few studies have focused on how TDEVs act as an intermediary. We reviewed how tumor cells recruit and domesticate macrophages and microbes through extracellular vehicles and how hijacked macrophages and microbiota interact with tumor-promoting feedback, achieving a reciprocal coexistence under the TME and working together to facilitate tumor progression. It is significant to seek evidence to clarify those specific interactions and reveal therapeutic targets to curb tumor progression and improve prognosis.
Collapse
Affiliation(s)
- Jipeng Jiang
- Postgraduate School Medical School of Chinese PLA Beijing P. R. China
- Department of Thoracic Surgery The First Medical Center of Chinese PLA General Hospital Beijing P. R. China
| | - Jie Mei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing P. R. China
- University of Chinese Academy of Science Beijing P. R. China
| | - Yongfu Ma
- Department of Thoracic Surgery The First Medical Center of Chinese PLA General Hospital Beijing P. R. China
| | - Shasha Jiang
- Postgraduate School Medical School of Chinese PLA Beijing P. R. China
- Department of Thoracic Surgery The First Medical Center of Chinese PLA General Hospital Beijing P. R. China
| | - Jian Zhang
- Department of Thoracic Surgery The First Medical Center of Chinese PLA General Hospital Beijing P. R. China
| | - Shaoqiong Yi
- Department of Thoracic Surgery The First Medical Center of Chinese PLA General Hospital Beijing P. R. China
| | - Changjiang Feng
- Department of Thoracic Surgery The First Medical Center of Chinese PLA General Hospital Beijing P. R. China
| | - Yang Liu
- Postgraduate School Medical School of Chinese PLA Beijing P. R. China
- Department of Thoracic Surgery The First Medical Center of Chinese PLA General Hospital Beijing P. R. China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing P. R. China
- GBA National Institute for Nanotechnology Innovation Guangdong P. R. China
| |
Collapse
|
11
|
Zhang H, Wang SQ, Hang L, Zhang CF, Wang L, Duan CJ, Cheng YD, Wu DK, Chen R. GRP78 facilitates M2 macrophage polarization and tumour progression. Cell Mol Life Sci 2021; 78:7709-7732. [PMID: 34713304 PMCID: PMC11072571 DOI: 10.1007/s00018-021-03997-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/22/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022]
Abstract
This study investigated the regulation of GRP78 in tumour-associated macrophage polarization in lung cancer. First, our results showed that GRP78 was upregulated in macrophages during M2 polarization and in a conditioned medium derived from lung cancer cells. Next, we found that knocking down GRP78 in macrophages promoted M1 differentiation and suppressed M2 polarization via the Janus kinase/signal transducer and activator of transcription signalling. Moreover, conditioned medium from GRP78- or insulin-like growth factor 1-knockdown macrophages attenuated the survival, proliferation, and migration of lung cancer cells, while conditioned medium from GRP78-overexpressing macrophages had the opposite effects. Additionally, GRP78 knockdown reduced both the secretion of insulin-like growth factor 1 and the phosphorylation of the insulin-like growth factor 1 receptor. Interestingly, insulin-like growth factor 1 neutralization downregulated GRP78 and suppressed GRP78 overexpression-induced M2 polarization. Mechanistically, insulin-like growth factor 1 treatment induced the translocation of GRP78 to the plasma membrane and promoted its association with the insulin-like growth factor 1 receptor. Finally, IGF-1 blockade and knockdown as well as GRP78 knockdown in macrophages inhibited M2 macrophage-induced survival, proliferation, and migration of lung cancer cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Heng Zhang
- Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Changsha, 410008, Hunan Province, China
| | - Shao-Qiang Wang
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029, Shandong Province, China
| | - Lin Hang
- Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Chun-Fang Zhang
- Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Changsha, 410008, Hunan Province, China
| | - Li Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan Province, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan Province, China
| | - Chao-Jun Duan
- Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Changsha, 410008, Hunan Province, China
| | - Yuan-Da Cheng
- Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Changsha, 410008, Hunan Province, China
| | - Dong-Kai Wu
- Department of Cardiothoracic Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Ri Chen
- Department of Cardiothoracic Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008, Hunan Province, China.
| |
Collapse
|
12
|
Yan LR, Shen SX, Wang A, Ding HX, Liu YN, Yuan Y, Xu Q. Comprehensive Pan-Cancer Analysis of Heat Shock Protein 110, 90, 70, and 60 Families. Front Mol Biosci 2021; 8:726244. [PMID: 34712697 PMCID: PMC8546173 DOI: 10.3389/fmolb.2021.726244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Here we carried out a panoramic analysis of the expression and prognosis of HSP110, HSP90, HSP70, and HSP60 families in 33 types of cancer, with the aim of deepening the systematic understanding of heat shock proteins (HSPs) in cancer. Materials and Methods: Next-generation sequencing data of multiple tumors were downloaded from TCGA, CCLE and Oncomine databases. RStudio 3.6.1 was used to analyze HSP110, HSP90, HSP70 and HSP60 families based on their expression in 33 types of cancer. The validations in vivo (stomach adenocarcinoma and colon adenocarcinoma tissues) were performed by qRT-PCR. Results: HSPs were differentially expressed in different cancers. The results revealed mainly positive correlations among the expressions of HSPs in different cancers. Expressions of HSP family members were generally associated with poor prognosis in respiratory, digestive, urinary and reproductive system tumors and associated with good prognosis in cholangiocarcinoma, pheochromocytoma and paraganglioma. TCGA mutation analysis showed that HSP gene mutation rate in cancers was 0–23%. CCLE mutation analysis indicated that HSP gene mutation rate in 828 cell lines from 15 tumors was 0–17%. CNV analysis revealed that HSPs have different degrees of gene amplifications and deletions in cancers. Gene mutations of 15 HSPs influenced their protein expressions in different cancers. Copy number amplifications and deletions of 22 HSPs also impacted protein expression levels in pan-cancer. HSP gene mutation was generally a poor prognosis factor in cancers, except for uterine corpus endometrial carcinoma. CNVs in 14 HSPs showed varying influences on survival status in different cancers. HSPs may be involved in the activation and inhibition of multiple cancer-related pathways. HSP expressions were closely correlated with 22 immune cell infiltrations in different cancers. The qRT-PCR validation results in vivo showed that HSPA2 was down-regulated in stomach adenocarcinoma and colon adenocarcinoma; HSPA7 and HSPA1A also were down-regulated in colon adenocarcinoma. HSPA2-HSPA7 (r = 0.031, p = 0.009) and HSPA1A-HSPA7 (r = 0.516, p < 0.001) were positive correlation in colon adenocarcinoma. Conclusion: These analysis and validation results show that HSP families play an important role in the occurrence and development of various tumors and are potential tumor diagnostic and prognostic biomarkers as well as anti-cancer therapeutic targets.
Collapse
Affiliation(s)
- Li-Rong Yan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
| | - Shi-Xuan Shen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
| | - Ang Wang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
| | - Han-Xi Ding
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
| | - Ying-Nan Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
| |
Collapse
|
13
|
Zhang Y, Zhao Y, Li Q, Wang Y. Macrophages, as a Promising Strategy to Targeted Treatment for Colorectal Cancer Metastasis in Tumor Immune Microenvironment. Front Immunol 2021; 12:685978. [PMID: 34326840 PMCID: PMC8313969 DOI: 10.3389/fimmu.2021.685978] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
The tumor immune microenvironment plays a vital role in the metastasis of colorectal cancer. As one of the most important immune cells, macrophages act as phagocytes, patrol the surroundings of tissues, and remove invading pathogens and cell debris to maintain tissue homeostasis. Significantly, macrophages have a characteristic of high plasticity and can be classified into different subtypes according to the different functions, which can undergo reciprocal phenotypic switching induced by different types of molecules and signaling pathways. Macrophages regulate the development and metastatic potential of colorectal cancer by changing the tumor immune microenvironment. In tumor tissues, the tumor-associated macrophages usually play a tumor-promoting role in the tumor immune microenvironment, and they are also associated with poor prognosis. This paper reviews the mechanisms and stimulating factors of macrophages in the process of colorectal cancer metastasis and intends to indicate that targeting macrophages may be a promising strategy in colorectal cancer treatment.
Collapse
Affiliation(s)
- Yingru Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiyang Zhao
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Gao P, Chai Y, Song J, Liu T, Chen P, Zhou L, Ge X, Guo X, Han J, Yang H. Reprogramming the unfolded protein response for replication by porcine reproductive and respiratory syndrome virus. PLoS Pathog 2019; 15:e1008169. [PMID: 31738790 PMCID: PMC6932825 DOI: 10.1371/journal.ppat.1008169] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 12/26/2019] [Accepted: 10/29/2019] [Indexed: 12/16/2022] Open
Abstract
The unfolded protein response (UPR) in the endoplasmic reticulum (ER) constitutes a critical component of host innate immunity against microbial infections. In this report, we show that porcine reproductive and respiratory syndrome virus (PRRSV) utilizes the UPR machinery for its own benefit. We provide evidence that the virus targets the UPR central regulator GRP78 for proteasomal degradation via a mechanism that requires viral glycoprotein GP2a, while both IRE1-XBP1s and PERK-eIF2α-ATF4 signaling branches of the UPR are turned on at early stage of infection. The activated effector XBP1s was found to enter the nucleus, but ATF4 was unexpectedly diverted to cytoplasmic viral replication complexes by means of nonstructural proteins nsp2/3 to promote viral RNA synthesis. RNAi knockdown of either ATF4 or XBP1s dramatically attenuated virus titers, while overexpression caused increases. These observations reveal attractive host targets (e.g., ATF4 and XBP1s) for antiviral drugs and have implications in vaccine development. Porcine reproductive and respiratory syndrome virus (PRRSV) poses a major threat to the worldwide swine industry, but no effective vaccines or antiviral drugs are available. A better understanding of the pathogen-host interactions that support PRRSV replication is essential for understanding viral pathogenesis and the development of preventive measures. Here we report that PRRSV utilizes unconventional strategies to reprogram the unfolded protein response (UPR) of the host to its own advantage. The virus targets GRP78 for partial degradation to create a favorable environment for UPR induction and hijacks ATF4 into cytoplasmic replication complexes to promote viral RNA synthesis. The data also reveal potential targets (e.g., ATF4 and XBP1s) for antiviral drugs and have implications in vaccine development.
Collapse
Affiliation(s)
- Peng Gao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
| | - Yue Chai
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
| | - Jiangwei Song
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
| | - Teng Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
| | - Peng Chen
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
- * E-mail:
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
| |
Collapse
|
15
|
Su X, Li Y, Jiang M, Zhu J, Zheng C, Chen X, Zhou J, Li Y, Xiao W, Wang Y. Systems pharmacology uncover the mechanism of anti-non-small cell lung cancer for Hedyotis diffusa Willd. Biomed Pharmacother 2018; 109:969-984. [PMID: 30551551 DOI: 10.1016/j.biopha.2018.10.162] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/19/2018] [Accepted: 10/25/2018] [Indexed: 02/07/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) has become one of the most general malignancies in the world and has been shown to be the leading cause of cancer-related deaths. Traditional Chinese medicine (TCM) is considered to be a useful medicine for survival, and has been used in Asia for thousands of years. Hedyotis diffusa Willd (HDW) is an important folk herb that is used in clinical treatment of various cancers in various Chinese medicine prescriptions. However, its underlying mechanism of action remains unclear. Presently, we used an innovative system-pharmacology platform to systematically uncover the pharmacological mechanisms of HDW in the treatment of NSCLC from molecules, targets, and pathway levels. The results show that HDW treatment of NSCLC may activate immunity, achieve anti-inflammatory, anti-proliferative and anti-migration therapeutic effects by regulating multiple pathways. This research provides a new idea for understanding the mechanism of TCM and promotes to develop potential drugs from HDW in modern medicine.
Collapse
Affiliation(s)
- Xing Su
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi, 832002, China
| | - Yueping Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi, 832002, China
| | - Meng Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710000, China
| | - Jinglin Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710000, China
| | - Chunli Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710000, China
| | - Xuetong Chen
- Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, China
| | - Jun Zhou
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, 222002, China
| | - Yan Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi, 832002, China; Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Department of Materials Sciences and Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, 222002, China.
| | - Yonghua Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi, 832002, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710000, China.
| |
Collapse
|
16
|
Yu D, Cheng J, Xue K, Zhao X, Wen L, Xu C. Expression of Programmed Death-Ligand 1 in Laryngeal Carcinoma and its Effects on Immune Cell Subgroup Infiltration. Pathol Oncol Res 2018; 25:1437-1443. [PMID: 30361911 DOI: 10.1007/s12253-018-0501-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 10/15/2018] [Indexed: 12/11/2022]
Abstract
To study the expression of programmed death-ligand 1 (PD-L1), and its effects on CD8+ tumor infiltrating lymphocytes (TILs) and tumor associated macrophages (TAMs) in human laryngeal squamous cell carcinoma. Sixty-nine patients with laryngeal carcinoma and 10 with vocal cord leukoplakia received tumor resection at Neck Surgery Department in the Second Affiliation Hospital of Jilin University (Changchun, Jilin) from Jan. 2010 to Dec. 2015. The expressions of PD-L1, CD8, CD16 and CD206 in laryngeal carcinoma, paracancerous and vocal cord leukoplakia tissues were detected with immunohistochemistry. The associations between PD-L1 expression and clinicopathologic features, expression of TAMs and CD8+ T cell infiltration were analyzed. Expression of PD-L1 is significantly higher in laryngeal carcinoma than in paracancerous or leukoplakia tissue. The expression of PD-L1 is closely associated with stage of laryngeal cancer, histological differentiation and neck lymphatic metastasis. PD-L1 expression is negatively correlated with the number of CD8+ TILs and CD16+ cells (M1 type TAMs), while is positively associated with CD206+ (M2 type TAMs). PD-L1 is highly expressed in the laryngeal cancer with the tumor microenvironment immunosuppression.
Collapse
Affiliation(s)
- Dan Yu
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital, Jilin University, No. 218 Ziqiang Street, Changchun, 130041, China
| | - Jinzhang Cheng
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital, Jilin University, No. 218 Ziqiang Street, Changchun, 130041, China
| | - Kai Xue
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital, Jilin University, No. 218 Ziqiang Street, Changchun, 130041, China
| | - Xue Zhao
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital, Jilin University, No. 218 Ziqiang Street, Changchun, 130041, China
| | - Lianji Wen
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital, Jilin University, No. 218 Ziqiang Street, Changchun, 130041, China
| | - Chengbi Xu
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital, Jilin University, No. 218 Ziqiang Street, Changchun, 130041, China.
| |
Collapse
|