1
|
Yang X, Han F, Guo Y, Zhang X. ADAM10 promotes uveal melanoma development by regulating the Wnt/β-catenin pathway. Exp Cell Res 2025:114522. [PMID: 40107442 DOI: 10.1016/j.yexcr.2025.114522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 02/27/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Uveal melanoma (UVM) seriously affects people's health and quality of life. Here, the mechanism of a disintegrin and metallopeptidase domain 10 (ADAM10) was elucidated in UVM. METHODS The clinical prognosis and potential biological function of ADAM10 gene in UVM patients were assessed using a series of bioinformatics methods. RT-qPCR and Western blot assay were employed to detect genes expression. Cell apoptosis and viability were examined by flow cytometry, clone formation and CCK-8 assays. The migrated and invasive abilities were analyzed by wound healing and transwell assays. Tumor growth was performed in Xenograft mouse model. RESULTS We found that ADAM10 expression was significantly associated with poor prognosis of UVM patients, and its prognostic significance for UVM patients was determined by distinct clinical characteristics. In vitro, ADAM10 expression was upregulated in MUM-2B and C918 UVM cell lines. More importantly, ADAM10 downregulation discouraged cell viability, metastasis but triggered apoptosis of UVM cells. Moreover, ADAM10 upregulation can promote the tumor growth of UVM in vivo. Mechanically, ADAM10 downregulation blocked the Wnt/β-catenin pathway in UVM. CONCLUSION Upregulation of ADAM10 stimulates the malignant behaviors of UVM through activating the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Xiaolan Yang
- Department of Ophthalmology, The Second People's Hospital of Jinan, Jinan, Shandong Province, 250000, China
| | - Fangju Han
- Department of Ophthalmology, The Second People's Hospital of Jinan, Jinan, Shandong Province, 250000, China
| | - Yuanyuan Guo
- Department of Ophthalmology, The Second People's Hospital of Jinan, Jinan, Shandong Province, 250000, China
| | - Xin Zhang
- Department of Ophthalmology, The Second People's Hospital of Jinan, Jinan, Shandong Province, 250000, China.
| |
Collapse
|
2
|
Wang Y, Wang Q, Ji Q, An P, Wang X, Ju Y, Li R, Ruan Y, Zhao J, Cao M, Chen X. Supplementation with N-Acetyl-L-cysteine during in vitro maturation improves goat oocyte developmental competence by regulating oxidative stress. Theriogenology 2025; 235:221-230. [PMID: 39855039 DOI: 10.1016/j.theriogenology.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Oocyte quality can affect mammal fertilization rate, early embryonic development, pregnancy maintenance, and fetal development. Oxidative stress induced by reactive oxygen species (ROS) is one of the most important causes of poor oocyte maturation in vitro. To reduce the degree of cellular damage caused by ROS, supplementation with the antioxidant N-Acetyl-L-cysteine (NAC) serves as an effective pathway to alleviate glutathione (GSH) depletion during oxidative stress. This study investigated the effects of NAC supplementation during in vitro maturation of goat oocytes and explored the molecular mechanisms of maturation by transcriptome sequencing of MⅡ oocytes. The results showed that 1.5 mM NAC significantly increased the rates of oocyte maturation and cumulus cell expansion and improved the subsequent development of embryos. During the subsequent culture of parthenogenetically activated embryos, 1.5 mM NAC significantly increased the division rate of oocytes and blastocyst rate. It also reduced the accumulation of ROS, increased the level of GSH, alleviated oxidative stress, and enhanced the antioxidant capacity and cell metabolic activity. Transcriptome sequencing results revealed that NAC treatment significantly increased the expression of SIRT1, GGCT, and MITF genes related to the cellular antioxidant system, as well as the IDH3G gene related to energy metabolism, and decreased the expression of CASP8, FOS, and MMP1 genes related to apoptosis and cell invasion, as well as the CCL2. and CXCL8 genes related to the inflammatory response. In conclusion, the findings suggest that NAC supplementation significantly reduces oxidative stress, improves antioxidant capacity and metabolic activity, promotes oocyte maturation, and improves oocyte quality.
Collapse
Affiliation(s)
- Yanfei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Qingwei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Quan Ji
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Pengcheng An
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Xiaodong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Yonghong Ju
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Ruiyang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Yong Ruan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Jiafu Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Maosheng Cao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China.
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
3
|
Liu X, Zhang X, Zeng T, Chen Y, Ye L, Wang S, Li Y. FOSL1 drives the malignant progression of pancreatic cancer cells by regulating cell stemness, metastasis and multidrug efflux system. J Transl Med 2025; 23:268. [PMID: 40038751 DOI: 10.1186/s12967-025-06304-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/23/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Targeted therapy is an effective strategy for the treatment of advanced and metastatic pancreatic cancer, one of the leading causes for cancer-related death worldwide. To address the limitations of existing targeted drugs, there is an urgently need to find novel targets and therapeutic strategies. Transcription factor FOS like 1 (FOSL1) is a potential therapeutic target for challenging pancreatic cancer, which contributes to the malignant progression and poor gnosis of pancreatic cancer. High mobility group A1 (HMGA1) is a nonhistone chromatin structural protein that contributes to malignant progression and poor prognosis of cancer. METHODS Human FOSL1 complete RNA, shRNA against FOSL1 and shRNA against HMGA1 lentiviral recombination vectors were used to overexpress FOSL1 and knock down FOSL1 and HMGA1. RNA sequencing, Q-PCR and Western blots were used to investigate the mechanism of FOSL1 in regulating the proliferation of pancreatic cancer cells. The relationship between FOSL1 and HMGA1 were analyzed by co-immunoprecipitation Mass spectrometry, Q-PCR of chromatin immunoprecipitation and Western blots. The regulation of FOSL1 and HMGA1 in the invasion and migration, stemness, and multidrug efflux system were determined by transwell assay, sphere formation assay, immunofluorescence, Q-PCR and Western blots. RESULTS We found that FOSL1 promoted the proliferation and progression of pancreatic cancer by trigging stemness, invasion and metastasis, and drug resistance. HMGA1 was a key downstream target regulated by FOSL1 at the transcriptional level and directly interacted with FOSL1. Knockdown of HMGA1 inhibited the proliferation of pancreatic cancer cells by regulating the expression of genes related to stemness, epithelial-mesenchymal transition and multidrug efflux system. Targeted inhibition of FOSL1 and HMGA1 expression significantly inhibited the proliferation of pancreatic cancer cells. CONCLUSION FOSL1 promote the malignant progression of pancreatic cancer by promoting HMGA1 expression. Targeting FOSL1 and HMGA1 in monotherapy or combination therapy is a promising strategy for the treatment of advanced and metastasis pancreatic cancer.
Collapse
Affiliation(s)
- Xiaolong Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China
| | - Xueyan Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Tingyu Zeng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Yali Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Liu Ye
- Medical College of Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Shuping Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China.
| | - Yulan Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
4
|
Liu FH, Lin XC, Liu YW, Zhang TT, Zhang YB, Xie ZL, Zhan Y, Hu P. Harmine inhibits the proliferation and migration and promotes the apoptosis of colon cancer cells via inhibition of the FAK/AKT and ERK 1/2/CREB signaling pathways. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025; 27:75-87. [PMID: 39001813 DOI: 10.1080/10286020.2024.2361767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 07/15/2024]
Abstract
Harmine is present in a variety of medicinal plants, and its effects on colon cancer cells remain unclear. Here, we found that harmine exhibited significant inhibitory effects on the proliferation of colon cancer cells by inhibiting the phosphorylation levels of the FAK/AKT and ERK1/2/CREB. Furthermore, harmine also inhibited the migration of colon cancer cells and suppressed the expression levels of MMP-2, MMP-9, and VEGF. Additionally, harmine-induced apoptosis in colon cancer cells by regulating the expression of Bcl-2 and Bax. In conclusion, our findings suggest that harmine exerts a significant inhibitory effect on the development of colon cancer cells.
Collapse
Affiliation(s)
- Fu-Hong Liu
- Institute of Translational Medicine, Nanchang University, Nanchang 330001, China
| | - Xing-Cheng Lin
- Institute of Translational Medicine, Nanchang University, Nanchang 330001, China
| | - Yu-Wei Liu
- Institute of Translational Medicine, Nanchang University, Nanchang 330001, China
| | - Tian-Tian Zhang
- Institute of Translational Medicine, Nanchang University, Nanchang 330001, China
| | - Yang-Bo Zhang
- Department of Neurology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Zhuo-Long Xie
- Joint Program of Nanchang University and Queen Mary University of London, Nanchang 330001, China
| | - Yuan Zhan
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Ping Hu
- Institute of Translational Medicine, Nanchang University, Nanchang 330001, China
| |
Collapse
|
5
|
Chen J, Li H, Huang Y, Tang Q. The role of high mobility group proteins in cellular senescence mechanisms. FRONTIERS IN AGING 2024; 5:1486281. [PMID: 39507236 PMCID: PMC11537863 DOI: 10.3389/fragi.2024.1486281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024]
Abstract
Aging is a universal physiological phenomenon, and chronic age-related diseases have become one of the leading causes of human mortality, accounting for nearly half of all deaths. Studies have shown that reducing the incidence of these diseases can not only extend lifespan but also promote healthy aging. In recent years, the potential role of non-histone high-mobility group proteins (HMGs) in the regulation of aging and lifespan has attracted widespread attention. HMGs play critical roles in cellular senescence and associated diseases through various pathways, encompassing multi-layered mechanisms involving protein interactions, molecular regulation, and chromatin dynamics. This review provides a comprehensive analysis of the interactions between HMG family proteins and senescence-associated secretory phenotype (SASP), chromatin structure, and histone modifications, offering a deeper exploration of the pivotal functions and impacts of HMGs in the aging process. Furthermore, we summarize recent findings on the contributions of HMG proteins to aging and age-related diseases. HMG proteins not only regulate senescence-associated inflammation through modulating the SASP but also influence genomic stability and cell fate decisions via interactions with chromatin and histones. Targeting HMG proteins holds great potential in delaying the progression of aging and its associated diseases. This review aims to provide a systematic overview of HMG proteins' roles in aging and to lay a solid foundation for future anti-aging drug development and therapeutic strategies. With the advancing understanding of the mechanisms by which HMGs regulate aging, developing therapeutic interventions targeting HMGs may emerge as a promising approach to extending lifespan and enhancing healthspan.
Collapse
Affiliation(s)
- Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongyu Li
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yongyin Huang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiang Tang
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
6
|
Chang WL, Peng JY, Hong CL, Li PC, Lu FJ, Chen CH. Parecoxib and 5-Fluorouracil Synergistically Inhibit EMT and Subsequent Metastasis in Colorectal Cancer by Targeting PI3K/Akt/NF-κB Signaling. Biomedicines 2024; 12:1526. [PMID: 39062099 PMCID: PMC11274433 DOI: 10.3390/biomedicines12071526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Colorectal cancer is one of the most common causes of cancer mortality worldwide, and innovative drugs for the treatment of colorectal cancer are continually being developed. 5-Fluorouracil (5-FU) is a common clinical chemotherapeutic drug. Acquired resistance to 5-FU is a clinical challenge in colorectal cancer treatment. Parecoxib is a selective COX-2-specific inhibitor that was demonstrated to inhibit metastasis in colorectal cancers in our previous study. This study aimed to investigate the synergistic antimetastatic activities of parecoxib to 5-FU in human colorectal cancer cells and determine the underlying mechanisms. Parecoxib and 5-FU synergistically suppressed metastasis in colorectal cancer cells. Treatment with the parecoxib/5-FU combination induced an increase in E-cadherin and decrease in β-catenin expression. The parecoxib/5-FU combination inhibited MMP-9 activity, and the NF-κB pathway was suppressed as well. Mechanistic analysis denoted that the parecoxib/5-FU combination hindered the essential molecules of the PI3K/Akt route to obstruct metastatic colorectal cancer. Furthermore, the parecoxib/5-FU combination could inhibit reactive oxygen species. Our work showed the antimetastatic capacity of the parecoxib/5-FU combination for treating colorectal cancers via the targeting of the PI3K/Akt/NF-κB pathway.
Collapse
Affiliation(s)
- Wan-Ling Chang
- Department of Anesthesiology, Chang Gung Memorial Hospital at Chiayi, No. 8, West Section of Jiapu Road, Puzi City 613016, Chiayi County, Taiwan; (W.-L.C.); (J.-Y.P.); (C.-L.H.); (P.-C.L.)
| | - Jyun-Yu Peng
- Department of Anesthesiology, Chang Gung Memorial Hospital at Chiayi, No. 8, West Section of Jiapu Road, Puzi City 613016, Chiayi County, Taiwan; (W.-L.C.); (J.-Y.P.); (C.-L.H.); (P.-C.L.)
| | - Chain-Lang Hong
- Department of Anesthesiology, Chang Gung Memorial Hospital at Chiayi, No. 8, West Section of Jiapu Road, Puzi City 613016, Chiayi County, Taiwan; (W.-L.C.); (J.-Y.P.); (C.-L.H.); (P.-C.L.)
| | - Pei-Ching Li
- Department of Anesthesiology, Chang Gung Memorial Hospital at Chiayi, No. 8, West Section of Jiapu Road, Puzi City 613016, Chiayi County, Taiwan; (W.-L.C.); (J.-Y.P.); (C.-L.H.); (P.-C.L.)
| | - Fung-Jou Lu
- Institute of Medicine, Chung Shan Medical University, No. 110, Section 1, Jianguo North Road, Taichung City 402306, Taiwan;
| | - Ching-Hsein Chen
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, A25-303 Room, Life Sciences Hall, No. 300, Syuefu Road, National Chiayi University, Chiayi City 600355, Taiwan
| |
Collapse
|
7
|
Pašalić D, Nikuševa-Martić T, Sekovanić A, Kaštelan S. Genetic and Epigenetic Features of Uveal Melanoma-An Overview and Clinical Implications. Int J Mol Sci 2023; 24:12807. [PMID: 37628989 PMCID: PMC10454135 DOI: 10.3390/ijms241612807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Uveal melanoma (UM) is rare, but it is the most common primary intraocular malignancy among adults. This review represents the molecular, genetic, and immunobiological mechanisms involved in UM carcinogenesis and progression, as well as data about the association of chromosomal changes, genetic mutations, selective proteins, and biochemical biomarkers with the clinical implications of UM. Genetic analysis has the potential to identify patients with a high risk of UM metastasis, enabling management that is more effective and allowing for the follow-up of patients. Advancements in molecular characterization of UM offer opportunities to develop targeted therapeutic strategies by focusing on relevant signaling pathways. Changes in miRNA expression could be useful in the diagnosis and prognosis of UM, due to unique miRNA profiles in melanoma cells or tissue and its association with metastasis. Although liver function tests do not provide enough data on the prognosis of UM, due to the high frequency of liver metastasis, liver function tests (LFTs) might be useful indicators; however, the absence of rising LFT values cannot lead to the exclusion of liver metastases. Molecular analysis of tumor tissue will allow us to identify patients with the added benefit of new therapeutic agents and provide a better insight into melanoma pathogenesis and its biological behavior.
Collapse
Affiliation(s)
- Daria Pašalić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Tamara Nikuševa-Martić
- Department of Biology and Genetics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ankica Sekovanić
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia;
| | - Snježana Kaštelan
- Department of Ophthalmology and Optometry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department of Ophthalmology, Clinical Hospital Dubrava, 10000 Zagreb, Croatia
| |
Collapse
|
8
|
Guo Y, Wu H, Xiong J, Gou S, Cui J, Peng T. miR-222-3p-containing macrophage-derived extracellular vesicles confer gemcitabine resistance via TSC1-mediated mTOR/AKT/PI3K pathway in pancreatic cancer. Cell Biol Toxicol 2023; 39:1203-1214. [PMID: 35974258 DOI: 10.1007/s10565-022-09736-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/20/2022] [Indexed: 01/23/2023]
Abstract
Gemcitabine resistance limits the efficacy of chemotherapy and maintains a challenge for treatment outcomes. Therefore, we aimed to clarify the downstream mechanisms underlying the role of miR-222-3p delivered by M2 macrophage-derived extracellular vesicles (M2 MDEs) in the chemoresistance of pancreatic cancer (PCa). We separated the mouse macrophages and polarized them to M2 phenotypes, from which the EVs were derived. miR-222-3p was highly expressed in M2 MDEs. M2 MDEs were internalized by PCa cells. miR-222-3p overexpressing M2 MDEs were treated with gemcitabine and co-cultured with PCa cells for in vitro experiments. Co-culture with M2 MDEs enriched with miR-222-3p suppressed the sensitivity to gemcitabine, accompanied by diminished apoptosis and promoted proliferation. Furthermore, the M2 MDEs and PCa cells were injected to mice with gemcitabine exposure for in vivo substantiation. The delivery of miR-222-3p inhibitor by M2 MDEs suppressed tumor growth and elevated sensitivity of cancer cells to gemcitabine. Moreover, miR-222-3p was indicated to target and suppress TSC1 expression, while miR-222-3p activated the PI3K/AKT/mTOR pathway. Together, miR-222-3p-containing M2 MDEs enhance chemoresistance in PCa through TSC1 inhibition and activation of the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Yao Guo
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Jiongxin Xiong
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Shanmiao Gou
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Jing Cui
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| | - Tao Peng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
9
|
Heydari Z, Moudi E, Sadeghi F, Hajiahmadi M, Rezatabar S, Neamati N, Parsian H. Circulating plasma miR222-3P status and its potential diagnostic performance in prostate cancer. J Gene Med 2022; 24:e3459. [PMID: 36279183 DOI: 10.1002/jgm.3459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/23/2022] [Accepted: 10/16/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Although studies suggest that miR222-3p is dysregulated in prostate cancer (PC) cells and tissues, the possible changes in the level of miR222-3p in the plasma samples of PC patients remained unclear. The present study aimed to evaluate the diagnostic value of the plasma miR222-3p expression level as a potential biomarker in PC, benign prostatic hyperplasia (BPH) and healthy people. METHODS Blood samples were collected from 100 adult males (54 patients with PC, 27 patients with BPH and 19 healthy individuals) referred to our affiliated hospital. The expression level of miR222-3p was evaluated using a quantitative reverse transcription-polymerase chain reaction. Receiver operating characteristic curves were used to evaluate miR222-3p diagnostic accuracy for discriminating between the PC, BPH and healthy individuals. RESULTS The expression level of miR222-3p was significantly higher in PC patients compared to healthy individuals as a fold change of 5.3 (p = 0.009), but not for BPH individuals. The diagnostic value of the plasma miR222-3p for discrimination of the PC patients from healthy individuals was reasonable [cut-off value (fold change relative to miR16-5p) = 1.69, area under the curve = 0.73, sensitivity = 0.75 and specificity = 0.74]. CONCLUSIONS Circulating plasma miR-222-3p significantly upregulated in PC patients, but not in BPH ones. Besides these preliminary results showed that miR222-3p has the potential to discriminate PC patients from healthy ones. Addittional studies with a larger sample size are required to confirm these data.
Collapse
Affiliation(s)
- Zohreh Heydari
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Emadoddin Moudi
- Department of Urology, Shahid Beheshti Hospital, Babol University of Medical Sciences, Babol, Iran.,Cancer Research Center, Health Research Institute, Babol Univbersity of Medical Sciences, Babol, Iran
| | - Farzin Sadeghi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mahmoud Hajiahmadi
- Department of Epidemiology, Babol University of Medical Sciences, Babol, Iran
| | - Setareh Rezatabar
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Nahid Neamati
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
10
|
HMGA1 As a Potential Prognostic and Therapeutic Biomarker in Breast Cancer. DISEASE MARKERS 2022; 2022:7466555. [PMID: 36479041 PMCID: PMC9720233 DOI: 10.1155/2022/7466555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/15/2022] [Accepted: 10/26/2022] [Indexed: 11/27/2022]
Abstract
Background High-mobility group AT-hook1 (HMGA1) protein plays an important role in various diseases. However, the contribution of HMGA1 in breast cancer remains to be tapped. Methods The expression of HMGA1 was analyzed in The Cancer Genome Atlas (TCGA) and TIMER database, and immunohistochemistry was performed in 39 breast cancer (BC) patients. The correlation between HMGA1 expression and prognosis was evaluated using Kaplan-Meier plotter (KM plotter) in patients with breast cancer. Then, cBioPortal and bc-GenExMiner were requisitioned to analyze the contribution of HMGA1 expression to clinical features. In order to reveal the function of HMGA1 in breast cancer cells, enrichment analysis was performed using the clusterProfiler R software package. Moreover, CCK8 assay, EdU assay, and Cell Cycle Assay were performed to assess the proliferation, and transwell assay was used to evaluate cell migration and invasion. Flow cytometry was used to explore the role of HMGA1 on cell apoptosis. After that, the effect of HMGA1 on signaling pathways in BC cells was detected by western blot. Results HMGA1 was highly expressed in a variety of tumors tissues, including BC. High HMGA1 expression was correlated with poor prognosis in BC patients. Meanwhile, HMGA1 expression was increased in molecular phenotypes with poor prognosis (ER-, PR-, and HER2+) and associated with high-grade group, lymph node metastasis, and NPI (Nottingham Prognostic Index). Further, function analysis revealed HMGA1 was enriched in DNA replication and cell cycle pathways in breast cancer. Moreover, knockdown of HMGA1 caused apoptosis, inhibited proliferation, migration, and invasion of MCF-7 and MDA-MB-231 cells, in which the oncogenic signaling pathway of PI3K/AKT/MMP9 played a critical role. Conclusions HMGA1 was important for breast cancer progression and was a critical prognostic indicator, prompting a potential therapeutic target of breast cancer.
Collapse
|
11
|
Tan H, Zhang M, Xu L, Zhang X, Zhao Y. Gypensapogenin H suppresses tumor growth and cell migration in triple-negative breast cancer by regulating PI3K/AKT/NF-κB/MMP-9 signaling pathway. Bioorg Chem 2022; 126:105913. [DOI: 10.1016/j.bioorg.2022.105913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 04/20/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022]
|
12
|
Wang H, Zhao S, Liu Y, Sun F, Huang X, Wu T. Sclerostin Suppression Facilitates Uveal Melanoma Progression Through Activating Wnt/β-Catenin Signaling Via Binding to Membrane Receptors LRP5/LRP6. Front Oncol 2022; 12:898047. [PMID: 35785219 PMCID: PMC9248439 DOI: 10.3389/fonc.2022.898047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Uveal melanoma (UM) is the most frequent primary eye cancer in adults with a 50% mortality rate. Characterizing the fundamental signaling pathways that drive UM is of importance for the development of targeted therapy. This study aims to probe the impact of sclerostin (SOST) on malignant progression of UM and regulation of Wnt/β-catenin signaling. Methods Epithelial-type (n=20) and spindle-type (n=16) UM tissues were collected for immunohistochemical staining of SOST, Wnt-1, and β-catenin expressions. SOST was silenced in three UM cell lines (primary spindle-type OCM-1 cells, metastatic epithelial Mum-2B cells, and metastatic spindle-type Mum-2C cells) through transfecting specific siRNA. RT-qPCR and Western blot were presented for examining the levels of SOST, and markers in Wnt/β-catenin signaling. Flow cytometry, MTT, EdU, transwell, and tube formation assays were conducted, respectively. By implanting BALB/c nude murine models in situ, the function of SOST on tumor growth was investigated, followed by immunofluorescence double staining of SOST and LRP5/6. Results Low SOST expression as well as high Wnt-1 and β-catenin expressions were found in epithelial-type (high malignancy) than spindle-type (low malignancy) UM tissues. Silencing SOST activated the markers in Wnt/β-catenin signaling as well as accelerated cell cycle progression, migration, invasion, angiogenesis, and reduced apoptosis in UM cells. In situ tumor formation in murine eyes showed that SOST knockdown promoted tumor growth. Moreover, SOST interacted with LRP5/LRP6. Conclusion SOST silencing may facilitate the malignant progression of UM cells through activating Wnt/β-catenin signaling. Mechanistically, SOST may exert this function by interacting with LRP5/LRP6 membrane receptors.
Collapse
Affiliation(s)
- Hanqing Wang
- Department of Orbital Disease and Oculoplastic Surgery, Sichuan Eye Hospital, Aier Eye Hospital Group, Chengdu, China
- Department of Orbital Disease and Oculoplastic Surgery, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Sidi Zhao
- Department of Orbital Disease and Oculoplastic Surgery, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yang Liu
- Research and Development Department, Microsensor Labs, Chicago, IL, United States
| | - Fengyuan Sun
- Department of Orbital Disease and Oculoplastic Surgery, Sichuan Eye Hospital, Aier Eye Hospital Group, Chengdu, China
- Department of Orbital Disease and Oculoplastic Surgery, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiaoming Huang
- Department of Orbital Disease and Oculoplastic Surgery, Sichuan Eye Hospital, Aier Eye Hospital Group, Chengdu, China
- Department of Orbital Disease and Oculoplastic Surgery, Tianjin Medical University Eye Hospital, Tianjin, China
- *Correspondence: Tong Wu, ; Xiaoming Huang,
| | - Tong Wu
- Department of Orbital Disease and Oculoplastic Surgery, Sichuan Eye Hospital, Aier Eye Hospital Group, Chengdu, China
- Department of Orbital Disease and Oculoplastic Surgery, Tianjin Medical University Eye Hospital, Tianjin, China
- *Correspondence: Tong Wu, ; Xiaoming Huang,
| |
Collapse
|
13
|
Li A, Zhang Y, Wang R, Xu R, Ma Y, Song L, Cao W, Tang X. Coal dust exposure induces proliferation and migration of human bronchial epithelial cells. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00252-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Wang T, Chen Z, Chen H, Yu X, Wang L, Liu X. Brusatol inhibits the growth of renal cell carcinoma by regulating the PTEN/PI3K/AKT pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:115020. [PMID: 35066068 DOI: 10.1016/j.jep.2022.115020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Brucea javanica (L.) Merr. is a medicinal herb used in China for the prevention and treatment of diseases such as cancer and malaria. Brusatol was isolated from the seeds of Brucea javanica (L.) Merr, brusatol has a wide range of pharmacological effects, including anti-inflammation and anti-cancer effects. AIM OF THE STUDY Renal cell carcinoma is one of the most common urinary system tumours and seriously threatens the lives of patients. We aimed to study the mechanism by which brusatol regulates the growth of renal cancer cells through the PTEN/PI3K/AKT signalling pathway. MATERIALS AND METHODS We chose the A498, ACHN, and OSRC-2 cell lines as experimental models. After intervention with brusatol, CCK-8 experiments and plate cloning experiments were used to detect the cell proliferation ability; flow cytometry was used to detect the cell apoptosis rate; scratch and transwell invasion assays were used to detect the cell migration and invasion ability; qRT-PCR and Western blotting was used to detect PTEN, p-PI3K/PI3K, p-AKT/AKT, Bax, Bcl2, E-cadherin, N-cadherin, and vimentin relative expression. Then, we knocked down the PTEN gene in the three cell lines and again tested the proliferation, apoptosis, migration, and invasion capabilities of each group of cells. RESULTS Brusatol significantly inhibited the proliferation, migration and invasion and increased the rate of apoptosis of the A498, ACHN, and OSRC-2 cell lines, and brusatol significantly increased the expression of PTEN mRNA and protein, and inhibited the expression of p-PI3K and p-AKT. Moreover, knockdown of PTEN significantly reduced the inhibitory effect of brusatol on the growth of renal cancer cells. CONCLUSION Our research results show that brusatol has an effective inhibitory effect on the growth of A498, ACHN, and OSRC-2 renal cancer cell lines, and this effect is likely to be produced by regulating the PTEN/PI3K/AKT signalling pathway.
Collapse
Affiliation(s)
- Tao Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hui Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xi Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
15
|
Caban M, Owczarek K, Lewandowska U. The Role of Metalloproteinases and Their Tissue Inhibitors on Ocular Diseases: Focusing on Potential Mechanisms. Int J Mol Sci 2022; 23:ijms23084256. [PMID: 35457074 PMCID: PMC9026850 DOI: 10.3390/ijms23084256] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 02/01/2023] Open
Abstract
Eye diseases are associated with visual impairment, reduced quality of life, and may even lead to vision loss. The efficacy of available treatment of eye diseases is not satisfactory. The unique environment of the eye related to anatomical and physiological barriers and constraints limits the bioavailability of existing agents. In turn, complex ethiopathogenesis of ocular disorders that used drugs generally are non-disease specific and do not act causally. Therefore, there is a need for the development of a new therapeutic and preventive approach. It seems that matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) have a significant role in the development and progression of eye diseases and could be used in the therapy of these disorders as pharmacological targets. MMPs and TIMPs play an important role in the angiogenesis, epithelial-mesenchymal transition, cell invasion, and migration, which occur in ocular diseases. In this review, we aim to describe the participation of MMPs and TIMPs in the eye diseases, such as age-related macular degeneration, cataract, diabetic retinopathy, dry eye syndrome, glaucoma, and ocular cancers, posterior capsule opacification focusing on potential mechanisms.
Collapse
|
16
|
Liang L, Sui R, Song Y, Zhao Y. Acidic microenvironment enhances MT1-MMP-mediated cancer cell motility through integrin β1/cofilin/F-actin axis. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1558-1566. [PMID: 34568889 DOI: 10.1093/abbs/gmab130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 12/22/2022] Open
Abstract
Tumor acidic microenvironment is the main feature of many solid tumors. As a part of the tumor microenvironment, it has a profound impact on the occurrence and development of tumors. However, the research on how tumor cells sense the changes of the external microenvironment and how the intracellular subcellular structures transmit the signals from extracellular to intracellular is unclear. In this study, we identify that the acidic microenvironment enhances cancer cell motility, and the expression of membrane-anchored membrane type 1-matrix metalloproteinase is also associated with cell motility, which indicates more degradation of the ECM under the acidic microenvironment. Moreover, the expression of cofilin is low in the acidic microenvironment, and the F-actin filaments are distributed more along the cells. The cytoskeletal F-actin changes are consistent with the potential of a high-invasive phenotype. Further study reveals the upstream control of the signal transductions from extracellular to intracellular, that is, the integrin β1 functions to trigger the biological responses under the acidic microenvironment. Our results demonstrate that the acidic microenvironment enhances cancer cell motility through the integrin β1/cofilin/F-actin signal axis. This study clearly shows the scheme of the signal transmissions from extracellular to intracellular and further reveals the cytoskeletal roles for the contributions of cancer cell motility under acidic microenvironment, which provides new targets for cancer intervention from the biochemical and biophysical perspectives.
Collapse
Affiliation(s)
- Lubiao Liang
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Ran Sui
- College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Yongxiang Song
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Yajin Zhao
- School of Stomatology, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
17
|
Wu X, Wang X, Shan L, Zhou J, Zhang X, Zhu E, Yuan H, Wang B. High-mobility group AT-Hook 1 mediates the role of nuclear factor I/X in osteogenic differentiation through activating canonical Wnt signaling. Stem Cells 2021; 39:1349-1361. [PMID: 34028135 DOI: 10.1002/stem.3418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/29/2021] [Indexed: 11/09/2022]
Abstract
It was previously reported that the loss of the transcription factor nuclear factor I/X (NFIX) gene in mice impaired endochondral ossification and mineralization in bone. However, the cellular and molecular basis for the defect remains unexplored. In this study, we investigated if and how NFIX regulates osteoblast differentiation. Nfix mRNA was induced during osteogenic and adipogenic differentiation of progenitor cells. Loss-of-function and gain-of-function studies revealed that NFIX induced osteoblast differentiation and impaired adipocyte formation from progenitor cells. RNA-seq and promoter analysis revealed that NFIX transcriptionally stimulated the expression of high-mobility group AT-Hook 1 (HMGA1). We then demonstrated that HMGA1 stimulated osteogenic differentiation of progenitor cells at the expense of adipogenic differentiation. The effect of Nfix siRNA on the differentiation of progenitor cells could be attenuated when HMGA1 was simultaneously overexpressed. Further investigations revealed the stimulatory effect of NFIX and HMGA1 on canonical wingless-type MMTV integration site family (Wnt) signaling. HMGA1 transcriptionally activates the expression of low-density lipoprotein receptor-related protein 5. Finally, in vivo transfection of Nfix siRNA to the marrow of mice reduced osteoblasts and increased fat accumulation in the marrow, and inactivated HMGA1/β-catenin signaling in bone marrow mesenchymal stem cells. This study suggests that HMGA1 plays a role in osteoblast commitment and mediates the function of NFIX through transcriptionally activating canonical Wnt signaling.
Collapse
Affiliation(s)
- Xiaowen Wu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Xiaochen Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Liying Shan
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Jie Zhou
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Xin Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Endong Zhu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Hairui Yuan
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Baoli Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
18
|
Bioinformatic Analysis Reveals Central Role for Tumor-Infiltrating Immune Cells in Uveal Melanoma Progression. J Immunol Res 2021; 2021:9920234. [PMID: 34195299 PMCID: PMC8214507 DOI: 10.1155/2021/9920234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/05/2021] [Accepted: 05/23/2021] [Indexed: 12/13/2022] Open
Abstract
Tumor-infiltrating immune cells are capable of effective cancer surveillance, and their abundance is linked to better prognosis in numerous tumor types. However, in uveal melanoma (UM), extensive immune infiltrate is associated with poor survival. This study aims to decipher the role of different tumor-infiltrating cell subsets in UM in order to identify potential targets for future immunotherapeutic treatment. We have chosen the TCGA-UVM cohort as a training dataset and GSE22138 as a testing dataset by mining publicly available databases. The abundance of 22 immune cell types was estimated using CIBERSORTx. Then, to determine the significance of tumor-infiltrating cell subsets in UM, we built a multicell type prognostic signature, which was validated in the testing cohort. The created signature was built upon the negative prognostic role of CD8+ T cells and M0 macrophages and the positive role of neutrophils. Based on the created signature score, we divided the patients into low- and high-risk groups. Kaplan-Meier, Cox, and ROC analyses demonstrated superior performance of our risk score compared to either clinical or pathologic characteristics of both cohorts. Further, we found the molecular pathways associated with cancer immunoevasion and metastasis to be enriched in the high-risk group, explaining both the lack of adequate immune surveillance despite increased infiltration of CD8+ T cells as well as the higher metastatic potential. Genes associated with tryptophan metabolism (IDO1 and KYNU) and metalloproteinases were among the most differentially expressed between the high- and low-risk groups. Our correlation analyses interpreted in context of published in vitro data strongly suggest the central role of CD8+ T cells in shifting the UM tumor microenvironment towards suppressive and metastasis-promoting. Therefore, we propose further investigations of IDO1 and metalloproteinases as novel targets for immunotherapy in lymphocyte-rich metastatic UM patients.
Collapse
|
19
|
Wang D, Sang Y, Sun T, Kong P, Zhang L, Dai Y, Cao Y, Tao Z, Liu W. Emerging roles and mechanisms of microRNA‑222‑3p in human cancer (Review). Int J Oncol 2021; 58:20. [PMID: 33760107 PMCID: PMC7979259 DOI: 10.3892/ijo.2021.5200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/12/2021] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are a class of small non‑coding RNAs that maintain the precise balance of various physiological processes through regulating the function of target mRNAs. Dysregulation of miRNAs is closely associated with various types of human cancer. miR‑222‑3p is considered a canonical factor affecting the expression and signal transduction of multiple genes involved in tumor occurrence and progression. miR‑222‑3p in human biofluids, such as urine and plasma, may be a potential biomarker for the early diagnosis of tumors. In addition, miR‑222‑3p acts as a prognostic factor for the survival of patients with cancer. The present review first summarizes and discusses the role of miR‑222‑3p as a biomarker for diverse types of cancers, and then focuses on its essential roles in tumorigenesis, progression, metastasis and chemoresistance. Finally, the current understanding of the regulatory mechanisms of miR‑222‑3p at the molecular level are summarized. Overall, the current evidence highlights the crucial role of miR‑222‑3p in cancer diagnosis, prognosis and treatment.
Collapse
Affiliation(s)
| | | | | | - Piaoping Kong
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Lingyu Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yibei Dai
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Ying Cao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Zhihua Tao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Weiwei Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
20
|
Zhu YG, Lv YX, Guo CY, Xiao ZM, Jiang QG, Kuang H, Zhang WH, Hu P. Harmine inhibits the proliferation and migration of glioblastoma cells via the FAK/AKT pathway. Life Sci 2021; 270:119112. [DOI: 10.1016/j.lfs.2021.119112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/09/2021] [Accepted: 01/19/2021] [Indexed: 01/01/2023]
|
21
|
Li S, Yan G, Yue M, Wang L. Extracellular vesicles-derived microRNA-222 promotes immune escape via interacting with ATF3 to regulate AKT1 transcription in colorectal cancer. BMC Cancer 2021; 21:349. [PMID: 33794833 PMCID: PMC8017736 DOI: 10.1186/s12885-021-08063-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/18/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Immunotherapy has been recently established as a new direction for the treatment of colorectal cancer (CRC), a gastrointestinal cancer. In this investigation, we aimed to expound how the posttranscriptional regulation modulated by microRNA-222 (miR-222) from mesenchymal stem cells-derived extracellular vesicles (MSC-EVs) affected the AKT pathway and the immune escape in CRC. METHODS CRC cell malignant phenotype, including proliferation, migration, invasion, and apoptosis, was firstly detected after co-culture with MSC-EVs. miRNAs with differential changes in CRC cells before and after EVs treatment were filtered by microarray analysis. miR-222 was then downregulated to examine its role in CRC cells in response to EVs. Cells were implanted in mice to induce xenograft tumors, and infiltrating T cells was assessed by immunohistochemistry. The mRNA microarray was used to screen target genes, followed by rescue experiments. ChIP and western blot were conducted to validate the downstream biomolecule of ATF3. RESULTS After treatment of CRC cells with MSC-EVs, the expression of miR-222 was upregulated, and cell activity was increased. Inhibition of miR-222 decreased CRC malignant aggressiveness in vitro and reduced tumorigenesis and immune escape in vivo. miR-222 targeted and bound to ATF3. Downregulation of ATF3 enhanced CRC cell malignant aggressiveness, tumorigenic capacity and immune escape. Mechanistically, ATF3 inhibited AKT1 transcription and mediated the AKT pathway. CONCLUSION MSC-EVs carry miR-222 to promote CRC cell malignant aggressiveness and immune escape. miR-222 targets and binds to ATF3, which inhibits AKT1 transcriptional activity and thereby mediates the AKT pathway.
Collapse
Affiliation(s)
- Shiquan Li
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, Jilin, People's Republic of China
| | - Guoqiang Yan
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, Jilin, People's Republic of China
| | - Meng Yue
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, Jilin, People's Republic of China
| | - Lei Wang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
22
|
Liu F, Li L, Chen J, Wu Y, Cao Y, Zhong P. A Network Pharmacology to Explore the Mechanism of Calculus Bovis in the Treatment of Ischemic Stroke. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6611018. [PMID: 33778069 PMCID: PMC7972848 DOI: 10.1155/2021/6611018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Calculus Bovis is a valuable Chinese medicine, which is widely used in the clinical treatment of ischemic stroke. The present study is aimed at investigating its target and the mechanism involved in ischemic stroke treatment by network pharmacology. METHODS Effective compounds of Calculus Bovis were collected using methods of network pharmacology and using the Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM) and the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Potential compound targets were searched in the TCMSP and SwissTargetPrediction databases. Ischemic stroke-related disease targets were searched in the Drugbank, DisGeNet, OMIM, and TTD databases. These two types of targets were uploaded to the STRING database, and a network of their interaction (PPI) was built with its characteristics calculated, aiming to reveal a number of key targets. Hub genes were selected using a plug-in of the Cytoscape software, and Gene Ontology (GO) biological processes and pathway enrichment analyses of Kyoto Encyclopedia of Genes and Genomes (KEGG) were conducted using the clusterProfiler package of R language. RESULTS Among 12 compounds, deoxycorticosterone, methyl cholate, and biliverdin were potentially effective components. A total of 344 Calculus Bovis compound targets and 590 ischemic stroke targets were found with 92 overlapping targets, including hub genes such as TP53, AKT, PIK2CA, MAPK3, MMP9, and MMP2. Biological functions of Calculus Bovis are associated with protein hydrolyzation, phosphorylation of serine/threonine residues of protein substrates, peptide bond hydrolyzation of peptides and proteins, hydrolyzation of intracellular second messengers, antioxidation and reduction, RNA transcription, and other biological processes. CONCLUSION Calculus Bovis may play a role in ischemic stroke by activating PI3K-AKT and MAPK signaling pathways, which are involved in regulating inflammatory response, cell apoptosis, and proliferation.
Collapse
Affiliation(s)
- Fangchen Liu
- Department of Neurology, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ling Li
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Jian Chen
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Ying Wu
- Department of Neurology, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yongbing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Ping Zhong
- Department of Neurology, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
- Department of Neurology, Shidong Hospital of Yangpu District, Shanghai 200090, China
| |
Collapse
|
23
|
Xu T, Gao S, Liu J, Huang Y, Chen K, Zhang X. MMP9 and IGFBP1 Regulate Tumor Immune and Drive Tumor Progression in Clear Cell Renal Cell Carcinoma. J Cancer 2021; 12:2243-2257. [PMID: 33758602 PMCID: PMC7974879 DOI: 10.7150/jca.48664] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 01/13/2021] [Indexed: 01/20/2023] Open
Abstract
Immunotherapy is a novel approach and has been used in various diseases, especially in cancers. Recently, immunotherapy has gradually been used to treat advanced clear cell renal cell carcinoma (ccRCC) or metastatic ccRCC. However, the efficacy of immunotherapy is not satisfying due to the influence of the tumor microenvironment. In this study, we mainly focused on the abundance and function of tumor-infiltrating immune cells (TIICs). Monocyte and TNM stage were identified as independent prognostic factors via CIBERSORT and Cox regression analysis. Then, ccRCC patients were divided into high risk/TNMhighMonocyteslow cluster and low risk/TNMlowMonocyteshigh cluster. Further differential gene analysis, protein-protein interaction (PPI) network, and survival analysis screened nine hub genes between the above two clusters. MMP9 and IGFBP1 were selected for further study through sample validation. Moreover, gene set enrichment analysis revealed that MMP9 and IGFBP1 were involved in tumor immune via mediating cell surface receptor signal pathway, cytokine production pathway, or monocyte signal pathway. In conclusion, these findings suggested that monocyte acted as a protective factor and MMP9/IGFBP1 played a vital role in tumor immune, which might become potential novel biomarkers and therapeutic targets for immunotherapy in ccRCC.
Collapse
Affiliation(s)
- Tianbo Xu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Su Gao
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
- Institute of Gerontology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Jingchong Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Yu Huang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| |
Collapse
|
24
|
The emerging role of non-coding RNAs in the regulation of PI3K/AKT pathway in the carcinogenesis process. Biomed Pharmacother 2021; 137:111279. [PMID: 33493969 DOI: 10.1016/j.biopha.2021.111279] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
The PI3K/AKT pathway is an intracellular signaling pathway with an indispensable impact on cell cycle control. This pathway is functionally related with cell proliferation, cell survival, metabolism, and quiescence. The crucial role of this pathway in the development of cancer has offered this pathway as a target of novel anti-cancer treatments. Recent researches have demonstrated the role of microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) in controlling the PI3K/AKT pathway. Some miRNAs such as miR-155-5p, miR-328-3p, miR-125b-5p, miR-126, miR-331-3p and miR-16 inactivate this pathway, while miR-182, miR-106a, miR-193, miR-214, miR-106b, miR-93, miR-21 and miR-103/107 enhance activity of this pathway. Expression levels of PI3K/AKT-associated miRNAs could be used to envisage the survival of cancer patients. Numerous lncRNAs such as GAS5, FER1L4, LINC00628, PICART1, LOC101928316, ADAMTS9-AS2, SLC25A5-AS1, MEG3, AB073614 and SNHG6 interplay with this pathway. Identification of the impact of miRNAs and lncRNAs in the control of the activity of PI3K/AKT pathway would enhance the efficacy of targeted therapies against this pathway. Moreover, each of the mentioned miRNAs and lncRNAs could be used as a putative therapeutic candidate for the interfering with the carcinogenesis. In the current study, we review the role of miRNAs and lncRNAs in controlling the PI3K/AKT pathway and their contribution to carcinogenesis.
Collapse
|
25
|
Li G, Luo W, Wang B, Qian C, Ye Y, Li Y, Zhang S. HMGA1 Induction of miR-103/107 Forms a Negative Feedback Loop to Regulate Autophagy in MPTP Model of Parkinson's Disease. Front Cell Neurosci 2021; 14:620020. [PMID: 33536877 PMCID: PMC7847849 DOI: 10.3389/fncel.2020.620020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/09/2020] [Indexed: 11/18/2022] Open
Abstract
Autophagy dysfunction has been directly linked with the onset and progression of Parkinson’s disease (PD), but the underlying mechanisms are not well understood. High-mobility group A1 (HMGA1), well-known chromatin remodeling proteins, play pivotal roles in diverse biological processes and diseases. Their function in neural cell death in PD, however, have not yet been fully elucidated. Here, we report that HMGA1 is highly induced during dopaminergic cell death in vitro and mice models of PD in vivo. Functional studies using genetic knockdown of endogenous HMGA1 show that HMGA1 signaling inhibition accelerates neural cell death, at least partially through aggravating MPP+-induced autophagic flux reduction resulting from partial block in autophagic flux at the terminal stages, indicating a novel potential neuroprotective role for HMGA1 in dopaminergic neurons death. MicroRNA-103/107 (miR-103/107) family, which is highly expressed in neuron, coordinately ensures proper end-stage autophagy. We further illustrate that MPP+/1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced HMGA1 elevation counterparts the effect of miR-103/107 downregulation by directly binding to their promoters, respectively, sustaining their expression in MPP+-damaged MN9D cells and modulates autophagy through CDK5R1/CDK5 signaling pathway. We also find that HMGA1 is a direct target of miR-103/107 family. Thus, our results suggest that HMGA1 forms a negative feedback loop with miR-103/107-CDK5R1/CDK5 signaling to regulate the MPP+/MPTP-induced autophagy impairment and neural cell death. Collectively, we identify a paradigm for compensatory neuroprotective HMGA1 signaling in dopaminergic neurons that could have important therapeutic implications for PD.
Collapse
Affiliation(s)
- Gehui Li
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The National Key Clinical Specialty, Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Anesthesiology, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Wanxian Luo
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Baoyan Wang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The National Key Clinical Specialty, Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chen Qian
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The National Key Clinical Specialty, Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yongyi Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuantao Li
- Department of Anesthesiology, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Shizhong Zhang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The National Key Clinical Specialty, Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
26
|
Mazurkiewicz J, Simiczyjew A, Dratkiewicz E, Ziętek M, Matkowski R, Nowak D. Stromal Cells Present in the Melanoma Niche Affect Tumor Invasiveness and Its Resistance to Therapy. Int J Mol Sci 2021; 22:E529. [PMID: 33430277 PMCID: PMC7825728 DOI: 10.3390/ijms22020529] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
Malignant melanoma is a highly metastatic type of cancer, which arises frequently from transformed pigment cells and melanocytes as a result of long-term UV radiation exposure. In recent years, the incidence of newly diagnosed melanoma patients reached 5% of all cancer cases. Despite the development of novel targeted therapies directed against melanoma-specific markers, patients' response to treatment is often weak or short-term due to a rapid acquisition of drug resistance. Among the factors affecting therapy effectiveness, elements of the tumor microenvironment play a major role. Melanoma niche encompasses adjacent cells, such as keratinocytes, cancer-associated fibroblasts (CAFs), adipocytes, and immune cells, as well as components of the extracellular matrix and tumor-specific physicochemical properties. In this review, we summarize the current knowledge concerning the influence of cancer-associated cells (keratinocytes, CAFs, adipocytes) on the process of melanomagenesis, tumor progression, invasiveness, and the emergence of drug resistance in melanoma. We also address how melanoma can alter the differentiation and activation status of cells present in the tumor microenvironment. Understanding these complex interactions between malignant and cancer-associated cells could improve the development of effective antitumor therapeutic strategies.
Collapse
Affiliation(s)
- Justyna Mazurkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland; (A.S.); (E.D.); (D.N.)
| | - Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland; (A.S.); (E.D.); (D.N.)
| | - Ewelina Dratkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland; (A.S.); (E.D.); (D.N.)
| | - Marcin Ziętek
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, 53-413 Wroclaw, Poland; (M.Z.); (R.M.)
- Wroclaw Comprehensive Cancer Center, Plac Hirszfelda 12, 53-413 Wroclaw, Poland
| | - Rafał Matkowski
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, 53-413 Wroclaw, Poland; (M.Z.); (R.M.)
- Wroclaw Comprehensive Cancer Center, Plac Hirszfelda 12, 53-413 Wroclaw, Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland; (A.S.); (E.D.); (D.N.)
| |
Collapse
|
27
|
Li C, Zhao J, Sun W. microRNA-222-Mediated VHL Downregulation Facilitates Retinoblastoma Chemoresistance by Increasing HIF1α Expression. Invest Ophthalmol Vis Sci 2021; 61:9. [PMID: 32756923 PMCID: PMC7441340 DOI: 10.1167/iovs.61.10.9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose Retinoblastoma (RB) is the most common primary intraocular tumor in children. Chemoresistance is the major obstacle for treatment of these tumors. This study aims to determine whether or not downregulating microRNA-222 (miR-222) could serve as a potential therapeutic target for preventing chemoresistance in RB treatment. Methods Differentially expressed miR-222 in RB samples and its downstream target genes were predicted using bioinformatics methods. The expression of miR-222 was altered by mimic or inhibitor to examine its role in RB cell in response to the chemotherapeutic agent vincristine (VCR). Further bioinformatic analysis predicted involvement of the stability of hypoxia-inducible factor 1α (HIF1α) protein in regulation of the von Hippel–Lindau (VHL) tumor suppressor, followed by characterization of the effect of VHL on the ubiquitin–proteasome degradation of HIF1α. Next, VHL or HIF1α was overexpressed to determine their effects on RB cell activities after VCR treatment. In vivo assays were performed on nude mice to further verify the in vitro results. Results miR-222 is highly expressed in RB tissues and cells and was found to facilitate resistance of RB cells to VCR. Of note, miR-222 specifically bound to and negatively regulated VHL. VHL could inhibit the stability of HIF1α and promote the degradation of ubiquitin–proteasome, thus reducing HIF1α expression to attenuate VCR resistance in RB cells. Moreover, inhibition of miR-222 in combination with VCR suppressed tumor formation in nude mice. Conclusions miR-222 promotes the expression of HIF1α by targeting VHL, thus accelerating the resistance of RB cells to the chemotherapeutic agent VCR.
Collapse
Affiliation(s)
- Chunzhi Li
- Department of Pharmacy, Linyi People's Hospital, Linyi, China
| | - Jun Zhao
- Department of Ophthalmology, Linyi People's Hospital, Linyi, China
| | - Weiying Sun
- Department of Pharmacy, Linyi People's Hospital, Linyi, China
| |
Collapse
|
28
|
The Role of Non-Coding RNAs in Uveal Melanoma. Cancers (Basel) 2020; 12:cancers12102944. [PMID: 33053887 PMCID: PMC7600503 DOI: 10.3390/cancers12102944] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The development of uveal melanoma is a multifactorial and multi-step process, in which abnormal gene expression plays a key role. Recently, several studies have highlighted the role of non-coding RNAs in the progression of uveal melanoma by affecting different signaling pathways. As important agents in the regulation of genes, non-coding RNAs have enormous potential to open up therapeutic pathways, predict response to treatment, and anticipate patient outcome for uveal melanoma. This review aims to provide a comprehensive view of what we know about ncRNAs in uveal melanoma currently. Abstract Uveal melanoma (UM) is the most common primary intraocular tumor in adulthood. Approximately 50% of patients develop metastatic disease, which typically affects the liver and is usually fatal within one year. This type of cancer is heterogeneous in nature and is divided into two broad groups of tumors according to their susceptibility to develop metastasis. In the last decade, chromosomal abnormalities and the aberrant expression of several signaling pathways and oncogenes in uveal melanomas have been described. Recently, importance has been given to the association of the mentioned deregulation with the expression of non-coding RNAs (ncRNAs). Here, we review the different classes of ncRNAs—such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs)—and their contribution to the development of UM. Special attention is given to miRNAs and their regulatory role in physiopathology and their potential as biomarkers. As important agents in gene regulation, ncRNAs have a huge potential for opening up therapeutic pathways, predicting response to treatment, and anticipating patient outcome for UM.
Collapse
|
29
|
Comprehensive analysis of competitive endogenous RNAs network reveals potential prognostic lncRNAs in gastric cancer. Heliyon 2020; 6:e03978. [PMID: 32455175 PMCID: PMC7235626 DOI: 10.1016/j.heliyon.2020.e03978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/13/2020] [Accepted: 05/11/2020] [Indexed: 01/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are key regulators of a range of human diseases, including various cancers, with multiple previous studies having explored lncRNA dysregulation in the context of gastric cancer (GC). The present study sought to expand upon these previous results by downloading lncRNA, mRNA, and microRNA (miRNA) expression profiles derived from 180 GC tissues and 24 normal control tissues within the Cancer Genome Atlas (TCGA) database. These datasets were then interrogated to identify GC-related differentially expressed (DE) RNAs (|fold change| ≥ 2, FDR< 0.01), leading to the identification of 1946 DE lncRNAs, 123 DE miRNAs, and 3159 DE mRNAs. These results were then used to generate a putative GC-related competitive endogenous RNA (ceRNA) network composed of 131 lncRNAs, 9 miRNAs, and 78 mRNAs. Subsequent survival analyses based upon this network revealed 17 of these lncRNAs to be significantly associated with GC patient survival (P < 0.05). Further multivariable Cox regression and lasso analyses allowed for the construction of an 8-lncRNA risk score that was able to effectively predict GC patient survival with good discriminative ability. The Kaplan-Meier Plotter database further confirmed that network hub genes that were related to these 8 lncRNAs were associated with GC patient prognosis (P < 0.05). As the ceRNA network in the present study was constructed with a focus on both disease stage and differential gene expression, it represents a key resource that will offer valuable insights into the mechanistic roles of ceRNA pathways in GC development and progression.
Collapse
|
30
|
Chen Y, Liu X, Wang H, Liu S, Hu N, Li X. Akt Regulated Phosphorylation of GSK-3β/Cyclin D1, p21 and p27 Contributes to Cell Proliferation Through Cell Cycle Progression From G1 to S/G2M Phase in Low-Dose Arsenite Exposed HaCat Cells. Front Pharmacol 2019; 10:1176. [PMID: 31680960 PMCID: PMC6798184 DOI: 10.3389/fphar.2019.01176] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022] Open
Abstract
Arsenic is a toxic environmental contaminant. Long-term exposure to arsenic through drinking water induces human cancers. However, it is as yet uncertain about the mechanisms of arsenic induced carcinogenesis. Although the effects of low-dose arsenicals on proliferation and cell cycle have been revealed by short time exposure, the evidences for long-term exposure were seldom reported. The detailed mechanism has been unclear and supplemented constantly. In the present study, we used normal human keratinocytes (HaCat) to study the effects of long-term, low-dose sodium arsenite (NaAsO2) exposure on cell proliferation with emphasis on the Akt regulated cell cycle signaling pathways. Treatment of NaAsO2 resulted in increased cell proliferation and promotion of cell cycle progression from G1 to S/G2M phase, both of which could be attenuated by MK2206, a highly selective inhibitor of Akt. Along with the increased expression of phospho-Akt (p-Akt, Ser 473), increased expression of p-GSK-3β (Ser 9), p-p21 (Thr 145), p-p27 (Thr 157) and total cyclin D1, and decreased expression of p-cyclin D1 (Thr 286), p21 and p27 were also found in the NaAsO2 exposed cells. Treatment of MK2206 markedly reversed the expression of all of the above proteins. Our findings indicated that the phosphorylated activation of Akt played a role in the proliferation of HaCat cells upon long-term, low-dose NaAsO2 exposure through the phosphorylative regulation of its downstream cell cycle regulating factors of GSK-3β/cyclin D1, p21 and p27, which could induce the promotion of cell cycle progression from G1 to S/G2M phase.
Collapse
Affiliation(s)
- Yao Chen
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, China
| | - Xudan Liu
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, China
| | - Huanhuan Wang
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, China
| | - Shiyi Liu
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, China
| | - Nannan Hu
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, China
| | - Xin Li
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|