1
|
Lu Z, Lyu Z, Dong P, Liu Y, Huang L. N6-methyladenosine RNA modification in stomach carcinoma: Novel insights into mechanisms and implications for diagnosis and treatment. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167793. [PMID: 40088577 DOI: 10.1016/j.bbadis.2025.167793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/16/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
N6-methyladenosine (m6A) RNA methylation is crucially involved in the genesis and advancement of gastric cancer (GC) by controlling various pathobiological aspects including gene expression, signal transduction, metabolism, cell death, epithelial-mesenchymal transition, angiogenesis, and exosome function. Despite its importance, the exact mechanisms by which m6A modification influences GC biology remain inadequately explored. This review consolidates the latest advances in uncovering the mechanisms and diverse roles of m6A in GC and proposes new research and translational directions. Key regulators (writers, readers, and erasers) of m6A, such as METTL3/14/16 and WTAP, significantly affect cancer progression, anticancer immune response, and treatment outcomes. m6A modification also impacts immune cell infiltration and the tumor microenvironment, highlighting its potential as a diagnostic and prognostic marker. Interactions between m6A methylation and non-coding RNAs offer further novel insights into GC development and therapeutic targets. Targeting m6A regulators could enhance immunotherapy response, overcome treatment resistance, and improve oncological and clinical outcomes. Models based on m6A can precisely predict treatment response and prognosis in GC. Additional investigation is needed to fully understand the mechanisms of m6A methylation and its potential clinical applications and relevance (e.g., as precise markers for early detection, prediction of outcome, and response to therapy and as therapeutic targets) in GC. Future research should focus on in vivo studies, potential clinical trials, and the examination of m6A modification in other types of cancers.
Collapse
Affiliation(s)
- Zhengmao Lu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Zhaojie Lyu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Yunmei Liu
- School of Cultural Heritage and Information Management, Shanghai University, Shanghai, China.
| | - Lei Huang
- Department of Gastroenterology, National Clinical Research Center for Digestive Diseases, Shanghai Institute of Pancreatic Diseases, The First Affiliated Hospital of Naval Medical University/Changhai Hospital, Naval Medical University, Shanghai 200433, China; National Key Laboratory of Immunity and Inflammation, Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University/Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
2
|
Jia B, Wang T, Pan L, Du X, Yang J, Gao F, Liao L, Guo B, Dong J. An integrated proteomic classifier to distinguish benign from malignant pulmonary nodules. Clin Proteomics 2025; 22:11. [PMID: 40189512 PMCID: PMC11974211 DOI: 10.1186/s12014-025-09532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 02/27/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Pulmonary nodule with diameters ranging 8-30 mm has a high occurrence rate, and distinguishing benign from malignant nodules can greatly improve the patient outcome of lung cancer. However, sensitive and specific liquid-biopsy methods have yet to achieve satisfactory clinical goals. METHODS We enrolled three cohorts and a total of 185 patients diagnosed with benign (BE) and malignant (MA) pulmonary nodules. Utilizing data-independent acquisition (DIA) mass spectrometry, we quantified plasma proteome from these patients. We then performed logistic regression analysis to classify benign from malignant nodules, using cohort 1 as discovery data set and cohort 2 and 3 as independent validation data sets. We also developed a targeted multi-reaction monitoring (MRM) method to measure the concentration of the selected six peptide markers in plasma samples. RESULTS We quantified a total of 451 plasma proteins, with 15 up-regulated and 5 down-regulated proteins from patients diagnosed as having malignant nodules. Logistic regression identified a six-protein panel comprised of APOA4, CD14, PFN1, APOB, PLA2G7, and IGFBP2 that classifies benign and malignant nodules with improved accuracy. In cohort 1, the area under curve (AUC) of the training and testing reached 0.87 and 0.91, respectively. We achieved a sensitivity of 100%, specificity of 40%, positive predictive value (PPV) of 62.5%, and negative predictive value (NPV) of 100%. In two independent cohorts, the 6-biomarker panel showed a sensitivity, specificity, PPV, and NPV of 96.2%, 35%, 65.8%, and 87.5% respectively in cohort 2, and 91.4%, 54.2%, 74.4%, and 81.3% respectively in cohort 3. We performed a targeted LC-MS/MS method to quantify plasma concentration of the six peptides and applied logistic regression to classify benign and malignant nodules with AUC of the training and testing reached 0.758 and 0.751, respectively. CONCLUSIONS Our study identified a panel of plasma protein biomarkers for distinguishing benign from malignant pulmonary nodules that worth further development into a clinically valuable assay.
Collapse
Affiliation(s)
- Bin Jia
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Tingting Wang
- Durbrain Medical Laboratory, Hangzhou, 310000, Zhejiang, China
| | - Liangxuan Pan
- Durbrain Medical Laboratory, Hangzhou, 310000, Zhejiang, China
| | - Xiaoyao Du
- Durbrain Medical Laboratory, Hangzhou, 310000, Zhejiang, China
| | - Jing Yang
- Department of Clinical Laboratory, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Fei Gao
- Durbrain Medical Laboratory, Hangzhou, 310000, Zhejiang, China
| | - Lujian Liao
- Durbrain Medical Laboratory, Hangzhou, 310000, Zhejiang, China
| | - Bianqin Guo
- Department of Clinical Laboratory, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Junqiang Dong
- Department of Radiology, the First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
3
|
Zhang X, Bai Y, Shang L, Wang Y, Yao W, Wu S. METTL3-Mediated m6A Methylation Stabilizes IFI27 to Drive Esophageal Squamous Cell Carcinoma Progression Through an IGF2BP2-Dependent Mechanism. J Biochem Mol Toxicol 2025; 39:e70167. [PMID: 39987518 DOI: 10.1002/jbt.70167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/25/2025]
Abstract
Dysregulation of m6A modification has emerged as a vital factor in the development of esophageal squamous cell carcinoma (ESCC). Here, we sought to explore the critical role of m6A methylation mediated by the m6A methyltransferase METTL3 in ESCC. Protein expression analysis was performed by immunohistochemistry and immunoblot assays. The mRNA levels of METTL3 and IFI27 were detected by quantitative PCR. Cell sphere formation potential, migration, invasiveness, apoptosis, proliferation and viability were assessed by standard sphere formation, wound healing, transwell, flow cytometry, EdU and CCK-8 assays, respectively. The impact of METTL3 or IGF2BP2 on IFI27 mRNA was evaluated by methylated RNA immunoprecipitation (MeRIP), RIP or mRNA stability analysis. Xenograft assays were used to detect the in vivo function of METTL3. Elevated levels of METTL3 were observed in ESCC tumors and cells, and these increased levels were associated with the declined prognosis of ESCC. MELLT3 depletion impeded ESCC cell growth, invasiveness, migration, and sphere formation, and induced cell apoptosis in vitro. Elevated IFI27 expression was positively correlated with METTL3 levels in ESCC. Moreover, METTL3 mediated m6A methylation of IFI27 mRNA to stabilize the mRNA. The m6A reader IGF2BP2 also affected m6A methylation and expression of IFI27 mRNA. Additionally, IFI27 re-expression had a counteracting impact on the effects of METTL3 deficiency on in vitro ESCC cell behaviors and in vivo KYSE30 xenograft growth. Our findings demonstrate that METTL3-mediated IFI27 mRNA m6A methylation drives ESCC development through an IGF2BP2-dependent mechanism. Blocking the METTL3/IFI27 axis may be effective for preventing ESCC.
Collapse
Affiliation(s)
- Xinhua Zhang
- Department of thoracic surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Yu Bai
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Linlin Shang
- Zhengzhou University People's Hospital, Medical School, Zhengzhou, Henan, China
| | - Yinghao Wang
- Henan University, Medical school, Kaifeng, Henan, China
| | - Wenjian Yao
- Department of thoracic surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Sen Wu
- Department of thoracic surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Shen J, Ding Y. Multifaceted roles of insulin‑like growth factor 2 mRNA binding protein 2 in human cancer (Review). Mol Med Rep 2025; 31:75. [PMID: 39886962 PMCID: PMC11795254 DOI: 10.3892/mmr.2025.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/07/2024] [Indexed: 02/01/2025] Open
Abstract
Insulin‑like growth factor 2 mRNA binding protein 2 (IGF2BP2) is an RNA binding protein that functions as an N6‑methyladenosine reader. It regulates various biological processes in human cancers by affecting the stability and expression of target RNA transcripts, including coding RNAs and non‑coding RNAs (ncRNAs). Numerous studies have shown that IGF2BP2 expression is aberrantly increased in various types of cancer and plays multifaceted roles in the development and progression of human cancers. In the present review, the clinical importance of IGF2BP2 is summarized and its involvement in the regulation of biological processes, including proliferation, metastasis, chemoresistance, metabolism, tumor immunity, stemness and cell death, in human cancers is discussed. The chemical compounds that have been developed as IGF2BP2 inhibitors are also detailed. As ncRNAs are now important potential therapeutic agents for cancer treatment, the microRNAs that have been reported to directly target and inhibit IGF2BP2 expression in cancers are also described. In summary, by reviewing the latest literature, the present study aimed to highlight the clinical importance and physiological functions of IGF2BP2 in human cancer, with a focus on the great potential of IGF2BP2 as a target for inhibitor development. The present review may inspire new ideas for future studies on IGF2BP2, which may serve as a specific therapeutic target in cancer.
Collapse
Affiliation(s)
- Jianan Shen
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Youxiang Ding
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
5
|
Chen W, Shan Y, Wang M, Liang R, Sa R. Chicoric acid exerts therapeutic effects in DSS-induced ulcerative colitis by targeting the USP9X/IGF2BP2 axis. Br J Pharmacol 2024. [PMID: 39435543 DOI: 10.1111/bph.17354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/25/2024] [Accepted: 08/23/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND AND PURPOSE Chicoric acid, a hydroxycinnamic acid, exhibits anti-inflammation activities. However, the specific mechanisms underlying the effects of chicoric acid on dextran sulfate sodium (DSS)-induced colitis remain unclear. Here, we aimed to elucidate the molecular mechanisms underlying the protective effects of chicoric acid in DSS-induced colitis. EXPERIMENTAL APPROACH Mice with DSS-induced colitis (UC mice) were treated for a week with chicoric acid. Symptoms of colitis, colonic pathology, inflammation-related indicators, and intestinal mucosal barrier function were evaluated. RNA sequencing was performed on colon tissues to obtain differentially expressed genes. The deubiquitinating enzyme USP9X was selected, and the inhibitory and targeting effects of chicoric acid on USP9X were subsequently determined. In vivo and in vitro, DSS-induced colitis was treated with USP9X inhibitors WP1130 and EOAI3402143. Ubiquitination label-free quantitative proteomic analysis was performed to identify protein peptides that may undergo de-ubiquitination by USP9X. Co-immunoprecipitation (Co-IP), immunohistochemistry and western blotting were used to validate in vivo and in vitro results. KEY RESULTS Chicoric acid significantly alleviated clinical activity and histological changes, inhibited pro-inflammatory cytokine production and improved integrity of the intestinal barrier in UC mice. Moreover, chicoric acid suppressed USP9X expression in colonic tissues from UC mice. Furthermore, USP9X contributed to promoting the onset of UC and that insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) was deubiquitinated by USP9X. CONCLUSION AND IMPLICATIONS Chicoric acid ameliorated DSS-induced colitis by targeting the USP9X/IGF2BP2 axis, indicating that targeting the USP9X/IGF2BP2 axis presents a promising and innovative therapeutic approach for the treatment of UC.
Collapse
Affiliation(s)
- Wei Chen
- Department of Gastroenterology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunan Shan
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Meng Wang
- Department of General Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rui Liang
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ri Sa
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Hua Y, Hua WJ, Feng CC, Zhu QW. N 6-methyladenosine modification of SLC38A7 promotes cell migration, invasion, oxidative phosphorylation, and mitochondrial function in gastric cancer. J Biol Chem 2024; 300:107843. [PMID: 39357829 PMCID: PMC11555334 DOI: 10.1016/j.jbc.2024.107843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/28/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024] Open
Abstract
Solute carrier (SLC) 38 family, responsible for trans-membrane transport of neutral amino acids, plays a role in the proliferation, invasion, and metastasis of cancer cells, but its role in gastric cancer (GC) progression remains unclear. This study aimed to explore the biological effects of SLC38A7 and its regulatory mechanisms in GC. RNA expression data, tumor tissue specimens, and GC cell lines were used for bioinformatics and experimental analyses. Cell Counting Kit-8 assay, wound healing assay, and Transwell invasion assay were used to evaluate cell viability, migration, and invasion, respectively. Oxidative phosphorylation, mitochondrial membrane potential, and expression of the critical proteins in the mitochondrial respiratory chain were assayed using extracellular flux analysis, flow cytometry, and Western blot, respectively. RNA immunoprecipitation assay was used to explore the mechanisms of N6-methyladenosine (m6A) methylation. SLC38A7 was upregulated in GC tissue and cell lines. SLC38A7 silencing suppressed cell viability, migration, invasion, oxidative phosphorylation, and mitochondrial function in cancer cells. SLC38A7 overexpression had the opposite biological effects. Interactions between SLC38A7 and methyltransferase like 3 (METTL3) or insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) were detected. SLC38A7 mRNA stability was maintained by METTL3-IGF2BP2 axis in an m6A-dependent manner. Our results suggest that SLC38A7, stabilized by METTL3 and IGF2BP2-mediated m6A methylation, enhances cell viability, migration, invasion, oxidative phosphorylation, and mitochondrial function in GC, highlighting its role as a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Yi Hua
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Wei-Jun Hua
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Cun-Cheng Feng
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Qiu-Wei Zhu
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China.
| |
Collapse
|
7
|
Cook SR, Hugen S, Hayward JJ, Famula TR, Belanger JM, McNiel E, Fieten H, Oberbauer AM, Leegwater PA, Ostrander EA, Mandigers PJ, Evans JM. Genomic analyses identify 15 susceptibility loci and reveal HDAC2, SOX2-OT, and IGF2BP2 in a naturally-occurring canine model of gastric cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.604426. [PMID: 39372775 PMCID: PMC11451740 DOI: 10.1101/2024.08.14.604426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Gastric cancer (GC) is the fifth most common human cancer worldwide, but the genetic etiology is largely unknown. We performed a Bayesian genome-wide association study and selection analyses in a naturally-occurring canine model of GC, the Belgian Tervuren and Sheepdog breeds, to elucidate underlying genetic risk factors. We identified 15 loci with over 90% predictive accuracy for the GC phenotype. Variant filtering revealed germline putative regulatory variants for the EPAS1 (HIF2A) and PTEN genes and a coding variant in CD101. Although closely related to Tervuren and Sheepdogs, Belgian Malinois rarely develop GC. Across-breed analyses uncovered protective haplotypes under selection in Malinois at SOX2-OT and IGF2BP2. Among Tervuren and Sheepdogs, HDAC2 putative regulatory variants were present at comparatively high frequency and were associated with GC. Here, we describe a complex genetic architecture governing GC in a dog model, including genes such as PDZRN3, that have not been associated with human GC.
Collapse
Affiliation(s)
- Shawna R. Cook
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Sanne Hugen
- Expertisecentre of Genetics, Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jessica J. Hayward
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Thomas R. Famula
- Department of Animal Science, University of California, Davis, CA, USA
| | | | - Elizabeth McNiel
- Cummings School of Veterinary Medicine, Tufts University, Grafton, Massachusetts, USA
| | - Hille Fieten
- Expertisecentre of Genetics, Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | - Peter A.J. Leegwater
- Expertisecentre of Genetics, Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Elaine A. Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Paul J.J. Mandigers
- Expertisecentre of Genetics, Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jacquelyn M. Evans
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
8
|
Zhang L, Xia J. N6-Methyladenosine Methylation of mRNA in Cell Apoptosis. Mol Neurobiol 2024; 61:3934-3948. [PMID: 38040996 DOI: 10.1007/s12035-023-03813-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 11/16/2023] [Indexed: 12/03/2023]
Abstract
Apoptosis, a highly controlled homeostatic mechanism that eliminates single cells without destroying tissue function, occurs during growing development and senescence. N6-methyladenosine (m6A), as the most common internal modification of eukaryotic mRNA, fine-tunes gene expression by regulating many aspects of mRNA metabolism, such as splicing, nucleation, stability, translation, and degradation. Remarkably, recent reports have indicated that aberrant methylation of m6A-related RNA may directly or indirectly influence the expression of apoptosis-related genes, thus regulating the process of cell apoptosis. In this review, we summarized the relationship between m6A modification and cell apoptosis, especially its role in the nervous system, and analyzed the limitations of the current research.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
9
|
Hu C, Fu X, Li S, Chen C, Zhao X, Peng J. Chidamide inhibits cell glycolysis in acute myeloid leukemia by decreasing N6-methyladenosine-related GNAS-AS1. Daru 2024; 32:11-24. [PMID: 37926762 PMCID: PMC11087453 DOI: 10.1007/s40199-023-00482-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/10/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a hematopoietic malignancy. Chidamide has shown anti-cancer effect in different malignancies. The function of Chidamide in glycolysis in AML cells remains unclear. METHODS AML cells were treated with 1000 nM Chidamide for 48 h. The levels of long non-coding RNA-GNAS-AS1, miR-34a-5p, glycolysis-related proteins, and Ras homolog gene family (RhoA)/Rho-associated protein kinase (ROCK) signaling-related proteins were detected by qRT-PCR or western blot. Cell viability and apoptosis were measured by CCK-8 and flow cytometry. Glycolysis levels were measured by assay kits. GNAS-AS1 N6-methyladenosine (m6A) modification level was detected by methylated RNA immunoprecipitation sequencing. The combined targets of miR-34a-5p were validated using a dual-luciferase reporter assay. BALB/C nude mice were selected for subcutaneous tumor validation. Chidamide at a dosage of 25 mg/kg was used in the animal study. RESULTS GNAS-AS1 promoted glycolysis in AML cells by upregulating the expression of glycolysis-related proteins and increasing glucose consumption, lactate production, ATP generation, and the extracellular acidification rate. Chidamide treatment suppressed WT1-associated protein (WTAP)-mediated RNA m6A modification of GNAS-AS1. Chidamide downregulated GNAS-AS1 to inhibit glycolysis in AML cells. GNAS-AS1 targeted miR-34a-5p to promote insulin-like growth factor 2 mRNA-binding protein (IGF2BP2) expression. IGF2BP2 inhibition reversed the promoting effect of miR-34a-5p knockdown on glycolysis and RhoA/ROCK pathway in Chidamide-treated cells. GNAS-AS1 overexpression abolished the inhibitory effect of Chidamide on AML tumorigenesis in vivo by modulating the RhoA/ROCK pathway. CONCLUSION Chidamide inhibited glycolysis in AML by repressing WTAP-mediated GNAS-AS1 m6A modification and then regulating the miR-34a-5p/IGF2BP2 axis.
Collapse
Affiliation(s)
- Changmei Hu
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, 139 Mid RenMin Road, Changsha, 410011, Hunan, People's Republic of China
| | - Xiao Fu
- Department of Hematology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Shujun Li
- Department of Hematology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Cong Chen
- Department of Hematology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Xielan Zhao
- Department of Hematology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Jie Peng
- Department of Hematology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
10
|
Zhao R, Li T, Zhao X, Yang Z, Ma L, Wang X. The m6A reader IGF2BP2 promotes the progression of esophageal squamous cell carcinoma cells by increasing the stability of OCT4 mRNA. Biochem Cell Biol 2024; 102:169-178. [PMID: 37917979 DOI: 10.1139/bcb-2023-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common malignancy with high morbidity and mortality. Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) serves as a reader of RNA m6A (N6 methyladenosine) modification to regulate gene expression at the post-transcriptional level. Emerging evidence suggests that IGF2BP2 plays critical roles in tumorigenesis and malignant development. However, the biological function and molecular mechanism of IGF2BP2 in ESCC are not well understood. Here, we found that IGF2BP2 expression was upregulated in esophageal cancer tissues and ESCC cells, and IGF2BP2 overexpression enhanced proliferation, migration, invasion, and stem cell-like properties of ESCC cells. Conversely, the knockdown of IGF2BP2 expression inhibited malignant phenotype of ESCC cells. Mechanistically, IGF2BP2 upregulated octomer-binding transcription factor 4 (OCT4) mRNA expression, and RNA immunoprecipitation (RIP) assay proved that IGF2BP2 could interact with OCT4 mRNA. Moreover, OCT4 was modified at m6A confirmed by methylated m6A RNA immunoprecipitation (Me-RIP)-qPCR assay, and IGF2BP2 knockdown reduced OCT4 mRNA stability. These results suggested that IGF2BP2 served as a reader for m6A-modified OCT4, thus increased OCT4 mRNA expression by regulating its stability. Furthermore, the knockdown of OCT4 could reverse the effects of IGF2BP2 on ESCC cells. In conclusion, these data indicate that IGF2BP2, as a reader for m6A, plays an oncogenic role by regulating OCT4 expression in ESCC, which provides new insights into targeting IGF2BP2/OCT4 axis for the therapy of ESCC.
Collapse
Affiliation(s)
- Rong Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Ting Li
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Xinran Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Ziyi Yang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Liying Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaoxia Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| |
Collapse
|
11
|
Cai Y, Wang Y, Mao B, You Q, Guo X. Targeting insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs) for the treatment of cancer. Eur J Med Chem 2024; 268:116241. [PMID: 38382391 DOI: 10.1016/j.ejmech.2024.116241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Insulin-like growth factor 2 mRNA-binding proteins (IMPs, IGF2BPs) are RNA-binding proteins that regulate a variety of biological processes. In recent years, several studies have found that IGF2BPs play multiple roles in various biological processes, especially in cancer, and speculated on their mechanism of anticancer effect. In addition, targeting IGF2BPs or their downstream target gene has also received extensive attention as an effective treatment for different types of cancer. In this review, we summarized the recent progress on the role of IGF2BPs in cancers and their structural characteristics. We focused on describing the development of inhibitors targeting IGF2BPs and the prospects for further applications.
Collapse
Affiliation(s)
- Yuanqian Cai
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug, Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yingzhe Wang
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug, Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Bingjie Mao
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug, Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug, Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiaoke Guo
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug, Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
12
|
Wang J, Zhao G, Zhao Y, Zhao Z, Yang S, Zhou A, Li P, Zhang S. N 6-methylation in the development, diagnosis, and treatment of gastric cancer. J Transl Int Med 2024; 12:5-21. [PMID: 38525439 PMCID: PMC10956730 DOI: 10.2478/jtim-2023-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Gastric cancer (GC) ranks third among cancers in terms of mortality rate worldwide. A clear understanding of the mechanisms underlying the genesis and progression of GC will contribute to clinical decision making. N6-methyladenosine (m6A) is the most abundant among diverse mRNA modification types and regulates multiple facets of RNA metabolism. In recent years, emerging studies have shown that m6A modifications are involved in gastric carcinoma tumorigenesis and progression and can potentially be valuable new prospects for diagnosis and prognosis. This article reviews the recent progress regarding m6A in GC.
Collapse
Affiliation(s)
- Jiaxin Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Guiping Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yan Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zheng Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Shuyue Yang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Anni Zhou
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| |
Collapse
|
13
|
Wei H, Xu Y, Lin L, Li Y, Zhu X. A review on the role of RNA methylation in aging-related diseases. Int J Biol Macromol 2024; 254:127769. [PMID: 38287578 DOI: 10.1016/j.ijbiomac.2023.127769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
Senescence is the underlying mechanism of organism aging and is robustly regulated at the post-transcriptional level. This regulation involves the chemical modifications, of which the RNA methylation is the most common. Recently, a rapidly growing number of studies have demonstrated that methylation is relevant to aging and aging-associated diseases. Owing to the rapid development of detection methods, the understanding on RNA methylation has gone deeper. In this review, we summarize the current understanding on the influence of RNA modification on cellular senescence, with a focus on mRNA methylation in aging-related diseases, and discuss the emerging potential of RNA modification in diagnosis and therapy.
Collapse
Affiliation(s)
- Hong Wei
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Department of Neurology, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Central Laboratory of the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Yuhao Xu
- Medical School, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Li Lin
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Central Laboratory of the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Yuefeng Li
- Medical School, Jiangsu University, Zhenjiang, Jiangsu 212001, China.
| | - Xiaolan Zhu
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Central Laboratory of the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China.
| |
Collapse
|
14
|
Huang N, He HW, He YY, Gu W, Xu MJ, Liu L. Xiaotan Sanjie recipe, a compound Chinese herbal medicine, inhibits gastric cancer metastasis by regulating GnT-V-mediated E-cadherin glycosylation. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:561-574. [PMID: 37980180 DOI: 10.1016/j.joim.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/02/2023] [Indexed: 11/20/2023]
Abstract
OBJECTIVE Xiaotan Sanjie recipe (XTSJ), a Chinese herbal compound medicine, exerts a significant inhibitory effect on gastric cancer (GC) metastasis. This work investigated the mechanism underlying the XTSJ-mediated inhibition of GC metastasis. METHODS The effect of XTSJ on GC metastasis and the associated mechanism were investigated in vitro, using GC cell lines, and in vivo, using a GC mouse model, by focusing on the expression of Glc-N-Ac-transferase V (GnT-V; encoded by MGAT5). RESULTS The migration and invasion ability of GC cells decreased significantly after XTSJ administration, which confirmed the efficacy of XTSJ in treating GC in vitro. XTSJ increased the accumulation of E-cadherin at junctions between GC cells, which was reversed by MGAT5 overexpression. XTSJ administration and MGAT5 knockdown alleviated the structural abnormality of the cell-cell junctions, while MGAT5 overexpression had the opposite effect. MGAT5 knockdown and XTSJ treatment also significantly increased the accumulation of proteins associated with the E-cadherin-mediated adherens junction complex. Furthermore, the expression of MGAT5 was significantly lower in the lungs of BGC-823-MGAT5 + XTSJ mice than in those of BGC-823-MGAT5 + solvent mice, indicating that the ability of gastric tumors to metastasize to the lung was decreased in vivo following XTSJ treatment. CONCLUSION XTSJ prevented GC metastasis by inhibiting the GnT-V-mediated E-cadherin glycosylation and promoting the E-cadherin accumulation at cell-cell junctions. Please cite this article as: Huang N, He HW, He YY, Gu W, Xu MJ, Liu L. Xiaotan Sanjie recipe, a compound Chinese herbal medicine, inhibits gastric cancer metastasis by regulating GnT-V-mediated E-cadherin glycosylation. J Integr Med. 2023; 21(6): 561-574.
Collapse
Affiliation(s)
- Nian Huang
- Department of Integrative Medicine, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200433, China
| | - Hai-Wei He
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yu-Yu He
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Wei Gu
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Ming-Juan Xu
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Long Liu
- Department of Traditional Chinese Medicine, Tianyou Hospital, Tongji University, Shanghai 200333, China.
| |
Collapse
|
15
|
Ji ZH, Gao F, Xie WY, Wu HY, Ren WZ, Yuan B. Mammary Epithelial Cell-Derived Exosomal miR-221-3p Regulates Macrophage Polarization by Targeting Igf2 bp2 during Mastitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14742-14757. [PMID: 37757458 DOI: 10.1021/acs.jafc.3c03350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Mastitis affects the milk quality and yield and is the most expensive disease in dairy cows. Elucidation of the pathogenesis of mastitis is of great importance for disease control. As a medium of intercellular communication, exosomes play key roles in various inflammatory diseases by regulating macrophage polarization. However, the molecular factors in exosomes that mediate the intercellular communication between mammary epithelial cells and macrophages during mastitis remain to be further explored. In this study, we isolated and identified mammary epithelial cell-derived exosomes from a lipopolysaccharide (LPS)/lipoteichoic acid (LTA)-induced mastitis cell model, and we demonstrated that exosomes from LPS/LTA-stimulated mammary epithelial cells promote M1-type macrophage polarization in vivo and in vitro. Based on the results of high-throughput sequencing, we constructed a differential miRNA (microRNA) expression profile of exosomes and demonstrated that miR-221-3p was highly expressed. Furthermore, in vivo and in vitro experiments, combined with coculture experiments and fluorescence tracing, showed that high miR-221-3p expression promoted M1-type macrophage polarization, demonstrating the transcellular role of miR-221-3p. Mechanistically, dual luciferase reporter gene assays and rescue assays showed that miR-221-3p regulated macrophage polarization by targeting Igf2bp2. The results of this study will deepen our understanding of the pathogenesis of mastitis, and the molecular regulatory axis that was established in this study is expected to be a target for mastitis treatment.
Collapse
Affiliation(s)
- Zhong-Hao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
- Department of Basic Medicine, Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Fei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
| | - Wen-Yin Xie
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
| | - Hong-Yu Wu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
- Jilin Academy of Agricultural Sciences, Jilin 132101, China
| | - Wen-Zhi Ren
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
| |
Collapse
|
16
|
Ding SQ, Zhang XP, Pei JP, Bai X, Ma JJ, Zhang CD, Dai DQ. Role of N6-methyladenosine RNA modification in gastric cancer. Cell Death Discov 2023; 9:241. [PMID: 37443100 DOI: 10.1038/s41420-023-01485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
N6-methyladenosine (m6A) RNA methylation is the most prevalent internal modification of mammalian messenger RNA. The m6A modification affects multiple aspects of RNA metabolism, including processing, splicing, export, stability, and translation through the reversible regulation of methyltransferases (Writers), demethylases (Erasers), and recognition binding proteins (Readers). Accumulating evidence indicates that altered m6A levels are associated with a variety of human cancers. Recently, dysregulation of m6A methylation was shown to be involved in the occurrence and development of gastric cancer (GC) through various pathways. Thus, elucidating the relationship between m6A and the pathogenesis of GC has important clinical implications for the diagnosis, treatment, and prognosis of GC patients. In this review, we evaluate the potential role and clinical significance of m6A-related proteins which function in GC in an m6A-dependent manner. We discuss current issues regarding m6A-targeted inhibition of GC, explore new methods for GC diagnosis and prognosis, consider new targets for GC treatment, and provide a reasonable outlook for the future of GC research.
Collapse
Affiliation(s)
- Si-Qi Ding
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, 110032, Shenyang, China
| | - Xue-Ping Zhang
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, 110032, Shenyang, China
| | - Jun-Peng Pei
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, 110032, Shenyang, China
| | - Xiao Bai
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, 110032, Shenyang, China
| | - Jin-Jie Ma
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, 110032, Shenyang, China
| | - Chun-Dong Zhang
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, 110032, Shenyang, China
| | - Dong-Qiu Dai
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, 110032, Shenyang, China.
- Cancer Center, The Fourth Affiliated Hospital of China Medical University, 110032, Shenyang, China.
| |
Collapse
|
17
|
Liu P, Ju M, Zheng X, Jiang Y, Yu X, Pan B, Luo R, Jia W, Zheng M. Methyltransferase-like 3 promotes cervical cancer metastasis by enhancing cathepsin L mRNA stability in an N6-methyladenosine-dependent manner. Cancer Sci 2023; 114:837-854. [PMID: 36382580 PMCID: PMC9986091 DOI: 10.1111/cas.15658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/30/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
N6-methyladenosine (m6A) is a highly abundant RNA modification in eukaryotic cells. Methyltransferase-like 3 (METTL3), a major protein in the m6A methyltransferase complex, plays important roles in many malignancies, but its role in cervical cancer metastasis remains uncertain. Here, we found that METTL3 was significantly upregulated in cervical cancer tissue, and its upregulation was associated with a poor prognosis in cervical cancer patients. Knockdown of METTL3 significantly reduced cervical cancer cell migration and invasion. Conversely, METTL3 overexpression markedly promoted cervical cancer cell metastasis in vitro and in vivo. Furthermore, METTL3 mediated the m6A modification of cathepsin L (CTSL) mRNA at the 5'-UTR, and the m6A reader protein insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) bound to the m6A sites and enhanced CTSL mRNA stability. Our results indicated that METTL3 enhanced CTSL mRNA stability through an m6A-IGF2BP2-dependent mechanism, thereby promoting cervical cancer cell metastasis. These findings provide insights into a novel m6A modification pattern involved in cervical cancer development.
Collapse
Affiliation(s)
- Pingping Liu
- Department of GynecologySun Yat‐Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Mingxiu Ju
- Department of GynecologySun Yat‐Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Xiaojing Zheng
- Department of GynecologySun Yat‐Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Yinan Jiang
- Department of GynecologySun Yat‐Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Xingjuan Yu
- Department of Hepatobiliary OncologyCollaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Baoyue Pan
- Department of GynecologySun Yat‐Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Rongzhen Luo
- Department of PathologySun Yat‐Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Weihua Jia
- Biobank of Sun Yat‐Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Min Zheng
- Department of GynecologySun Yat‐Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhouChina
| |
Collapse
|
18
|
Barcelo J, Samain R, Sanz-Moreno V. Preclinical to clinical utility of ROCK inhibitors in cancer. Trends Cancer 2023; 9:250-263. [PMID: 36599733 DOI: 10.1016/j.trecan.2022.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 01/03/2023]
Abstract
ROCK belongs to the AGC family of Ser/Thr protein kinases that are involved in many cellular processes. ROCK-driven actomyosin contractility regulates cytoskeletal dynamics underpinning cell migration, proliferation, and survival in many cancer types. ROCK1/2 play key protumorigenic roles in several subtypes and stages of cancer development. Therefore, successfully targeting ROCK and its downstream effectors presents an interesting avenue for cancer treatment. Because local use of ROCK inhibitors will reduce the side effects of systemic administration, we propose different therapeutic strategies and latest-generation ROCK inhibitors for use in the clinic.
Collapse
Affiliation(s)
- Jaume Barcelo
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Remi Samain
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | | |
Collapse
|
19
|
Verghese M, Wilkinson E, He YY. Recent Advances in RNA m 6A Modification in Solid Tumors and Tumor Immunity. Cancer Treat Res 2023; 190:95-142. [PMID: 38113000 DOI: 10.1007/978-3-031-45654-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
An analogous field to epigenetics is referred to as epitranscriptomics, which focuses on the study of post-transcriptional chemical modifications in RNA. RNA molecules, including mRNA, tRNA, rRNA, and other non-coding RNA molecules, can be edited with numerous modifications. The most prevalent modification in eukaryotic mRNA is N6-methyladenosine (m6A), which is a reversible modification found in over 7000 human genes. Recent technological advances have accelerated the characterization of these modifications, and they have been shown to play important roles in many biological processes, including pathogenic processes such as cancer. In this chapter, we discuss the role of m6A mRNA modification in cancer with a focus on solid tumor biology and immunity. m6A RNA methylation and its regulatory proteins can play context-dependent roles in solid tumor development and progression by modulating RNA metabolism to drive oncogenic or tumor-suppressive cellular pathways. m6A RNA methylation also plays dynamic roles within both immune cells and tumor cells to mediate the anti-tumor immune response. Finally, an emerging area of research within epitranscriptomics studies the role of m6A RNA methylation in promoting sensitivity or resistance to cancer therapies, including chemotherapy, targeted therapy, and immunotherapy. Overall, our understanding of m6A RNA methylation in solid tumors has advanced significantly, and continued research is needed both to fill gaps in knowledge and to identify potential areas of focus for therapeutic development.
Collapse
Affiliation(s)
- Michelle Verghese
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA
- Pritzker School of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Emma Wilkinson
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
20
|
Investigating the Anticancer Activity of G-Rh1 Using In Silico and In Vitro Studies (A549 Lung Cancer Cells). MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238311. [PMID: 36500403 PMCID: PMC9890317 DOI: 10.3390/molecules27238311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022]
Abstract
Ginsenoside Rh1 (G-Rh1), a possible bioactive substance isolated from the Korean Panax ginseng Meyer, has a wide range of pharmacological effects. In this study, we have investigated the anticancer efficacy of G-Rh1 via in silico and in vitro methodologies. This study mainly focuses on the two metastatic regulators, Rho-associated protein kinase 1 (ROCK1) and RhoA, along with other standard apoptosis regulators. The ROCK1 protein is a member of the active serine/threonine kinase family that is crucial for many biological processes, including cell division, differentiation, and death, as well as many cellular processes and muscle contraction. The abnormal activation of ROCK1 kinase causes several disorders, whereas numerous studies have also shown that RhoA is expressed highly in various cancers, including colon, lung, ovarian, gastric, and liver malignancies. Hence, inhibiting both ROCK1 and RhoA will be promising in preventing metastasis. Therefore, the molecular level interaction of G-Rh1 with the ROCK1 and RhoA active site residues from the preliminary screening clearly shows its inhibitory potential. Molecular dynamics simulation and principal component analysis give essential insights for comprehending the conformational changes that result from G-Rh1 binding to ROCK1 and RhoA. Further, MTT assay was employed to examine the potential cytotoxicity in vitro against human lung cancer cells (A549) and Raw 264.7 Murine macrophage cells. Thus, G-Rh1 showed significant cytotoxicity against human lung adenocarcinoma (A549) at 100 µg/mL. In addition, we observed an elevated level of reactive oxygen species (ROS) generation, perhaps promoting cancer cell toxicity. Additionally, G-Rh1 suppressed the mRNA expression of RhoA, ROCK1, MMP1, and MMP9 in cancer cell. Accordingly, G-Rh1 upregulated the p53, Bax, Caspase 3, caspase 9 while Bcl2 is downregulated intrinsic pathway. The findings from our study propose that the anticancer activity of G-Rh1 may be related to the induction of apoptosis by the RhoA/ROCK1 signaling pathway. As a result, this study evaluated the functional drug-like compound G-Rh1 from Panax ginseng in preventing and treating lung cancer adenocarcinoma via regulating metastasis and apoptosis.
Collapse
|
21
|
RNA Modifications in Gastrointestinal Cancer: Current Status and Future Perspectives. Biomedicines 2022; 10:biomedicines10081918. [PMID: 36009465 PMCID: PMC9405978 DOI: 10.3390/biomedicines10081918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 01/05/2023] Open
Abstract
Gastrointestinal (GI) cancer, referring to cancers of the digestive system such as colorectal cancer (CRC), gastric cancer (GC), and liver cancer, is a major cause of cancer-related deaths in the world. A series of genetic, epigenetic, and epitranscriptomic changes occur during the development of GI cancer. The identification of these molecular events provides potential diagnostic, prognostic, and therapeutic targets for cancer patients. RNA modification is required in the posttranscriptional regulation of RNA metabolism, including splicing, intracellular transport, degradation, and translation. RNA modifications such as N6-methyladenosine (m6A) and N1-methyladenosine (m1A) are dynamically regulated by three different types of regulators named methyltransferases (writers), RNA binding proteins (readers), and demethylases (erasers). Recent studies have pointed out that abnormal RNA modification contributes to GI tumorigenesis and progression. In this review, we summarize the latest findings on the functional significance of RNA modification in GI cancer and discuss the therapeutic potential of epitranscriptomic inhibitors for cancer treatment.
Collapse
|
22
|
Cao F, Hu J, Yuan H, Cao P, Cheng Y, Wang Y. Identification of pyroptosis-related subtypes, development of a prognostic model, and characterization of tumour microenvironment infiltration in gastric cancer. Front Genet 2022; 13:963565. [PMID: 35923703 PMCID: PMC9340157 DOI: 10.3389/fgene.2022.963565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
As a new programmed death mode, pyroptosis plays an indispensable role in gastric cancer (GC) and has strong immunotherapy potential, but the specific pathogenic mechanism and antitumor function remain unclear. We comprehensively analysed the overall changes of pyroptosis-related genes (PRGs) at the genomic and epigenetic levels in 886 GC patients. We identified two molecular subtypes by consensus unsupervised clustering analysis. Then, we calculated the risk score and constructed the risk model for predicting prognostic and selected nine PRGs related genes (IL18RAP, CTLA4, SLC2A3, IL1A, KRT7,PEG10, IGFBP2, GPA33, and DES) through LASSO and COX regression analyses in the training cohorts and were verified in the test cohorts. Consequently, a highly accurate nomogram for improving the clinical applicability of the risk score was constructed. Besides, we found that multi-layer PRGs alterations were correlated with patient clinicopathological features, prognosis, immune infiltration and TME characteristics. The low risk group mainly characterized by increased microsatellite hyperinstability, tumour mutational burden and immune infiltration. The group had lower stromal cell content, higher immune cell content and lower tumour purity. Moreover, risk score was positively correlated with T regulatory cells, M1 and M2 macrophages. In addition, the risk score was significantly associated with the cancer stem cell index and chemotherapeutic drug sensitivity. This study revealed the genomic, transcriptional and TME multiomics features of PRGs and deeply explored the potential role of pyroptosis in the TME, clinicopathological features and prognosis in GC. This study provides a new immune strategy and prediction model for clinical treatment and prognosis evaluation.
Collapse
Affiliation(s)
- Feng Cao
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, China
| | - Jingtao Hu
- Aviation Hygiene Branch, China Eastern Airlines Co,.Ltd, Anhui Branch, Hefei, China
| | - Hongtao Yuan
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, China
| | - Pengwei Cao
- Hepatopancreatobiliary Surgery, Department of General Surgery, The First Hospital of Anhui Medical University, Hefei, China
| | - Yunsheng Cheng
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Yunsheng Cheng, ; Yong Wang,
| | - Yong Wang
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Yunsheng Cheng, ; Yong Wang,
| |
Collapse
|
23
|
Abstract
The relationship between epitranscriptomics and malignant tumours has become a popular research topic in recent years. N6-methyladenosine (m6A), the most common post-transcriptional modification in mammals, is involved in various physiological processes in different cancer types, including gastric cancer (GC). The incidence and mortality of GC have been increasing annually, especially in developing countries. Insights into the epitranscriptomic mechanisms of gastric carcinogenesis could provide potential strategies for the prevention, diagnosis, and treatment of GC. In this review, we describe the mechanisms of RNA m6A modification; the functions of m6A regulators in GC; the functional crosstalk among m6A, messenger RNA, and noncoding RNA; and the promising application of m6A in the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Yitian Xu
- Department of Gastrointestinal Surgery, Shanghai General Hospital Affiliated to Shanghai Jiaotong University, Shanghai, PR China
| | - Chen Huang
- Department of Gastrointestinal Surgery, Shanghai General Hospital Affiliated to Shanghai Jiaotong University, Shanghai, PR China
| |
Collapse
|