1
|
He K, Li Z, Yan H, Shi L, Yang H, Liu Q, Song K, Hu Y, Wang B, Yang S, Zhao L. Cold temperature delays ovarian development of largemouth bass by inhibiting sex hormone release, angiogenesis, apoptosis and autophagy during out-of-season reproduction. Comp Biochem Physiol A Mol Integr Physiol 2025; 301:111795. [PMID: 39709163 DOI: 10.1016/j.cbpa.2024.111795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Cold temperature is an effective method of achieving out-of-season reproduction and obtaining fry in the autumn. This study investigated the effects of low-temperature (12-16 °C) environment on the out-of-season reproduction of largemouth bass, particularly the delayed effects on ovarian development. During the period of delayed out-of-season reproduction, there was a significant reduction in the levels of serum sex hormones (FSH and LH) and their respective receptors (FSHR and LHCGR). Exposure to cold temperature significantly reduced the expression of gonadal development genes (IGF-1, GDF9, and CDC2) (P<0.05) and diminished the vascular network on the ovarian membrane, as confirmed by angiogenesis-related analyses. In lipid metabolism, AMH mRNA levels decreased overall, while HSD3B, FABP1, APOA1, and APOC2 initially increased before declining. Serum VTG levels decreased gradually with a slight increase post-spawning. These findings suggested that cold temperature delay ovarian development in largemouth bass by impacting sex hormone synthesis, angiogenesis, and lipid deposition. This insight enhances our understanding of out-of-season reproduction and guides the development of more effective reproductive techniques.
Collapse
Affiliation(s)
- Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhihong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Haoxiao Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Longlong Shi
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hangyu Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Kaige Song
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Yifan Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bo Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
2
|
Kuang G, Zhao Y, Wang L, Wen T, Liu P, Ma B, Peng Q, Xu F, Ye L, Fan J. Astragaloside IV Alleviates Acute Hepatic Injury by Regulating Macrophage Polarization and Pyroptosis via Activation of the AMPK/SIRT1 Signaling Pathway. Phytother Res 2025; 39:733-746. [PMID: 39660635 DOI: 10.1002/ptr.8403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/17/2024] [Accepted: 11/09/2024] [Indexed: 12/12/2024]
Abstract
Acute hepatic injury (AHI) is associated with poor prognosis in sepsis patient; however, to date, no specific therapeutic approach has been established for this disease. Therefore, we aimed to explore the effects and action mechanisms of Astragaloside IV (AS) on AHI. C57BL/6 mice, RAW264.7 cells, and bone marrow-derived macrophages were used in this study. Sepsis-associated AHI model mice were established using lipopolysaccharide + D-galactosamine. Pathological examination of liver tissues and serum alanine aminotransferase/aspartate aminotransferase was performed to evaluate the liver function. Moreover, inflammatory cytokine levels, proportion of M1/M2 macrophages and their marker levels, and cell pyroptosis-related indicator levels were determined in the liver of the AHI model mice with or without AS treatment. AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) expression was determined after AS treatment. Additionally, inflammatory cytokine levels, liver injury, and macrophage polarization were evaluated after inhibiting the AMPK/SIRT1 pathway. AS alleviated lipopolysaccharide + D-galactosamine-induced AHI and inhibited inflammatory reactions in the blood and liver of mice. AS also promoted the M1-to-M2 phenotypic transformation of macrophages in the liver of AHI model mice and in vitro, thereby decreasing the pro-inflammatory cytokine levels and increasing the anti-inflammatory cytokine levels. AS increased AMPK and SIRT1 levels in the liver and macrophages. Furthermore, AS improved liver injury by elevating the expression of the AMPK/SIRT1 signaling pathway and inhibiting pyroptosis in macrophages. Overall, AS alleviated AHI by promoting M1-to-M2 macrophage transformation and inhibiting macrophage pyroptosis via activation of the AMPK/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Gang Kuang
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
- Department of Critical Care Medicine, Affiliated Dazu's Hospital of Chongqing Medical University, Chongqing, China
| | - Yisi Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
| | - Liuyang Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingyu Wen
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Panting Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
| | - Bei Ma
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
- Department of Critical Care Medicine, People's Hospital of Chongqing Liangjiang New Area, Chongqing, China
| | - Qiaozhi Peng
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
| | - Fang Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Ye
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Fan
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Kundu S, Kumar Das B, Das Gupta S. Hormonal symphony: The dynamic duo of IGF and EGF in gonadotropin-induced fish ovarian development and egg maturation. Anim Reprod Sci 2025; 273:107663. [PMID: 39674119 DOI: 10.1016/j.anireprosci.2024.107663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
Fish oocyte maturation (FOM) is a critical biological process that occurs before ovulation and is influenced by gonadotropins, particularly luteinizing hormone (LH). The release of LH stimulates the ovarian follicle to produce a maturation-inducing hormone (MIH), specifically 17α, 20β-dihydroxy-4-pregnen-3-one (17α, 20β-DP), which initiates the formation of maturation-promoting factor (MPF) through the activation of cyclin B and cdc2 kinase. Insulin-like growth factor I (IGF-I) significantly regulates ovarian functions, including steroidogenesis, by activating its membrane receptors and the tyrosine kinase pathway. IGF-I influences oocyte maturation directly via the PI3 kinase pathway, independent of steroid hormones. Additionally, epidermal growth factor (EGF) promotes cell growth and differentiation by binding to its receptor (EGFR). It is implicated in mediating human chorionic gonadotropin (hCG)-induced DNA synthesis in ovarian follicles while suppressing apoptosis. The presence of EGF in follicle cells and oocytes, along with its higher expression in oocytes, suggests it may act as a paracrine signal regulating somatic cell activity. Recent studies indicate that the activin system in follicle cells could be a target for EGF activity. The EGFR signaling pathway enhances gonadotropin-induced steroidogenesis and governs the transition of oocyte maturation stages, essential for successful fertilization. This review synthesizes current research on the roles of gonadotropins, IGFs, and EGFs in fish oocyte maturation and ovarian steroid production.
Collapse
Affiliation(s)
- Sourav Kundu
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal 700 120, India
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal 700 120, India.
| | - Subhadeep Das Gupta
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal 700 120, India
| |
Collapse
|
4
|
Yao ZL, Wang X, Hu CL, Chen FX, Chen HJ, Jiang SJ, Zhao Y, Ji XS. A single-nucleus transcriptomic atlas characterizes cell types and their molecular features in the ovary of adult Nile tilapia. JOURNAL OF FISH BIOLOGY 2024; 105:1800-1810. [PMID: 39235098 DOI: 10.1111/jfb.15911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
In fish species, there is limited analysis of signature transcriptome profiles at the single-cell level in gonadal cells. Here, the molecular signatures of distinct ovarian cell categories in adult Nile tilapia (Oreochromis niloticus) were analysed using single-nucleus RNA sequencing (snRNA-seq). We identified four cell types (oogonia, oocytes, granulosa cell, and thecal cell) based on their specifically expressed genes and biological functions. Similarly, we found some key pathways involved in ovarian development that may affect germline-somatic interactions. A cell-to-cell communication network between the distinct cell types was constructed. We found that the bidirectional communication is mandatory for the development of germ cells and somatic cells in fish ovaries, and the granulosa cells and thecal cells play a central regulating role in the cell network in fish ovary. Additionally, we identified some novel candidate marker genes for various types of ovarian cells and also validated them using in situ hybridization. Our work reveals an ovarian atlas at the cellular and molecular levels and contributes to providing insights into oogenesis and gonad development in fish.
Collapse
Affiliation(s)
- Zhi Lei Yao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Xiao Wang
- Library, Shandong Agricultural University, Tai'an, China
| | - Chun Lei Hu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Fu Xiao Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Hong Ju Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Shi-Jin Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Yan Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Xiang Shan Ji
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
5
|
Zhao R, Ran L, Yao H, He Y, Lu X, Zhu W, Zhang Y, Zhang T, Shi S, Luo Z, Zhang C. Moxibustion ameliorates ovarian function in premature ovarian insufficiency rats by activating cAMP/PKA/CREB to promote steroidogenesis in ovarian granulosa cells. J Steroid Biochem Mol Biol 2024; 242:106547. [PMID: 38754522 DOI: 10.1016/j.jsbmb.2024.106547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/05/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
Premature ovarian insufficiency (POI) presents a substantial challenge to women's physiological and psychological well-being. Hormone replacement therapy, as the preferred therapeutic approach, involves solely exogenous supplementation of estrogen. Moxibustion, a traditional Chinese external treatment, has been investigated in our previous studies. It not only improves hormone levels and clinical symptoms in POI patients but also safeguards ovarian reserve. This study aims to explore the regulatory mechanisms by which moxibustion modulates hormone levels and restores ovarian function in POI. A POI rat model was established using cyclophosphamide, and moxibustion treatment was applied at acupoints "CV4" and "SP6" for a total of four courses. Subsequently, ovaries from each group were subjected to transcriptome sequencing (Bulk RNA-seq). Target pathways and key genes were selected through enrichment analysis and GSVA scoring, with validation using various techniques including electron microscopy, ELISA, Western blot, and immunohistochemistry. The results demonstrated that moxibustion restored the estrous cycle in POI rats, improved sex hormone levels, reduced the number of atretic follicles, and increased the count of dominant follicles (P<0.05). Bulk RNA-seq analysis revealed that moxibustion downregulated pathways associated with ovarian dysfunction, infertility, and immune responses, upregulated pathways related to follicular development and ovarian steroidogenesis. Furthermore, our data confirmed that moxibustion significantly increased the number of ovarian granulosa cells (GCs) and upregulated the expression of proteins related to steroidogenesis in GCs, including FSHR, P450 arom, cAMP, PKA, and CREB (P<0.05), with no significant effect observed on proteins related to steroidogenesis in theca cells. These outcomes aligned with the RNA-seq results. In conclusion, these findings propose that moxibustion enhances steroidogenesis in GCs through the activation of the cAMP/PKA/CREB pathway, consequently improving impaired ovarian function in POI rats. This study provides robust evidence supporting moxibustion as a targeted intervention for treating POI by specifically regulating steroidogenesis in GCs.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Acupuncture and Moxibustion, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, China
| | - Lingxiang Ran
- Department of Acupuncture and Moxibustion, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, China; Department of Urology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Hanyue Yao
- Department of Acupuncture and Moxibustion, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, China
| | - Yizhi He
- Department of Acupuncture and Moxibustion, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, China
| | - Xinru Lu
- Department of Acupuncture and Moxibustion, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, China
| | - Weina Zhu
- Central Laboratory, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, China; Department of Biobank, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, China
| | - Yajie Zhang
- Central Laboratory, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, China; Department of Biobank, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, China
| | - Tianyi Zhang
- Department of Acupuncture and Moxibustion, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, China
| | - Shijie Shi
- Department of Acupuncture and Moxibustion, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, China
| | - Zheng Luo
- Department of Acupuncture and Moxibustion, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, China
| | - Cairong Zhang
- Department of Acupuncture and Moxibustion, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, China.
| |
Collapse
|
6
|
Ding J, Wang H, He J, Jing C, Zhao H, Hu F. Elucidating the reproductive toxicity mechanisms in female zebrafish: A transcriptomic study of lifetime tris(2-chloroethyl) phosphate exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174831. [PMID: 39019278 DOI: 10.1016/j.scitotenv.2024.174831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/15/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Tris(2-chloroethyl) phosphate (TCEP), emerging as a predominant substitute for brominated flame retardants (BFRs), is now increasingly recognized as a prevalent contaminant in aquatic ecosystems. The extent of its reproductive toxicity in aquatic species, particularly in zebrafish (Danio rerio), remains insufficiently characterized. This study subjected zebrafish embryos to various concentrations of TCEP (0, 0.8, 4, 20, and 100 μg/L) over a period of 120 days, extending through sexual maturation, to assess its impact on female reproductive health. Notable reductions in body weight (0.59- and 0.76-fold) and length (0.71- and 0.77-fold) were observed at concentrations of 20 and 100 μg/L, with a concomitant decrease by 0.21- to 0.61-fold in the gonadal somatic index across all treatment groups. The reproductive output, as evidenced by egg production and hatchability, was adversely affected. Histopathological analysis suggested that TCEP exposure impedes ovarian development. Endocrine alterations were also evident, with testosterone and 11-ketotestosterone levels significantly diminished by 0.38- and 0.08-fold at the highest concentration tested, while 17β-estradiol was elevated by 0.09- to 0.14-fold in all exposed groups. Transcriptomic profiling illuminated numerous differentially expressed genes (DEGs) integral to reproductive processes, including hormone regulation, neuroactive ligand-receptor interactions, oocyte meiosis, and progesterone-mediated maturation pathways. Collectively, these findings indicate that lifelong exposure to TCEP disrupts ovarian development and maturation in female zebrafish, alters gene expression within the hypothalamic-pituitary-gonadal axis, and perturbs sex hormone synthesis, culminating in pronounced reproductive toxicity.
Collapse
Affiliation(s)
- Jieyu Ding
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone in Southeast China, Ministry of Natural Resources, Fuzhou 350001, China
| | - Hongkai Wang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiabo He
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Jing
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haocheng Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fengxiao Hu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone in Southeast China, Ministry of Natural Resources, Fuzhou 350001, China.
| |
Collapse
|
7
|
Satake H, Kawada T, Osugi T, Sakai T, Shiraishi A, Yamamoto T, Matsubara S. Ovarian Follicle Development in Ascidians. Zoolog Sci 2024; 41:60-67. [PMID: 38587518 DOI: 10.2108/zs230054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/20/2023] [Indexed: 04/09/2024]
Abstract
Ovarian follicle development is an essential process for continuation of sexually reproductive animals, and is controlled by a wide variety of regulatory factors such as neuropeptides and peptide hormones in the endocrine, neuroendocrine, and nervous systems. Moreover, while some molecular mechanisms underlying follicle development are conserved, others vary among species. Consequently, follicle development processes are closely related to the evolution and diversity of species. Ciona intestinalis type A (Ciona rubusta) is a cosmopolitan species of ascidians, which are the closest relative of vertebrates. However, unlike vertebrates, ascidians are not endowed with the hypothalamus-pituitary-gonadal axis involving pituitary gonadotropins and sexual steroids. Combined with the phylogenetic position of ascidians as the closest relative of vertebrates, such morphological and endocrine features suggest that ascidians possess both common and species-specific regulatory mechanisms in follicle development. To date, several neuropeptides have been shown to participate in the growth of vitellogenic follicles, oocyte maturation of postvitellogenic follicles, and ovulation of fully mature follicles in a developmental stage-specific fashion. Furthermore, recent studies have shed light on the evolutionary processes of follicle development throughout chordates. In this review, we provide an overview of the neuropeptidergic molecular mechanism in the premature follicle growth, oocyte maturation, and ovulation in Ciona, and comparative views of the follicle development processes of mammals and teleosts.
Collapse
Affiliation(s)
- Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan,
| | - Tsuyoshi Kawada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Tomohiro Osugi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Tsubasa Sakai
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Tatsuya Yamamoto
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Shin Matsubara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| |
Collapse
|
8
|
Awonuga AO, Camp OG, Abu-Soud HM. A review of nitric oxide and oxidative stress in typical ovulatory women and in the pathogenesis of ovulatory dysfunction in PCOS. Reprod Biol Endocrinol 2023; 21:111. [PMID: 37996893 PMCID: PMC10666387 DOI: 10.1186/s12958-023-01159-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous functional endocrine disorder associated with a low-grade, chronic inflammatory state. Patients with PCOS present an increased risk of metabolic comorbidities and often menstrual dysregulation and infertility due to anovulation and/or poor oocyte quality. Multiple mechanisms including oxidative stress and low-grade inflammation are believed to be responsible for oocyte deterioration; however, the influence of nitric oxide (NO) insufficiency in oocyte quality and ovulatory dysfunction in PCOS is still a matter for debate. Higher production of superoxide (O2•-) mediated DNA damage and impaired antioxidant defense have been implicated as contributory factors for the development of PCOS, with reported alteration in superoxide dismutase (SOD) function, an imbalanced zinc/copper ratio, and increased catalase activity. These events may result in decreased hydrogen peroxide (H2O2) accumulation with increased lipid peroxidation events. A decrease in NO, potentially due to increased activity of NO synthase (NOS) inhibitors such as asymmetric dimethylarginine (ADMA), and imbalance in the distribution of reactive oxygen species (ROS), such as decreased H2O2 and increased O2•-, may offset the physiological processes surrounding follicular development, oocyte maturation, and ovulation contributing to the reproductive dysfunction in patients with PCOS. Thus, this proposal aims to evaluate the specific roles of NO, oxidative stress, ROS, and enzymatic and nonenzymatic elements in the pathogenesis of PCOS ovarian dysfunction, including oligo- anovulation and oocyte quality, with the intent to inspire better application of therapeutic options. The authors believe more consideration into the specific roles of oxidative stress, ROS, and enzymatic and nonenzymatic elements may allow for a more thorough understanding of PCOS. Future efforts elaborating on the role of NO in the preoptic nucleus to determine its influence on GnRH firing and follicle-stimulating hormone/Luteinizing hormone (FSH/LH) production with ovulation would be of benefit in PCOS. Consequently, treatment with an ADMA inhibitor or NO donor may prove beneficial to PCOS patients experiencing reproductive dysfunction and infertility.
Collapse
Affiliation(s)
- Awoniyi O Awonuga
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock Detroit, Detroit, MI, 48201, USA.
| | - Olivia G Camp
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock Detroit, Detroit, MI, 48201, USA
| | - Husam M Abu-Soud
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock Detroit, Detroit, MI, 48201, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
9
|
de Mello F, Alonso DJ, de Faria NPVM, Marques VH, de Oliveira EF, de Mello PH, de Godoy LC, Moreira RG. Alterations in Gene Expression and the Fatty Acid Profile Impact but Do Not Compromise the In Vitro Maturation of Zebrafish ( Danio rerio) Stage III Ovarian Follicles after Cryopreservation. Animals (Basel) 2023; 13:3563. [PMID: 38003179 PMCID: PMC10668701 DOI: 10.3390/ani13223563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/18/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The vitrification of ovarian follicles is a strategic tool that may contribute to advances in aquaculture and the conservation of many important species. Despite the difficulties inherent to the cryopreservation of oocytes, some successful protocols have been developed for different species, but little is known about the capacity of oocytes to develop after thawing. Therefore, the profiles of the reproductive pathway genes and fatty acid membrane composition during the initial stages of development were analyzed in fresh ovarian follicles and follicles after the vitrification process. There were differences in the expression of the hypothalamic-pituitary-gonad axis genes during the follicular development in the control group as well as in the vitrified group. Similarly, alterations in the composition of fatty acids were observed after vitrification. Despite this, many alterations were observed in the vitrified group; more than half of the stage III ovarian follicles were able to grow and mature in vitro. Therefore, the vitrification of ovarian follicles may impact them at molecular and membrane levels, but it does not compromise their capability for in vitro maturation, which indicates that the technique can be a strategic tool for aquaculture.
Collapse
Affiliation(s)
- Fernanda de Mello
- Department of Physiology, Bioscience Institute, University of Sao Paulo (IB/USP), 101 Matão Street, Travessa 14, Butantã District, São Paulo 05508-090, SP, Brazil; (D.J.A.); (N.P.V.M.d.F.); (V.H.M.); (R.G.M.)
| | - Daniel Jaen Alonso
- Department of Physiology, Bioscience Institute, University of Sao Paulo (IB/USP), 101 Matão Street, Travessa 14, Butantã District, São Paulo 05508-090, SP, Brazil; (D.J.A.); (N.P.V.M.d.F.); (V.H.M.); (R.G.M.)
| | - Natália Pires Vieira Morais de Faria
- Department of Physiology, Bioscience Institute, University of Sao Paulo (IB/USP), 101 Matão Street, Travessa 14, Butantã District, São Paulo 05508-090, SP, Brazil; (D.J.A.); (N.P.V.M.d.F.); (V.H.M.); (R.G.M.)
| | - Victor Hugo Marques
- Department of Physiology, Bioscience Institute, University of Sao Paulo (IB/USP), 101 Matão Street, Travessa 14, Butantã District, São Paulo 05508-090, SP, Brazil; (D.J.A.); (N.P.V.M.d.F.); (V.H.M.); (R.G.M.)
| | - Ethiene Fernandes de Oliveira
- Aquaculture Center, São Paulo State University “Julio de Mesquita Filho” (CAUNESP), Access Road Professor Paulo Donato Castellane, Vila Industrial District, Jaboticabal 14884-900, SP, Brazil;
| | - Paulo Henrique de Mello
- Beacon Development, King Abdullah University of Science and Technology, 2713, Jeddah 23955, Saudi Arabia;
| | - Leandro César de Godoy
- Department of Animal Science, Federal University of Rio Grande do Sul, 7712 Bento Gonçalves Avenue, Agronomia District, Porto Alegre 91540-000, RS, Brazil;
| | - Renata Guimaraes Moreira
- Department of Physiology, Bioscience Institute, University of Sao Paulo (IB/USP), 101 Matão Street, Travessa 14, Butantã District, São Paulo 05508-090, SP, Brazil; (D.J.A.); (N.P.V.M.d.F.); (V.H.M.); (R.G.M.)
| |
Collapse
|
10
|
Sakai T, Yamamoto T, Watanabe T, Hozumi A, Shiraishi A, Osugi T, Matsubara S, Kawada T, Sasakura Y, Takahashi T, Satake H. Characterization of a novel species-specific 51-amino acid peptide, PEP51, as a caspase-3/7 activator in ovarian follicles of the ascidian, Ciona intestinalis Type A. Front Endocrinol (Lausanne) 2023; 14:1260600. [PMID: 37842312 PMCID: PMC10570924 DOI: 10.3389/fendo.2023.1260600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/16/2023] [Indexed: 10/17/2023] Open
Abstract
Invertebrates lack hypothalamic-pituitary-gonadal axis, and have acquired species-specific regulatory systems for ovarian follicle development. Ascidians are marine invertebrates that are the phylogenetically closest living relatives to vertebrates, and we have thus far substantiated the molecular mechanisms underlying neuropeptidergic follicle development of the cosmopolitan species, Ciona intestinalis Type A. However, no ovarian factor has so far been identified in Ciona. In the present study, we identified a novel Ciona-specific peptide, termed PEP51, in the ovary. Immunohistochemical analysis demonstrated the specific expression of PEP51 in oocyte-associated accessory cells, test cells, of post-vitellogenic (stage III) follicles. Immunoelectron microscopy revealed that PEP51 was localized in the cytosol of test cells in early stage III follicles, which lack secretory granules. These results indicate that PEP51 acts as an intracellular factor within test cells rather than as a secretory peptide. Confocal laser microscopy verified that activation of caspase-3/7, the canonical apoptosis marker, was detected in most PEP51-positive test cells of early stage III. This colocalization of PEP51 and the apoptosis marker was consistent with immunoelectron microscopy observations demonstrating that a few normal (PEP51-negative) test cells reside in the aggregates of PEP51-positive apoptotic test cells of early stage III follicles. Furthermore, transfection of the PEP51 gene into COS-7 cells and HEK293MSR cells resulted in activation of caspase-3/7, providing evidence that PEP51 induces apoptotic signaling. Collectively, these results showed the existence of species-specific ovarian peptide-driven cell metabolism in Ciona follicle development. Consistent with the phylogenetic position of Ciona as the closest sister group of vertebrates, the present study sheds new light on the molecular and functional diversity of the regulatory systems of follicle development in the Chordata.
Collapse
Affiliation(s)
- Tsubasa Sakai
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Tatsuya Yamamoto
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Takehiro Watanabe
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Akiko Hozumi
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Tomohiro Osugi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Shin Matsubara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Tsuyoshi Kawada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Toshio Takahashi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| |
Collapse
|
11
|
Zhang J, Li F, Zhang X, Xie T, Qin H, Lv J, Gao Y, Li M, Gao Y, Jia Y. Melatonin Improves Turbot Oocyte Meiotic Maturation and Antioxidant Capacity, Inhibits Apoptosis-Related Genes mRNAs In Vitro. Antioxidants (Basel) 2023; 12:1389. [PMID: 37507927 PMCID: PMC10376768 DOI: 10.3390/antiox12071389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
High-quality eggs are essential for the sustainability of commercial aquaculture production. Melatonin is a potent candidate for regulating the growth and maturation of oocytes. Therefore, research on the effect of melatonin on marine fish oocytes in vitro has been conducted. The present study successfully established a culture system of turbot (Scophthalmus maximus) oocytes in vitro and investigated the effect of melatonin on oocyte meiotic maturation, antioxidant capacity, and the expression of apoptosis-related genes. The cultures showed that turbot Scophthalmus maximus late-vitellogenic denuded oocytes, with diameters of 0.5-0.7 mm, had a low spontaneous maturation rate and exhibited a sensitive response to 17α, 20β-dihydroxyprogesterone (DHP) treatment in vitro. Melatonin increased by four times the rate of oocyte germinal vesicle breakdown (GVBD) in a concentration- and time-dependent manner. The mRNA of melatonin receptor 1 (mtnr1) was significantly upregulated in the oocyte and follicle after treatment with melatonin (4.3 × 10-9 M) for 24 h in vitro, whereas melatonin receptor 2 (mtnr2) and melatonin receptor 3 (mtnr3) remained unchanged. In addition, melatonin significantly increased the activities of catalase, glutathione peroxidase, and superoxide dismutase, as well as the levels of glutathione, while decreasing the levels of malondialdehyde and reactive oxygen species (ROS) levels in turbot oocytes and follicles cultures in vitro. p53, caspase3, and bax mRNAs were significantly downregulated in oocytes and follicles, whereas bcl2 mRNAs were significantly upregulated. In conclusion, the use of turbot late-vitellogenesis oocytes (0.5-0.7 mm) is suitable for establishing a culture system in vitro. Melatonin promotes oocyte meiotic maturation and antioxidative capacity and inhibits apoptosis via the p53-bax-bcl2 and caspase-dependent pathways, which have important potential to improve the maturation and quality of oocytes.
Collapse
Affiliation(s)
- Jiarong Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Feixia Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaoyu Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Ting Xie
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Hongyu Qin
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Junxian Lv
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yunhong Gao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Mingyue Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yuntao Gao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yudong Jia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|